

© 2009, T. Verhoeff @ TUE.NL

3/49

3D Turtle Geometry

© 2009, T. Verhoeff @ TUE.NL

4/49

Miter Joint Torsion Invariance Theorem

Total amount of torsion is inherent property of polygonal path and does *not* depend on

- choice of initial segment
- initial rotation of cross section about center line
- shape of cross section

Mitering matches \iff total torsion is symmetry of cross section

9/49

© 2009, T. Verhoeff @ TUE.NL

3D Turtle Geometry

3D Turtle Graphics

State of turtle:

- Position in space
- Attitude = (heading vector, normal vector)
- Initial state: in origin, heading to x^+ , normal to z^+

Commands to change turtle state:

- *Move(d)*: move distance *d* in direction of heading (leaves **trace**)
- $Turn(\varphi)$: turn clockwise by angle φ about normal
- $Roll(\psi)$: roll clockwise by angle ψ about heading

Mathematica Demonstrations Project: 3D Flying Pipe-laying Turtle

3D Turtle Geometry

© 2009, T. Verhoeff @ TUE.NL

12/49

Artwork Described by Turtle Graphics: Braidwork

Artwork Described by Turtle Graphics: Borromean Polylink

$R_3; P_3; L_3; P_3; R_3; L_3; P_3^2; R_3; P_3^2; L_3; R_3; P_3; L_3; P_3; R_3; L_3$

18 segments, 2 symmetries (per link)

© 2009, T. Verhoeff @ TUE.NL

16/49

Artwork Described by	Turtle Graphics	: Figure-Eight Knot
equitriangular cross	section, 16 segme	ents, 4 symmetries
$egin{array}{rcl} R'_d & := & Segment(d, \ L'_d & := & Segment(d, -) \end{array}$	$60^{\circ}, \varphi) \qquad \varphi = \text{ar}$ $60^{\circ}, \varphi)$	$\operatorname{ctan}(2\sqrt{2}) \approx 70.5^{\circ}$
$\left(\begin{array}{c} R_{2}^{\prime} \end{array} ; L_{1}^{\prime} \end{array} ;$	R'_1 ; L'_1 ; L'_2 ; R'_1 ;	$L'_{1}; R'_{1})^{2}$
© 2009, T. Verhoeff @ TUE.NL	17/49	3D Turtle Geometry
Fundamentals of 3D T Closed program: $\mu_p(\delta_p) =$ Open is not closed Properly closed : closed a Closed program can be made pro	Furtle Geometry: = $\mu_p(0)$; (final p nd $\alpha_p = \alpha_I$ (fin <i>operly</i> closed by appendix	Program Properties <i>osition</i> = initial <i>position</i>) al <i>state</i> = initial <i>state</i>) nding roll/turn/roll commands
Fundamentals of 3D T Closed program: $\mu_p(\delta_p) =$ Open is not closed Properly closed : closed a Closed program can be made program is $\mu_p(t_1) \neq$	Furtle Geometry: = $\mu_p(0)$; (final p and $\alpha_p = \alpha_I$ (fin <i>operly</i> closed by appendic $\mu_p(t_2)$ for $0 \le t_1$	Program Properties $position = initial \ position)$ al $state = initial \ state)$ $nding \ roll/turn/roll \ commands$ $< t_2 < \delta_p \qquad (\mu_p \ injective)$
Fundamentals of 3D T Closed program: $\mu_p(\delta_p) =$ Open is not closed Properly closed : closed a Closed program can be made pro Simple program: $\mu_p(t_1) \neq$ Being (properly) closed is Being simple is a global p	Furtle Geometry: = $\mu_p(0)$; (final p and $\alpha_p = \alpha_I$ (final p $\alpha_p = \alpha_I$ (final p) $\alpha_p = \alpha_I$ (final p) $\alpha_I = \alpha_I$ (final p)	Program Properties position = initial position) al $state = initial state)$ nding roll/turn/roll commands $< t_2 < \delta_p$ (μ_p injective)
Fundamentals of 3D T Closed program: $\mu_p(\delta_p) =$ Open is not closed Properly closed : closed a Closed program can be made pro Simple program: $\mu_p(t_1) \neq$ Being (properly) closed is Being simple is a global p Trivial program: $ \tau_p = 1$,	Furtle Geometry: = $\mu_p(0)$; (final p and $\alpha_p = \alpha_I$ (fin <i>operly</i> closed by appending = $\mu_p(t_2)$ for $0 \le t_1$ a local property i.e. $\tau_p = \{ (0,0,0) \}$	Program Properties $osition = initial position)$ $al state = initial state)$ $ad ing roll/turn/roll commands$ $< t_2 < \delta_p$ (μ_p injective) $+ \}$ (closed, simple)
Fundamentals of 3D T Closed program: $\mu_p(\delta_p) =$ Open is not closed Properly closed : closed a Closed program can be made pro- Simple program: $\mu_p(t_1) \neq$ Being (properly) closed is Being simple is a global p Trivial program: $ \tau_p = 1$, Empty program \mathcal{I} is trivial	Furtle Geometry: = $\mu_p(0)$; (final p and $\alpha_p = \alpha_I$ (fin $\alpha_p = \alpha_I$ (fin $\alpha_p = \mu_p(t_2)$ for $0 \le t_1$ a local property i.e. $\tau_p = \{ (0, 0, 0) \}$ and properly close	Program Properties $osition = initial position)$ al $state = initial state)$ ad $state = initial state)$ ad $row = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$

