
3D Turtle Geometry, Turtle Programs, Symmetry, Miter Joints

Computer Science Colloquium
10 December 2009, Eindhoven

Tom Verhoeff
Eindhoven University of Technology
Department of Mathematics & CS

www.win.tue.nl/~wstomv

“3D Turtle Geometry with an Application to Mitre and Fold Joints”
Accepted for International Journal of Arts and Technology

c© 2009, T. Verhoeff @ TUE.NL 1/49 3D Turtle Geometry

Seymour Papert (1960s): Turtle Graphics and Logo

• Turtle Graphics , mechanical, virtual

• Logo programming language: Repeat 5 [ Forward 100 Left 72 ]

• Goal: Enable children to do/enjoy computer programming

• Turtle Geometry : mathematical theory of turtle figures

c© 2009, T. Verhoeff @ TUE.NL 2/49 3D Turtle Geometry

2D Turtle Geometry

The book

Harold Abelson and Andrea A. diSessa
Turtle geometry :

The computer as a medium for exploring mathematics.
MIT Press, 1981.

presents an exhaustive treatment of 2D Turtle Geometry,

including Turtle Graphics on curved surfaces.

c© 2009, T. Verhoeff @ TUE.NL 3/49 3D Turtle Geometry

Mathematical Art by Koos Verhoeff

c© 2009, T. Verhoeff @ TUE.NL 4/49 3D Turtle Geometry



Miter Joints

Joint angle ! 60.0°intact beam beveled at 30◦ 60◦ miter joint

Joint angle ! 120.0°

intact beam beveled at 60◦ 120◦ miter joint
(rolled 45◦)

Mathematica Demonstrations Project: Miter Joint and Fold Joint

c© 2009, T. Verhoeff @ TUE.NL 5/49 3D Turtle Geometry

‘Kliekje’ (Eng.: ‘Left over’)

c© 2009, T. Verhoeff @ TUE.NL 6/49 3D Turtle Geometry

Spatial Mitering

• Corner plane = plane spanned by adjacent segments

• Torsion angle = dihedral angle between adjacent corner planes

c© 2009, T. Verhoeff @ TUE.NL 7/49 3D Turtle Geometry

Closing the 3D Path

Square Cross Section Equitriangular Cross Section

Mathematica Demonstrations Project: Mitering a Closed 3D Path

c© 2009, T. Verhoeff @ TUE.NL 8/49 3D Turtle Geometry



Miter Joint Torsion Invariance Theorem

Total amount of torsion is inherent
property of polygonal path
and does not depend on

• choice of initial segment

• initial rotation of cross section
about center line

• shape of cross section

Mitering matches ⇐⇒ total torsion is symmetry of cross section

c© 2009, T. Verhoeff @ TUE.NL 9/49 3D Turtle Geometry

Three Techniques to Tackle Torsion

‘Tinkering’ Lattice walking Constant torsion

c© 2009, T. Verhoeff @ TUE.NL 10/49 3D Turtle Geometry

3D Turtle Graphics

State of turtle:

• Position in space

• Attitude = ( heading vector, normal vector )

• Initial state: in origin, heading to x+, normal to z+

Commands to change turtle state:

• Move(d) : move distance d in direction of heading (leaves trace)

• Turn(ϕ) : turn clockwise by angle ϕ about normal

• Roll(ψ) : roll clockwise by angle ψ about heading

Mathematica Demonstrations Project: 3D Flying Pipe-laying Turtle

c© 2009, T. Verhoeff @ TUE.NL 11/49 3D Turtle Geometry

Spatial Figures

In 3D: roll angles provide additional freedom

All turn and roll angles equal yields a helix, which never closes

c© 2009, T. Verhoeff @ TUE.NL 12/49 3D Turtle Geometry



Some Macro Commands

Segment(d, ψ, ϕ) := Move(d) ; Roll(ψ) ; Turn(ϕ)

Td := Segment(d, 0 ,90◦)

Rd := Segment(d, 90◦,90◦)

Pd := Segment(d,180◦,90◦)

Ld := Segment(d,270◦,90◦)

