Computer Science Colloquium
10 December 2009, Eindhoven

## Tom Verhoeff

Eindhoven University of Technology Department of Mathematics \& CS
www.win.tue.nl/~wstomv
"3D Turtle Geometry with an Application to Mitre and Fold Joints" Accepted for International Journal of Arts and Technology

The book

Harold Abelson and Andrea A. diSessa
Turtle geometry:
The computer as a medium for exploring mathematics. MIT Press, 1981.
presents an exhaustive treatment of 2D Turtle Geometry,
including Turtle Graphics on curved surfaces.
Seymour Papert (1960s): Turtle Graphics and Logo


- Turtle Graphics, mechanical, virtual
- Logo programming language: Repeat 5 [ Forward 100 Left 72 ]
- Goal: Enable children to do/enjoy computer programming
- Turtle Geometry : mathematical theory of turtle figures

C 2009, T. Verhoeff © TUE.NL
2/49
3D Turtle Geometry

Mathematical Art by Koos Verhoeff


3D Turtle Geometry

Miter Joints

intact beam

intact beam (rolled $45^{\circ}$ )

beveled at $30^{\circ}$

beveled at $60^{\circ}$

$60^{\circ}$ miter joint

$120^{\circ}$ miter joint

Mathematica Demonstrations Project: Miter Joint and Fold Joint

$$
5 / 49
$$



- Corner plane $=$ plane spanned by adjacent segments
- Torsion angle $=$ dihedral angle between adjacent corner planes
'Kliekje’ (Eng.: ‘Left over')


C 2009 T Verhoeff © TUE NL $\qquad$ 3D Turtle Geometry

Closing the 3D Path


Square Cross Section


Equitriangular Cross Section Mathematica Demonstrations Project: Mitering a Closed 3D Path

Total amount of torsion is inherent property of polygonal path and does not depend on

- choice of initial segment
- initial rotation of cross section about center line
- shape of cross section


Mitering matches $\Longleftrightarrow$ total torsion is symmetry of cross section

## 3D Turtle Graphics

State of turtle:

- Position in space
- Attitude $=($ heading vector, normal vector $)$
- Initial state: in origin, heading to $x^{+}$, normal to $z^{+}$


Commands to change turtle state:

- Move(d) : move distance $d$ in direction of heading (leaves trace)
- Turn $(\varphi)$ : turn clockwise by angle $\varphi$ about normal
- Roll $(\psi)$ : roll clockwise by angle $\psi$ about heading

Mathematica Demonstrations Project: 3D Flying Pipe-laying Turtle
‘Tinkering'
Lattice walking


In 3D: roll angles provide additional freedom
All turn and roll angles equal yields a helix, which never closes


$$
\begin{aligned}
\operatorname{Segment}(d, \psi, \varphi) & :=\operatorname{Move}(d) ; \operatorname{Roll}(\psi) ; \operatorname{Turn}(\varphi) \\
T_{d} & :=\operatorname{Segment}\left(d, \quad 0,90^{\circ}\right) \\
R_{d} & :=\operatorname{Segment}\left(d, 90^{\circ}, 90^{\circ}\right) \\
P_{d} & :=\operatorname{Segment}\left(d, 180^{\circ}, 90^{\circ}\right) \\
L_{d} & :=\operatorname{Segment}\left(d, 270^{\circ}, 90^{\circ}\right)
\end{aligned}
$$

 13/49 3D Turtle Geometry

Artwork Described by Turtle Graphics: Braidwork


$$
\left(L_{1} ; R_{5} ; R_{6}^{2} ; L_{3} ; R_{1} ; L_{5} ; L_{6}^{2} ; R_{3}\right)^{3}
$$

30 segments, 6 symmetries (incl. mirror/upside-down)

Artwork Described by Turtle Graphics: Spiralosaurus

$\left(T_{4}^{2} ; L_{9}^{2} ; T_{4}^{2} ; R_{3}^{6}\right)^{3}$
36 segments, 6 symmetries

Artwork Described by Turtle Graphics: Borromean Polylink



$R_{3} ; P_{3} ; L_{3} ; P_{3} ; R_{3} ; L_{3} ; P_{3}^{2} ; R_{3} ; P_{3}^{2} ; L_{3} ; R_{3} ; P_{3} ; L_{3} ; P_{3} ; R_{3} ; L_{3}$

