Regular 3D Polygonal Circuits of Constant Torsion

Presented at Bridges 2009 28 July 2009, Banff, Canada

Tom Verhoeff Eindhoven Univ. of Technology Dept. of Math. & CS

Koos Verhoeff Valkenswaard The Netherlands

Stichting Wiskunst Koos Verhoeff wiskunst.dse.nl

© 2009, T. Verhoeff @ TUE.NL 1/20

Mathematical Art by Koos Verhoeff

© 2009, T. Verhoeff @ TUE.NL

Miter Joints

Mathematica Demonstrations Project: Miter Joint and Fold Joint

© 2009, T. Verhoeff @ TUE.NL

'Kliekje' (Eng.: 'Left over')

© 2009, T. Verhoeff @ TUE.NL

- Corner plane = plane spanned by adjacent segments
- **Torsion angle** = dihedral angle between adjacent corner planes

Square Cross Section Triangular Cross Section

Mathematica Demonstrations Project: Mitering a Closed 3D Path

© 2009, T. Verhoeff @ TUE.NL 6/20 Regular Constant-Torsion Polygons

Miter Joint Rotation Invariance Theorem

Total amount of torsion is inherent property of polygonal path and does *not* depend on

- choice of initial segment
- initial rotation of cross section about center line
- shape of cross section

Mitering matches \iff total torsion is symmetry of cross section

Three Techniques to Tackle Torsion

3D Turtle Geometry

Normal

Heading

State :

- Position in space
- Attitude = (heading vector, normal vector)

Commands :

- *Move*(*d*): move distance *d* in direction of heading
- $Turn(\varphi)$: turn clockwise by angle φ about normal
- $Roll(\psi)$: roll clockwise by angle ψ about heading

Mathematica Demonstrations Project: 3D Flying Pipe-laying Turtle

- All edge lengths are equal: Move(d)
- All corner angles are equal: $Turn(360^{\circ}/N)$

Logo program: Repeat N [Forward 100 Left 360 / N]

In 3D: roll angles provide additional freedom

All roll angles equal — $Roll(\psi)$ — yields a helix, which never closes

Added requirement: all torsion angles are equal in *absolute value*

© 2009, T. Verhoeff @ TUE.NL 11/20

Define

$$\frac{Segment(d,\psi,\varphi)}{Segment(d,\psi,\varphi)} = Move(d) ; Roll(\psi) ; Turn(\varphi)$$

Regular path: path produced by sequence of $Segment(d_i, \psi_i, \varphi_i)$ with all $d_i = d > 0$ and all $\varphi_i = \varphi$ for $0 < \varphi < 180^{\circ}$

Constant-torsion (CT) path: all $d_i > 0$, $0 < \varphi_i < 180^\circ$, and $|\psi_i| = \psi$

3D Polygon: path produced by *properly closed* turtle program

Turtle program is **properly closed** when turtle returns to initial state (both initial position *and* initial attitude)

Regular CT polygon is determined by d, ψ, φ and sequence of roll signs (N.B. d is only a scale factor; w.l.o.g. assume d = 1)

Existence of sign sequence and values for angles ψ, φ not evident

Method: Choose signs and one of ψ, φ , then determine other angle

Movie: Given sign sequence $(++--)^4$, $\psi = 90^\circ$, determine φ for closure

© 2009, T. Verhoeff @ TUE.NL

 ϕ - ψ Landscapes

++--++--++--16 segments

© 2009, T. Verhoeff @ TUE.NL

Some Observations about Regular CT Polygons

Closed regular CT path is not necessarily a regular CT polygon $\psi = 90^{\circ}, \varphi = 120^{\circ}, \text{ sign sequence +--++--++--}$ (In 2D: closed regular \Rightarrow properly closed)

Regular CT polygon can be self-intersecting $\psi = 90^{\circ}, \ \varphi = 112.456^{\circ}, \ {\rm signs} \ ({\rm +-})^5$

Distance between vertices k edges apart is constant, for k = 1, 2, 3

Total torsion
$$= \sum_{i=1}^{n} \psi_i \equiv 0 \pmod{\psi}$$

Corollary: Mitering matches $\iff \psi$ is symmetry of cross section

For square cross section, $\psi = 90^{\circ}$ is practical choice

- Alternating signs $(+-)^n$: crowns, vertices in two layers
- $(++--)^n$: vertices in three layers
- $(+++--)^n$: vertices in four layers

Existence and values of angles ψ, φ not obvious

Artwork

© 2009, T. Verhoeff @ TUE.NL

- Definition of (regular) 3D polygons of constant torsion
- Some characteristics
- Some constructions
- Some artwork based on regular CT polygons

Open problems:

- Complete characterization (easy in 2D)
- Are there knotted regular CT polygons? With $\psi = 90^{\circ}$?
- Is a Möbius twist possible: total torsion $\neq 0 \pmod{360^\circ}$

RCT Trefoil Knot (21 segments)