
The Testing Paradigm Applied to Network Structure

Tom Verhoeff

Department of Mathematics and Computing Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB EINDHOVEN, The Netherlands
E-mail: wstomv@win.tue.nl

January 1990, Revised February 1994

Abstract

The testing paradigmprovides a simple framework for comparing networks of
processes. To apply the testing paradigm, one needs a suite oftestsand atest crite-
rion expressing when a network passes a test. Two networks are consideredtesting
equivalentwhen they pass the same tests. In all applications of the testing paradigm
that we have seen, tests “probe” (some of) thebehaviorof the process network under
test. Networkstructure, however, is mostly handled in an ad hoc way.

In this note, we use the testing paradigm to compare structural aspects of process
networks. Central to our approach are the following three ingredients: (i) Tests are
drawn from the set of process networks, that is, each test is itself just a process
network. (ii) A (global) correctness concern, in the form of a predicate, expresses
when a network is correct as an autonomous system. (iii) A network passes a test
(by another network) when the composition of two networks involved is a correct
(autonomous) system.

Our approach has several merits. It allows a uniform treatment of structure and
behavior. Structural and behavioral correctness concerns can be varied indepen-
dently within the same framework. Structural correctness concerns can be made
explicit at the very beginning, and need not appear implicitly as an unmotivated af-
terthought. Several phenomena, such as nondeterminism, can be illustrated solely
in terms of structure, without getting bogged down by behavioral complications.

For one particular choice of (structural) correctness concerns, we work out a
model in full detail. We briefly investigate alternative correctness concerns.

mailto:wstomv@win.tue.nl
http://www.win.tue.nl/~wstomv/

CONTENTS ii

Contents

1 Introduction 1

2 Pre-Abstract Model 2

3 Basic Concepts for a Fully Abstract Model 6

4 Pointwise Analysis of Correctness 8

5 Construction of Fully Abstract Model 14

6 Discussion of Fully Abstract Model 23

7 Alternative Structural Correctness Concerns 27

8 Conclusion 30

A Countable Bags 30

B Partial Orders and Complete Lattices 32

References 34

1 INTRODUCTION 1

1 Introduction

We study the structure of process networks, ignoring their behavior. Our main goal is
to give a uniform treatment of the structural aspects of process networks. We do so by
working out one example model in detail.

Why study structure separately? Usually, structural correctness concerns are sim-
ply incorporated at the “syntactic” level of a model. In that approach, composition is
disallowed when it would yield a composite that is somehow (structurally) undesirable.
For instance, for asynchronous circuits it is customary to prohibit the connection of two
output ports (see ‘output interference’ in [5]). A disadvantage of this approach is that
composition is a partial operator and, consequently, many propositions about composi-
tion need to be decorated with ad hoc syntactic preconditions (so-called boiler plates;
see ‘connectable’ in [7]). In our approach we do not disallow any compositions, but we
formulate our judgment of desirability in an explicit structural correctness concern. The
correctness concern can be used to define a notion of testing. Using the testing paradigm
of [3, 6], it then gives rise to a refinement and an equivalence relation. The result is a
mathematically clean formalism.

It may appear as if the formalism that we develop in this note to deal with network
structure is far too heavy for its purpose. Admittedly, it is often much easier to deal with
structural correctness than behavioral correctness. However, more complex structural
correctness concerns require more powerful methods. Furthermore, it turns out that the
methods needed to deal with network behavior are very similar (see [10]). We have
made the formalism in this note more general than is strictly necessary, so that behavioral
aspects can be incorporated with little effort. This note is an opportunity for the reader to
become familiar with the general methods in a context where the results are fairly easy
to predict by intuition. However, we urge the reader to make as little use as possible of
these intuitions.

Overview

In Section 2, we present a pre-abstract model. We start the presentation by defining the
setSYS of all systems (process networks). OnSYS we then define structural compo-
sition par and correctness criterionCorrect. This induces relationssatandequonSYS
in a straighforward way (also see [10]). Relationsat captures refinement andequ ex-
presses system equivalence. Thus we obtain a pre-abstract model consisting of the alge-
bra〈SYS;par, sat〉with congruenceequ. The model is called pre-abstract because many
networks are distinguished inSYS that we wish to identify since they are equivalent for
all relevant purposes.

We are interested in the quotient algebra〈SYS;par, sat〉/equconsisting of theequ-
congruence classes. In Sections 3, 4, and 5 we develop an isomorphic fully abstract
model. The objects of this abstract model are functions on the set6 of link identifiers
satisfying certain properties. In Section 6 we discuss some of the properties of the fully
abstract algebra. We look at alternative structural correctness concerns in Section 7. Fi-
nally, Section 8 contains concluding remarks. Appendix A defines our notation for count-

2 PRE-ABSTRACT MODEL 2

able bags and Appendix B summarizes some lattice theory.

2 Pre-Abstract Model

The pre-abstract model presented in this section was directly inspired by work of van de
Snepscheut [9], Udding [7, 8], and Ebergen [5, 4].

Alphabets, processes, and systems

As far as structure is concerned, all we care to know about a process are the names of its
communication ports and the direction of each port (either input or output). In our model,
the communication links that connect ports convey signals only; there is no data transport.
That way, a link may be implemented by a single wire in an electronic circuit. Data may
be encoded by employing several links. If data communication is to be incorporated on a
higher level into the model then each port could also have a data type.

Let 6 be an infinite set ofsymbols, playing the role of port and link identifiers.
Typical (distinct) symbols in6 are a, a0, a1, b, andc . Variablesa, b, andc range
over6. An alphabet is a subset of6.

In this note, aprocessis simply a pair(I ,O) of disjoint alphabets, whereI is the
set of input ports , or inputs for short, andO the set ofoutput ports (outputs). There
is no behavior associated with a process. The set of all processes is denoted byPROC.
VariablesP, Q, andR range overPROC. The projection functionsi ando on processes
are defined by

P = (i P,oP) .

A systemis an countable bag (see Appendix A) of processes. Note 2.3 below mo-
tivates our choice for countable bags. The set of all systems is denoted bySYS. Vari-
ablesS, T , andU range overSYS.

A system models (the topology of) a process network as follows. All ports with the
same name, saya, are connected by a single communicationlink , which will also be
nameda. Ports with different names are not so connected. Thus, links are implicitly
given in a system. Notice that a link never connects a process to itself. A “self-link” must
be simulated by introducing a separate process that behaves like a link.

2.1 Example Let systemSbe defined as [P,Q, R] ([] being the bag constructor, see
Appendix A), where

P = ({a0,a1,b1}, {b0,b2}) ,
Q = ({b0,b3}, {b1, c0}) , and

R = ({a2,b2}, {b3, c1}) .
SystemS may be depicted as in Figure 1. Notice that each link inS connects to at most
one input port and one output port. We will come back to this when defining correctness.

2 PRE-ABSTRACT MODEL 3

S

P

R

Q

-
a0

-
a1

-
a2

-

b0

�

b1

-

b2
-

b3

-
c0

-
c1

Figure 1: Topology diagram of systemS

Composition and correctness

Structural composition, or composition for short, is a binary operator onSYS, denoted
by par and defined as bag summation. It is a total operator, is commutative and associa-
tive, and has the empty bag as unit. Composition is easy to carry out in terms of electronic
circuits: a circuit forS par T is obtained from a circuit forSand a circuit forT by fusing
wire nets with the same name.

OnSYS we want to define a predicateCorrect that captures our (structural)correct-
ness concerns. Correct.S is intended to expresses the conditions under which correct
autonomousoperation of systemS is guaranteed. ‘Autonomous’ here means thatS is
put to work all by itself, without hooking it up to some “environment”.

The particular requirements that we have chosen for our example model throughout
this note derive from an intended implementation of systems by electronic circuitry. Some
alternative correctness concerns are discussed in Section 7.

In electronic circuits, there are a number of undesirable situations. Connected outputs
may give rise to power shorts when they do not agree in voltage level. Connecting too
many inputs together may overload the driving output. Dangling inputs may pick up
noise and dangling outputs may emit spurious electromagnetic signals. We formalize
these concepts as follows.

Link a is said to beconflicting in systemSwhen

(∃ P,Q : [P,Q] ⊆ S : a ∈ oP ∩ oQ) ,

that is, when it connects two output ports. Linka is calledoverloadedin Swhen

(∃ P,Q : [P,Q] ⊆ S : a ∈ i P ∩ iQ) ,

that is, when it connects two input ports. SystemS is calledwell-formed when it has
neither conflicting nor overloaded links; otherwise, it is calledmalformed. Formally, S
is well-formed when

(∀ P,Q : [P,Q] ⊆ S : i P ∩ iQ = ? = oP ∩ oQ) .

SystemSof Example 2.1 is well-formed. Observe that malformedness may be introduced
by composition of well-formed systems and that it persists under composition.