18 segments, 2 symmetries (per link)

equitriangular cross section, 16 segments, 4 symmetries $R_{d}^{\prime}:=\operatorname{Segment}\left(d, 60^{\circ}, \varphi\right) \quad \varphi=\arctan (2 \sqrt{2}) \approx 70.5^{\circ}$ $L_{d}^{\prime}:=\operatorname{Segment}\left(d,-60^{\circ}, \varphi\right)$

$$
\left(R_{2}^{\prime} ; L_{1}^{\prime} ; R_{1}^{\prime} ; L_{1}^{\prime} ; L_{2}^{\prime} ; R_{1}^{\prime} ; L_{1}^{\prime} ; R_{1}^{\prime}\right)^{2}
$$

© 2009, T. Verhoeff @ TUE.NL
17/49
3D Turtle Geometry

## Fundamentals of 3D Turtle Geometry: Program Semantics

Motion $\mu_{p}$ of program $p$ is mapping $\mathbb{R} \rightarrow \mathbb{R}^{3}$ from time to space: $\mu_{p}(t)$ is position at time $t$ (move at unit speed, instant turn/roll)
N.B. Mapping time to state will not work when turn/roll are instantaneous

Total duration $\delta_{p}$ of $p$ 's motion: $\delta_{p}=\sum_{\operatorname{Move}(d) \in p}|d|$

Final attitude $\alpha_{p}$ of $p$ is a tuple of heading and normal

Trace $\tau_{p}$ of $p: \tau_{p}=\left\{\mu_{p}(t) \mid 0 \leq t \leq \delta_{p}\right\} \quad$ (set of points visited)

Empty program $\mathcal{I}$ : no commands, leaving turtle in initial state, identity of sequential composition

C 2009, T. Verhoeff © TUE.NL
18/49
3D Turtle Geometry

Simple Programs and Motion/Trace Relationship

Unique Motion Theorem for simple open programs:

$$
\frac{p, q: \text { simple } \wedge \tau_{p}=\tau_{q} \wedge p: \text { open }}{\mu_{p}=\mu_{q} \wedge q: \text { open }}
$$

Reverse motion $\tilde{\mu}_{p}$ of $p: \tilde{\mu}_{p}(t)=\mu_{p}\left(\delta_{p}-t\right)$

Two-Motion Theorem for simple closed programs:

$$
\frac{p, q: \text { simple } \wedge \tau_{p}=\tau_{q} \wedge p: \text { closed }}{\left(\mu_{p}=\mu_{q} \vee \widetilde{\mu}_{p}(t)=\mu_{q}(t)\right) \wedge q: \text { closed }}
$$

Motion equivalent : $p \stackrel{\mu}{=} q \Longleftrightarrow \mu_{p}=\mu_{q} \quad$ (abstracts from program)
Final-attitude equivalent : $p \stackrel{\alpha}{=} q \Longleftrightarrow \alpha_{p}=\alpha_{q}$
Equivalent : $p \equiv q \Longleftrightarrow p \stackrel{\mu}{\equiv} q \wedge p \stackrel{\alpha}{\equiv} q \quad$ (for sequential composition)
Trace equivalent : $p \stackrel{\tau}{\equiv} q \Longleftrightarrow \tau_{p}=\tau_{q} \quad$ (abstracts from time)
Unique Motion Theorem rephrased:
For simple open programs, trace equivalence is motion equivalence
(Trace) congruent : $p \stackrel{c}{\equiv} q \Longleftrightarrow \tau_{p}, \tau_{q}$ are congruent (via isometry; abstracts from placement of figure in space)

$$
p \equiv q \Rightarrow p \stackrel{\mu}{\equiv} q \wedge p \stackrel{\alpha}{\equiv} q \quad p \stackrel{\mu}{\equiv} q \Rightarrow p \stackrel{\tau}{\equiv} q \quad p \stackrel{\tau}{\equiv} q \Rightarrow p \stackrel{c}{\equiv} q
$$

