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Trefoil Knot
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Trefoil Knot

Date: approx. 1984

Materials: Steel, painted

Height: approx. 1 m

6 segments in 2 lengths (minimum number required for trefoil knot)

Beam cross section: equilateral triangle

Path symmetries: 3-fold and 2-fold rotational

120◦ Möbius twist
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Bicolored (5, 1) Torus Path
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Bicolored (5, 1) Torus Path

Date: approx. 1986

Materials: Ash, Wenge

Height: 44 cm

24 segments; vertices lie on torus

Beam cross section: square

Path symmetries: 2-fold rotational

180◦ Möbius twist
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Earliest Work: Characteristics

• “Arbitrary” closed spatial polygonal paths

• “Ad hoc” choice of vertex locations, “ad hoc” joint angles

No a priori restrictions, other than by symmetry

• Classical miter joints

• “Ad hoc” cut faces

• At each joint, beam edges match

The latter is not trivial: the vertex locations need tweaking.
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Beveled Beams and (Classical) Miter Joint
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Spatial Mitering
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Shape of Cut Face Varies for Given Cross Section

α = 60◦

α = 45◦

α = 30◦

β = 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦
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Closing the Path
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Miter Joint Rotation Invariance Theorem

The total amount of cross rotation is an inherent property of the
polygonal path and does not depend on

• choice of initial segment

• initial rotation of cross section
around the center line

• the shape of the cross section
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Hamilton Path on Truncated Octahedron
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Right-angle Champion
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Trefoil Knot
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Early Work (late 1980s): Characteristics

• Closed polygonal paths constructed from limited set of pieces

1 :
√

2-rectangular cross section beveled at 45◦

Trapezoid or parallelogram

• All cut faces the same (square)

• Also using skew miter joints

• Vertices restricted to FCC lattice; joint angles are 90◦ or 120◦

• At each joint, beam edges match

The latter is trivial for closed paths of this kind.
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Exhaustive Investigation

Enumerate all closed paths using N trapezoids with 1 :
√

2-rectangular

cross section and square cut faces (cf. MathMaker):

# Pieces # Paths Remarks

4 1 2 picture frame (planar)

6 2 incl. regular hexagon (planar)!

8 1 has many symmetries

10 0 why?

12 16 of which 1 “without” symmetry

14 10

16 44
... ...

24 62 688 no knots; max. # right angles: 14
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Trinity, Four-Unity, Hopeless Love I & II

c© 2008, T. Verhoeff @ TUE.NL 18/32 Mathematics of Mitering



Three-stranded Up-Down Spirals

c© 2008, T. Verhoeff @ TUE.NL 19/32 Mathematics of Mitering



Characteristics

Includes polylinks

Beam cross section: 1 :
√

2-rhombus

Bevel angle: 45◦

Cut face: square

Joint angles: 90◦ (regular), 120◦ (skew)

Allows segments to lie flush with each other

c© 2008, T. Verhoeff @ TUE.NL 20/32 Mathematics of Mitering



Lambiek
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Lambiek

Date: approx. 2000

Material: Stainless steel

24 segments

Beam cross section: line segment (beam is a strip)

Joints: Regular fold

Topology: Trefoil knot, 180◦ Möbius twist
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“Later” Work: Characteristics

• Closed polygonal paths

• Using a strip (line segment as cross section)

• Classical fold joints

• At each joint, (the two) beam edges match

The latter is not trivial: the vertex locations need tweaking.
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(Classical) Fold Joint
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Even Fold Rotation Invariance Theorem

For an even number of vertices, the total amount of cross rotation is
an inherent property of the polygonal path and does not depend on

• choice of initial segment

• initial rotation of strip
around the center line

• strip width

plaatje2.nb 1
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Odd Fold Matching Theorem

For an odd number of vertices, there exist two rotations of the initial

segment such that all fold joints match.

One yields a two-sided strip, the other a one-sided (Möbius) strip.
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Hamilton Path on Cuboctahedron
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Hamilton Path on Cuboctahedron

Date: mid 1990s

Materials: Maple (?)

12 segments; vertices form cuboctahedron

Beam cross section: parallelogram

Bevel angles: α = 30◦, β = arctan 1√
2
≈ 35.26 · · ·◦

Cut faces: 1 :
√

2-rectangle

Joint angles: 60◦ (regular miter) and 120◦ (skew miter, flush)

0◦ Möbius twist
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Shape of Cross Section Varies for Given Cut Face

α = 60◦

α = 45◦

α = 30◦

β = 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦
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Miter Joint Angle Characterization Theorem

Let beam B have cross section S and cut face F .

The set of all beams with cross section S and cut face F that

form a matched (miter or fold) joint with B at F

consists exactly of

those beams obtained from B and its extension through F by

applying a symmetry of F .

These symmetries are in 3D, including reflection in the plane that

contains F .
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1 :
√

2 Rectangle as Cut Face
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7–3 reg. miter 60◦

7–1 skew miter 90◦

7–4 skew miter 120◦

7–6 reg. fold 120◦

7–5 skew fold 60◦

7–8 skew fold 90◦

7–2 straight 180◦
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What’s Next

The theme in this talk:

• Closed linear structures

• Beam cross sections all the same

Branching, scaling, continuous, . . .
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