Motion μ_p of program p is mapping $\mathbb{R} \to \mathbb{R}^3$ from time to space: $\mu_p(t)$ is position at time t (move at <i>unit speed</i> , instant turn/roll)						
N.B. Mapping time to state will not work when turn/roll are instantaneous						
Total duration δ_p of <i>p</i> 's motion: $\delta_p = \sum_{Move(d) \in p} d $						
Final attitude α_p of p is a tuple of heading and normal						
Trace τ_p of p : $\tau_p = \{ \mu_p(t) \mid 0 \le t \le \delta_p \}$ (set of points visited)						
Empty program \mathcal{I} : no commands, leaving turtle in initial state, <i>identity</i> of sequential composition						
© 2009, T. Verhoeff @ TUE.NL 18/49 3D Turtle Geometry						
© 2009, T. Verhoeff @ TUE.NL 18/49 3D Turtle Geometry						
© 2009, T. Verhoeff @ TUE.NL 18/49 3D Turtle Geometry Simple Programs and Motion/Trace Relationship						
© 2009, T. Verhoeff @ TUE.NL 18/49 3D Turtle Geometry Simple Programs and Motion/Trace Relationship Unique Motion Theorem for simple open programs:						
© 2009, T. Verhoeff @ TUE.NL 18/49 3D Turtle Geometry Simple Programs and Motion/Trace Relationship Unique Motion Theorem for <i>simple open</i> programs: $p,q: simple \land \tau_p = \tau_q \land p: open$						
© 2009, T. Verhoeff © TUE.NL 18/49 3D Turtle Geometry Simple Programs and Motion/Trace Relationship Unique Motion Theorem for <i>simple open</i> programs: $\frac{p,q: simple \land \tau_p = \tau_q \land p: open}{\mu_p = \mu_q \land q: open}$						

Fundamentals of 3D Turtle Geometry: Program Semantics

Two-Motion Theorem for *simple closed* programs:

 $\begin{array}{c} p,q: \mathsf{simple} \ \land \ \tau_p = \tau_q \ \land \ p: \mathsf{closed} \\ \hline (\mu_p = \mu_q \ \lor \ \tilde{\mu}_p(t) = \mu_q(t)) \ \land \ q: \mathsf{closed} \end{array}$