Ox

y

z

Ox

y

z

Ox

y

z

Ox

y

z

Td trapezoid Rd right-handed Pd parallelogram Ld left-handed

c© 2009, T. Verhoeff @ TUE.NL 13/49 3D Turtle Geometry

Artwork Described by Turtle Graphics: Spiralosaurus

(
T2
4 ; L2

9 ; T2
4 ; R6

3

)3

36 segments, 6 symmetries

c© 2009, T. Verhoeff @ TUE.NL 14/49 3D Turtle Geometry

Artwork Described by Turtle Graphics: Braidwork

(
L1 ;R5 ;R2

6 ;L3 ;R1 ;L5 ;L2
6 ;R3

)3

30 segments, 6 symmetries (incl. mirror/upside-down)

c© 2009, T. Verhoeff @ TUE.NL 15/49 3D Turtle Geometry

Artwork Described by Turtle Graphics: Borromean Polylink

R3 ; P3 ; L3 ; P3 ; R3 ; L3 ; P2
3 ; R3 ; P2

3 ; L3 ; R3 ; P3 ; L3 ; P3 ; R3 ; L3

18 segments, 2 symmetries (per link)

c© 2009, T. Verhoeff @ TUE.NL 16/49 3D Turtle Geometry



Artwork Described by Turtle Graphics: Figure-Eight Knot

equitriangular cross section, 16 segments, 4 symmetries

R′d := Segment(d, 60◦, ϕ) ϕ = arctan(2
√

2) ≈ 70.5◦

L′d := Segment(d,−60◦, ϕ)

(
R′2 ;L′1 ;R′1 ;L′1 ;L′2 ;R′1 ;L′1 ;R′1

)2

c© 2009, T. Verhoeff @ TUE.NL 17/49 3D Turtle Geometry

Fundamentals of 3D Turtle Geometry: Program Semantics

Motion µp of program p is mapping R → R3 from time to space:
µp(t) is position at time t (move at unit speed, instant turn/roll)

N.B. Mapping time to state will not work when turn/roll are instantaneous

Total duration δp of p’s motion: δp =
∑

Move(d)∈ p

|d|

Final attitude αp of p is a tuple of heading and normal

Trace τp of p: τp = {µp(t) | 0 ≤ t ≤ δp } (set of points visited)

Empty program I : no commands, leaving turtle in initial state,
identity of sequential composition

c© 2009, T. Verhoeff @ TUE.NL 18/49 3D Turtle Geometry

Fundamentals of 3D Turtle Geometry: Program Properties

Closed program: µp(δp) = µp(0); (final position = initial position)
Open is not closed

Properly closed : closed and αp = αI (final state = initial state)
Closed program can be made properly closed by appending roll/turn/roll commands

Simple program: µp(t1) += µp(t2) for 0 ≤ t1 < t2 < δp (µp injective)

Being (properly) closed is a local property
Being simple is a global property

Trivial program: |τp| = 1, i.e. τp = { (0,0,0) } (closed, simple)

Empty program I is trivial and properly closed

c© 2009, T. Verhoeff @ TUE.NL 19/49 3D Turtle Geometry

Simple Programs and Motion/Trace Relationship

Unique Motion Theorem for simple open programs:

p, q : simple ∧ τp = τq ∧ p : open

µp = µq ∧ q : open

Reverse motion µ̃p of p: µ̃p(t) = µp(δp − t)

Two-Motion Theorem for simple closed programs:

p, q : simple ∧ τp = τq ∧ p : closed

(µp = µq ∨ µ̃p(t) = µq(t)) ∧ q : closed

c© 2009, T. Verhoeff @ TUE.NL 20/49 3D Turtle Geometry



Equivalence Relations for Turtle Programs

Motion equivalent : p
µ
≡ q ⇐⇒ µp = µq (abstracts from program)

Final-attitude equivalent : p
α≡ q ⇐⇒ αp = αq

Equivalent : p ≡ q ⇐⇒ p
µ
≡ q ∧ p

α≡ q (for sequential composition)

Trace equivalent : p
τ≡ q ⇐⇒ τp = τq (abstracts from time)

