Lobke, and Other Constructions from Conical Segments

Presented at Bridges 2014 15 August 2014, Seoul, South Korea

Tom Verhoeff
Eindhoven Univ. of Technology Dept. of Math. \& CS

Recent Mitered Designs by Koos Verhoeff

Lobke (Koos Verhoeff, 1990s)

Fiberglass with polyester resin on a metal mesh (73 cm tall)

The cones touch (blue lines, on the right)

$3 / 4$ of 90° Conical Segments in Cube, Forming a Closed Strip

The segments touch, and connect smoothly (blue edges)

Self-Intersection

To make a sculpture, the segments must be thickened

Thickening: touching \rightarrow self-intersection

Self-intersection can be avoided:

- Reduce the aperture of the cones to $<90^{\circ}$
- Preserve the six-fold symmetry, i.e., the equatorial cut lines
- Preserve smooth connections
- Hence, also reduce the fraction of cone in the segments to $<3 / 4$

Mathematics Involved

- Cone: $\operatorname{tip} T$, axis ℓ, aperture 2α
- Cut by plane tilted over β
- Angle $m_{1} T m_{2}$ is 2γ

- Pythagorean Theorem for right-angled spherical triangles:

$$
\cos \alpha=\cos \beta \cos \gamma
$$

Conical Segments with Varying Aperture, Sharing Two Edges

3D Print of Conical Segments Sharing Two Edges

Reduced Aperture and Fraction

Aperture 86°
Cone Fraction 0.738

Aperture 60°
Cone Fraction 1/2

Variation 1: Vary the Number of Lobes

Emphatic Self-Intersection

4 Lobes

6 Lobes

8 Lobes

For ceramic 3D prints, self-intersection is necessary

Ceramic 3D Prints of Self-Intersecting Variants

6 Lobes

10 Lobes

Variation 2: Vary the Connections between Segments

Problem: Create Properly Closed Smooth Strips

- Using just one type of conical segment
- Parameters of conical segment: aperture 2α, radius r, fraction β

Describing Strips of Conical Segments

New Turtle Geometry command: $\operatorname{CStrip}(\alpha, r, \beta)$

$\operatorname{CStrip}\left(45^{\circ}, 1,270^{\circ}\right)$

$\operatorname{CStrip}\left(90^{\circ}, 1,270^{\circ}\right)$

$\operatorname{CStrip}\left(0,1,270^{\circ}\right)$

Relationship to Connection Types

The following conical segments are congruent:
0. $\operatorname{CStrip}(\alpha, r, \beta)$,

1. $\operatorname{CStrip}\left(180^{\circ}-\alpha, r, \beta\right)$,
2. $\operatorname{CStrip}\left(180^{\circ}+\alpha, r, \beta\right)$,
3. $\operatorname{CStrip}\left(360^{\circ}-\alpha, r, \beta\right)$,

A strip is fully described by α, β, and a sequence of indices

Strip generated by $\alpha=36^{\circ}, \beta=246 \pm 1^{\circ}$, sequence $(0,1,2,3,2,1)^{3}$

Tweak α and/or β to obtain closure

Mathematica App to Explore Strips of Conical Segments

gap	3.55487
length	1

Examples of Closed Strips of Conical Segments

Discrete Approximations of Conical Segments

Same Shapes with Straight Trapezoidal Segments

More Examples of Closed Strips of Conical Segments

Related Work

- Seat of Wisdom and Circle Squared by Vic Pickett
- Bronze Spheric Theme and Model for 'Spheric Theme' by Naum Gabo
- Snake, Berlin Junction, and other sculptures by Richard Serra
- Borsalino and other sculptures by Henk van Putten, using cylindrical segments with a square cross section Also see "LEGO ${ }^{\circledR}$ " Knots by Séquin and Galemmo (Bridges 2014)
- Arabesque XXIX by Robert Langhurst resembles Lobke, but it has no hole and it is not a developable surface.

Conclusion

- Explore constructions with congruent conical segments

Two parameters: cone aperture, cone fraction

- Challenge: find properly closed strips
- Describe with Turtle Geometry
- Relationship with mitered constructions
- Relationship with constant torsion paths
- Rotate segments about center line
- Square cross section

Rotate segment about the center line; square cross section

(C) 2014, T. Verhoeff © TUE.NL

