Infinity in Mathematics \& Computer Science

Lecture at QUANTA 2007
15 November 2007 / CMS, Lucknow, India

Tom Verhoeff

Eindhoven University of Technology
Department of Mathematics \& Computer Science
http://www.win.tue.nl/~wstomv/

Motivations for Working on Scientific Problems

- Direct application in real life
- Foundation for working on other problems
- Aid to acquisition of knowledge and development of skills
- Fun and enjoyment

Termination of Computations: A Recent Success

- Start with finite sequence over $\{a, b, c\}$
bbaa
- Repeatedly replace subsequences:

$$
\begin{aligned}
a a & \rightarrow b c \\
b b & \rightarrow a c \\
c c & \rightarrow a b
\end{aligned}
$$

Example:
$b b \underline{a a} \rightarrow b \underline{b b} c \rightarrow b a \underline{c c} \rightarrow b \underline{a a b} b \underline{b b c b} \rightarrow a \underline{c c} b \rightarrow a a \underline{b b} \rightarrow a \underline{a a c} \rightarrow a b \underline{c c} \rightarrow a b a b$

Does this terminate for every start sequence?

Termination of Computations: Famous Open Problems

- If N even $\rightarrow N / 2$, if N odd $\rightarrow 3 N+1$ (Collatz)

$$
3 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow \cdots
$$

- While N is not a palindrome, add it to its reverse

$$
152 \rightarrow 152+251=403 \rightarrow 403+304=707 \quad 196 \rightarrow ?
$$

Marble Game 1

Each time take a marble:

- Remove it

Does this terminate? After how many steps?

Marble Game 2

Repeatedly take a marble:

- If blue, then remove
- If white, then replace by one blue marble

Marble Game 3

Repeatedly take a marble:

- If blue, then remove it
- If white, then replace by arbitrary number of blue marbles

Marble Game Analysis

W white marbles $\quad B$ blue marbles

Game 1. Terminates after $f_{1}(W, B)=W+B$ steps

Game 2. Terminates after $f_{2}(W, B)=2 * W+B$ steps

Game 3. Terminates after ten hoogste $f_{3}(W, B)=\omega * W+B$ steps

[^0]
Lotto Ball Game

Repeatedly take an \mathbb{N}-numbered lotto ball:

- Replace by arbitrary number of balls with smaller numbers
i.e. (n) replaced by $(<n)(<n) \cdots(<n)$

Operations on Natural Numbers

Successor (1 more): $a \mid$

Addition (repeated successor): $a+b=a \overbrace{\cdots \mid}^{b x}$

Multiplication (repeated addition): $a * b=\overbrace{a+\cdots+a}^{b \times}$
$a * 0=0 \quad a * 1=a \quad a * b \mid=a * b+a \quad a *(b+c)=a * b+a * c$
Exponentiation (repeated multiplication): $a^{b}=\overbrace{a * \cdots * a}^{b \times}$
$a^{0}=1 \quad a^{1}=a \quad a^{b}=a^{b} * a \quad a^{b+c}=a^{b} * a^{c}$

Decimal Expansion

Every natural number is uniquely expressible as

$$
\text { sum of powers of } 10 \text { with coefficients }<10 \text {. }
$$

Example:

$$
\begin{aligned}
266 & =200+60+6 \\
& =2 * 100+6 * 10+6 * 1 \\
& =2 * 10^{2}+6 * 10^{1}+6 * 10^{0}
\end{aligned}
$$

Expansion in Base $B \geq 2$

Every natural number is uniquely expressible as
sum of powers of B with coefficients $<B$.

Example with $B=2$ (binary):

$$
\begin{aligned}
266 & =256+8+2 \\
& =2^{8}+2^{3}+2^{1}
\end{aligned}
$$

Example with $B=3$ (ternary):

$$
\begin{aligned}
266 & =243+18+3+2 \\
& =3^{5}+2 * 3^{2}+3^{1}+2 * 3^{0}
\end{aligned}
$$

Super-Expansion in Base $B \geq 2$

1. Expand in base B.
2. Repeatedly expand the exponents in base B as well.
3. Stop when all numbers $\leq B$.

Example:

$B=2$	$B=3$
$266=2^{8}+2^{3}+2$	
$=2^{2^{3}}+2^{2+1}+2$	$266=3^{5}+2 * 3^{2}+3^{1}+2$
$=2^{2^{2+1}}+2^{2+1}+2$	

$$
N=8 \quad B=2
$$

1. Super-expand N in base B.

$$
8=2^{2+1}
$$

2. Replace each B by $B+1$.

$$
3^{3+1}=81
$$

3. Decrease by 1 ; yields new N.

$$
N^{\prime}=80
$$

4. Increase B by 1 ; yields new B.

$$
B^{\prime}=3
$$

5. Stop when $N=0$, otherwise repeat from step 1 .

Goodstein Sequence for $N=266$ and $B=2$

Step	N	B
1	$\begin{gathered} 266 \\ 2^{2^{2+1}}+2^{2+1}+2 \\ 3^{3^{3+1}}+3^{3+1}+3-1 \end{gathered}$	2
2	$\begin{aligned} & 443 \ldots 886 \text { (39 digits) } \\ & 3^{3^{3+1}}+3^{3+1}+2 \\ & 4^{4^{4+1}}+4^{4+1}+2-1 \end{aligned}$	3
3	323... 681 (617 digits) $\begin{aligned} & 4^{4^{4+1}}+4^{4+1}+1 \\ & 5^{5^{5+1}}+5^{5+1}+1-1 \end{aligned}$	4
4	$\begin{gathered} \ldots \\ \cdots \\ (>10000 \text { digits }) \\ \\ 5^{5^{5+1}}+5^{5+1} \end{gathered}$	5

Goodstein's Theorem (1944)

$$
\text { Every Goodstein sequence terminates with } N=0
$$

It can take a while:

- $N=3, B=2$ terminates after 5 steps
- $N=4, B=2$ terminates after $3 * 2^{402653211}-3 \approx 10^{10^{8}}$ steps

Provability of Goodstein's Theorem

Theorem of Kirby and Paris (1982):

```
Goodstein's Theorem cannot be proven from Peano's Axiomas.
```

'Ordinary' induction does not suffice: the sequence 'grows too fast'.

Every proof of Goodstein's Theorem involves (a form of) transfinite induction such as over the ordinal numbers.

Ordinal Numbers

Extend operations on numbers with a limit operation...

$$
\begin{aligned}
& 0, \quad 1, \quad 2, \quad 3, \quad \stackrel{1}{\because}, \quad \omega \\
& \omega+1, \quad \omega+2, \quad \stackrel{1}{\square \cdot}, \quad \omega+\omega=\omega * 2 \\
& \omega * 2+1, \quad \omega * 2+2, \quad \stackrel{1}{\bullet \cdot}, \quad \omega * 2+\omega=\omega * 3 \\
& \stackrel{1}{\bullet \cdot}, \quad \omega * 4, \quad \stackrel{1}{\because \cdot}, \quad \omega * 5, \quad \stackrel{2}{\cdots}, \quad \omega * \omega=\omega^{2} \\
& \omega^{2}+1, \quad \stackrel{1}{\square}, \quad \omega^{2}+\omega, \quad \stackrel{2}{\cdots}, \quad \omega^{2}+\omega^{2}=\omega^{2} * 2 \\
& \stackrel{2}{\ldots}, \quad \omega^{2} * 3, \quad \stackrel{2}{.}, \quad \omega^{2} * 4, \quad \stackrel{3}{\cdots}, \quad \omega^{2} * \omega=\omega^{3} \\
& \stackrel{4}{. .}, \quad \omega^{4}, \quad \stackrel{5}{.}, \quad \omega^{5}, \quad \stackrel{\omega}{.}, \quad \omega^{\omega}
\end{aligned}
$$

Normal form of ordinal numbers $<\omega^{\omega}$

Generalize base- B expansion, taking $B=\omega$:

$$
N=B^{k} * c_{k}+B^{k-1} * c_{k-1}+\cdots+B^{2} * c_{2}+B * c_{1}+c_{0}
$$

where $0 \leq c_{i}<B$, so now unbounded coefficients.

Normal form of $\alpha<\omega^{\omega}$:

$$
\alpha=\omega^{k} * c_{k}+\omega^{k-1} * c_{k-1}+\cdots+\omega^{2} * c_{2}+\omega * c_{1}+c_{0}
$$

where k and all c_{i} are finite.

Solution to Lotto Ball Game: $c_{i}=$ number of balls with value i

Proof of Goodstein's Theorem

Super-expand N in base B.

Replace every B by ω.
The result $f_{G}(N, B)$ is an ordinal number $<\underbrace{\omega^{\omega^{\omega \cdot}}}_{\omega \times}=\epsilon_{0}$.
For example: $f_{G}(266,2)=\omega^{\omega^{\omega+1}}+\omega^{\omega+1}+\omega$
Claim: If $N, B \rightarrow N^{\prime}, B^{\prime}$ in the Goodstein sequence, then

$$
f_{G}\left(N^{\prime}, B^{\prime}\right)<f_{G}(N, B)
$$

Ordinal numbers are well ordered : every decreasing sequence ends.

Be Successful in Your Endeavours: Can You Grow Too Fast?

[^0]: (C) 2007, T. Verhoeff © TUE.NL