© 2009, T. Verhoeff © TUE.NL
21/49
3D Turtle Geometry

When pressed for space, we abbreviate:

| $\mathcal{M}(d)$ | $:=\operatorname{Move}(d)$ |
| ---: | :--- |
| $\mathcal{T}(\varphi)$ | $:=\operatorname{Turn}(\varphi)$ |
| $\mathcal{R}(\psi)$ | $:=\operatorname{Roll}(\psi)$ |
| $\mathcal{S}(d, \psi, \varphi)$ | $:=\operatorname{Segment}(d, \psi, \varphi)$ |
| $\pi$ | $=180^{\circ}$ |

Omit ; for composition:

$$
\begin{aligned}
\mathcal{S}(d, \psi, \varphi) & =\mathcal{M}(d) \mathcal{R}(\psi) \mathcal{T}(\varphi) \\
\mathcal{H} & =\mathcal{T}(\pi) \mathcal{R}(\pi)
\end{aligned}
$$

© 2009, T. Verhoeff @ TUE.NL

$$
22 / 49
$$

3D Turtle Geometry

## Example for Equivalences of Simple Properly Closed Programs

$$
\begin{array}{lc} 
& \mathcal{T}\left(-30^{\circ}\right) \mathcal{S}\left(1,0,120^{\circ}\right) \mathcal{S}\left(1,0,90^{\circ}\right) \mathcal{S}\left(\sqrt{3}, 0,150^{\circ}\right) \mathcal{S}\left(1,0,30^{\circ}\right) \\
\equiv & \{\text { put in cc-standard form }\} \\
& \mathcal{S}\left(2,0,120^{\circ}\right) \mathcal{S}\left(1,0,90^{\circ}\right) \mathcal{S}\left(\sqrt{3}, 0,150^{\circ}\right) \\
\stackrel{c}{\equiv} & \{\text { shift once }\} \\
& \mathcal{S}\left(1,0,90^{\circ}\right) \mathcal{S}\left(\sqrt{3}, 0,150^{\circ}\right) \mathcal{S}\left(2,0,120^{\circ}\right) \\
\stackrel{c}{\equiv} & \{\text { shift once more }\} \\
& \mathcal{S}\left(\sqrt{3}, 0,150^{\circ}\right) \mathcal{S}\left(2,0,120^{\circ}\right) \mathcal{S}\left(1,0,90^{\circ}\right)
\end{array}
$$



24/49


$$
\begin{aligned}
p \equiv p^{\prime} \wedge q \overline{\underline{\underline{\bar{\mu}}}} q^{\prime} & \Rightarrow p ; q \text { 訔 } p^{\prime} ; q^{\prime} \\
p \equiv p^{\prime} \wedge q \bar{\equiv} q^{\prime} & \Rightarrow p ; q \bar{\equiv} p^{\prime} ; q^{\prime} \\
p \equiv p^{\prime} \wedge q \equiv q^{\prime} & \Rightarrow p ; q \equiv p^{\prime} ; q^{\prime} \\
\operatorname{Move}(d) & \underline{\equiv} \operatorname{I} \\
\mathcal{I} ; p & \equiv p \\
p ; \mathcal{I} & \equiv p \\
p ; \operatorname{Turn}(\varphi) & \stackrel{\underline{\bar{\mu}}}{\equiv} p \\
p ; \operatorname{Roll}(\psi) & \stackrel{\underline{\underline{\mu}}}{\equiv} p \\
\operatorname{Turn}(\varphi) ; p & \stackrel{c}{\overline{\bar{c}}} p \\
\operatorname{Roll}(\psi) ; p & \stackrel{\equiv}{\equiv} p
\end{aligned}
$$

© 2009, T. Verhoeff @ TUE.NL

1. Turn and Roll are periodic with period $360^{\circ}$

$$
\begin{aligned}
\operatorname{Turn}\left(\varphi_{1}\right) & \equiv \operatorname{Turn}\left(\varphi_{2}\right) \\
\operatorname{Roll}\left(\psi_{1}\right) & \equiv \operatorname{Roll}\left(\psi_{2}\right)
\end{aligned} \varphi_{1}=\varphi_{2} \quad\left(\bmod 360^{\circ}\right)
$$