Unique Motion Theorem rephrased:
For simple open programs, trace equivalence is motion equivalence

(Trace) congruent : p
c≡ q ⇐⇒ τp, τq are congruent (via isometry;

abstracts from placement of figure in space)

p ≡ q ⇒ p
µ
≡ q ∧ p

α≡ q p
µ
≡ q ⇒ p

τ≡ q p
τ≡ q ⇒ p

c≡ q

c© 2009, T. Verhoeff @ TUE.NL 21/49 3D Turtle Geometry

Simplified Notation

When pressed for space, we abbreviate:

M(d) := Move(d)

T (ϕ) := Turn(ϕ)

R(ψ) := Roll(ψ)

S(d, ψ, ϕ) := Segment(d, ψ, ϕ)

π = 180◦

Omit ; for composition:

S(d, ψ, ϕ) = M(d) R(ψ) T (ϕ)

H = T (π) R(π)

c© 2009, T. Verhoeff @ TUE.NL 22/49 3D Turtle Geometry

Example for Equivalences of Simple Open Programs

T (−30◦) M(1) M(1) T (90◦) T (30◦) M(1) T (90◦)

≡ { put in standard form }
R(π) T (30◦) S(2, π,120◦) S(1,0,90◦) R(0)

µ
≡ { put in µ-standard form }

R(π) T (30◦) S(2, π,120◦) S(1,0,0)
c≡ { put in c-standard form }

S(2,0,120◦) S(1,0,0)
c≡ { apply rev and put in c-standard form }

S(1,0,120◦) S(2,0,0)

c© 2009, T. Verhoeff @ TUE.NL 23/49 3D Turtle Geometry

Example for Equivalences of Simple Properly Closed Programs

T (−30◦) S(1,0,120◦) S(1,0,90◦) S(
√

3,0,150◦) S(1,0,30◦)
c≡ { put in cc-standard form }

S(2,0,120◦) S(1,0,90◦) S(
√

3,0,150◦)
c≡ { shift once }

S(1,0,90◦) S(
√

3,0,150◦) S(2,0,120◦)
c≡ { shift once more }

S(
√

3,0,150◦) S(2,0,120◦) S(1,0,90◦)

c© 2009, T. Verhoeff @ TUE.NL 24/49 3D Turtle Geometry



Properties of Equivalences and Sequential Composition

p
α≡ p′ ∧ q

α≡ q′ ⇒ p ; q
α≡ p′ ; q′

p ≡ p′ ∧ q
µ
≡ q′ ⇒ p ; q

µ
≡ p′ ; q′

p ≡ p′ ∧ q ≡ q′ ⇒ p ; q ≡ p′ ; q′

Move(d)
α≡ I

I ; p ≡ p

p ; I ≡ p

p ; Turn(ϕ)
µ
≡ p

p ; Roll(ψ)
µ
≡ p

Turn(ϕ) ; p
c≡ p

Roll(ψ) ; p
c≡ p

c© 2009, T. Verhoeff @ TUE.NL 25/49 3D Turtle Geometry

Equivalence Properties of Basic Commands: 1, 2 (of 8)

1. Turn and Roll are periodic with period 360◦:

Turn(ϕ1) ≡ Turn(ϕ2) ⇐⇒ ϕ1 = ϕ2 (mod 360◦)
Roll(ψ1) ≡ Roll(ψ2) ⇐⇒ ψ1 = ψ2 (mod 360◦)

2. Equivalence to the empty program I:

Move(d) ≡ I ⇐⇒ d = 0

Turn(ϕ) ≡ I ⇐⇒ ϕ = 0 (mod 360◦)

Roll(ψ) ≡ I ⇐⇒ ψ = 0 (mod 360◦)

c© 2009, T. Verhoeff @ TUE.NL 26/49 3D Turtle Geometry

Equivalence Properties of Basic Commands: 3, 4 (of 8)

3. Adjacent commands of the same type can be merged :

Move(d1) ; Move(d2) ≡ Move(d1 + d2) provided d1d2 ≥ 0

Turn(ϕ1) ; Turn(ϕ2) ≡ Turn(ϕ1 + ϕ2)

Roll(ψ1) ; Roll(ψ2) ≡ Roll(ψ1 + ψ2)

Corollary: Turn(180◦) and Roll(180◦) are their own inverse.

