

Tom Verhoeff Eindhoven University of Technology The Netherlands http://www.win.tue.nl/~wstomv/talks/momath mailto:T.Verhoeff@tue.nl

Wednesday, May 4, 2016 National Museum of Mathematics, New York http://momath.org

Contents

1	ACAN Trick: Any Card, Any Number	2
	1.1 Ingredients	2
	1.2 Procedure	2
2	A Five-Card Trick	3
	2.1 Ingredients	3
	2.2 Procedure	3
3	Ulam's Game: Number Guessing with Lies	4
	3.1 Ingredients	4
	3.2 Procedure	4
4	Shamir's Three-Pass Protocol	5
	4.1 Ingredients	5
	4.2 Procedure	5
5	Zero-Knowledge Match Making	6
	5.1 Ingredients	6
	5.2 Procedure	6

1 ACAN Trick: Any Card, Any Number

1.1 Ingredients

- 27 distinct cards (e.g. 26 regular playing cards and 1 joker)
- 1 magician
- an audience, with 1 or 2 volunteers

1.2 Procedure

- 1. The magician asks the/a volunteer to select 1 card, keeping it secret for the magician.
- 2. The magician asks the/another volunteer to pick a number N from 1 to 27 (inclusive), and announce it. It is recommended to write this number down.
- 3. The magician now announces that the selected (secret) card will be moved to the selected position in the deck.
- 4. The magician writes N 1 in *ternary* notation (xyz = 9x + 3y + z), using only digits 0, 1, 2), *reverses* the digit order, and interprets the digits as 0=Top, 1=Middle, 2=Bottom as *recipe*.

N	N-1	Recipe	N	N-1	Recipe]	N	N-1	Recipe
1	000	ТТТ	10	100	ТТМ		19	200	ТТВ
2	001	МТТ	11	101	МТМ		20	201	МТВ
3	002	ВТТ	12	102	ВТМ		21	202	ВТВ
4	010	ТМТ	13	110	ТММ		22	210	ТМВ
5	011	ММТ	14	111	ммм		23	211	ММВ
6	012	ВМТ	15	112	ВММ		24	212	ВМВ
7	020	ТВТ	16	120	ТВМ		25	220	ТВВ
8	021	МВТ	17	121	МВМ		26	221	МВВ
9	022	ВВТ	18	122	ВВМ		27	222	ВВВ

- 5. The magician repeats the following 3 times:
 - (a) Lay out the cards, row-by-row, starting top left, in 9 rows of 3 cards. Each row partly overlaps the preceding row, clearly making 3 columns.
 - (b) Ask the (first) volunteer, in which column the selected card appears.
 - (c) Collect each column into a piles; while turning the piles over, put the selected pile into the position indicated by the recipe.
- 6. From the pile of face-down cards, the magician counts off N 1 cards (face down), and shows the N-th card face up. This is the selected card.

2 A Five-Card Trick

2.1Ingredients

- 1 complete deck of 52 regular playing cards (4 suits with 13 values)
- 1 (trained) assistant, 1 magician
- an audience

2.2**Procedure**

- 1. The magician asks the assistant to let (5 volunteers from) the audience pick 5 cards from the deck.
- 2. The assistant lays these cards in a row, with the leftmost card face down, and the others face up (further details below).
- 3. The magician then looks at the face-up cards, and announces the facedown card (further details below).

Card suits are ordered: Spades (\spadesuit) , Hearts (\heartsuit) , Clubs (\clubsuit) , Diamonds (\diamondsuit)

Card values are ordered: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, J (11), Q (12), K (13 = 0) Cards are ordered first by suit, then by value.

Assistant

- 1. Picks a same-suit pair from the 5 cards. Their values differ $d \leq 6$.
- 2. Places the (cyclicly) higher card face down on the left.
- 3. Places the (cyclicly) lower card rightmost.
- 9 8 7 6 ⁵ 4. Assuming A B C is the sorted order of the remaining 3 cards, permutes them for rank d (see table), and places them between the other two cards.

d	Permutation	d	Permutation	d	Permutation
1	ABC	3	BAC	5	САВ
2	АСВ	4	ВСА	6	СВА

Magician

- 1. Deduces the suit of the face-down card from the rightmost card.
- 2. Deduces the distance d from the permutation of middle 3 cards.
- 3. Deduces the value of the face-down card by adding d to the value of the rightmost card.

Practice on-line at http://www.win.tue.nl/~wstomv/misc/cardtrick

M. Kleber, R. Vakil. "The Best Card Trick", Math. Intelligencer, 24(1):9–11

Pigeon-hole principle

Q^K1 J 2 10 3 9 4

3 Ulam's Game: Number Guessing with Lies

3.1 Ingredients

- 1 magician
- an audience, with 1 or 2 volunteers

3.2 Procedure

- 1. The magician asks the/a volunteer to pick a number N from 0 to 15 (inclusive), and announce it. It is recommended to write this number down.
- 2. The magician asks the/another volunteer 7 Yes-No questions, where at most 1 lie is permitted. Is you number one of these?

Q_1	1		3	4		6		8		10			13		15
Q_2	1	2			5	6		8			11	12			15
Q_3								8	9	10	11	12	13	14	15
Q_4	1	2		4			7		9	10		12			15
Q_5				4	5	6	7					12	13	14	15
Q_6		2	3			6	7			10	11			14	15
Q_7	1		3		5		7		9		11		13		15

3. The magician writes down the answers A_i , does a little calculation, and announces the number N, and which answer was a lie (if any).

Calculation The magician places the answers in the 3 circles of the diagram:

The magician makes each circle with an *odd* number of No's *red*. A lie is inside all *red* circles, and outside all non-red circles. A lie can now be *corrected*. The number $N = 8A_3 + 4A_5 + 2A_6 + A_7$.