2. Equivalence to the empty program $\mathcal{I}$ :

$$
\begin{aligned}
& \operatorname{Move}(d) \equiv \mathcal{I} \Longleftrightarrow \quad d=0 \\
& \operatorname{Turn}(\varphi) \equiv \mathcal{I} \quad \Longleftrightarrow \quad \varphi=0 \quad\left(\bmod 360^{\circ}\right) \\
& \operatorname{Roll}(\psi) \equiv \mathcal{I} \quad \Longleftrightarrow \quad \psi=0 \quad\left(\bmod 360^{\circ}\right)
\end{aligned}
$$

5. When turtle rolls upside down, its turning sense looks reflected:
```
Roll(180});Turn(\varphi) \equiv Turn(-\varphi);Roll(180`
Turn}(\varphi)\equiv\operatorname{Roll}(18\mp@subsup{0}{}{\circ});\operatorname{Turn}(-\varphi);\operatorname{Roll}(18\mp@subsup{0}{}{\circ}
```

Similarly for half-turn and roll sense:

$$
\begin{aligned}
\operatorname{Turn}\left(180^{\circ}\right) ; \operatorname{Roll}(\psi) & \equiv \operatorname{Roll}(-\psi) ; \operatorname{Turn}\left(180^{\circ}\right) \\
\operatorname{Roll}(\psi) & \equiv \operatorname{Turn}\left(180^{\circ}\right) ; \operatorname{Roll}(-\psi) ; \operatorname{Turn}\left(180^{\circ}\right)
\end{aligned}
$$

And also for half-turn and move sense:

$$
\begin{aligned}
\operatorname{Turn}\left(180^{\circ}\right) ; \operatorname{Move}(d) & \equiv \operatorname{Move}(-d) ; \operatorname{Turn}\left(180^{\circ}\right) \\
\operatorname{Move}(d) & \equiv \operatorname{Turn}\left(180^{\circ}\right) ; \operatorname{Move}(-d) ; \operatorname{Turn}\left(180^{\circ}\right)
\end{aligned}
$$

6. Adjacent Move and Roll commands commute:

$$
\operatorname{Move}(d) ; \operatorname{Roll}(\psi) \equiv \operatorname{Roll}(\psi) ; \operatorname{Move}(d)
$$

7. Turn-Move and Turn-Roll do not commute, unless one of them is equivalent to $\mathcal{I}$, or in the special case

$$
\operatorname{Turn}\left(180^{\circ}\right) ; \operatorname{Roll}\left(180^{\circ}\right) \equiv \operatorname{Roll}\left(180^{\circ}\right) ; \operatorname{Turn}\left(180^{\circ}\right)
$$

Corollary: $\mathcal{H}:=\operatorname{Turn}\left(180^{\circ}\right) ; \operatorname{Roll}\left(180^{\circ}\right)$ is its own inverse.
$\mathcal{H}$ (half-loop) is equivalent to Dive $\left(180^{\circ}\right)$.
© 2009, T. Verhoeff @ TUE.NL
29/49
3D Turtle Geometry

## Equivalence Properties of Basic Commands: 8 (of 8)

8. Every trivial program (without $\operatorname{Move}(d)$ for $d \neq 0$ ) is equivalent to program of the form

$$
\operatorname{Roll}(\psi) ; \operatorname{Turn}(\varphi) ; \operatorname{Roll}\left(\psi^{\prime}\right)
$$

with $0 \leq \varphi \leq 180^{\circ}$ and $-180^{\circ}<\psi, \psi^{\prime} \leq 180^{\circ}$.
Angles $\psi, \varphi, \psi^{\prime}$ are uniquely determined, when requiring

$$
\varphi=0\left(\bmod 180^{\circ}\right) \Rightarrow \psi=0
$$

Corollary: There exists a rule to rewrite

$$
\operatorname{Roll}\left(\psi_{1}\right) ; \operatorname{Turn}\left(\varphi_{1}\right) ; \operatorname{Roll}\left(\psi_{2}\right) ; \operatorname{Turn}\left(\varphi_{2}\right)
$$

into the form above, involving 'messy' (inverse) trigonometry

C 2009, T. Verhoeff © TUE.NL
3D Turtle Geometry

## Standardisation Theorem

Every program $p$ is equivalent to exactly one program in standard form :