© 2009, T. Verhoeff @ TUE.NL

20/49

Properties of Equivalences and Sequential Composition	Equivalence Properties of Basic Commands: 1, 2 (of 8)
$p \stackrel{\alpha}{\equiv} p' \land q \stackrel{\alpha}{\equiv} q' \implies p; q \stackrel{\alpha}{\equiv} p'; q'$ $p \equiv p' \land q \stackrel{\mu}{\equiv} q' \implies p; q \stackrel{\mu}{\equiv} p'; q'$ $p \equiv p' \land q \equiv q' \implies p; q \equiv p'; q'$	1. Turn and Roll are periodic with period 360° :
$Move(d) \stackrel{lpha}{\equiv} \mathcal{I}$	$\begin{array}{rcl} Turn(\varphi_1) &\equiv Turn(\varphi_2) \iff \varphi_1 = \varphi_2 \pmod{360^\circ} \\ Roll(\psi_1) &\equiv Roll(\psi_2) \iff \psi_1 = \psi_2 \pmod{360^\circ} \end{array}$
$ \begin{array}{cccc} \mathcal{I} ; p &\equiv p \\ p ; \mathcal{I} &\equiv p \end{array} \\ p ; \mathcal{T} urn(\varphi) & \stackrel{\mu}{=} p \\ p ; Roll(\psi) & \stackrel{\mu}{=} p \end{array} \\ \mathcal{T}urn(\varphi) ; p & \stackrel{c}{=} p \\ \mathcal{T}urn(\varphi) : p & \stackrel{c}{=} p \end{array} $	2. Equivalence to the empty program \mathcal{I} : $Move(d) \equiv \mathcal{I} \iff d = 0$ $Turn(\varphi) \equiv \mathcal{I} \iff \varphi = 0 \pmod{360^\circ}$ $Roll(\psi) \equiv \mathcal{I} \iff \psi = 0 \pmod{360^\circ}$
© 2009, T. Verhoeff @ TUE.NL 25/49 3D Turtle Geometry	© 2009, T. Verhoeff @ TUE.NL 26/49 3D Turtle Geometry
Equivalence Properties of Basic Commands: 3, 4 (of 8)	Equivalence Properties of Basic Commands: 5 (of 8)
3. Adjacent commands of the same type can be merged: $Move(d_1)$; $Move(d_2) \equiv Move(d_1 + d_2)$ provided $d_1d_2 \ge 0$ $Turn(\varphi_1)$; $Turn(\varphi_2) \equiv Turn(\varphi_1 + \varphi_2)$	5. When turtle rolls upside down, its turning sense looks reflected: $Roll(180^\circ)$; $Turn(\varphi) \equiv Turn(-\varphi)$; $Roll(180^\circ)$ $Turn(\varphi) \equiv Roll(180^\circ)$; $Turn(-\varphi)$; $Roll(180^\circ)$
3. Adjacent commands of the same type can be merged :	5. When turtle rolls upside down, its turning sense looks reflected: $Roll(180^\circ)$; $Turn(\varphi) \equiv Turn(-\varphi)$; $Roll(180^\circ)$ $Turn(\varphi) \equiv Roll(180^\circ)$; $Turn(-\varphi)$; $Roll(180^\circ)$ Similarly for half-turn and roll sense:
 3. Adjacent commands of the same type can be merged: Move(d₁); Move(d₂) ≡ Move(d₁ + d₂) provided d₁d₂ ≥ 0 Turn(φ₁); Turn(φ₂) ≡ Turn(φ₁ + φ₂) Roll(ψ₁); Roll(ψ₂) ≡ Roll(ψ₁ + ψ₂) Corollary: Turn(180°) and Roll(180°) are their own inverse. 4. Adjacent commands of the same type commute: 	5. When turtle rolls upside down, its turning sense looks reflected: $Roll(180^\circ)$; $Turn(\varphi) \equiv Turn(-\varphi)$; $Roll(180^\circ)$ $Turn(\varphi) \equiv Roll(180^\circ)$; $Turn(-\varphi)$; $Roll(180^\circ)$ Similarly for half-turn and roll sense: $Turn(180^\circ)$; $Roll(\psi) \equiv Roll(-\psi)$; $Turn(180^\circ)$ $Roll(\psi) \equiv Turn(180^\circ)$; $Roll(-\psi)$; $Turn(180^\circ)$
 3. Adjacent commands of the same type can be merged: Move(d₁); Move(d₂) ≡ Move(d₁ + d₂) provided d₁d₂ ≥ 0 Turn(φ₁); Turn(φ₂) ≡ Turn(φ₁ + φ₂) Roll(ψ₁); Roll(ψ₂) ≡ Roll(ψ₁ + ψ₂) Corollary: Turn(180°) and Roll(180°) are their own inverse. 4. Adjacent commands of the same type commute: Move(d₁); Move(d₂) ≡ Move(d₂); Move(d₁) provided d₁d₂ ≥ 0 Turn(φ₁); Turn(φ₂) ≡ Turn(φ₂); Turn(φ₁) Roll(ψ₁); Roll(ψ₂) ≡ Roll(ψ₂); Roll(ψ₁) 	5. When turtle rolls upside down, its turning sense looks reflected: $Roll(180^{\circ}); Turn(\varphi) \equiv Turn(-\varphi); Roll(180^{\circ})$ $Turn(\varphi) \equiv Roll(180^{\circ}); Turn(-\varphi); Roll(180^{\circ})$ Similarly for half-turn and roll sense: $Turn(180^{\circ}); Roll(\psi) \equiv Roll(-\psi); Turn(180^{\circ})$ $Roll(\psi) \equiv Turn(180^{\circ}); Roll(-\psi); Turn(180^{\circ})$ And also for half-turn and move sense: $Turn(180^{\circ}); Move(d) \equiv Move(-d); Turn(180^{\circ})$ $Move(d) \equiv Turn(180^{\circ}); Move(-d); Turn(180^{\circ})$