2 PRE-ABSTRACT MODEL 4

In well-formed systemS containing processesP and Q there is a directed commu-
nication link labeleda from P to Q whenever porta is an output ofP, i.e. a ∈ oP,
and an input ofQ, i.e. a ∈ iQ (hence,P 6= Q). Such a link is consideredinternal
to the system, in the sense that further connections to it are undesirable, that is, links
are output-to-input connections. SystemS of Example 2.1 has four such internal links.
Merging and forking of signals must be accomplished by incorporating explicit merge
and fork processes. Internal links are structurally “visible” by their name, but when in-
corporating system behavior, communication events along internal links are intended to
be hidden, that is, they are unobservable for other processes. In Section 7 we will discuss
multi-point connections.

Link a is said to beundriven or a dangling input in systemS (viewed as an au-
tonomous system) when

(∃ P : P ∈ S : a ∈ i P) ∧ (∀Q : Q ∈ S : a /∈ oQ) ,

that is, if it connects to an input port but not to any output port. Linka is calleduntermi-
nated or adangling output in S (again, viewed as an autonomous system) when

(∃ P : P ∈ S : a ∈ oP) ∧ (∀Q : Q ∈ S : a /∈ iQ) ,

that is, if it connects to an output port but not to input ports. SystemS is calledclosed
when it has no undriven and no unterminated links; otherwise, it is calledopen. Formally,
S is closed when

(
⋃

P : P ∈ S : i P) = (⋃ P : P ∈ S : oP) .

A dangling link is considered anexternal port of the system, available for connection to
the environment ofS. SystemSof Example 2.1 has three external inputs and two external
outputs. Observe that composition may introduce internal links, namely when one system
has an external input for which the other system has the corresponding external output.
Hence, openness may disappear under composition.

PredicateCorrectonSYS is now defined by

Correct.S ≡ “ S is well-formed and closed”.

Correct.Sexpresses thatShas output-to-input connections only (is well-formed) and has
no dangling inputs or outputs (is closed). That is, each port that occurs in some process
of Soccurs exactly once as input and once as output in the processes ofS.

2.2 Example Notice that both [] (the empty system) and [(?,?)] (the system con-
sisting of one “empty” process, i.e., a process without ports) are correct systems in our
sense. Another example of a correct system is [({a}, {b}), ({b}, {a})], having two in-
ternal links labeleda and b. Examples of incorrect systems are [({a}, {b}), (?, {b})]
(malformed because of conflicting linkb) and [({a}, {b}), ({b},?)] (well-formed, but
not closed because of dangling inputa).

2 PRE-ABSTRACT MODEL 5

2.3 Note The “empty” process(?,?) is the only process that possibly occurs more
than once in a well-formed system. It is not a very interesting process and could be
omitted without great loss. Therefore, one could also model a system as aset—instead
of a bag—of processes. There are several reasons for not doing so.

The main reason is that composition is harder to define satisfactorily for sets. Con-
sider well-formed systemsS= [P,Q] and T = [P, R] where P, Q, andR are distinct
non-empty processes. Under our definition,S par T equals [P, P,Q, R] and this com-
posite is malformed—as intended. Simply taking set union as composition would yield
S par T = {P,Q, R} which could—unintentionally—be well-formed again. One way
to overcome this problem is to make composition a partially defined operator, but that is
exactly what we intend to avoid.

A second reason is that when process behavior is incorporated, it is well possible that
structurally equal processes may have different behaviors associated with them. There-
fore, if we model a system as a set of processes, then stripping away process behavior
naturally yields abagof (behaviorless) processes.

Finally, a third reason for using bags is that under some alternative correctness con-
cerns (cf. Section 7), well-formed systems possibly have multiple occurrences of non-
empty processes.

We have not restricted ourselves to finite systems, because we wanted to investigate
some of the problems encountered with infinite networks. The restriction to countable
bags is purely pragmatic.

Testing, satisfaction, and equivalence

On the basis of the correctness concern and the composition operator we define (cf. [10])
testing relation pass, satisfaction pre-order sat, andequivalenceequby

S pass T ≡ Correct.(S par T) ,

S sat T ≡ (∀U :: S pass U⇐ T pass U) ,

S equ T ≡ (∀U :: S pass U≡ T pass U) .

Recall thatU ranges overSYS. Relationpassexpresses the result of testingSby (putting
it in environment)T . Thepass-set ofS, denoted bypass.S, is defined by

pass.S = {U : S pass U: U} .
Relationsat expresses when one system is at least as “good” as another in the sense of
passing at least the same tests:

S sat T ≡ pass.S⊇ pass.T .

It acts as a refinement relation. Relationequexpresses that one system is as “good” as
another in the sense of passing the same tests:

S equ T ≡ pass.S= pass.T .

3 BASIC CONCEPTS FOR A FULLY ABSTRACT MODEL 6

It may alternatively be defined by

S equ T ≡ S sat T ∧ T sat S

and it is a congruence relation on〈SYS;par, sat〉.
We are interested in the quotient algebra〈SYS;par, sat〉/equ. In the next sections we

construct an isomorphic algebra, whose objects have a mathematically simpler structure
than the congruence classes.

3 Basic Concepts for a Fully Abstract Model

In this section we introduce some fundamental concepts for an abstract algebra.
A link status is a member of the six-element set3 defined by

3 = {⊥,�,?, !,�,>} .
Link statuses will be used to indicate how a system “treats” each link. Their interpretation
is as follows:

⊥ : abused (conflicting or overloaded),
� : internal,
? : external input,
! : external output,
� : unused,
> : miraculous (compensation for⊥).

The presence of> will be motivated later in Note 4.3. Alink status function (LSF for
short) is a mapping from6 to3. LSFs will be the objects of the fully abstract model of
Section 5. The set of all LSFs is denoted byLSF . Variablesα, β, andγ range over3
and variablesp, q, andr range overLSF . For eachα ∈ 3 we define the constant LSF
α6 by

α6.a = α .

q > � ! ? � ⊥
> > > > > > >
� > � ! ? � ⊥
! > ! ⊥ � ⊥ ⊥
? > ? � ⊥ ⊥ ⊥
� > � ⊥ ⊥ ⊥ ⊥
⊥ > ⊥ ⊥ ⊥ ⊥ ⊥

Table 1: Composition operatorq on3

Composition, denotedq, is a binary operator on3 defined in Table 1. For example,
input and output merge into internal under composition: ?q ! = �. Input composed with

3 BASIC CONCEPTS FOR A FULLY ABSTRACT MODEL 7

input yields abuse (?q ? = ⊥) because connections should be output-to-input. When
modeling multi-point connections one could define composition of inputs to yield an
input again (see Example 7.4).

3.1 Note Defining ?q ! = � would model completely1 hidden internal links. We
will briefly look at that possibility in Section 7. In that case, composition would not be
associative (see Example 7.3), which explains our preference for the current definition
(see Property 3.2 below).

3.2 Property Composition operatorq on3 is commutative, associative, and has� as
unit. Furthermore, it has> as zero and there are no zero divisors underq, that is, we have

α q β = > ≡ α = > ∨ β = > .
Proof Commutativity, the unit and the zero, and the absence of zero divisors are readily
verified in Table 1. Regarding associativity, notice that (i) the cases where>,� (the unit),
or⊥ occur are trivial and (ii) any composition of three elements from{�,?, !} yields⊥.

In view of Property 3.2, we can extendq to a unary operator on finite bags over3 (instead
of composing just two elements), for example,

q[] = � ,

q[α, β, β] = α q β q β .

Composition is not idempotent, but we do have

α q α q α = α q α .

On account of this we can reduce multiplicities in a bag to at most two when computingq,
without affecting the outcome: for finite bagB over3 we have

qB = qC, where

C.α = min{B.α,2} .
We defineq for ω-bags over3 as well, by first reducing them to a finite bag as above. We
also extendq toLSF by pointwise application, that is,p q q is defined by

(p q q).a = p.a q q.a .

Obviously,q onLSF inherits some properties fromq on3; for example, it is also com-
mutative and associative, and has�6 as unit and>6 as zero. Note, however, that it does
have zero divisors. We also useq as unary operator on countable bags overLSF by
defining

(qB).a = q[p : B.p : p.a] .

1Not only behaviorally, but also structurally.

3 BASIC CONCEPTS FOR A FULLY ABSTRACT MODEL 8

From processes and systems to LSFs

Before we can express the correctness predicate more simply we need to introduce a
mapping fromSYS toLSF . First, we define mappingl:PROC → LSF by

l.P.a =

? if a ∈ i P
! if a ∈ oP
� otherwise

Note that this is a proper definition sincei P andoP are disjoint. We calll.P the link
status function of processP. Sincel is an injective mapping, one may view it as an
embedding ofPROC in LSF . Next, we lift l via q toSYS yielding mappingL :SYS →
LSF defined by

L .S= q[P : S.P : l.P] .

We call L .S the link status function of system S. Note that this definition takes the
multiplicity of each process inS into account, thus, for example,

L .[P,Q,Q].a = l.P.a q l.Q.a q l.Q.a .