$$
\sigma(p)=\mathcal{R}\left(\psi_{0}\right) \mathcal{T}\left(\varphi_{0}\right) \mathcal{S}\left(d_{1}, \psi_{1}, \varphi_{1}\right) \ldots \mathcal{S}\left(d_{n}, \psi_{n}, \varphi_{n}\right) \mathcal{R}\left(\psi_{n+1}\right)
$$

where $n \geq 0$ and the parameters satisfy these constraints:
C1: $d_{i}>0$ for $1 \leq i \leq n$,
C2: $-\pi<\psi_{i} \leq \pi$ for $0 \leq i \leq n+1$,
C3: $0 \leq \varphi_{i} \leq \pi$ for $1 \leq i \leq n$,
C4: $\varphi_{i} \neq 0$ for $1 \leq i<n$, i.e., between $\mathcal{M}$ commands, and
C5: if $\varphi_{i}=0(\bmod \pi)$ then $\psi_{i}=0$ for $0 \leq i \leq n$.
Furthermore, if $p$ is simple, then
C4a: $\varphi_{i} \neq \pi$ for $1 \leq i<n$. (strict standard form)
c 2009, T. Verhoeff © TUE.NL
32/49
3D Turtle Geometry

Existence: by induction on the program's structure
Base cases: $\mathcal{I}, \mathcal{M}(d), \mathcal{T}(\varphi), \mathcal{R}(\psi)$
Inductive step: $p q$, where neither is empty, massage $\sigma(p) \sigma(q)$

Only relies on basic properties (so these are complete)

Unicity: consider first difference between two standard forms

Simple case: if $\varphi_{i}=\pi$, then $\sigma(p)$ not simple

- In general, it is messy to determine $\sigma(p) \quad$ (cf. Basic Property 8)
- It is easy to check whether $p$ is in standard form
© 2009, T. Verhoeff @ TUE.NL
33/49
3D Turtle Geometry


## Determining Program Equivalence and Motion Equivalence

For equivalence, consider standard form (Standardization Theorem):

$$
p \equiv q \Longleftrightarrow \sigma(p)=\sigma(q)
$$

For motion equivalence, consider $\mu$-standard form:

$$
p \underline{\underline{\mu}}_{q} \Longleftrightarrow \sigma_{\mu}(p)=\sigma_{\mu}(q)
$$

By dropping trailing $\mathcal{R}, \mathcal{T}$ commands, we infer that every program $p$ is motion equivalent to exactly one program in $\mu$-standard form

$$
\sigma_{\mu}(p)=\mathcal{R}\left(\psi_{0}\right) \mathcal{T}\left(\varphi_{0}\right) \mathcal{S}\left(d_{1}, \psi_{1}, \varphi_{1}\right) \ldots \mathcal{S}\left(d_{n}, \psi_{n}, \varphi_{n}\right)
$$

where $d_{i}, \psi_{i}$, and $\varphi_{i}$ satisfy constraints C1-C5, and $\psi_{n}=\varphi_{n}=0$.

By dropping leading $\mathcal{R}, \mathcal{T}$ commands as well, every program $p$ is congruent to a program in $c$-standard form

$$
\sigma_{c}(p)=\mathcal{S}\left(d_{1}, \psi_{1}, \varphi_{1}\right) \ldots \mathcal{S}\left(d_{n}, \psi_{n}, \varphi_{n}\right)
$$

where $d_{i}, \psi_{i}$, and $\varphi_{i}$ satisfy constraints C1-C5, and $\psi_{1}=\psi_{n}=\varphi_{n}=0$. This representation is not unique.
© 2009, T. Verhoeff @ TUE.NL

## Determining Trace Equivalence

For simple open programs (Unique Motion Theorem): see $\mu$-equivalence
Reversal $\operatorname{rev}(p)$ of $p$ : reverse the order of constituting $\mathcal{M}, \mathcal{T}$, and $\mathcal{R}$ commands and reverse signs of their parameters. Then

$$
\delta_{r e v(p)}=\delta_{p}
$$

If $p$ is properly closed, then:

$$
\begin{aligned}
\mu_{\operatorname{rev}(p)} & =\tilde{\mu}_{p} \\
\mu_{\operatorname{rev}(p)}(t) & =\mu_{p}\left(\delta_{p}-t\right)
\end{aligned}
$$