Determining Program Equivalence and Motion Equivalence

For equivalence, consider standard form (Standardization Theorem):

$$p \equiv q \iff \sigma(p) = \sigma(q)$$

For *motion* equivalence, consider μ -standard form:

$$p \stackrel{\mu}{\equiv} q \iff \sigma_{\mu}(p) = \sigma_{\mu}(q)$$

© 2009, T. Verhoeff @ TUE.NL

36/49

3D Turtle Geometry

Determining Trace Equivalence

For *simple open* programs (Unique Motion Theorem): see μ -equivalence

Reversal rev(p) of p: reverse the order of constituting \mathcal{M} , \mathcal{T} , and \mathcal{R} commands *and* reverse signs of their parameters. Then

$$\delta_{rev(p)} = \delta_l$$

If p is properly closed, then:

$$\mu_{rev(p)} = \tilde{\mu}_p$$

$$\mu_{rev(p)}(t) = \mu_p(\delta_p - t)$$

(motion of the reversal of p equals the reverse motion of p)

For *simple properly closed* programs (Two-Motion Theorem):

$$p \stackrel{\tau}{\equiv} q \iff p \stackrel{\mu}{\equiv} q \lor \operatorname{rev}(p) \stackrel{\mu}{\equiv} q$$

CC3: $0 < \varphi'_i < \pi$.

© 2009, T. Verhoeff @ TUE.NL

This form is not uniquely determined.

40/49

3D Turtle Geometry

 $\sigma_c(rev(p)) = \sigma_c(q)$ $\sigma_c(refl(rev(p))) = \sigma_c(q)$

© 2009, T. Verhoeff @ TUE.NL

39/49

Symmetries of Simple Properly Closed Artwork

Object	Symmetries	#
Spiralosaurus	$I, shift^{12}, shift^{24}, rev \ shift^6, rev \ shift^{18}, rev \ shift^{30}$	6
Braidwork	$I, shift^{10}, shift^{20}, refl shift^5, refl shift^{15}, refl shift^{25}$	6
Borromean Polylink	$I, rev \ shift^{-1}$	2
Figure-Eight Knot	$I, shift^8, refl \ shift^4, refl \ shift^{12}$	4

© 2009, T. Verhoeff @ TUE.NL

3D Turtle Geometry

Foldability Theorem for Closed 3D Polygons

45/49

For a simple properly closed program in standard closed form, the total amount of torsion needed to determine closure of the folding equals the *alternating sum of all roll angles, taking roll signs into account.*

Let the tip of the normal vector trace out an edge at angle φ_0 :