3.3 Property For processP and systemsSandT we have

(∀ a :: l.P.a 6∈ {⊥,�,>}) ,
(∀ a :: L .S.a 6= >) ,

and

L .[] = �
6 ,

L .[(?,?)] = �
6 ,

L .[P] = l.P ,

L .(S par T) = L .Sq L .T .

We can now express correctness of a system concisely in terms of its LSF.

3.4 Theorem For systemSwe have

Correct.S ≡ (∀ a :: L .S.a 6∈ {⊥,?, !}) .
Proof Observe that (i)S is well-formed if and only if⊥ does not occur asL .S-image
and (ii) if S is well-formed, thenS is closed if and only if ? and ! do not occur asL .S-
image.

4 POINTWISE ANALYSIS OF CORRECTNESS 9

4 Pointwise Analysis of Correctness

We will carry out a pointwise analysis of system correctness in this section, that is, by
concentrating on the links individually. In the next section we will look at the global
aspects of correctness again.

Inspired by Theorem 3.4, let us define correctness predicateCorrect3 and testing
relationpass3 on3 by

Correct3.α ≡ α 6∈ {⊥,?, !} ,
α pass3 β ≡ Correct3.(α q β) .

4.1 Property For systemsSandT we now have

Correct.S ≡ (∀ a :: Correct3.(L .S.a)) ,

S pass T ≡ (∀ a :: L .S.a pass3 L .T.a) .

Proof Use Theorem 3.4 and Property 3.3.

Notice thatpass3 is symmetric sinceq is commutative. Recall the usual derived concepts:

pass3.α = {γ : α pass3 γ : γ } ,
α sat3 β ≡ pass3.α ⊇ pass3.β .

The pass3-sets are tabulated in Table 2. Notice that thesepass3-sets are unique, that

α pass3.α
> {>, �, !, ?, �, ⊥}
� {>, �, � }
! {>, ? }
? {>, ! }
� {>, � }
⊥ {> }

>
� |�

� � �

? | !
� � �

� |�
⊥

Table 2: Thepass3-sets and the Hasse diagram forv3 (converse ofsat3)

is, α = β if and only if pass3.α = pass3.β. Hence, relationsat3 induced bypass3
is a partial order, also denoted byw3. The Hasse diagram ofv3 is given in Table 2.
Obviously,〈3;v3〉 is a complete lattice. We will leave out subscript3 when it is clear
from the context.

From Table 2 one can readily infer a number of properties. For instance,Correct.α is
equivalent toα w �. Eachpass-set has a minimum underv. Furthermore, composition
is v-monotonic. It is a little harder to verify the stronger statement that composition
distributes overu. Instead of exploiting our detailed knowledge about3 andq, we will
prove these properties more generally. The reason for doing so is that one encounters a
similar situation when behavior is incorporated. The general results derived here can be
carried over directly.

4 POINTWISE ANALYSIS OF CORRECTNESS 10

For the remainder of this section (excepting examples) we allow ourselves to use only
(i) Property 3.2 aboutq, (ii) the definitions ofpassandv, (iii) that 〈3;v〉 is a complete
lattice, and (iv) that eachpass-set has a minimum.

It turns out to be useful to introduce the unary operatorv, called reflection, on3
defined by

vα = min(pass.α) .

It is properly defined because eachpass-set has a minimum. The reflection ofα is the
“severest” test passed byα.

4.2 Property We haveα passvα.

Proof From the definition ofvα followsvα ∈ pass.α.

Reflection enables us to give an alternative expression for the pass relation (Property 4.5),
to give an explicit isomorphism between〈3;v〉 and 〈3;w〉 (Corollary 4.11), and to
formulate an interesting factorization formula (Property 4.13).

4.3 Note Without > we could not have defined the reflection of⊥, for in that case
pass.⊥ = ?, whereas now we havepass.⊥ = {>}. This motivates the introduction of>
(but not our choice for evaluating compositions involving>). We will come back to the
role of> in Section 6.

α ⊥ � ? ! � >
vα > � ! ? � ⊥

Table 3: Reflection operatorv on3

The effect of reflection is shown in Table 3. From this table one sees that reflection is an
involution, that is, its own inverse. But we can also prove this more generally and we will
not make further use of the table (again, excepting examples).

General results for3

We start by observing thatpass-sets arev-upward closed.

4.4 Property We have

β ∈ pass.α ∧ β v γ ⇒ γ ∈ pass.α .

Proof We derive

β ∈ pass.α ∧ β v γ
≡ { symmetry ofpassand definition ofv }
α ∈ pass.β ∧ pass.β ⊆ pass.γ

⇒ { set theory}

4 POINTWISE ANALYSIS OF CORRECTNESS 11

α ∈ pass.γ

≡ { symmetry ofpass}
γ ∈ pass.α

Relationpassis expressible in terms of the order and reflection:

4.5 Property We have

α passβ ≡ α w vβ .
Proof The implication from left to right follows from the definition ofvβ as thev-
minimum of pass.β. The implication from right to left follows from Property 4.4 and
vβ ∈ pass.β.

We can now give a different expression for correctness:

4.6 Property We have

Correct.α ≡ α w v� .
Proof We derive

Correct.α

≡ { � is unit of q }
Correct.(α q �)

≡ { definition ofpass}
α pass�

≡ { Property 4.5}
α w v�

4.7 Note The appearance of� in Property 4.6 is not a coincidence as is seen in the
proof: � is the unit ofq on3.

4.8 Corollary We have

α q β w v� ≡ α w vβ .
Proof Use Property 4.6, definition ofpass, and Property 4.5.

Reflection reverses the order:

4.9 Property We have

α v β ≡ vα w vβ .

4 POINTWISE ANALYSIS OF CORRECTNESS 12

Proof We derive

α v β
≡ { definition ofv }

pass.α ⊆ pass.β

≡ { property of min,pass.β isv-upward closed (Property 4.4)}
min(pass.α) w min(pass.β)

≡ { definition ofv }
vα w vβ

Reflection is an involution:

4.10 Property We havevvα = α.

Proof We derive

true

≡ { Property 4.2 applied toα andvα }
α passvα ∧ vα passvvα

≡ { Property 4.5}
α w vvα ∧ vα w vvvα
≡ { Property 4.9}
α w vvα ∧ α v vvα
≡ { antisymmetry ofv }
α = vvα

4.11 Corollary Reflection is an isomorphism between〈3;v〉 and〈3;w〉.

4.12 Note So far, we have not used associativity ofq.

We now prove a property that enables us to solve inequations of the formα qβ w γ for α.
It is called a factorization formula because it shows howβ may factored out ofγ . We
will come back to this important property in Section 6.

4.13 Property (Factorization Formula) We have

α q β w γ ≡ α w v(β qvγ) .
Proof We derive

α q β w γ

4 POINTWISE ANALYSIS OF CORRECTNESS 13

≡ { Corollary 4.8, usingγ = vvγ (Property 4.10)}
(α q β) qvγ w v�
≡ { associativity ofq }
α q (β qvγ) w v�
≡ { Corollary 4.8}
α w v(β qvγ)

The Factorization Formula is a Galois connection. It shows that for eachβ the functions
q β andv(β qv) form a Galois pair.

Now we are in a position to prove

4.14 Property Composition operatorq is u-continuous (distributes over arbitraryu),
that is, forW ⊆ 3 we have

α q uW = u{β : β ∈ W : α q β} .
Proof Let W be a subset of3. It suffices to prove that for allγ we have

α q uW w γ ≡ u{β : β ∈ W : α q β} w γ .
We derive

α q uW w γ
≡ { Factorization Formula (Property 4.13)}
uW w v(α qvγ)
≡ { property ofu }
(∀β : β ∈ W : β w v(α qvγ))
≡ { Factorization Formula}
(∀β : β ∈ W : α q β w γ)
≡ { property ofu }
u {β : β ∈ W : α q β} w γ

4.15 Corollary Composition operatorq isv-monotonic.

4.16 Example Composition operatorq does not distribute overt, as is seen in

� q (?t !) = � q> = > 6= ⊥ = ⊥ t ⊥ = (� q ?) t (� q !) .

Neitheru nort distributes overq. Here is a counterexample foru:
� u (?q !) = � u � = � 6= ⊥ = ⊥ q⊥ = (� u ?) q (� u !) .

The same choice of operands provides a counterexample fort.
Finally, reflection does not distribute overq. For if this were the case then all link sta-

tuses of the formαqvα would be self-dual sinceq is commutative andv is an involutions.
But there are no self-dual link statuses in3 at all (see Table 3).

4 POINTWISE ANALYSIS OF CORRECTNESS 14

Pointwise extension toLSF

We extendv andv to LSF by pointwise application. Hence,〈LSF ;v〉 is also a com-
plete lattice and it is isomorphic to its converse viav. Obviously, the Factorization For-
mula also applies to compositionq onLSF and this composition is alsou-continuous.
We can now reformulate Property 4.1, giving alternative expressions for the correctness
predicate and the testing relation onSYS. Observe that in the expression forpasswe
profit again from the presence of> in 3, which made reflection possible.