(motion of the reversal of $p$ equals the reverse motion of $p$ )
For simple properly closed programs (Two-Motion Theorem):

$$
p \stackrel{\tau}{\equiv} q \quad \Longleftrightarrow \quad p \stackrel{\mu}{\equiv} q \vee \operatorname{rev}(p) \stackrel{\mu}{\equiv} q
$$

$\operatorname{rev}\left(\mathcal{R}(\pi) \mathcal{T}\left(30^{\circ}\right) \mathcal{S}\left(2, \pi, 120^{\circ}\right) \mathcal{S}\left(1,0,90^{\circ}\right)\right) \equiv \mathcal{R}(0) \mathcal{T}\left(90^{\circ}\right) \mathcal{S}\left(1, \pi, 120^{\circ}\right) \mathcal{S}\left(2,0,150^{\circ}\right) \mathcal{R}(\pi)$

$\sigma_{c}(p)=\mathcal{S}\left(d_{1}, \psi_{1}, \varphi_{1}\right) \ldots \mathcal{S}\left(d_{n}, \psi_{n}, \varphi_{n}\right)$ where $\psi_{1}=\psi_{n}=\varphi_{n}=0$

$$
\sigma_{c}(\operatorname{rev}(p))=\mathcal{S}\left(d_{1}^{\prime}, \psi_{1}^{\prime}, \varphi_{1}^{\prime}\right) \ldots \mathcal{S}\left(d_{n}^{\prime}, \psi_{n}^{\prime}, \varphi_{n}^{\prime}\right)
$$

where for $1 \leq i \leq n$

$$
\begin{aligned}
d_{i}^{\prime} & =d_{n+1-i} \\
\psi_{i}^{\prime} & =\psi_{n+1-i} \\
\varphi_{i}^{\prime} & =\varphi_{n-i} \quad \text { N.B. } \varphi_{0}=0
\end{aligned}
$$

© 2009, T. Verhoeff @ TUE.NL
37/49
3D Turtle Geometry

Only two kinds of mappings possible between their traces:

1. the initial positions are paired and so are the final positions, or
2. the initial position of one trace is paired with the final position of the other trace and conversely.

The second case is reduced to the first by comparing $\operatorname{rev}(p)$ with $q$.
Translations are not relevant

Rotations are taken care of by comparing their reduced standard forms, since rotating $p$ 's trace is accomplished by an $\mathcal{R} \mathcal{T} \mathcal{R}$ prefix.
© 2009, T. Verhoeff © TUE.NL
38/49
3D Turtle Geometry

Congruence of Simple Properly Closed Programs
Cyclic Permutation Congruence Theorem (CPC):
If program $p q$ (that is, $p$ followed by $q$ ) is properly closed, then so is $q p$, and we have $p q \equiv q p$.

Simple properly closed $p$ is congruent to a $c c$-standard form

$$
\sigma_{c c}(p)=\mathcal{S}\left(d_{1}, \psi_{1}, \varphi_{1}\right) \mathcal{S}\left(d_{2}, \psi_{2}, \varphi_{2}\right) \ldots \mathcal{S}\left(d_{n}, \psi_{n}, \varphi_{n}\right)
$$

where the parameters satisfy these constraints $(1 \leq i \leq n)$ :
CC1: $d_{i}^{\prime}>0$,
CC2: $-\pi<\psi_{i}^{\prime} \leq \pi$,


CC3: $0<\varphi_{i}^{\prime}<\pi$.

This form is not uniquely determined. c 2009, T. Verhoeff @ TUE.NL

## Congruence of Simple Properly Closed Programs

Cyclic shift shift $(p)$ of properly closed $p$ in cc-standard form:

$$
\begin{aligned}
p & =\mathcal{S}\left(d_{1}, \psi_{1}, \varphi_{1}\right) \mathcal{S}\left(d_{2}, \psi_{2}, \varphi_{2}\right) \ldots \mathcal{S}\left(d_{n}, \psi_{n}, \varphi_{n}\right) \\
\operatorname{shift}(p) & =\mathcal{S}\left(d_{2}, \psi_{2}, \varphi_{2}\right) \ldots \mathcal{S}\left(d_{n}, \psi_{n}, \varphi_{n}\right) \mathcal{S}\left(d_{1}, \psi_{1}, \varphi_{1}\right)
\end{aligned}
$$

