The Mathematics of Mitering and Its Artful Application

Presentation at *Bridges 2008* 27 July 2008, Leeuwarden

Tom Verhoeff Eindhoven Univ. of Techn. Dept. of Math. & CS

Koos Verhoeff Valkenswaard The Netherlands

Stichting Wiskunst Koos Verhoeff wiskunst.dse.nl

© 2008, T. Verhoeff @ TUE.NL

© 2008, T. Verhoeff @ TUE.NL

Trefoil Knot

© 2008, T. Verhoeff @ TUE.NL

Date: approx. 1984

Materials: Steel, painted

Height: approx. 1 m

6 segments in 2 lengths (minimum number required for trefoil knot)

Beam cross section: equilateral triangle

Path symmetries: 3-fold and 2-fold rotational

120° Möbius twist

Bicolored (5, 1) Torus Path

© 2008, T. Verhoeff @ TUE.NL

Date: approx. 1986

Materials: Ash, Wenge

Height: 44 cm

24 segments; vertices lie on torus

Beam cross section: square

Path symmetries: 2-fold rotational

 180° Möbius twist

© 2008, T. Verhoeff @ TUE.NL

- "Arbitrary" closed spatial polygonal paths
- "Ad hoc" choice of vertex locations, "ad hoc" joint angles
 No a priori restrictions, other than by symmetry
- Classical miter joints
- "Ad hoc" cut faces
- At each joint, beam edges match

The latter is not trivial: the vertex locations need tweaking.

© 2008, T. Verhoeff @ TUE.NL

Miter Joint Rotation Invariance Theorem

The total amount of cross rotation is an inherent property of the polygonal path and does *not* depend on

- choice of initial segment
- initial rotation of cross section around the center line
- the shape of the cross section

Hamilton Path on Truncated Octahedron

© 2008, T. Verhoeff @ TUE.NL

Right-angle Champion

© 2008, T. Verhoeff @ TUE.NL

Trefoil Knot

© 2008, T. Verhoeff @ TUE.NL

• Closed polygonal paths constructed from limited set of pieces 1 : $\sqrt{2}$ -rectangular cross section beveled at 45°

Trapezoid or parallelogram

- All cut faces the same (square)
- Also using *skew* miter joints

- Vertices restricted to FCC lattice; joint angles are 90° or 120°
- At each joint, beam edges match

The latter is trivial for closed paths of this kind.

Enumerate all closed paths using N trapezoids with 1 : $\sqrt{2}$ -rectangular cross section and square cut faces (cf. *MathMaker*):

# Pieces	# Paths	Remarks	
4	1	picture frame (planar)	
6	2	incl. regular hexagon (planar)!	
8	1	has many symmetries	
10	0	why?	
12	16	of which 1 "without" symmetry	
14	10		
16	44		
:	:		
24	62688	no knots; max. # right angles: 14	

Trinity, Four-Unity, Hopeless Love I & II

© 2008, T. Verhoeff @ TUE.NL

Three-stranded Up-Down Spirals

Includes polylinks

Beam cross section: $1:\sqrt{2}$ -rhombus

Bevel angle: 45°

Cut face: square

Joint angles: 90° (regular), 120° (skew)

Allows segments to lie flush with each other

Lambiek

© 2008, T. Verhoeff @ TUE.NL

Lambiek

Date: approx. 2000

Material: Stainless steel

24 segments

Beam cross section: line segment (beam is a strip)

Joints: Regular fold

Topology: Trefoil knot, 180° Möbius twist

- Closed polygonal paths
- Using a strip (line segment as cross section)
- Classical fold joints
- At each joint, (the two) beam edges match

The latter is not trivial: the vertex locations need tweaking.

For an even number of vertices, the total amount of cross rotation is an inherent property of the polygonal path and does *not* depend on

- choice of initial segment
- initial rotation of strip around the center line
- strip width

For an odd number of vertices, there exist two rotations of the initial segment such that all fold joints match.

One yields a two-sided strip, the other a one-sided (Möbius) strip.

Hamilton Path on Cuboctahedron

© 2008, T. Verhoeff @ TUE.NL

Date: mid 1990s

Materials: Maple (?)

12 segments; vertices form cuboctahedron

Beam cross section: parallelogram

Bevel angles: $\alpha = 30^{\circ}, \ \beta = \arctan \frac{1}{\sqrt{2}} \approx 35.26 \cdots^{\circ}$

Cut faces: $1:\sqrt{2}$ -rectangle

Joint angles: 60° (regular miter) and 120° (skew miter, flush)

0° Möbius twist

Let beam B have cross section S and cut face F.

- The set of all beams with cross section S and cut face F that form a matched (miter or fold) joint with B at F
- consists exactly of
- those beams obtained from B and its extension through F by applying a symmetry of F.
- These symmetries are in 3D, including reflection in the plane that contains F.

Joint	Type	Angle
7–3	reg. miter	60°
7-1	skew miter	90°
7–4	skew miter	120°
7–6	reg. fold	120°
7–5	skew fold	60°
7–8	skew fold	90°
7–2	straight	180°

The theme in this talk:

- Closed linear structures
- Beam cross sections all the same

Branching, scaling, continuous, ...