4.17 Theorem For systemsSandT we have

Correct.S ≡ L .Sw v�6 ,
S pass T ≡ L .Sw vL .T .

Proof The second equivalence follows from Properties 4.1 and 4.5. The first equiva-
lence follows from the second and Property 3.3 by observing

Correct.S ≡ S pass[] .

In fact, we no longer need to analyzeCorrect directly since by now we know so much
aboutpass.

4.18 Corollary For systemsSandT we have

L .Sw L .T ⇒ S sat T,

L .S= L .T ⇒ S equ T.

4.19 Note In the proof of the preceding corollary, both transitivity and antisymmetry
of v are of importance.

On account of Corollary 4.18 and Property 3.3,L may be viewed as anequ-respecting
abstraction function, because∼=L is a congruence relation on〈SYS;par, sat〉 with ∼=L ⊆
equ. But it is not afull abstraction because the converse implications of the corollary do
not hold in general.

4.20 Example Consider processesP andQ, and systemsSandT defined by

P = (?, {a}) ,
Q = (?, {b}) ,
S = [P, P] ,

T = [Q,Q] .

On the one hand we haveS equ Tbecause thepass-sets of bothSandT are empty due to
output conflicts. On the other hand we haveL .S 6= L .T because, for instance,L .S.a = ⊥
andL .T .a = �.

5 CONSTRUCTION OF FULLY ABSTRACT MODEL 15

5 Construction of Fully Abstract Model

So far we have looked at pointwise aspects of correctness only. In this section we will tie
these aspects together and develop them into a fully abstract model (cf. Theorem 5.19).

Under a full abstraction, all equivalent systems should be identified, i.e., mapped into
the same object. For these fully abstract objects we intend to use certain members of
LSF . At the end of the preceding section we observed thatL is an abstraction function
but not a full abstraction. All malformed systems fail every test and, hence, are equiva-
lent. NeverthelessL -images of malformed systems may differ. It turns out that failure to
identify malformed systems is the only deficiency that keepsL from being a full abstrac-
tion.

Therefore let us consider mapping [[]]: SYS → LSF defined by

[[S]] =
{ ⊥6 if (∃a :: L .S.a = ⊥)

L .S otherwise

as candidate for a full abstraction. It identifies all malformed systems by mapping them
into⊥6. We intend to takew as fully abstract counterpart ofsat. This requires us to show

S sat T ≡ [[S]] w [[T]] .

Furthermore, we need to define a fully abstract counterpart ofpar on the image space
of SYS under [[]]. We postpone composition for a while and concentrate on the first
obligation concerning satisfaction.

Satisfaction

The definition of [[]] can be rewritten in a way that facilitates generalization. We define
the subsetLSF⊥ of LSF by

p ∈ LSF⊥ ≡ (∀ a,b : p.a = ⊥ : p.b = ⊥) .
Notice that the defining predicate on the right-hand side is equivalent to

(∃a :: p.a = ⊥) ⇒ p = ⊥6 .
Let b c be the downward projection induced byLSF⊥ in 〈LSF,v〉 (see Appendix B),
that is,

bpc = t {r : r ∈ LSF⊥ ∧ r v p : r } .
5.1 Property For p ∈ LSF we have

bpc =
{ ⊥6 if (∃a :: p.a = ⊥)

p otherwise

Proof If (∃a :: p.a = ⊥) then {r : r ∈ LSF⊥ ∧ r v p : r } = {⊥6} and, hence,
bpc = ⊥6 in this case; otherwise,p ∈ LSF⊥ and, hence,bpc = p.

5 CONSTRUCTION OF FULLY ABSTRACT MODEL 16

5.2 Corollary For systemSwe have [[S]] = bL .Sc.
From now on we refer to Corollary 5.2 as definition of [[]].

In this section we will work backwards, that is, we state important theorems early and
in their proofs we make forward references to lemmata proved later. This way we can
directly motivate our interest in certain properties ofLSF⊥ andb c.

PredicateCorrect and relationspass, sat, and equ may be characterized in terms
of [[]].

5.3 Theorem For systemsSandT we have

Correct.S ≡ [[S]] w v�6 ,
S pass T ≡ [[S]] w v[[T]] ,

S sat T ≡ [[S]] w [[T]] ,

S equ T ≡ [[S]] = [[T]] .

Proof We derive the first equivalence.

Correct.S

≡ { Theorem 4.17}
L .Sw v�6
≡ { property ofb c usingv�6 ∈ LSF⊥ }
bL .Sc w v�6
≡ { definition ofbSc }

[[S]] w v�6

We derive the second equivalence.

S pass T

≡ { Theorem 4.17}
L .Sw vL .T

≡ { property ofb c usingvL .T ∈ LSF⊥ on account of Lemma 5.4 below}
bL .Sc w vL .T

≡ { reflection reverses the order}
vbL .Sc v L .T

≡ { property ofb c usingvbL .Sc ∈ LSF⊥ on account of Lemma 5.5 below}
vbL .Sc v bL .Tc
≡ { reflection reverses the order and definition of [[]] }

[[S]] w v[[T]]

We derive the third equivalence.

S sat T

5 CONSTRUCTION OF FULLY ABSTRACT MODEL 17

≡ { definition ofsat }
(∀U : T pass U: S pass U)

≡ { second equivalence}
(∀U : [[T]] w v[[U]] : [[S]] w v[[U]])

≡ { Note below for ‘⇒’; transitivity of v for ‘⇐’ }
[[S]] w [[T]]

Note: If [[T]] = ⊥6 then we are done because⊥6 is the least element inLSF . If [[T]] 6=
⊥6 then, on account of Lemma 5.6 below, we can instantiateU such that [[U]] = v[[T]].
The desired result now is a consequence ofvvp = p and reflexivity ofv.

The fourth equivalence follows from the third and antisymmetry ofv.

On account of this theorem, [[]] may be viewed as a full abstraction. However, we still
have three proof obligations to take care of. The first one is to show that for all systemsT
we havevL .T ∈ LSF⊥. Let us defineLSF> as the subset ofLSF satisfying

p ∈ LSF> ≡ (∀ a,b : p.a = > : p.b = >) .
Note thatLSF⊥ andLSF> are each other’s dual in the sense that

p ∈ LSF> ≡ vp ∈ LSF⊥ .
We now prove

5.4 Lemma For systemSwe haveL .S∈ LSF>.

Proof From Property 3.3 followsL .S.a 6= > for anya and, hence,L .S∈ LSF>.

After dualization, the second obligation is to showbL .Sc ∈ LSF>. We prove

5.5 Lemma For LSF p in LSF> we havebpc ∈ LSF>. Hence, for systemS we
have [[S]] ∈ LSF>.

Proof Assumingp ∈ LSF> we derive

bpc.a = >
⇒ { bpc v p and> = max3 }

p.a = >
⇒ { p ∈ LSF> }

p = >6
⇒ { >6 ∈ LSF>, property ofb c }
bpc = >6

The second part follows from the first and Lemma 5.4.

5 CONSTRUCTION OF FULLY ABSTRACT MODEL 18

Our third obligation is to show that for each systemT with [[T]] 6= ⊥6 there exists a
systemU such that [[U]] = v[[T]]. This may be expressed concisely as

v([[SYS]] r {⊥6}) ⊆ [[SYS]] ,

wherev and [[]] applied to a set of LSFs yields the set of all images of its members. In
fact, we can show the following stronger result. DefineLSF ′ andLSF ′′ by

LSF ′ = (LSF⊥ ∩ LSF>) ,
LSF

′′ = LSF
′ r {>6} .

5.6 Lemma We have [[SYS]] = LSF ′′.
Proof We infer

[[SYS]] ⊆ LSF> ,
[[SYS]] ⊆ LSF⊥ ,
[[SYS]] 63 >6 , and

[[SYS]] ⊇ LSF
′′ .

from Lemmata 5.4, 5.7, 5.8, and 5.9 respectively (the latter three occur below).

5.7 Lemma LSF> is u-complete in〈LSF ;v〉 (cf. App. A) and, hence,LSF⊥ is
t-complete. Consequently,b cmaps intoLSF⊥ and, hence, [[]] also.

Proof Let W be a subset ofLSF>. We derive for symbolsa andb:

(uW).a = >
≡ { u taken pointwise}
u {p : p ∈ W : p.a} = >
≡ { property ofu using> = max3 }
(∀ p : p ∈ W : p.a = >)
⇒ {W ⊆ LSF> }
(∀ p : p ∈ W : p.b = >)
≡ { roll back}
(uW).b = >

Hence,uW ∈ LSF>.

5.8 Lemma For LSFp we have

bpc = >6 ≡ p = >6 .
For systemSwe have [[S]] 6= >6.

Proof We derive the first part

5 CONSTRUCTION OF FULLY ABSTRACT MODEL 19

bpc = >6
≡ { >6 = maxLSF }
bpc w >6
≡ { property ofb c, using>6 ∈ LSF⊥ }

p w >6
≡ { >6 = maxLSF }

p = >6
The second part now follows from the first and Property 3.3, which impliesL .S 6= >6.