 $\begin{array}{l} \mathcal{S}(d_{1},\psi_{1},\varphi_{1}) \ \mathcal{S}(d_{2},\psi_{2},\varphi_{2}) \ \dots \\ \equiv \ \mathcal{R}(\psi_{0}) \ \mathcal{R}(-\psi_{0}) \ \mathcal{S}(d_{1},\psi_{1},\varphi_{1}) \ \mathcal{S}(d_{2},\psi_{2},\varphi_{2}) \ \dots \\ \equiv \ \mathcal{R}(\psi_{0}) \ \mathcal{S}(d_{1},-\psi_{0}+\psi_{1},\varphi_{1}) \ \mathcal{S}(d_{2},\psi_{2},\varphi_{2}) \ \dots \\ \equiv \ \dots \ \mathcal{S}(d_{1},-\psi_{0}+\psi_{1},\varphi_{1}) \ \mathcal{R}(-\psi_{0}+\psi_{1}) \ \mathcal{R}(\psi_{0}-\psi_{1}) \ \mathcal{S}(d_{2},\psi_{2},\varphi_{2}) \ \dots \\ \equiv \ \dots \ \mathcal{S}(d_{2},\psi_{0}-\psi_{1}-\psi_{2},\varphi_{2}) \ \dots \end{array}$

The turtle finishes off with

 $\begin{aligned} \mathcal{S}(d_n, (-1)^n(\psi_0 - \Psi), \varphi_n) \ \mathcal{R}((-1)^n(\psi_0 - \Psi)) \ \mathcal{R}(-(-1)^n(\psi_0 + \Psi)) \\ \text{where } \Psi &= \sum_{i=1}^n (-1)^i \psi_i. \end{aligned}$

Miterability Theorem for Closed 3D Polygons

For a simple properly closed program in standard closed form, the total amount of torsion to determine **closure of the mitering** equals the *sum of all roll angles, taking roll signs into account.*

Let the tip of the normal vector trace out an edge at angle φ_0 :

$$\begin{split} & \mathcal{S}(d_1,\psi_1,\varphi_1) \ \mathcal{S}(d_2,\psi_2,\varphi_2) \ \dots \\ & \equiv \ \mathcal{R}(\psi_0) \ \mathcal{R}(-\psi_0) \ \mathcal{S}(d_1,\psi_1,\varphi_1) \ \mathcal{S}(d_2,\psi_2,\varphi_2) \ \dots \\ & \equiv \ \mathcal{R}(\psi_0) \ \mathcal{S}(d_1,-\psi_0+\psi_1,\varphi_1) \ \mathcal{S}(d_2,\psi_2,\varphi_2) \ \dots \\ & \equiv \ \dots \ \mathcal{S}(d_1,-\psi_0+\psi_1,\varphi_1) \ \mathcal{R}(\psi_0-\psi_1) \ \mathcal{R}(-\psi_0+\psi_1) \ \mathcal{S}(d_2,\psi_2,\varphi_2) \ \dots \\ & \equiv \ \dots \ \mathcal{S}(d_2,-\psi_0+\psi_1+\psi_2,\varphi_2) \ \dots \\ & \text{The turtle finishes off with} \\ & \mathcal{S}(d_n,-\psi_0+\Psi,\varphi_n) \ \mathcal{R}(\psi_0-\Psi) \ \mathcal{R}(-\psi_0+\Psi) \end{split}$$

where
$$\Psi = \sum_{i=1}^{n} \psi_i$$
. Total torsion $= -\psi_0 + \Psi + \psi_0 = \Psi$ (CPC)

© 2009, T. Verhoeff @ TUE.NL

3D Turtle Geometry

Foldability Theorem for Closed 3D Polygons: Result

46/49

Total torsion = $-(-1)^n(\psi_0 - \Psi) + \psi_0$

Even *n*: total torsion = $-(\psi_0 - \Psi) + \psi_0 = \Psi$, independent of φ_0

Odd *n*: total torsion = $(\psi_0 - \Psi) + \psi_0 = 2\psi_0 - \Psi$, depends on ψ_0

Hence, for odd n, folding can always be made to close by appropriate choice of ψ_0

In fact, in *two ways*: with and without Möbius twist

Also see *Mitering a Closed 3D Path* (Mathematica Demonstrations Project)

© 2009, T. Verhoeff @ TUE.NL

48/49

Conclusion

- Some artwork elegantly described by turtle programs
- Various equivalences (program semantics)
- Algebraic reasoning about equivalence in 3D Turtle Geometry
- A standard form for each equivalence
- Correspondence between symmetries of figure and symmetries of program in standard form

3D Turtle Geometry

• **Proofs** of the miter/fold joint torsion invariance theorems

© 2009, T.	Verhoeff @	TUE.NL	49/49