Lobke, and Other Constructions from Conical Segments

Presented at *Bridges 2014* 15 August 2014, Seoul, South Korea

Tom Verhoeff Eindhoven Univ. of Technology Dept. of Math. & CS

Koos Verhoeff Valkenswaard The Netherlands

© 2014, T. Verhoeff @ TUE.NL

Recent Mitered Designs by Koos Verhoeff

© 2014, T. Verhoeff @ TUE.NL

Fiberglass with polyester resin on a metal mesh (73 cm tall)

© 2014, T. Verhoeff @ TUE.NL

3/27

The cones touch (blue lines, on the right)

© 2014, T. Verhoeff @ TUE.NL

3/4 of 90° Conical Segments in Cube, Forming a Closed Strip

The segments touch, and connect smoothly (blue edges)

© 2014, T. Verhoeff @ TUE.NL

To make a sculpture, the segments must be thickened

Thickening: touching \rightarrow self-intersection

Self-intersection can be avoided:

- Reduce the aperture of the cones to $<90^\circ$
- Preserve the six-fold symmetry, i.e., the equatorial cut lines
- Preserve smooth connections
- Hence, also reduce the fraction of cone in the segments to < 3/4

- Cone: tip T, axis ℓ , aperture 2α
- Cut by plane tilted over β
- Angle m_1Tm_2 is 2γ

• Pythagorean Theorem for right-angled spherical triangles:

$$\cos \alpha = \cos \beta \cos \gamma$$

Conical Segments with Varying Aperture, Sharing Two Edges

© 2014, T. Verhoeff @ TUE.NL

3D Print of Conical Segments Sharing Two Edges

© 2014, T. Verhoeff @ TUE.NL

Reduced Aperture and Fraction

Aperture 86° Cone Fraction 0.738

Aperture 60° Cone Fraction 1/2

© 2014, T. Verhoeff @ TUE.NL

11/27

Emphatic Self-Intersection

4 Lobes

6 Lobes

8 Lobes

For ceramic 3D prints, self-intersection is necessary

Ceramic 3D Prints of Self-Intersecting Variants

6 Lobes

© 2014, T. Verhoeff @ TUE.NL

14/27

Variation 2: Vary the Connections between Segments

© 2014, T. Verhoeff @ TUE.NL

- Using just one type of conical segment
- Parameters of conical segment: aperture 2α , radius r, fraction β

New Turtle Geometry command: $CStrip(\alpha, r, \beta)$

The following conical segments are congruent:

- 0. $CStrip(\alpha, r, \beta)$,
- 1. $CStrip(180^{\circ} \alpha, r, \beta)$,
- 2. $CStrip(180^{\circ} + \alpha, r, \beta)$,
- 3. $CStrip(360^{\circ} \alpha, r, \beta)$,

A strip is fully described by $\alpha,\ \beta,$ and a sequence of indices

Find Closed Strips by Trial and Error Elimination

Strip generated by $\alpha = 36^{\circ}$, $\beta = 246 \pm 1^{\circ}$, sequence $(0, 1, 2, 3, 2, 1)^3$

Tweak α and/or β to obtain closure

© 2014, T. Verhoeff @ TUE.NL 19/27

Mathematica App to Explore Strips of Conical Segments

© 2014, T. Verhoeff @ TUE.NL

Examples of Closed Strips of Conical Segments

Discrete Approximations of Conical Segments

Same Shapes with Straight Trapezoidal Segments

More Examples of Closed Strips of Conical Segments

- Seat of Wisdom and Circle Squared by Vic Pickett
- Bronze Spheric Theme and Model for 'Spheric Theme' by Naum Gabo
- Snake, Berlin Junction, and other sculptures by Richard Serra
- Borsalino and other sculptures by Henk van Putten, using cylindrical segments with a square cross section

Also see "LEGO[®]" Knots by Séquin and Galemmo (Bridges 2014)

• Arabesque XXIX by Robert Langhurst resembles Lobke, but it has no hole and it is not a developable surface.

- Explore constructions with congruent conical segments Two parameters: cone aperture, cone fraction
- Challenge: find properly closed strips
- Describe with Turtle Geometry
- Relationship with mitered constructions
- Relationship with constant torsion paths
- Rotate segments about center line
- Square cross section

Rotate segment about the center line; square cross section

© 2014, T. Verhoeff @ TUE.NL