5.9 Lemma For all LSFsp in LSF ′′ there exists a systemSsuch that [[S]] = p.

Proof We construct mappinginv:LSF ′′ → SYS such that [[inv.p]] = p for p ∈
LSF ′′.

Let p ∈ LSF ′′. Therefore, for all symbolsa, we havep.a 6= >. Define systeminv.p
as [P,Q] where processesP andQ are given by

P = ({a : p.a = ? : a}, {a : p.a ∈ {!,�,⊥} : a}) ,
Q = ({a : p.a = � : a}, {a : p.a = ⊥ : a}) .

ThusP supplies external inputs and outputs, and outputs for internal and conflicting links,
whereasQ supplies inputs for internal links and outputs for conflicting links. On account
of p ∈ LSF ′′ we havel.P q l.Q = p and, hence,L .(inv.p) = p. Sincep ∈ LSF⊥ as
well, we havebpc = p and therefore [[inv.p]] = p.

5.10 Note In the above proof there are many choices for systemSsuch that [[S]] = p.
If p has neither conflicting nor internal links, then processQ as defined above equals
(?,?) and may be omitted; otherwise, at least two processes are required inS.

The construction given in the above proof may be applied to arbitrary LSFs, thereby
extendinginv. For p ∈ LSF>r {>6} we then haveL .(inv.p) = p. This is no longer the
case when behavior is included.

5.11 Corollary For systemSwe haveS equ inv.[[S]].

Proof We derive

inv.[[S]] equ S

≡ { Theorem 5.3}
[[inv.[[S]]]] = [[S]]

≡ { Lemma 5.9}
true

We have now fulfilled our proof obligations concerning satisfaction. Next we consider
composition.

5 CONSTRUCTION OF FULLY ABSTRACT MODEL 20

Composition

Given Lemma 5.9, it is straightforward to give a definition for the fully abstract counter-
part ofpar onLSF ′′: define binary operator‖ onLSF ′′ by

p ‖ q = [[inv.p par inv.q]] .

5.12 Lemma 〈LSF ′′; ‖,w〉 is an algebra with the same signature as〈SYS;par, sat〉.
Furthermore, mapping [[]] is compatible with composition (par and‖).
Proof All that is left to check for the first proposition is that‖ is an operator onLSF ′′,
which it obviously is. Next we derive compatibility of [[]] with composition:

[[S par T]] = [[S]] ‖ [[T]]

≡ { definition of‖ }
[[S par T]] = [[inv.[[S]] par inv.[[T]]]]

≡ { Theorem 5.3}
S par T equ inv.[[S]] par inv.[[T]]

≡ { Corollary 5.11,equis congruence w.r.t.par }
true

The main result of this section (Theorem 5.19 below) may now be proven and the reader
can skip the remainder of this subsection, which presents an alternative definition of‖.

Our current definition of‖ is rather cumbersome since it works viaSYS. We can
rewrite it as follows:

[[inv.p par inv.q]]

= { definition of [[]] }
bL .(inv.p par inv.q)c
= { Property 3.3}
bL .(inv.p) q L .(inv.q)c
= { see proof of Lemma 5.9}
bp q qc

For arbitrary LSFsp andq, we now definep ‖ q by

p ‖ q = bp q qc .
We need to show that the restriction of‖ to LSF ′′ is an operator on the latter and that
[[]] is compatible with it. We show a little more. (The role ofLSF ′ will be explained in
Section 6.)

5.13 Lemma 〈LSF ′; ‖,w〉 and〈LSF ′′; ‖,w〉 are algebras with the same signature
as〈SYS;par, sat〉.

5 CONSTRUCTION OF FULLY ABSTRACT MODEL 21

Proof All we need to show is thatLSF ′ andLSF ′′ are closed under‖.
Let p andq be LSFs inLSF ′ and, hence, inLSF>. Lemma 5.14 below implies

p q q ∈ LSF>. From Lemmata 5.5 and 5.7 we inferbLSF>c ⊆ LSF
′ and, hence,

p ‖ q ∈ LSF ′.
Let p andq be LSFs inLSF ′′. In view of the preceding, all that is left to show is

p ‖ q 6= >6 , which follows from Lemmata 5.8 and 5.14.

5.14 Lemma For B an countable bag overLSF> we haveqB ∈ LSF> and, further-
more,

qB = >6 ≡ >6 ∈ B .

Proof Let B be an countable bag overLSF>. We derive for symbola:

(qB).a = >
= { definition ofq for bags overLSF }
q[p : B.p : p.a] = >
= { Property 3.2:q on3 has no zero divisors}
(∃ p : p ∈ B : p.a = >)

Both propositions now follow from the fact thatB is a bag overLSF>.

5.15 Lemma Mapping [[]] is compatible with composition (par and‖), that is,

[[S par T]] = [[S]] ‖ [[T]] .

Proof For systemsSandT we derive

[[S par T]]

= { definition of [[]] }
bL .(S par T)c
= { Property 3.3}
bL .Sq L .Tc
= { definition of‖ }

L .S‖ L .T

= { Lemma 5.16 below, using Lemmata 5.4 and 5.5}
bL .Sc ‖ bL .Tc
= { definition of [[]] }

[[S]] ‖ [[T]]

5.16 Lemma For LSFsp andq with q ∈ LSF> we have

p ‖ q = bpc ‖ q .

5 CONSTRUCTION OF FULLY ABSTRACT MODEL 22

Proof On account of the definition of‖ we need to show

bp q qc = bbpc q qc .
For r ∈ LSF⊥ we derive

p q q w r

≡ { Factorization Formula applied pointwise (Property 4.13)}
p w v(q qvr)

≡ { property ofb c usingv(q q vr) ∈ LSF⊥ on account ofq ∈ LSF>, r ∈
LSF⊥, and Lemma 5.14}

bpc w v(q qvr)

≡ { Factorization Formula applied pointwise}
bpc q q w r

Application of the definition ofb c completes the proof.

5.17 Corollary Composition operator‖ is associative onLSF>.

Proof We derive

(p ‖ q) ‖ r

= { definition of‖ }
bbp q qc q r c
= { Lemma 5.16 usingr ∈ LSF> }
b(p q q) q r c

Associativity of‖ now follows from associativity ofq.

5.18 Example The conditionq ∈ LSF> in Lemma 5.16 and Corollary 5.17 is cru-
cial. Consider LSFsp andq defined by

p.a =
{ ⊥ if a = a
� otherwise

q.a =
{ > if a = a
� otherwise

Then we havep ∈ LSF>, q /∈ LSF>, and

p ‖ q = bp q qc = bqc = q 6= ⊥6 = b⊥6 q qc = ⊥6 ‖ q = bpc ‖ q .

5 CONSTRUCTION OF FULLY ABSTRACT MODEL 23

Fully abstract model and summary of construction

We now have all the ingredients for a fully abstract model.

5.19 Theorem Algebras〈SYS; sat,par〉/equand〈LSF ′′; w, ‖〉 are isomorphic.

Proof 〈LSF ′′; ‖,w〉 is an algebra according to Lemma 5.12 (or 5.13). On account of
Theorem 5.3 and Lemma 5.12 (or 5.15), mapping [[]] is a homomorphism from〈SYS;par, sat〉
to 〈LSF ′′; ‖,w〉. On account of Lemma 5.9 it is a surjection. From Theorem 5.3 also
follows

equ = ∼=[[]] .

Now we can apply the Homomorphism Theorem to complete the proof.

Let us summarize the key ingredients of the construction.
First we introduce the “mini” algebra〈3; q,v〉 and derive a number of general prop-

erties. Next we consider the function spaceLSF = 6→ 3 and turn it into the algebra
〈LSF; q,v〉 by pointwise extension. It inherits many properties from the mini algebra.
PROC andSYS are mapped intoLSF via l andL respectively, translating the abstrac-
tion problem toLSF .

The setLSF has to be reduced. We consider the predicate

p.a = > ⇒ p.b = > ,
whose universal closure overa andb defines the subsetLSF>. LSF ′ is the intersec-
tion of LSF> and its reflectionLSF⊥. Downward projectionb c onto LSF⊥ and
full abstraction [[]] are defined. The following properties ofLSF> are proved. For
processP, countable bagB overLSF>, subsetW of LSF>, LSF p in LSF>, and
LSFq in LSF ′ r {>6} we have

(0) >6 ∈ LSF ′ { used in Lemmata 5.5 and 5.8}
(1) �

6 ∈ LSF ′ { used in Theorem 5.3}
(2) l.P ∈ LSF> { Property 3.3}
(3) l.P 6= >6 { Property 3.3}
(4) qB ∈ LSF> { Lemma 5.14}
(5) qB = >6 ≡ >6 ∈ B { Lemma 5.14}
(6) uW ∈ LSF> { Lemma 5.7}
(7) bpc ∈ LSF> { Lemma 5.5}
(8) (∃ S : S∈ SYS : [[S]] = q) { Lemma 5.9}

The proofs rely on the specific form of the defining predicate forLSF>. They need to be
redone for each particular application, for example, when using other structural correct-
ness concerns or when incorporating behavior. The following are general consequences

6 DISCUSSION OF FULLY ABSTRACT MODEL 24

of the definitions and the above properties; they need not be redone for other applications.
For LSFp in LSF> and systemSwe have

(9) L .S∈ LSF> { (2) and (4) above, def.L .S }
(10) L .S 6= >6 { (3) and (5) above, def.L .S }
(11) bpc ∈ LSF ′ { (6) and (7) above, def.bpc }
(12) bpc = >6 ≡ p = >6 { Lemma 5.8, uses (0) above}
(13) [[S]] ∈ LSF ′ (9) and (11), and def. [[S]] }
(14) [[S]] 6= >6 { (10) and (12), and def. [[S]] }
(15) [[SYS]] = LSF ′ r {>6} { (8) above, (13), and (14)}

The fully abstract version of composition inLSF ′, i.e.‖, is defined by

p ‖ q = bp q qc .
Property (1) above is also needed to show that�

6 is the unit of‖ in LSF ′.