Note: $\operatorname{shift}(p)$ is then also in $c c$-standard form
Properly closed simple programs $p, q$ in $c c$-standard form are congruent if and only if at least one of the following equalities holds:

$$
\begin{aligned}
\operatorname{shift}^{k}(p) & =q \\
\operatorname{refl}\left(\operatorname{shift}^{k}(p)\right) & =q \\
\operatorname{rev}\left(\operatorname{shift}^{k}(p)\right) & =q \\
\operatorname{refl}\left(\operatorname{rev}\left(\operatorname{shift}^{k}(p)\right)\right) & =q
\end{aligned}
$$

where $k$ ranges from 0 to $n-1$ with $n$ the number of segments in $p$. If $p$ and $q$ differ in number of segments, then they are not congruent.
© 2009, T. Verhoeff © TUE.NL
41/49
3D Turtle Geometry

## Symmetry is self-congruence

Test the program for congruence with itself

Every satisfied equality corresponds to a symmetry of the trace

- rev and shift ${ }^{k}$ correspond to rotation
- refl corresponds to reflection

Summary of Equivalence Determination

| Relation | Condition | Criterion |
| :---: | :---: | :---: |
| $p \equiv q$ |  | $\sigma(p)=\sigma(q)$ |
| $p \stackrel{\mu}{\underline{\mu}} q$ |  | $\sigma_{\mu}(p)=\sigma_{\mu}(q)$ |
| $p \stackrel{\tau}{=} q$ | simple, open | $p \stackrel{\underline{\underline{\mu}}}{=} q$ |
| $p \stackrel{\tau}{=} q$ | simple, properly closed | $p \stackrel{\mu}{=} q \vee \operatorname{rev}(p) \stackrel{\mu}{=} q$ |
| $p \stackrel{c}{=} q$ | simple, open | apply $\sigma_{c}$ to $p, \operatorname{rev}(p), \operatorname{refl}(p), \operatorname{reft}(\operatorname{rev}(p))$, and $q$ |
| $p \stackrel{c}{=} q$ | simple, properly closed | $\begin{gathered} \text { apply } \sigma_{c c} \text { to } \\ \operatorname{shift}^{k}(p), \operatorname{rev}(\operatorname{shift}(p)), \\ \operatorname{refl}\left(\operatorname{shift}^{k}(p)\right), \operatorname{reft}\left(\operatorname{rev}\left(\operatorname{shift}^{k}(p)\right)\right), \\ \text { and } q \end{gathered}$ |

© 2009, T. Verhoeff © TUE.NL
42/49
3D Turtle Geometry

Symmetries of Simple Open Programs


$$
\mathcal{S}\left(1,0,90^{\circ}\right)
$$

$$
\mathcal{S}(1 / 2,0,0)
$$

$$
\mathcal{S}\left(1,0,90^{\circ}\right)
$$

$$
\begin{array}{cc}
\mathcal{S}\left(1,0,90^{\circ}\right) & \mathcal{S}\left(1,0,90^{\circ}\right) \\
\mathcal{S}\left(1 / 2,90^{\circ}, 90^{\circ}\right) & \mathcal{S}\left(1 / 2,90^{\circ}, 90^{\circ}\right.
\end{array}
$$

$$
\mathcal{S}(1,0,0)
$$

$$
\begin{array}{cc}
\mathcal{S}\left(1 / 2,90^{\circ}, 90^{\circ}\right) & \mathcal{S}\left(1 / 2,90^{\circ}, 90^{\circ}\right) \\
\mathcal{S}(1 / 2,0,0) & \mathcal{S}\left(1 / 2,-90^{\circ}, 90^{\circ}\right)
\end{array}
$$

$$
\begin{array}{cc}
\mathcal{S}(1 / 2,0,0) & \mathcal{S}\left(1 / 2,-90^{\circ}, 90^{\circ}\right) \\
& \mathcal{S}(1,0,0)
\end{array}
$$