4. Adjacent commands of the same type commute :

Move(d1) ; Move(d2) ≡ Move(d2) ; Move(d1) provided d1d2 ≥ 0

Turn(ϕ1) ; Turn(ϕ2) ≡ Turn(ϕ2) ; Turn(ϕ1)

Roll(ψ1) ; Roll(ψ2) ≡ Roll(ψ2) ; Roll(ψ1)

c© 2009, T. Verhoeff @ TUE.NL 27/49 3D Turtle Geometry

Equivalence Properties of Basic Commands: 5 (of 8)

5. When turtle rolls upside down, its turning sense looks reflected:

Roll(180◦) ; Turn(ϕ) ≡ Turn(−ϕ) ; Roll(180◦)

Turn(ϕ) ≡ Roll(180◦) ; Turn(−ϕ) ; Roll(180◦)

Similarly for half-turn and roll sense :

Turn(180◦) ; Roll(ψ) ≡ Roll(−ψ) ; Turn(180◦)

Roll(ψ) ≡ Turn(180◦) ; Roll(−ψ) ; Turn(180◦)

And also for half-turn and move sense :

Turn(180◦) ; Move(d) ≡ Move(−d) ; Turn(180◦)

Move(d) ≡ Turn(180◦) ; Move(−d) ; Turn(180◦)

c© 2009, T. Verhoeff @ TUE.NL 28/49 3D Turtle Geometry



Equivalence Properties of Basic Commands: 6, 7 (of 8)

6. Adjacent Move and Roll commands commute :

Move(d) ; Roll(ψ) ≡ Roll(ψ) ; Move(d)

7. Turn–Move and Turn–Roll do not commute, unless one of them is
equivalent to I, or in the special case

Turn(180◦) ; Roll(180◦) ≡ Roll(180◦) ; Turn(180◦)

Corollary: H := Turn(180◦) ; Roll(180◦) is its own inverse.
H (half-loop) is equivalent to Dive(180◦).

c© 2009, T. Verhoeff @ TUE.NL 29/49 3D Turtle Geometry

Equivalence Properties of Basic Commands: 8 (of 8)

8. Every trivial program (without Move(d) for d += 0) is equivalent
to program of the form

Roll(ψ) ; Turn(ϕ) ; Roll(ψ′)

with 0 ≤ ϕ ≤ 180◦ and −180◦ < ψ, ψ′ ≤ 180◦.

Angles ψ, ϕ, ψ′ are uniquely determined, when requiring

ϕ = 0 (mod 180◦) ⇒ ψ = 0

Corollary: There exists a rule to rewrite

Roll(ψ1) ; Turn(ϕ1) ; Roll(ψ2) ; Turn(ϕ2)

into the form above, involving ‘messy’ (inverse) trigonometry

c© 2009, T. Verhoeff @ TUE.NL 30/49 3D Turtle Geometry

Some Algebraic Calculations

How H behaves in combination with the basic commands:

H M(d)
≡

T (π) R(π) M(d)
≡

T (π) M(d) R(π)
≡

M(−d) T (π) R(π)
≡

M(−d) H

H T (ϕ)
≡

T (π) R(π) T (ϕ)
≡

T (π) T (−ϕ) R(π)
≡

T (−ϕ) T (π) R(π)
≡

T (−ϕ) H

H R(ψ)
≡

T (π) R(π) R(ψ)
≡

T (π) R(ψ) R(π)
≡

R(−ψ) T (π) R(π)
≡

R(−ψ) H

c© 2009, T. Verhoeff @ TUE.NL 31/49 3D Turtle Geometry

Standardisation Theorem

Every program p is equivalent to exactly one program in standard form :

σ(p) = R(ψ0) T (ϕ0) S(d1, ψ1, ϕ1) . . . S(dn, ψn, ϕn) R(ψn+1)

where n ≥ 0 and the parameters satisfy these constraints:

C1: di > 0 for 1 ≤ i ≤ n,

C2: −π < ψi ≤ π for 0 ≤ i ≤ n + 1,

C3: 0 ≤ ϕi ≤ π for 1 ≤ i ≤ n,

C4: ϕi += 0 for 1 ≤ i < n, i.e., between M commands, and

C5: if ϕi = 0 (mod π) then ψi = 0 for 0 ≤ i ≤ n.

