Folded Strips of Rhombuses

Presented at Bridges 2013

28 July 2013, Enschede, Netherlands

Tom Verhoeff
Eindhoven Univ. of Technology Dept. of Math. \& CS

Koos Verhoeff
Valkenswaard
The Netherlands

Koos Verhoeff Art Exhibition in Hengelo

- Option 2 on Excursion Day: A Lovely Place
- About 150 objects on display

Mitered Trefoil Knot, Corten Steel (2013)

Pair of Linked Octagons, Powder-Coated Corten Steel (2013)

Bamboozle, Polished Acrylic (Installed January 2013)

Constructing Polygonal Tubes: Folded Strip of Rhombuses

Strip of Rhombuses

Strip of Rhombuses Loosely Folded into a Discrete Helix

Strip of Rhombuses: Criteria for Tightness

Tight: A_{n} folds to B_{0}
Cross section is n-gon
Acute angle of rhombus $=\alpha$
$\cos \alpha=\frac{1}{n}$

Aspect Ratio of Rhombus

$$
\text { Aspect ratio }=a=1: \tan \frac{\alpha}{2}=\cot \frac{\alpha}{2}: 1
$$

Interesting Rombuses

$$
a=\cot \left(\frac{1}{2} \arccos \frac{1}{n}\right)=\sqrt{\frac{n+1}{n-1}}
$$

n	3	4	5	6	7	8
α	70.53°	75.52°	78.46°	80.41°	81.79°	82.82°
a	$\sqrt{2}$	$\sqrt{\frac{5}{3}}$	$\sqrt{\frac{3}{2}}$	$\sqrt{\frac{7}{5}}$	$\frac{2}{\sqrt{3}}$	$\frac{3}{\sqrt{7}}$
	1.41421	1.29099	1.22474	1.18322	1.1547	1.13389

Polydron $^{\text {TM }}$ offers Golden Rhombus: $a=\Phi=\frac{1}{2}+\frac{1}{2} \sqrt{5} \approx 1.61803$
Polydron ${ }^{\text {TM }}$ used to offer $\sqrt{2}: 1$ Rhombus (discontinued)

Joining Two Beams Constructed from Rombuses

- 180° joint is not interesting
- Other joint angles require angle at A to fit a rhombus

Only works for $\sqrt{2}: 1$ rhombus

- Hence, we restrict ourselves to this rhombus

Joining Triangular Beams from $\sqrt{2}: 1$ Rombuses

(c) 70.5° joint

(d) 70.5° joint

15/50

What Is the Nature of Joints (c) and (d)?

- They are not (regular or skew) miter joints: no cut plane

The joint helixes have same handedness

- They can be viewed as false miter joints: $-\square$ instead of $\quad \longrightarrow$
- Two pairs of (c) beam faces are joined by regular fold joints

But the bottom-left-top-right pair then does not meet at all

Acute Joint (c) Analyzed

Can be viewed as a pair of type (b) regular 109.5° miter joints with degenerate middle segment

In the middle segment, a face and two edges disappeared

Acute Joint (d) Analyzed

Can be viewed as a pair of type (b) regular 109.5° miter joints with degenerate middle segment

In the middle segment, an edge disappeared

Roll Angle (Torsion) Between Consecutive Joints

The roll angle between consecutive miter joints is a multiple of 120° Hence, total torsion along path is multiple of 120°
120° rotation is a symmetry of the triangular cross section Hence, when beam path closes onto itself, all edges properly meet

6 Superimposed $\sqrt{2}: 1$ Rhombus Paths of 3 Segments

(C) 2013, T. Verhoeff © TUE.NL

3D Turtle Description of Paths with $\sqrt{2}: 1$ Rhombuses

- 3D turtle: forward motion and rolling motion are coupled
- Turtle screws (lit.) forward, rolling at a rate of 120° per rhombus Turtle turns 109.5°
- Consequently
- Beams in 4 directions: main diagonals of cube
- Can construct constant-torsion paths

Rhombus Orientations

12 rhombus orientations

Rhombic Dodecahedron

All vertex coordinates can be integers

Closed Shapes of Triangular $\sqrt{2}: 1$ Rhombus Beams

- Measure beam length in terms of number of rhombuses
- Sequence of beam lengths uniquely defines the shape

$$
\text { octagon: }(4,4,5,5,4,4,5,5)
$$

Octagon (4, 4, 5, 5, 4, 4, 5, 5) Unfolded

Hexagons

More Octagons

$(12,4,4,4)^{2}$

$(6,1,4,1)^{2}$

$(15,5,5,5)^{2}$

Pairs of Linked Octagons

Linked Octagons: Polydron ${ }^{\text {TM }}$

(C) 2013, T. Verhoeff © TUE.NL

Linked Octagons: Wood

Pair of Linked Octagons, Powder-Coated Corten Steel (2013)

Mitered Trefoil Knot, Corten Steel (2013)

Figure-Eight Knot

$$
(4,4,4,11,5,5,5,10)^{2}
$$

Pair of Unlinked Trefoil Knots

© 2013, T. Verhoeff © TUE.NL

Pair of Linked Trefoil Knots

Four Linked Trefoil Knots

Replace Trefoil Knots by Equilateral Triangles

What Happens When Adding Triangles: 2nd Generation

3rd Generation

4th Generation: Still No Collision

Shortest Cycle Consists of 10 Triangles

Infinite Space-spanning Structure: Triamond, ...

- Translational symmetries
- Rotational symmetries, of order 2 and order 3
- No mirror symmetries (chiral)
- Screw axes (glide rotations), of order 3 and order 4
- Space group 214 (of 230): 14332
- T. Sunada, "Crystals That Nature Might Miss Creating" (2008)

Very strong isotropic property; energy minimizing

Drop Dangling Triangles, with Degree <2 : Bamboozle

Bamboozle, Polished Acrylic (Installed January 2013)

Smaller Bamboozle (July 2013)

(C) 2013, T. Verhoeff © TUE.NL

48/50
Folded Strips of Rhombuses

Conclusion

- Beams constructed by folding a strip of rhombuses into a helix
- $\sqrt{2}: 1$ rhombus yields triangular beams, allowing versatile joints N.B. Golden Rhombus only useful for tria- and hexecontahedron

Plea: Polydron ${ }^{\text {TM }}$, please re-introduce the $\sqrt{2}: 1$ rhombus!

- Artwork designs based on/inspired by $\sqrt{2}: 1$ rhombus

Future Work

1. Half rhombuses
2. Ternary joints
3. Intertwined discrete helixes
4. Generalizations of Bamboozle

Stichting Wiskunst Koos Verhoeff http://wiskunst.dse.nl

Related Work

- Tom Verhoeff \& Koos Verhoeff
"The Mathematics of Mitering and Its Artful Application"
Bridges 2008, Leeuwarden, Netherlands, pp.225-234
- Tom Verhoeff \& Koos Verhoeff
"Regular 3D Polygonal Circuits of Constant Torsion"
Bridges 2009, Banff, Canada, pp.223-230
- Tom Verhoeff \& Koos Verhoeff
"Branching Miter Joints: Principles and Artwork"
Bridges 2010, Pécs, Hungary, pp.27-34
- Tom Verhoeff \& Koos Verhoeff
"From Chain-link Fence to Space-spanning Helical Structures" Bridges 2011, Coimbra, Portugal, pp.73-80

Also see: http://www.win.tue.nl/~wstomv/publications/

