### **Mitered Fractal Trees: Constructions and Properties**

Presented at *Bridges 2012* 28 July 2012, Towson, Maryland

Tom Verhoeff Eindhoven Univ. of Technology Dept. of Math. & CS Koos Verhoeff Valkenswaard The Netherlands





### Stichting Wiskunst Koos Verhoeff wiskunst.dse.nl

© 2012, T. Verhoeff @ TUE.NL

### Mitered Fractal Tree Sculpture (late 1980s, bronze)



© 2012, T. Verhoeff @ TUE.NL

### Mitered Fractal Tree Sculpture (late 1980s, wood)



© 2012, T. Verhoeff @ TUE.NL

### Mitered Fractal Tree I in One-Month Art Exhibition



© 2012, T. Verhoeff @ TUE.NL

### Mitered Fractal Tree II in Conference Art Exhibition



© 2012, T. Verhoeff @ TUE.NL

#### Earliest Theme: Closed 3D Paths with Miter Joints



Bridges 2008

Lattice walking Bridges 2008 Constant torsion Bridges 2009

© 2012, T. Verhoeff @ TUE.NL

6/52

### Miter Joints with Square Cut Face

- Beam with  $1:\sqrt{2}$  rectangle as cross section
- Bevel at 45°
- Yields a square cut face



© 2012, T. Verhoeff @ TUE.NL

## Tree Construction from $1:\sqrt{2}$ Rectangular Beams: The Piece







### Make two copies of the piece and shrink them by a factor $\sqrt{2}$



© 2012, T. Verhoeff @ TUE.NL



© 2012, T. Verhoeff @ TUE.NL













Shorten the Piece Length: c = 1





**Extend the Piece Length:** c = 2























### **Tree Construction from Square Beams: Back – Front**



### Tree Construction from Square Beams: Rotated-Roof Piece





#### **Tree Construction from Square Beams: Back – Front**



#### Tree Construction from Square Beams: Back-flip – Front-flip



### **Constraints for General Binary Mitered Fractal Trees**

- The trunk has a *polygonal* cross section.
- Each subtree is a scaled-down copy of the whole tree, possibly reflected.

All branches have a *similar* polygonal cross section as the trunk.

- The longitudinal edges of the beams properly meet up at the three-way joints.
- Sibling branches share the roof's ridge,

rather than a surface as in a *ternary miter joint* (cf. Bridges 2010)

• Three dimensional



- Cross section : must be a *strip* (2-gon), *triangle*, or *quadrangle*
- Cut face: must be similar to roof panels

Note: Symmetries of cut face determine growth options

• Orientation (angles) of the roof panels : could be asymmetric

We restrict ourselves to *rectangular* beams

Hence, cut face is square, or rectangle, or rhombus, or parallelogram

### Tree Construction from 1 : *a* Rectangular Beams: The Piece

Square cut faces: symmetric roof; roof angle at ridge makes squares



### **Tree Construction from** 1:1.1 **Rectangular Beams**



### **Tree Construction from** 1:1.8 **Rectangular Beams**





| cut   | square     | parallelogram | rhombus   | rectangle   |
|-------|------------|---------------|-----------|-------------|
| ridge | horizontal | slanted       | slanted   | horizontal  |
| roof  | asymmetric | symmetric     | symmetric | incongruent |

### Squares as Cuts, Horizontal Ridge, Asymmetric Roof



### Parallelograms as Cuts, Slanted Ridge, Symmetric Roof (1)



### Parallelograms as Cuts, Slanted Ridge, Symmetric Roof (2)



© 2012, T. Verhoeff @ TUE.NL

#### Rhombi as Cuts, Slanted Ridge, Symmetric Roof



### Rectangles as Cuts, Horizontal Ridge, Asymmetric Scaling





• Fractal dimension :  $D = \frac{\log N}{\log f}$ 

where N = arity, and f = scale-down factor

D > 3 implies self-intersection (for large number of generations)

- Self-intersection is hard to determine
- Symmetries : rotational, reflectional
- Branch directions : repetitive or not

Analyze by *Turtle Geometry*: consider turn angle  $\phi$  and roll angle  $\psi$ . Branches on cone. Projected turn angle  $\theta$  satisfies (Bridges 2011):

 $\cos(\theta/2) = \cos(\phi/2)\cos(\psi/2)$ 



Leonardo da Vinci writes in item 394 of his Notebook, Vol. 1:

"All the branches of a [natural] tree at every stage of its height when put together are equal in thickness to the trunk"

Eloy (2011) rephrased this as:

"the *total cross section of branches* is conserved across branching nodes".

Eloy proposes the theory that this property evolved to help trees withstand *wind-induced stresses*.

- Explained the two earliest binary mitered fractal tree designs
- Explored various generalizations

To do:

- 1. General quadrangle as cross section
- 2. Ternary and higher
- 3. Grow trees with 'deeper' patterns, or randomly
- 4. Sibling branches that share a cut surface (cf. ternary miter joint)

- Tom Verhoeff & Koos Verhoeff
  "The Mathematics of Mitering and Its Artful Application" Bridges 2008, Leeuwarden, Netherlands, pp.225–234
- Tom Verhoeff & Koos Verhoeff
  "Branching Miter Joints: Principles and Artwork" Bridges 2010, Pécs, Hungary, pp.27–34
- Tom Verhoeff & Koos Verhoeff
  "From Chain-link Fence to Space-spanning Helical Structures" Bridges 2011, Coimbra, Portugal, pp.73–80

Also see: http://www.win.tue.nl/~wstomv/publications/