Furthermore, if p is simple, then

C4a: ϕi += π for 1 ≤ i < n. (strict standard form)

c© 2009, T. Verhoeff @ TUE.NL 32/49 3D Turtle Geometry



Proof of Standardization Theorem

Existence: by induction on the program’s structure

Base cases: I, M(d), T (ϕ), R(ψ)

Inductive step: p q, where neither is empty, massage σ(p) σ(q)

Only relies on basic properties (so these are complete)

Unicity: consider first difference between two standard forms

Simple case: if ϕi = π, then σ(p) not simple

• In general, it is messy to determine σ(p) (cf. Basic Property 8)

• It is easy to check whether p is in standard form

c© 2009, T. Verhoeff @ TUE.NL 33/49 3D Turtle Geometry

Reduced Standard Form

By dropping trailing R, T commands, we infer that every program p

is motion equivalent to exactly one program in µ-standard form

σµ(p) = R(ψ0) T (ϕ0) S(d1, ψ1, ϕ1) . . . S(dn, ψn, ϕn)

where di, ψi, and ϕi satisfy constraints C1–C5, and ψn = ϕn = 0.

By dropping leading R, T commands as well, every program p is
congruent to a program in c-standard form

σc(p) = S(d1, ψ1, ϕ1) . . . S(dn, ψn, ϕn)

where di, ψi, and ϕi satisfy constraints C1–C5, and ψ1 = ψn = ϕn = 0.
This representation is not unique.

c© 2009, T. Verhoeff @ TUE.NL 34/49 3D Turtle Geometry

Determining Program Equivalence and Motion Equivalence

For equivalence, consider standard form (Standardization Theorem):

p ≡ q ⇐⇒ σ(p) = σ(q)

For motion equivalence, consider µ-standard form:

p
µ
≡ q ⇐⇒ σµ(p) = σµ(q)

c© 2009, T. Verhoeff @ TUE.NL 35/49 3D Turtle Geometry

Determining Trace Equivalence

For simple open programs (Unique Motion Theorem): see µ-equivalence

Reversal rev(p) of p: reverse the order of constituting M, T , and R
commands and reverse signs of their parameters. Then

δrev(p) = δp

If p is properly closed, then:

µrev(p) = µ̃p

µrev(p)(t) = µp(δp − t)

(motion of the reversal of p equals the reverse motion of p)

For simple properly closed programs (Two-Motion Theorem):

p
τ≡ q ⇐⇒ p

µ
≡ q ∨ rev(p)

µ
≡ q

c© 2009, T. Verhoeff @ TUE.NL 36/49 3D Turtle Geometry



Reversal of c-Standard Form

rev(R(π) T (30◦) S(2, π,120◦) S(1,0,90◦)) ≡ R(0) T (90◦) S(1, π,120◦) S(2,0,150◦) R(π)

σc(p) = S(d1, ψ1, ϕ1) . . . S(dn, ψn, ϕn)

where ψ1 = ψn = ϕn = 0

σc(rev(p)) = S(d′1, ψ′1, ϕ′1) . . . S(d′n, ψ′n, ϕ′n)

where for 1 ≤ i ≤ n

d′i = dn+1−i

ψ′i = ψn+1−i

ϕ′i = ϕn−i N.B. ϕ0 = 0

c© 2009, T. Verhoeff @ TUE.NL 37/49 3D Turtle Geometry

Congruence of Simple Open Programs

Only two kinds of mappings possible between their traces:

1. the initial positions are paired and so are the final positions, or

2. the initial position of one trace is paired with the final position of
the other trace and conversely.

The second case is reduced to the first by comparing rev(p) with q.