6 Discussion of Fully Abstract Model

In this section we investigate the fully abstract model. We list a couple of important prop-
erties enjoyed by this model and we discuss the Factorization Formula and interpretations
of greatest lower bounds.

Important properties

We have attempted to restrict ourselves to properties that do not mention the internal
mathematical structure of the objects in the fully abstract model (LSF ′′), that is, their
being mappings from6 to3. These properties may be used as the beginning of an ax-
iomatic characterization. We have not looked for a complete axiomatic characterization.

LSF>6 is included again, because the resulting algebra is much richer than〈LSF ′′; ‖,w〉;
that is, we investigate the algebra〈LSF ′; ‖,w,v〉. Keep in mind, however, that>6 has
no concrete counterpart inSYS. In this section, members ofLSF ′ will be calledab-
stract processes, or processes for short.

6.1 Property 〈LSF ′; v〉 is a complete lattice. There exist unique abstract processese
andz such that for all processesp, q, andr , and all setsW of processes we have:

(0) p ‖ q = q ‖ p (‖ is commutative)
(1) (p ‖ q) ‖ r = p ‖ (q ‖ r) (‖ is associative)
(2) p ‖ e = p (e is unit of‖)
(3) p ‖ q = z ≡ p = z ∨ q = z (z is zero of‖, no zero divisors)
(4) p 6= z ⇒ p ‖vz= vz (vz is pseudo zero of‖)
(5) p w q ≡ p ‖vq w ve (relationship between‖,v,v)
(6) p ‖ u′W = u′ {q : q ∈ W : p ‖ q} (‖ is u′-continuous)
(7) vvp = p (v is self-inverse)
(8) p v q ≡ vp w vq (v reversesv)
(9) z = u? (z is maximum)
(10) p ‖ q w r ≡ p w v(q ‖vr) (Factorization Formula)

6 DISCUSSION OF FULLY ABSTRACT MODEL 25

Proof LSF⊥ ist-complete andLSF> isu-complete in〈LSF;v〉 (Lemma 5.7). Fur-
thermore, we have

(∀ p : p ∈ LSF> : bpc ∈ LSF>)
on account of Lemma 5.5. Hence (cf. theorem on complete lattices in Appendix A),
〈LSF ′; v〉 is a complete lattice in which greatest lower bounds (u′) are computed as
follows:

u′W = buWc .
We takee= �6 andz= >6. Unicity follows from 2 and 3. We deriveu′-continuity

of ‖:
p ‖ u′W

= { definition of‖, property ofu′ }
bp q buWcc
= { Lemma 5.16}
bp q uWc
= { q is u-continuous (cf. Property 4.14)}
bu {q : q ∈ W : p q q}c
= { Lemma 6.2 below}
bu {q : q ∈ W : bp q qc}c
= { property ofu′, definition of‖ }
u′ {q : q ∈ W : p ‖ q}

Verification of the other properties is left as an exercise to the reader.

6.2 Lemma For subsetW of LSF we have

buWc = bu {p : p ∈ W : bpc}c .
Proof For r ∈ LSF⊥ we derive:

uW w r

≡ { property ofu }
(∀ p : p ∈ W : p w r)

≡ { property ofb c, usingr ∈ LSF⊥ }
(∀ p : p ∈ W : bpc w r)

≡ { property ofu }
u {p : p ∈ W : bpc} w r

Application of the definition ofb c completes the proof.

The properties listed above do not characterize the algebra completely (i.e. up to isomor-
phism), nor are they independent.

6 DISCUSSION OF FULLY ABSTRACT MODEL 26

Factorization Formula

We now briefly discuss some aspects of the Factorization Formula. One application is
as follows. Given to be implemented is some specificationr . The implementor decides
to attempt an implementation composing a known processq (being an educated guess)
with some unknown processp that still needs to be found. What would be an appropri-
ate specification forp, givenq andr ? The Factorization Formula yieldsv(q ‖ vr) as
specification forp. In fact, this is the weakest specification for such ap. Any acceptable
solution p will satisfy it. Thus, by using the Factorization Formula one does not exclude
any solutions.

One may wonder what happens if the choice ofq was inappropriate for the givenr .
An inappropriate choice ofq leaves less room for choosingp. In the worst caseq ‖ vr
equals⊥6. According to the Factorization Formula the specification forp then is>6.
Equationp: p w >6 has>6 as only solution. So, what happens is that this choice ofq
requiresp to be a “miracle”. Thus, the presence of>6 in the abstract algebra is useful in
that it enables us to express unsolvability of certain equationswithin the model.

Finally, it is worth to note that choosingp equal tov(q ‖ vr) does not necessarily
imply that p ‖ q then equalsr . Reflection is not an inverse of composition in the usual
sense. The best we can say is that(v(q ‖vr)) ‖ q is at least as good asr , but it may be
strictly better. It is quite possible that we have chosen a processq which is “too good” for
the purpose, and that nop is able to “cancel” this abundance of goodness (e.g., consider
the choice of>6 for q). In the case of system structure (not paying attention to behavior)
this is actually the only way in whichq may be “irreversibly” good. When behavior is
incorporated there are more subtle examples (see [10]).

Interpreting greatest lower bounds

Taking the greatest lower bound (u) may be interpreted as“demonic non-deterministic
choice” when occurring in an implementation or as expressingimplementation freedom
when occurring in a specification. The idea behind the first interpretation is that when
confronted withp u q all one knows is that it is eitherp or q, but there is no way of
knowing which one it is in advance. It has as formal basis:

p u q w r ⇒ p w r ∧ q w r , (1)

which may be paraphrased as: in order forpuq to implementr , it is necessary that bothp
andq individually implementr . That is, when usingpuq as implementation (forr), one
had better be prepared for the worst (as chosen by the demon). By the way, we have an
equivalence in (1), that is, in order forpuq to implementr , it is also sufficient that bothp
andq individually implementr .

6.3 Note The above kind of non-determinism does not have anything to do with choice
present in process behavior: we are dealing with structure only here.

The formal basis for the second interpretation may be found in:

p w q u r ⇐ p w q ∨ p w r , (2)

7 ALTERNATIVE STRUCTURAL CORRECTNESS CONCERNS 27

which may be paraphrased as: in order forp to satisfy specificationq u r , it suffices that
p satisfies eitherq or r . In this case, however, we do not have an equivalence. One may
at times get away with an implementationp of q u r that neither implementsq nor r , as
is shown in the following example.

6.4 Example Let a andb be distinct symbols in6. Consider processesq andr given
by

q.c =
{
� if c= a
� otherwise

r .c =
{
� if c= b
� otherwise

and takep = �
6. Then we havep = q u r , hencep w q u r , that is, p satisfies

specificationq u r . But we have neitherp w q nor p w r , in fact p @ q and p @ r .

Likewise, one can interprett as“angelic non-deterministic choice”when occurring in an
implementation:

p t q w r ⇐ p w r ∨ q w r (3)

or as expressingimplementation restrictionwhen occurring in a specification:

p w q t r ⇒ p w q ∧ p w r . (4)

(Of the latter the converse also holds.)

7 Alternative Structural Correctness Concerns

In this section we briefly look at some alternative structural correctness concerns for
systems.

7.1 Example First we weaken the correctness concern that we have used so far in that
there should be output-to-input connections only, but there may be dangling inputs or
outputs (the system need not be closed) for autonomous operation. This corresponds to
definingCorrect0 on3 by

Correct0.α ≡ α 6= ⊥ .
The resultingpass0-sets are tabulated in Table 4. Notice that reflection is not affected by
this change in correctness concern. Also notice thatCorrect0.α is equivalent toα w0 �.
Finally, notice that〈3;v0〉 is a complete lattice. The remainder of the analysis of this
correctness concern is not carried out.

7.2 Example Now we weaken the correctness concern a little less in that there should
be output-to-input connections only and no dangling inputs, but there may be dangling
outputs for autonomous operation. This corresponds to definingCorrect1 on3 by

Correct1.α ≡ α 6∈ {⊥,?} .