4 Shamir's Three-Pass Protocol

4.1 Ingredients

- 1 strongbox
- 2 padlocks with different keys

4.2 Procedure

5 Zero-Knowledge Match Making

5.1 Ingredients

• 5 sectors, 2 of one type ("head"), and 3 of another type ("line")

- 1 spinner
- 1 magician
- an audience with 2 volunteers

5.2 Procedure

- 1. The magician asks for two volunteers who want to decide on whether to go to MoMath together, in a *face-saving way*.
- 2. The magician gives each volunteer two distinct sectors.
- 3. Each volunteer places the two sectors side by side, making an "arrow" that points *toward* the other for "Yes", and *away* from the other for "No".
- 4. The magician places the remaining sector upside-down on the spinner (at 6 o'clock), and lets the volunteers add in their sectors, also upside-down.
- 5. The magician spins the spinner and turns it upside down.
- 6. The outcome is determined as follows:

See: http://demonstrations.wolfram.com/ZeroKnowledgeMatchmaker/

Five-card Trick: Exercises for Assistant

Given two cards of the same suit, determine the lower and higher value, and their distance (on the clock). That distance is always between 1 and 6.

Car	rds	Lower value	Higher value	Distance d
7♠	$2 \spadesuit$	2	7	5
3♠	6♠			
10♡	$J\heartsuit$			
$Q\heartsuit$	$8\heartsuit$			
10	4			
K ♣	J ♣			
8\$	$K\diamondsuit$			
$J\diamondsuit$	$5\diamondsuit$			
2♠	$Q \spadesuit$	Q	2	3 (not 10)
$K \blacklozenge$	$1 \spadesuit$			
$3\heartsuit$	$J\heartsuit$			
$Q\heartsuit$	$1\heartsuit$			
9♣	2			
4	K \$			
1\$	$J\diamondsuit$			
$5\diamondsuit$	$Q\diamondsuit$			

Given three cards, put them in sorted order.

	Cards	Sorted order			
$2\heartsuit$	1	3♠	3♠	$2\heartsuit$	$1\clubsuit$
$6\heartsuit$	$4\diamondsuit$	5 ♣			
$H\heartsuit$	$B\diamondsuit$	$1\heartsuit$			
$V \blacklozenge$	10	$2\diamondsuit$			
3\$	$7\heartsuit$	3♠			
Β♣	3♣	6 ♣			
9♠	8♠	$V\heartsuit$			

Given three cards (in sorted order), permute them to encode the given distance d.

So	rted or	der	Distance d	Enc	order	
3♠	$2\heartsuit$	$1\diamondsuit$	4	$2\heartsuit$	$1\diamondsuit$	3♠
$V \spadesuit$	10	$2\diamondsuit$	1			
7♡	5 ♣	$4\diamondsuit$	2			
9♠	10	$V\heartsuit$	3			
10	$V\heartsuit$	8♣	4			
3\$	$7\diamondsuit$	$B\diamondsuit$	5			
4	$7\heartsuit$	$3\diamondsuit$	6			

Given five cards, choose which card to put face down, and in what order to put the face-up cards? NOTE: There can be multiple solutions!

	Cards							Order					
3♠	$8\diamondsuit$	1	$4\diamondsuit$	$2\heartsuit$	4		8\$	$2\heartsuit$	$1\clubsuit$	3♠	$4\diamondsuit$		
$4\diamondsuit$	5 ♣	2♠	$6\heartsuit$	$K \spadesuit$									
$J\diamondsuit$	10♣	$1\heartsuit$	$K\heartsuit$	1♣									
10♣	10	$2\diamondsuit$	$J \spadesuit$	$Q \spadesuit$									
$5\heartsuit$	$7\heartsuit$	$1 \spadesuit$	$3\diamondsuit$	$Q\heartsuit$									
$K\diamondsuit$	6 ♣	3♣	$9\diamondsuit$	J ♣									
8♠	9♠	$Q\heartsuit$	$Q \spadesuit$	9♠									

Five-Card Trick: Exercises for Magician

Given the lower value and the desired distance, determine the higher value (on the clock).

Lower value	Distance d	Higher value
2	5	7
8	3	
3	6	
6	4	
J	2	
7	5	
Q	1	
7	4	
Q	3	2
В	4	
K	1	
J	3	
10	5	
K	2	
10	6	
9	5	

Fac	e-up ca	ards	Encoded distance d
$2\heartsuit$	1	3♠	4
$6\heartsuit$	$4\diamondsuit$	5 ♣	
$H\heartsuit$	$B\diamondsuit$	$1\heartsuit$	
$V \spadesuit$	10	$2\diamondsuit$	
3\$	$7\heartsuit$	$1 \spadesuit$	
₿♣	3♣	6 ♣	
9♠	8♠	$V\heartsuit$	

Given three face-up cards, which distance d do they encode?

Given four face-up cards, which distance d do they encode, and what is the face-down card?

	Face	e-up ca	rds		Encoded distance d	Face-down card
?	$2\heartsuit$	1	3♠	$4\diamondsuit$	4	8\$
?	$6\heartsuit$	$4\diamondsuit$	5 ♣	$K \spadesuit$		
?	$K\heartsuit$	$B\diamondsuit$	$1\heartsuit$	10		
?	$Q \spadesuit$	10	$2\diamondsuit$	10		
?	$3\diamondsuit$	$7\heartsuit$	$1 \spadesuit$	$Q \heartsuit$		
?	J♣	3♣	6 ♣	$9\diamondsuit$		
?	9♠	8♠	$Q\heartsuit$	9♠		