Translations are not relevant

Rotations are taken care of by comparing their reduced standard
forms, since rotating p’s trace is accomplished by an R T R prefix.

c© 2009, T. Verhoeff @ TUE.NL 38/49 3D Turtle Geometry

Reflection of c-Standard Form

Reflection refl(p) of program p (in x, y-plane): negate all roll angles

c-standard form of reflection:

σc(p) = S(d1, ψ1, ϕ1) . . . S(dn, ψn, ϕn)

σc(refl(p)) = S(d1,−ψ1, ϕ1) . . . S(dn,−ψn, ϕn)

where roll angle −π is replaced by π.

Simple open programs p, q are congruent if and only if at least one of
the following four equalities holds:

σc(p) = σc(q)

σc(refl(p)) = σc(q)

σc(rev(p)) = σc(q)

σc(refl(rev(p))) = σc(q)

c© 2009, T. Verhoeff @ TUE.NL 39/49 3D Turtle Geometry

Congruence of Simple Properly Closed Programs

Cyclic Permutation Congruence Theorem (CPC):

If program p q (that is, p followed by q) is properly closed,
then so is q p, and we have p q

c≡ q p.

Simple properly closed p is congruent to a cc-standard form :

σcc(p) = S(d1, ψ1, ϕ1) S(d2, ψ2, ϕ2) . . . S(dn, ψn, ϕn)

where the parameters satisfy these constraints (1 ≤ i ≤ n):

CC1: d′i > 0,

CC2: −π < ψ′i ≤ π,

CC3: 0 < ϕ′i < π.

This form is not uniquely determined.
c© 2009, T. Verhoeff @ TUE.NL 40/49 3D Turtle Geometry



Congruence of Simple Properly Closed Programs

Cyclic shift shift(p) of properly closed p in cc-standard form:

p = S(d1, ψ1, ϕ1) S(d2, ψ2, ϕ2) . . . S(dn, ψn, ϕn)
shift(p) = S(d2, ψ2, ϕ2) . . . S(dn, ψn, ϕn) S(d1, ψ1, ϕ1)

Note: shift(p) is then also in cc-standard form

Properly closed simple programs p, q in cc-standard form are congruent
if and only if at least one of the following equalities holds:

shiftk(p) = q

refl(shiftk(p)) = q

rev(shiftk(p)) = q

refl(rev(shiftk(p))) = q

where k ranges from 0 to n− 1 with n the number of segments in p.

If p and q differ in number of segments, then they are not congruent.

c© 2009, T. Verhoeff @ TUE.NL 41/49 3D Turtle Geometry

Summary of Equivalence Determination

Relation Condition Criterion

p ≡ q σ (p) = σ(q)

p
µ
≡ q σµ (p) = σµ(q)

p
τ≡ q simple, open p

µ
≡ q

p
τ≡ q simple, p

µ
≡ q ∨ rev (p)

µ
≡ q

properly closed

p
c≡ q simple, open apply σc to

p, rev(p), refl (p), refl(rev(p)), and q

p
c≡ q simple, apply σcc to

properly closed shiftk (p), rev(shiftk(p)),

refl(shiftk(p)), refl(rev(shiftk(p))),

and q

c© 2009, T. Verhoeff @ TUE.NL 42/49 3D Turtle Geometry

Symmetry

Symmetry is self-congruence

Test the program for congruence with itself

Every satisfied equality corresponds to a symmetry of the trace

• rev and shiftk correspond to rotation

• refl corresponds to reflection

c© 2009, T. Verhoeff @ TUE.NL 43/49 3D Turtle Geometry

Symmetries of Simple Open Programs

S(1,0,90◦) S(1,0,90◦) S(1,0,90◦) S(1,0,90◦) S(1,0,90◦)

S(1,0,0) S(1/2,0,0) S(1/2,90◦,90◦) S(1/2,90◦,90◦) S(1/2,90◦,90◦)

S(1,0,0) S(1/2,0,0) S(1/2,−90◦,90◦)

S(1,0,0)

I refl
rev refl rev

I refl I
rev

I I
refl rev

c© 2009, T. Verhoeff @ TUE.NL 44/49 3D Turtle Geometry



Symmetries of Simple Properly Closed Artwork

Object Symmetries #

Spiralosaurus I, shift12, shift24, rev shift6, rev shift18, rev shift30 6

Braidwork I, shift10, shift20, refl shift5, refl shift15, refl shift25 6

Borromean Polylink I, rev shift−1 2

Figure-Eight Knot I, shift8, refl shift4, refl shift12 4

c© 2009, T. Verhoeff @ TUE.NL 45/49 3D Turtle Geometry

Miterability Theorem for Closed 3D Polygons

For a simple properly closed program in standard closed form, the
total amount of torsion to determine closure of the mitering equals
the sum of all roll angles, taking roll signs into account.

