Regular 3D Polygonal Circuits of Constant Torsion

Presented at Bridges 2009
28 July 2009, Banff, Canada

Tom Verhoeff
Eindhoven Univ. of Technology
Dept. of Math. \& CS

Koos Verhoeff
Valkenswaard
The Netherlands

Mathematical Art by Koos Verhoeff

(C) 2009, T. Verhoeff © TUE.NL

Miter Joints

Mathematica Demonstrations Project: Miter Joint and Fold Joint

‘Kliekje’ (Eng.: ‘Left over’)

Spatial Mitering

- Corner plane $=$ plane spanned by adjacent segments
- Torsion angle $=$ dihedral angle between adjacent corner planes

Closing the 3D Path

Square Cross Section

Triangular Cross Section

Mathematica Demonstrations Project: Mitering a Closed 3D Path

Miter Joint Rotation Invariance Theorem

Total amount of torsion is inherent property of polygonal path and does not depend on

- choice of initial segment
- initial rotation of cross section about center line
- shape of cross section

Mitering matches \Longleftrightarrow total torsion is symmetry of cross section

Three Techniques to Tackle Torsion

3D Turtle Geometry

State:

- Position in space
- Attitude $=($ heading vector, normal vector $)$

Commands:

- Move(d): move distance d in direction of heading
- Turn (φ) : turn clockwise by angle φ about normal
- Roll (ψ) : roll clockwise by angle ψ about heading

Mathematica Demonstrations Project: 3D Flying Pipe-laying Turtle

Regular 2D Polygons

- All edge lengths are equal: Move(d)
- All corner angles are equal: $\operatorname{Turn}\left(360^{\circ} / N\right)$

Logo program: Repeat N [Forward 100 Left 360 / N]

Generalization to 3D

In 3D: roll angles provide additional freedom
All roll angles equal - $\operatorname{Roll}(\psi)$ - yields a helix, which never closes

Added requirement: all torsion angles are equal in absolute value

Define

$$
\operatorname{Segment}(d, \psi, \varphi)=\operatorname{Move}(d) ; \operatorname{Roll}(\psi) ; \operatorname{Turn}(\varphi)
$$

Regular path: path produced by sequence of $\operatorname{Segment}\left(d_{i}, \psi_{i}, \varphi_{i}\right)$ with all $d_{i}=d>0$ and all $\varphi_{i}=\varphi$ for $0<\varphi<180^{\circ}$

Constant-torsion (CT) path: all $d_{i}>0,0<\varphi_{i}<180^{\circ}$, and $\left|\psi_{i}\right|=\psi$
3D Polygon: path produced by properly closed turtle program
Turtle program is properly closed when turtle returns to initial state (both initial position and initial attitude)

Regular CT polygon is determined by d, ψ, φ and sequence of roll signs (N.B. d is only a scale factor; w.l.o.g. assume $d=1$)

Existence and Construction

Existence of sign sequence and values for angles ψ, φ not evident

Method: Choose signs and one of ψ, φ, then determine other angle
Movie: Given sign sequence $(++--)^{4}, \psi=90^{\circ}$, determine φ for closure

$\phi-\psi$ Landscapes

＋＋ー－＋＋ー－＋＋ー－＋＋ー－
 16 segments

＋＋ー＋＋－－＋ー－＋＋ー＋＋ー－＋ー－
20 segments

Some Observations about Regular CT Polygons

Closed regular CT path is not necessarily a regular CT polygon $\psi=90^{\circ}, \varphi=120^{\circ}$, sign sequence +--++--+++--++-
(In 2D: closed regular \Rightarrow properly closed)

Regular CT polygon can be self-intersecting $\psi=90^{\circ}, \varphi=112.456^{\circ}$, signs $(+-)^{5}$

Some Theorems about Regular CT Polygons

Distance between vertices k edges apart is constant, for $k=1,2,3$

Total torsion $=\sum_{i=1}^{n} \psi_{i} \equiv 0 \quad(\bmod \psi)$

Corollary: Mitering matches $\Longleftrightarrow \psi$ is symmetry of cross section

For square cross section, $\psi=90^{\circ}$ is practical choice

Some Infinite Families of Regular CT Polygons

- Alternating signs (+-) ${ }^{n}$: crowns, vertices in two layers
- (++--) ${ }^{n}$: vertices in three layers
- (+++---) $)^{n}$: vertices in four layers

Existence and values of angles ψ, φ not obvious

Artwork

Conclusion

- Definition of (regular) 3D polygons of constant torsion
- Some characteristics
- Some constructions
- Some artwork based on regular CT polygons

Open problems:

- Complete characterization (easy in 2D)
- Are there knotted regular CT polygons? With $\psi=90^{\circ}$?
- Is a Möbius twist possible: total torsion $\neq 0\left(\bmod 360^{\circ}\right)$

Questions?

$+++++--+++++--+++++--$

$$
\varphi=58.8^{\circ}, \psi=32.05^{\circ}
$$

RCT Trefoil Knot (21 segments)

