Branching Miter Joints: Principles and Artwork

$$
\text { Presented at Bridges } 2010
$$

24 July 2010, Pécs, Hungary

Tom Verhoeff
Eindhoven Univ. of Technology
Dept. of Math. \& CS
Koos Verhoeff
Valkenswaard
The Netherlands

> Stichting Wiskunst Koos Verhoeff
> wiskunst.dse.nl

Mathematical Art by Koos Verhoeff

(C) 2010, T. Verhoeff © TUE.NL

Miter Joints

intact beam

intact beam (rolled 45°)

beveled at 30°

beveled at 60°

60° miter joint

120° miter joint

Mathematica Demonstrations Project: Miter Joint and Fold Joint

Characteristics of Regular Miter Joints

- Two beams of identical cross section meet at the joint
- The joint face lies in the interior angle bisector plane
- Longitudinal beam edges match up at the joint
- For any fixed joint angle, there is one continuous degree of freedom :
- rotation of the beam's cross section about the longitudinal axis
‘Tinkering'

Lattice walking

Constant torsion

Problem: make beam edges match all the way round

Mathematica Demonstrations Project: Mitering A Closed 3D Path

Branching Miter Joints

What if we want to connect three or more beams in a single joint?

- Longitudinal edges should nicely match up at the joint

Ternary Meeting Point Induces Three Binary Miter Joints

A forces C_{A}

$A:$	$0^{\circ} \mathrm{W}$,	$0^{\circ} \mathrm{N}$
$B:$	$90^{\circ} \mathrm{W}$,	$0^{\circ} \mathrm{N}$
$C:$	$45^{\circ} \mathrm{W}$,	$61^{\circ} \mathrm{N}$

B forces C_{B}

Ternary Miter Joint: Mismatch

Superimposing the binary miter joints reveals a mismatch between beams C_{A} and C_{B}

Beam A rotates clockwise \Rightarrow beams B and C_{A} rotate counterclockwise \Rightarrow beam C_{B} rotates clockwise
C_{A} and C_{B} rotate in opposite direction.

Mismatch can be canceled by suitable rotation of beam A.

Ternary Miter Joint: Repairing the Mismatch in Two Ways

C_{A} and C_{B} rotate in opposite direction.

Angle difference $C_{B}-C_{A}$ changes at double the 'speed' of beam A.

Two proper matchings if cross section is mirror symmetric.

Ternary Miter Joint Not Always Repairable

Matched ternary miter joint is impossible to obtain, if cross section is not mirror symmetric.

Matched Ternary Miter Joint

If the angles between beams A, B, and C are fixed, then
... there are 0 or 2 ways to obtain a matched ternary miter joint
... by rotating the cross section;
... the number depends on the mirror symmetry of the cross section.

Binary miter joints with fixed angle allow continuous beam rotation, while preserving matched edges.

Obtaining a Matched Ternary Miter Joint by Varying Angles

Given a binary miter joint connecting square beams A and B, there are five directions for beam C to make a proper ternary miter joint, if it is restricted to the upper-half of the angle bisector plane.

How is Mismatch Related to Position of Beam C ?

Countour Plot of Mismatch as Function of Beam C

Plot of the rotational mismatch at beam C when square beams A and B are mitered at 90°.

The direction of beam C is determined by its endpoint on the sphere.
Left: mismatches of 90° and 180° have been marked; on the equator the mismatch is 0°; Right: multiples of 30°

Ternary Miter Joint Theorem

The mismatch is constant when C moves on the unit hemisphere along the circle through $A B C$.

Proof in appendix.

Escher's Belvedere Lithograph

(C) 2010, T. Verhoeff © TUE.NL

17/32

Ternary Miter Joint Artwork: Impossible Cuboid

- Idea by Dick Baas Becking
- Design with ternary miter joints by Koos Verhoeff
- First wooden sculpture by Popke Bakker

Impossible Cuboid Design Parameters

12 square beams; $6+2=8$ ternary miter joints;
beam lengths $A B: B C=1: 1+1 / \sqrt{2} \approx 7: 12$; beams rotated over $\arctan (\sqrt{2}-1)=22.5^{\circ}$; 6 'faces': 2 squares $\left(A A^{\prime} D^{\prime} D, B B^{\prime} C^{\prime} C\right)$,
2 parallelograms ($A A^{\prime} B^{\prime} B, C C^{\prime} D^{\prime} D$ with $\angle B A A^{\prime}=45^{\circ}$),
2 non-planar quadrangles $\left(A B C D, A^{\prime} B^{\prime} C^{\prime} D^{\prime}: \angle A B C=\angle C D A=60^{\circ}\right.$, and $\angle D A B=\angle B C D=90^{\circ}$)

Miter Joints with Four Branches

Conclusion

- Ternary miter joint: condition for proper matching of edges
- Theorem about matching ternary miter joint
- Artwork involving ternary and quaternary miter joints

What else:

- Fractal trees by Koos Verhoeff do not involve ternary miter joints.
- How about skew ternary miter joints? (cut not in bisector plane)

Related Work

- Tom Verhoeff \& Koos Verhoeff. "The Mathematics of Mitering and Its Artful Application", Bridges 2008, pp.225-234.
- Tom Verhoeff \& Koos Verhoeff.
"Regular 3D Polygonal Circuits of Constant Torsion", Bridges 2009, anada, pp.223-230.
- Tom Verhoeff.
"3D Turtle Geometry: Artwork, Theory, Program Equivalence and Symmetry".
Int. Journal of Arts and Techology, 3(2/3):288-319 (2010).

Also see: http://www.win.tue.nl/~wstomv/publications/

Proof of Ternary Miter Joint Theorem

The mismatch is constant when C moves on the unit hemisphere along the circle through $A B C$.

Proof of Ternary Miter Joint Theorem (2)

Consider the seams that determine the mismatch.

Proof of Ternary Miter Joint Theorem (3)

Seams are obtained by reflection in the interior bisector planes of angles $A O C$ and $B O C$.

Proof of Ternary Miter Joint Theorem (4)

Beam rotation changes the mismatch by a constant.

Rotate until seam pointing vectors v_{A} and v_{B} are aligned.

Proof of Ternary Miter Joint Theorem (5)

Translate seam pointing vectors to the origin: $v_{A}=v_{B}$.

Proof of Ternary Miter Joint Theorem (6)

Change view to look along intersection of bisector planes.

Observe that $\angle v_{A} v_{C} a+\angle v_{B} v_{C} b=2 \angle$ bisector planes of $\angle A O C, \angle B O C$.

Proof of Ternary Miter Joint Theorem (7)

Consider triangle $A B C$. Triangles $A O C$ and $B O C$ are isosceles.

The bisector planes intersect $\triangle A B C$ at its perpendicular bisectors.

Proof of Ternary Miter Joint Theorem (8)

The perpendicular bisectors intersect at the center of the circumcircle.

Goal: To prove that mismatch is does not change along this circle.

Proof of Ternary Miter Joint Theorem (9)

Moving C along the circumcircle, preserves circumcenter and $\angle A C B$.

Hence, angle between bisector planes of $A C$ and $B C$ is preserved.

Proof of Ternary Miter Joint Theorem (10)

If angle between bisector planes of $\angle A C$ and $\angle B C$ is preserved, and direction of their intersection line is preserved, then angle between seam pointing vectors $v_{C} a, v_{C} b$ is preserved.

Hence, mismatch is preserved. Q.E.D.