7 ALTERNATIVE STRUCTURAL CORRECTNESS CONCERNS 28

α pass0.α v0α

> > � ! ? � ⊥ ⊥
� > � ! ? � �

! > � ? ?
? > � ! !
� > � �

⊥ > >

>
|
�

� �

? !
� �

�

|
⊥

Table 4: Thepass0-sets and duals for3, and the Hasse diagram forv0

α pass1.α v1α

> > � ! ? � ⊥ ⊥
� > � ! � �

! > � ? ?
? > ! !
� > � �

⊥ > >

>
|�
� !

� |�
? �

� |
⊥

Table 5: Thepass1-sets and duals for3, and the Hasse diagram forv1

The resultingpass1-sets are tabulated in Table 5. Notice that reflection is again not af-
fected by this change in correctness concern. Also notice that againCorrect1.α is equiv-
alent toα w1 �. Finally, notice that〈3;v1〉 is again a complete lattice.

7.3 Example If one wants to model complete hiding of internal links—also structurally—
then q needs to be redefined and� becomes superfluous in the model. Let32 be the
five-element set defined by

32 = {⊥,?, !,�,>} .
Composition operatorq2 on32 is defined in Table 6. The main difference withq is that

q2 ⊥ ? ! � >
⊥ ⊥ ⊥ ⊥ ⊥ >
? ⊥ ⊥ � ? >
! ⊥ � ⊥ ! >
� ⊥ ? ! � >
> > > > > >

Table 6: Composition operatorq2 on32

here we have !q2 ?= �. Notice thatq2 is not associative:

(! q2 !) q2 ? = ⊥ q2 ? = ⊥ 6= ! ≡ ! q2 � = ! q2 (! q2 ?) .

7 ALTERNATIVE STRUCTURAL CORRECTNESS CONCERNS 29

As structural correctness concern we demand output-to-input connections and absence of
dangling inputs and outputs. This is captured by definingCorrect2 on32 by

Correct2.α ≡ α 6∈ {⊥,?, !} .
The resultingpass2-sets are tabulated in Table 7. Notice that reflection is a little bit

α pass2.α v2α

> > � ! ? ⊥ ⊥
� > � �

! > ? ?
? > ! !
⊥ > >

>
� |�

? � !
� |�
⊥

Table 7: Thepass2-sets for32, and the Hasse diagram forv2

different this time:� is self-dual. Also notice thatCorrect2.α is equivalent toα w2 �.
Finally, notice that〈3;v2〉 is again a complete lattice. In spite of the non-associativity
of q2 one can again prove the Factorization Formula (cf. Property 4.13). Basically, this
works out becauseq2 is associative under the restriction that at most one of each ? and !
occurs.

If one would change the correctness concern—still usingq2—by allowing dangling
inputs and/or outputs, then the reflection of� turns out to be undefined. Consequently,
our approach does not work directly. It may well be possible to extend32 andq2 in such
a way that reflection is suitably definable. But we don’t have a recipe for that.

7.4 Example In this example we look at modeling a form of multi-point connections,
where each link may be driven by at most one output but may hook up to an unlimited
number of inputs. Therefore,� (modeling a “saturated” link) is no longer needed. So we
will work with 32 from the previous example. Composition operatorq3 on32 is defined
in Table 8. The main difference withq is that here we have !q3 ? = ! and ?q3 ? = ?.

q3 ⊥ ? ! � >
⊥ ⊥ ⊥ ⊥ ⊥ >
? ⊥ ? ! ? >
! ⊥ ! ⊥ ! >
� ⊥ ? ! � >
> > > > > >

Table 8: Composition operatorq3 on32

Composition operatorq3 is associative. As structural correctness concern we demand
absence of output conflicts. This is captured by definingCorrect3 on32 by

Correct3.α ≡ α 6= ⊥ .
The resultingpass3-sets are tabulated in Table 9. Notice that thepass3-sets are not unique:

8 CONCLUSION 30

α pass3.α v3α

> > � ! ? ⊥ ⊥
� > � ! ? !
! > � ? ?,�
? > � ! ? !
⊥ > >

>
|

� ∼= ?
|
!
|
⊥

Table 9: Thepass3-sets and duals for32, and the Hasse diagram forv3

� and ? are indistinguishable. The incorporation of behavior into the model may render
them distinguishable again; for instance, only communications over input channels can
cause computation interference.

When requiring absence of dangling inputs, i.e. each link should be driven by some
output, then the reflection of� turns out to be undefined.

It is a nice exercise for the reader to model, for instance, the structural restriction that
each link is either completely unused or exactly one output drives at most two inputs.

8 Conclusion

We carried out an extensive case study in the treatment of network structure using the
testing paradigm. We started with a pre-abstract model〈SYS;par, sat〉, whereSYS is a
set of systems (process networks),opcis a (structural) composition operator onSYS, and
sat is a refinement relation onSYS defined in terms of testing based on a global (struc-
tural) correctness concernCorrect. The model is pre-abstract since equivalent systems
(that refine each other) are not necessarily equal.

We then developed a fully abstract model〈LSF ′′; ‖,w〉 isomorphic to the pre-abstract
model modulo equivalence. The objects in the fully abstract model are (link status) func-
tions (LSFs) from the set6 of link identifiers to the simple algebra〈3; q,w〉 of link
statuses. The composition and order of this link status algebra are lifted to the func-
tion space by pointwise extension. Equivalent functions are identified by projection on a
suitable subspace. The result is a smooth theory.

System structure is usually less subtle that system behavior. Nevertheless many of the
results that we have obtained for structure carry over to behavior. The reason for simplic-
ity in our case here is that6, the domain of LSFs, has no internal mathematical structure.
In [10] behavior is incorporated and the behavioral component of a fully abstract model
can be given as a function space involving6∗, that is, finite-length sequences over6,
as domain. The added mathematical structure of the domain accounts for an increase in
complexity, but the main ideas remain the same.

There are several noteworthy points. The setPROC of processes is not so rich that
every system has a singleton equivalent. The reason is that processes have no inter-
nal links. The composition operator is associative because of the way internal links are

A COUNTABLE BAGS 31

treated. The abstract model is rich enough to allow for a unique reflection operator yield-
ing the “severest” test passed. Note, however, that reflection is not defined for systems.
Reflection is the key operator in the Factorization Formula (Properties 4.13 and 6.1),
which expresses pseudo-inversion of composition in terms of composition and reflection.

It may be advisable to add a “concrete” counterpart of>6 to the pre-abstract model.
It is useful in the abstract model for several reasons. (i) It has an acceptable interpretation
as “miracle”. (ii) With it the abstract algebra is isomorphic to its reflection. (iii) It allows
one to express unsolvability within the algebra. (iv) Without it all sorts of preconditions
are required in theorems (e.g. Factorization Formula).

Lattice theoretic concepts were used extensively. Lattice completeness played an
important role and may also be useful for recursion (to define certain structurally infinite
systems by an equation). Greatest lower bounds have a natural interpretation that does
not involve (behavioral) choice. The framework that we set up is flexible enough to
accommodate other structural correctness concerns.

A Countable Bags

Let U be a set and letω′ be the set of natural numbers extended withω (the least infinite
cardinal), also known asω ∪ {ω}. A countable bag B over U , or bag for short, is a
mapping fromU toω′ such that

(
∑

z : z ∈ U : B.z) ≤ ω,

where summation is carried out in terms of cardinal arithmetic. We call(
∑

z : z ∈ U :
B.z) the sizeof the bag. For bagB andx ∈ U , the (cardinal) numberB.x (function B
applied to argumentx) is theoccurrence countor multiplicity of x in B.

A finite bag, that is, a bag of finite size, can be defined by enumerating its members
between square brackets as often as they should occur (the order is irrelevant). For ex-
ample, [] is theempty bag (without members), that is, [].x = 0 for all x ∈ U . And
[a,b,b, c ,b] is the bag in whicha andc occur once, andb occurs three times.

We now introduce a special notation forbag comprehension, inspired by set com-
prehension. Recall that for setV defined by

V = {z : P.z : E.z},
whereP is some predicate andE is some expression, we have

x ∈ V ≡ (∃ z : E.z= x : P.z).

This is generalized to bags as follows. We define bag [z : F .z : E.z], where F is an
ω′-valued function andE is aU -valued function, by

[z : F .z : E.z].x = (
∑

z : E.z= x : F .z).

For example, we have

B = [z : B.z : z].

B PARTIAL ORDERS AND COMPLETE LATTICES 32

Bag B over the natural numbers defined by

B = [n : n : n]

contains each natural numbern exactlyn times. BagC over the natural numbers defined
by

C = [n : 1 : n mod 2]

contains the numbers 0 and 1 exactlyω times and the others exactly 0 times.
The following relations (∈,⊆,=), ω′-valued function (#), and operators (+,∪, ∩) are

defined for bags. LetB andC be bags and letx ∈ U .