$$
\mathcal{S}(1,0,0)
$$



$$
\begin{array}{r|r}
I & \\
\hline r e v &
\end{array}
$$

$\qquad$

## Symmetries of Simple Properly Closed Artwork



| Object | Symmetries | \# |
| :--- | :--- | :---: |
| Spiralosaurus | I, shift ${ }^{12}$, shift $^{24}$, rev shift ${ }^{6}$, rev shift ${ }^{18}$, rev shift ${ }^{30}$ | 6 |
| Braidwork | $I$, shift ${ }^{10}$, shift $^{20}$, refl shift ${ }^{5}$, refl shift ${ }^{15}$, refl shift ${ }^{25}$ | 6 |
| Borromean Polylink | I, rev shift ${ }^{-1}$ | 2 |
| Figure-Eight Knot | I, shift ${ }^{8}$, refl shift ${ }^{4}$, refl shift ${ }^{12}$ | 4 |

C 2009, T. Verhoeff @ TUE.NL
45/49
3D Turtle Geometry

## Foldability Theorem for Closed 3D Polygons

For a simple properly closed program in standard closed form, the total amount of torsion needed to determine closure of the folding equals the alternating sum of all roll angles, taking roll signs into account.

Let the tip of the normal vector trace out an edge at angle $\varphi_{0}$ :

$$
\begin{aligned}
& \mathcal{S}\left(d_{1}, \psi_{1}, \varphi_{1}\right) \mathcal{S}\left(d_{2}, \psi_{2}, \varphi_{2}\right) \ldots \\
\equiv & \mathcal{R}\left(\psi_{0}\right) \mathcal{R}\left(-\psi_{0}\right) \mathcal{S}\left(d_{1}, \psi_{1}, \varphi_{1}\right) \mathcal{S}\left(d_{2}, \psi_{2}, \varphi_{2}\right) \ldots \\
\equiv & \mathcal{R}\left(\psi_{0}\right) \mathcal{S}\left(d_{1},-\psi_{0}+\psi_{1}, \varphi_{1}\right) \mathcal{S}\left(d_{2}, \psi_{2}, \varphi_{2}\right) \ldots \\
\equiv & \ldots \mathcal{S}\left(d_{1},-\psi_{0}+\psi_{1}, \varphi_{1}\right) \mathcal{R}\left(-\psi_{0}+\psi_{1}\right) \mathcal{R}\left(\psi_{0}-\psi_{1}\right) \mathcal{S}\left(d_{2}, \psi_{2}, \varphi_{2}\right) \ldots \\
\equiv & \ldots \mathcal{S}\left(d_{2}, \psi_{0}-\psi_{1}-\psi_{2}, \varphi_{2}\right) \ldots
\end{aligned}
$$

The turtle finishes off with

$$
\mathcal{S}\left(d_{n},(-1)^{n}\left(\psi_{0}-\psi\right), \varphi_{n}\right) \mathcal{R}\left((-1)^{n}\left(\psi_{0}-\psi\right)\right) \mathcal{R}\left(-(-1)^{n}\left(\psi_{0}+\psi\right)\right)
$$ where $\psi=\sum_{i=1}^{n}(-1)^{i} \psi_{i}$.

Foldability Theorem for Closed 3D Polygons: Result

Total torsion $=-(-1)^{n}\left(\psi_{0}-\psi\right)+\psi_{0}$
Even $n$ : total torsion $=-\left(\psi_{0}-\psi\right)+\psi_{0}=\psi$, independent of $\varphi_{0}$
Odd $n$ : total torsion $=\left(\psi_{0}-\psi\right)+\psi_{0}=2 \psi_{0}-\psi$, depends on $\psi_{0}$
Hence, for odd $n$, folding can always be made to close by appropriate choice of $\psi_{0}$

In fact, in two ways: with and without Möbius twist

Also see Mitering a Closed 3D Path (Mathematica Demonstrations Project)

- 3D variant of Turtle Graphics, including a roll command
- Some artwork elegantly described by turtle programs
- Various equivalences (program semantics)
- Algebraic reasoning about equivalence in 3D Turtle Geometry
- A standard form for each equivalence
- Correspondence between symmetries of figure and symmetries of program in standard form
- Proofs of the miter/fold joint torsion invariance theorems