Let the tip of the normal vector trace out an edge at angle ϕ0:

S(d1, ψ1, ϕ1) S(d2, ψ2, ϕ2) . . .

≡ R(ψ0) R(−ψ0) S(d1, ψ1, ϕ1) S(d2, ψ2, ϕ2) . . .

≡ R(ψ0) S(d1,−ψ0 + ψ1, ϕ1) S(d2, ψ2, ϕ2) . . .

≡ . . . S(d1,−ψ0 + ψ1, ϕ1) R(ψ0 − ψ1) R(−ψ0 + ψ1) S(d2, ψ2, ϕ2) . . .

≡ . . . S(d2,−ψ0 + ψ1 + ψ2, ϕ2) . . .

The turtle finishes off with

S(dn,−ψ0 + Ψ, ϕn) R(ψ0 −Ψ) R(−ψ0 + Ψ)

where Ψ =
∑n

i=1 ψi. Total torsion = −ψ0 + Ψ+ ψ0 = Ψ (CPC)

c© 2009, T. Verhoeff @ TUE.NL 46/49 3D Turtle Geometry

Foldability Theorem for Closed 3D Polygons

For a simple properly closed program in standard closed form, the
total amount of torsion needed to determine closure of the folding
equals the alternating sum of all roll angles, taking roll signs into
account.

Let the tip of the normal vector trace out an edge at angle ϕ0:

S(d1, ψ1, ϕ1) S(d2, ψ2, ϕ2) . . .

≡ R(ψ0) R(−ψ0) S(d1, ψ1, ϕ1) S(d2, ψ2, ϕ2) . . .

≡ R(ψ0) S(d1,−ψ0 + ψ1, ϕ1) S(d2, ψ2, ϕ2) . . .

≡ . . . S(d1,−ψ0 + ψ1, ϕ1) R(−ψ0 + ψ1) R(ψ0 − ψ1) S(d2, ψ2, ϕ2) . . .

≡ . . . S(d2, ψ0 − ψ1 − ψ2, ϕ2) . . .

The turtle finishes off with

S(dn, (−1)n(ψ0 −Ψ), ϕn) R((−1)n(ψ0 −Ψ)) R(−(−1)n(ψ0 + Ψ))

where Ψ =
∑n

i=1(−1)iψi.

c© 2009, T. Verhoeff @ TUE.NL 47/49 3D Turtle Geometry

Foldability Theorem for Closed 3D Polygons: Result

Total torsion = −(−1)n(ψ0 −Ψ) + ψ0

Even n : total torsion = −(ψ0 −Ψ) + ψ0 = Ψ, independent of ϕ0

Odd n : total torsion = (ψ0 −Ψ) + ψ0 = 2ψ0 −Ψ, depends on ψ0

Hence, for odd n, folding can always be made to close by appropriate
choice of ψ0

In fact, in two ways: with and without Möbius twist

Also see Mitering a Closed 3D Path (Mathematica Demonstrations
Project)

c© 2009, T. Verhoeff @ TUE.NL 48/49 3D Turtle Geometry



Conclusion

• 3D variant of Turtle Graphics, including a roll command

• Some artwork elegantly described by turtle programs

• Various equivalences (program semantics)

• Algebraic reasoning about equivalence in 3D Turtle Geometry

• A standard form for each equivalence

• Correspondence between symmetries of figure and symmetries of
program in standard form

• Proofs of the miter/fold joint torsion invariance theorems

c© 2009, T. Verhoeff @ TUE.NL 49/49 3D Turtle Geometry


