Folded Strips of Rhombuses

Presented at *Bridges 2013* 28 July 2013, Enschede, Netherlands

Tom Verhoeff Eindhoven Univ. of Technology Dept. of Math. & CS

Koos Verhoeff Valkenswaard The Netherlands

- Option 2 on Excursion Day: A Lovely Place
- About 150 objects on display

Mitered Trefoil Knot, Corten Steel (2013)

© 2013, T. Verhoeff @ TUE.NL

Pair of Linked Octagons, Powder-Coated Corten Steel (2013)

© 2013, T. Verhoeff @ TUE.NL

Bamboozle, Polished Acrylic (Installed January 2013)

© 2013, T. Verhoeff @ TUE.NL

Constructing Polygonal Tubes: Folded Strip of Rhombuses

Aspect ratio =
$$a = 1$$
 : tan $\frac{\alpha}{2} = \cot \frac{\alpha}{2}$: 1

$$a = \cot\left(\frac{1}{2}\arccos\frac{1}{n}\right) = \sqrt{\frac{n+1}{n-1}}$$

PolydronTM offers Golden Rhombus: $a = \Phi = \frac{1}{2} + \frac{1}{2}\sqrt{5} \approx 1.61803$

PolydronTM used to offer $\sqrt{2}$: 1 Rhombus (discontinued)

Joining Two Beams Constructed from Rombuses

- 180° joint is not interesting
- Other joint angles require angle at A to fit a rhombus

Only works for $\sqrt{2}$: 1 rhombus

• Hence, we restrict ourselves to this rhombus

15/50

- They are not (regular or skew) miter joints: no cut plane The joint helixes have same handedness
- They can be viewed as *false miter joints*: \blacksquare instead of \blacksquare
- Two pairs of (c) beam faces are joined by regular *fold* joints

But the bottom-left-top-right pair then does not meet at all

Can be viewed as a *pair* of type (b) regular 109.5° miter joints

with *degenerate* middle segment

In the middle segment, a face and two edges disappeared

Can be viewed as a *pair* of type (b) regular 109.5° miter joints

with *degenerate* middle segment

In the middle segment, an edge disappeared

© 2013, T. Verhoeff @ TUE.NL

18/50

Roll Angle (Torsion) Between Consecutive Joints

The *roll angle* between consecutive miter joints is a multiple of 120°

Hence, total torsion along path is multiple of 120°

120° rotation is a symmetry of the triangular cross section

Hence, when beam path closes onto itself, all edges properly meet

6 Superimposed $\sqrt{2}$: 1 Rhombus Paths of 3 Segments

3D Turtle Description of Paths with $\sqrt{2}$: 1 Rhombuses

- 3D turtle: forward motion and rolling motion are coupled
- Turtle screws (lit.) forward, rolling at a rate of 120° per rhombus Turtle turns 109.5°
- Consequently
 - Beams in 4 directions: main diagonals of cube
 - Can construct *constant-torsion* paths

12 rhombus orientations

Rhombic Dodecahedron

All vertex coordinates can be integers

Closed Shapes of Triangular $\sqrt{2}$: 1 Rhombus Beams

- Measure beam length in terms of *number of rhombuses*
- Sequence of beam lengths uniquely defines the shape

octagon: (4, 4, 5, 5, 4, 4, 5, 5)

 \bigodot 2013, T. Verhoeff @ TUE.NL

Hexagons

Linked Octagons: PolydronTM

© 2013, T. Verhoeff @ TUE.NL

Pair of Linked Octagons, Powder-Coated Corten Steel (2013)

© 2013, T. Verhoeff @ TUE.NL

Mitered Trefoil Knot, Corten Steel (2013)

© 2013, T. Verhoeff @ TUE.NL

$(4, 4, 4, 11, 5, 5, 5, 10)^2$

Four Linked Trefoil Knots

© 2013, T. Verhoeff @ TUE.NL

Replace Trefoil Knots by Equilateral Triangles

What Happens When Adding Triangles: 2nd Generation

3rd Generation

© 2013, T. Verhoeff @ TUE.NL

4th Generation: Still No Collision

© 2013, T. Verhoeff @ TUE.NL

5th Generation: First Cycles Close Nicely

© 2013, T. Verhoeff @ TUE.NL

43/50

Shortest Cycle Consists of 10 Triangles

© 2013, T. Verhoeff @ TUE.NL

- Translational symmetries
- Rotational symmetries, of order 2 and order 3
- *No* mirror symmetries (chiral)
- Screw axes (glide rotations), of order 3 and order 4
- Space group 214 (of 230): *I*4₃32
- T. Sunada, "Crystals That Nature Might Miss Creating" (2008)
 Very strong isotropic property; energy minimizing

Drop Dangling Triangles, with Degree < 2: Bamboozle

© 2013, T. Verhoeff @ TUE.NL

Bamboozle, Polished Acrylic (Installed January 2013)

© 2013, T. Verhoeff @ TUE.NL

Smaller Bamboozle (July 2013)

© 2013, T. Verhoeff @ TUE.NL

- Beams constructed by folding a strip of rhombuses into a helix
- $\sqrt{2}$: 1 rhombus yields triangular beams, allowing versatile joints
 - N.B. Golden Rhombus only useful for tria- and hexecontahedron

Plea: PolydronTM, please re-introduce the $\sqrt{2}$: 1 rhombus!

• Artwork designs based on/inspired by $\sqrt{2}$: 1 rhombus

Future Work

- 1. Half rhombuses
- 2. Ternary joints
- 3. Intertwined discrete helixes
- 4. Generalizations of Bamboozle

Stichting Wiskunst Koos Verhoeff http://wiskunst.dse.nl

© 2013, T. Verhoeff @ TUE.NL

50/50

- Tom Verhoeff & Koos Verhoeff
 "The Mathematics of Mitering and Its Artful Application" Bridges 2008, Leeuwarden, Netherlands, pp.225–234
- Tom Verhoeff & Koos Verhoeff
 "Regular 3D Polygonal Circuits of Constant Torsion" Bridges 2009, Banff, Canada, pp.223–230
- Tom Verhoeff & Koos Verhoeff
 "Branching Miter Joints: Principles and Artwork" Bridges 2010, Pécs, Hungary, pp.27–34
- Tom Verhoeff & Koos Verhoeff
 "From Chain-link Fence to Space-spanning Helical Structures" Bridges 2011, Coimbra, Portugal, pp.73–80

Also see: http://www.win.tue.nl/~wstomv/publications/