Name Notation Definition
membership x ∈ B B.x > 0
subbag B ⊆ C (∀ z : z ∈ U : B.z≤ C.z)
equality B = C B⊆ C ∧ C ⊆ B
size #B (

∑
z : z ∈ U : B.z)

summation B+ C [z : B.z+ C.z : z]
union B ∪ C [z : B.zmaxC.z : z]
intersection B ∩ C [z : B.zminC.z : z]

Note:
∑

, +, max, and min in the rightmost column are cardinal arithmetic operations.
They are commutative, they are defined as usual for natural arguments, and for alln ∈ ω′
we have

n+ ω = ω,

n maxω = ω,

n minω = n.

B Partial Orders and Complete Lattices

In this appendix we briefly list the basic definitions and theorems from lattice theory.
Some nonstandard concepts, in particular, projection on at-complete subset of a lattice,
are introduced in a separate subsection. For more details the reader is referred to [1, 2].

Partial orders

A relation is called apartial order when it is reflexive, antisymmetric, and transitive.
For partial orderv on V we call 〈V;v〉 a poset. Theconverseof v, denoted byw, is
defined by

u w v ≡ v v u

for all u andv in V . Theorem: 〈V;v〉 is a poset if and only if〈V;w〉 is a poset. Partial
orderv is calledtotal when

u v v ∨ v v u

B PARTIAL ORDERS AND COMPLETE LATTICES 33

for all u andv in V . We writeu @ v for u v v ∧ u 6= v.

Let 〈V;v〉 be a poset andU a subset ofV . Theorem: 〈U ;v′〉, wherev′ is the restriction
of v to U , is also a poset.Note: It is customary to denote the restricted orderv′ again
byv.

Let v andw members ofV . We callv a lower bound of U when

(∀ u : u ∈ U : v v u) .

We abbreviate this tov v U when confusion is unlikely (keep in mind thatU may also
be a member ofV). Theorem: v v ? for all v. Dually, v is called anupper bound of U
when

(∀ u : u ∈ U : u v v) ,
abbreviated toU v v. We callv least in U or minimum of U whenv ∈ U andv v U .
Dually, v is calledgreatest in U or maximum of U whenv ∈ U andU v v. Theorem:
If a minimum (cq. maximum) ofU exists then it is unique. The minimum (cq. maximum)
of U—if it exists—is denoted by minU (cq. maxU). Theorem: min{v} = max{v} = v.

We callv minimal in U whenv ∈ U and

(∀ u : u ∈ U ∧ u v v : u = v) .
Dually, we callv maximal in U whenv ∈ U and

(∀ u : u ∈ U ∧ u w v : u = v) .
Theorem: If v is least inU thenv is minimal inU . The converse does not hold generally.

We callv greatest lower boundof U whenv is greatest in the set of lower bounds
of U . If a greatest lower bound ofU exists then it is unique and we denote it byuU . We
also writev uw for u {v,w}. Dually, v is calledleast upper boundof U whenv is least
in the set of upper bounds ofU . It is denoted bytU when it exists, and we also write
v t w for t {v,w}. Theorem: If min U (cq. maxU) exists thenuU (cq.tU) also exists
and they are equal.Theorem: We have

u? = maxV ,

t? = minV ,

uV = minV ,

tV = maxV ,

that is, the left-hand side exists if only if the right-hand side exists, and if both exist then
they are equal.Theorem: v is the greatest lower bound ofU if and only if

(∀w : w ∈ V : w v v ≡ w v U) .

Dually, v is the least upper bound ofU if and only if

(∀w : w ∈ V : v v w ≡ U v w) .
Theorem: u andt as binary operators onV are commutative, associative, and idempotent.

B PARTIAL ORDERS AND COMPLETE LATTICES 34

Complete lattices

Let 〈V;v〉 be a poset. We call〈V;v〉 a complete latticewhen for every subsetU of V
bothuU andtU exist. Theorem: 〈V;v〉 is a complete lattice if and only if for every
subsetU of V , uU exists.Theorem: For finiteV , 〈V;v〉 is a complete lattice if and only
if u? (i.e. maxV) exists and for allv andw in V , v u w exists.

Let 〈V0;v0〉 and〈V1;v1〉 be complete lattices. Define relationv on V0× V1 by

(v0, v1) v (w0, w1) ≡ v0 v0 w0 ∧ v1 v1 w1 ,

that is, by componentwise reduction tov0 andv1. Theorem: 〈V0× V1,v〉 is a complete
lattice, in which greatest lower bounds (cq. least upper bounds) are taken componentwise:
for example,

uU = (u0 {u0,u1 : (u0,u1) ∈ U : u0},u1 {u0,u1 : (u0,u1) ∈ U : u1}) .
Let 〈V;v〉 be a complete lattice. LetD → V be the set of all mappings from some

setD to V and letv′ be the pointwise extension ofv to D→ V , that is,

f v′ g ≡ (∀ d : d ∈ D : f .d v g.d)

for all f andg in D→ V . Theorem: 〈D→ V;v〉 is a complete lattice, in which greatest
lower bounds (cq. least upper bounds) are taken pointwise: for example,

(u′U).d = u{ f : f ∈ U : f .d} .
Note: It is customary to denote the pointwise extended orderv′ again byv.

Some nonstandard concepts

Let 〈V;v〉 be a complete lattice and letW be a subset ofV . The functionb cW: V → V
is defined by

bvcW = t{w : w ∈ W ∧ w v v : w} .
We leave out the subscriptW when it is clear from the context.Theorem:For u andv
in V , andw in W we have

bvc v v ,

w v bvc ≡ w v v ,
bvc = bbvcc ,

v = bvc ⇐ v ∈ W ,

buc v bvc ⇐ u v v .
Consequently,b c is called thedownward projection induced byW. Dually, upward
projectiond eW is defined. Not necessarilybvc ∈ W. We callW t-complete(in 〈V;v〉)
when

(∀U : U ⊆ W : tU ∈ W) .

REFERENCES 35

Dually, u-complete is defined. LetW be t-complete. Theorem: For v ∈ V we have
bvc ∈ W. Hence,b c projects ontoW. Letv′ be the restriction ofv to W. Theorem:
〈W;v′〉 is a complete lattice, in which least upper bounds (t′) and greatest lower bounds
(u′) may be computed as follows:

t′U = tU ,

u′U = buUc .
Let X ⊆ V beu-complete in〈V;v〉. Theorem: If

(∀ x : x ∈ X : bxcW ∈ X) ,

then〈W ∩ X;v〉 is a complete lattice, in which greatest lower bounds coincide with those
taken in〈W;v〉 and least upper bounds with those in〈X;v〉.
This concludes our overview of lattice theory.

References

[1] G. Birkhoff. Lattice Theory, volume 25 ofColloquium Publications. American
Mathematical Society, Providence, RI, third edition, 1984.

[2] B. A. Davey and H. A. Priestley.Introduction to Lattices and Order. Cambridge
University Press, 1990.

[3] R. de Nicola and M. Hennessy. Testing equivalences for processes.Theoretical
Comput. Sci., 34:83–133, 1983.

[4] J. C. Ebergen. A formal approach to designing delay-insensitive circuits. Computing
Science Notes 88/10, Dept. of Math. and C.S., Eindhoven Univ. of Technology, May
1988.

[5] J. C. Ebergen.Translating Programs into Delay-Insensitive Circuits, volume 56 of
CWI Tract. Centre for Mathematics and Computer Science, 1989.

[6] M. Hennessy.Algebraic Theory of Processes. Series in Foundations of Computing.
The MIT Press, Cambridge, Mass., 1988.

[7] J. T. Udding. Classification and Composition of Delay-Insensitive Circuits. PhD
thesis, Dept. of Math. and C.S., Eindhoven Univ. of Technology, 1984.

[8] J. T. Udding. A formal model for defining and classifying delay-insensitive circuits.
Distributed Computing, 1(4):197–204, 1986.

[9] J. L. A. van de Snepscheut.Trace Theory and VLSI Design, volume 200 ofLecture
Notes in Computer Science. Springer-Verlag, 1985.

[10] T. Verhoeff.A Theory of Delay-Insensitive Systems. PhD thesis, Dept. of Math. and
C.S., Eindhoven Univ. of Technology, May 1994.

	The Testing Paradigm Applied to Network Structure
	Abstract
	Contents
	1 Introduction
	Overview

	2 Pre-Abstract Model
	Alphabets, processes, and systems
	Composition and correctness
	Testing, satisfaction, and equivalence

	3 Basic Concepts for a Fully Abstract Model
	From processes and systems to LSFs

	4 Pointwise Analysis of Correctness
	General results for \Lambda
	Pointwise extension to \LSF

	5 Construction of Fully Abstract Model
	Satisfaction
	Composition
	Fully abstract model and summary of construction

	6 Discussion of Fully Abstract Model
	Important properties
	Factorization Formula
	Interpreting greatest lower bounds

	7 Alternative Structural Correctness Concerns
	8 Conclusion
	A Countable Bags
	B Partial Orders and Complete Lattices
	Partial orders
	Complete lattices
	Some nonstandard concepts

	References

