Infinity in Mathematics & Computer Science

Lecture at *QUANTA 2007* 15 November 2007 / CMS, Lucknow, India

Tom Verhoeff

Eindhoven University of Technology Department of Mathematics & Computer Science

http://www.win.tue.nl/~wstomv/

© 2007, T. Verhoeff @ TUE.NL

1/41

Infinity in Math & CS

- Direct application in real life
- Foundation for working on other problems
- Aid to acquisition of knowledge and development of skills
- Fun and enjoyment

Termination of Computations: A Recent Success

• Start with finite sequence over $\{a, b, c\}$

bbaa

• Repeatedly replace subsequences:

$$\begin{array}{rrrr} aa & \rightarrow & bc \\ bb & \rightarrow & ac \\ cc & \rightarrow & ab \end{array}$$

Example:

 $bb\underline{aa} \rightarrow b\underline{bb}c \rightarrow b\underline{acc} \rightarrow b\underline{aa}b \rightarrow \underline{bb}cb \rightarrow a\underline{cc}b \rightarrow a\underline{abb} \rightarrow a\underline{aac} \rightarrow ab\underline{cc} \rightarrow abab$

Does this terminate for every start sequence?

- If N even $\rightarrow N/2$, if N odd $\rightarrow 3N+1$ (Collatz) $3 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 4 \rightarrow \cdots$
- While N is not a palindrome, add it to its reverse $152 \rightarrow 152 + 251 = 403 \rightarrow 403 + 304 = 707$ $196 \rightarrow ?$

Each time take a marble:

• Remove it

Does this terminate? After how many steps?

Repeatedly take a marble:

- If blue, then remove
- If white, then replace by one blue marble

Repeatedly take a marble:

- If blue, then remove it
- If white, then replace by *arbitrary* number of blue marbles

W white marbles *B* blue marbles

Game 1. Terminates after $f_1(W, B) = W + B$ steps

Game 2. Terminates after $f_2(W, B) = 2 * W + B$ steps

Game 3. Terminates after ten hoogste $f_3(W,B) = \omega * W + B$ steps

Repeatedly take an \mathbb{N} -numbered lotto ball:

• Replace by arbitrary number of balls with smaller numbers

i.e. (n) replaced by (<n) (<n) \cdots (<n)

Operations on Natural Numbers

Successor (1 more): a

Addition (repeated successor):
$$a + b = a \overbrace{\cdots}^{b \times}$$

Multiplication (repeated addition):
$$a * b = a + \dots + a$$

a * 0 = 0 a * 1 = a a * b| = a * b + a a * (b + c) = a * b + a * c

Exponentiation (repeated multiplication): $a^b = \overbrace{a * \cdots * a}^{b \times}$

$$a^{0} = 1$$
 $a^{1} = a$ $a^{b|} = a^{b} * a$ $a^{b+c} = a^{b} * a^{c}$

© 2007, T. Verhoeff @ TUE.NL 24/41 Every natural number is *uniquely* expressible as

sum of powers of 10 with coefficients < 10.

Example:

$$266 = 200 + 60 + 6$$

= 2 * 100 + 6 * 10 + 6 * 1
= 2 * 10² + 6 * 10¹ + 6 * 10⁰

Every natural number is *uniquely* expressible as

sum of powers of B with coefficients < B.

Example with B = 2 (*binary*):

$$266 = 256 + 8 + 2 = 28 + 23 + 21$$

Example with B = 3 (*ternary*):

$$266 = 243 + 18 + 3 + 2$$

= $3^5 + 2 * 3^2 + 3^1 + 2 * 3^0$

- 1. Expand in base B.
- 2. Repeatedly expand the *exponents* in base *B* as well.
- 3. Stop when all numbers $\leq B$.

Example:

$$B = 2$$

$$B = 3$$

$$B =$$

© 2007, T. Verhoeff @ TUE.NL

5. Stop when N = 0, otherwise repeat from step 1.

© 2007, T. Verhoeff @ TUE.NL

Infinity in Math & CS

Every Goodstein sequence terminates with N = 0.

It can take a while:

• N = 3, B = 2 terminates after 5 steps

• N = 4, B = 2 terminates after $3 * 2^{402653211} - 3 \approx 10^{10^8}$ steps

Theorem of Kirby and Paris (1982):

Goodstein's Theorem cannot be proven from Peano's Axiomas.

'Ordinary' induction does not suffice: the sequence 'grows too fast'.

Every proof of Goodstein's Theorem involves (a form of) *transfinite* induction such as over the *ordinal numbers*.

Extend operations on numbers with a limit operation $0, 1, 2, 3, \frac{1}{\dots}, \omega$ $\omega + 1, \quad \omega + 2, \quad \frac{1}{\dots}, \quad \omega + \omega = \frac{\omega * 2}{\omega * 2}$ $\omega * 2 + 1, \quad \omega * 2 + 2, \quad \stackrel{1}{\overline{\ldots}}, \quad \omega * 2 + \omega = \omega * 3$ 1, $\omega * 4$, 1, $\omega * 5$, 2, $\omega * \omega = \omega^2$ $\omega^2 + 1, \quad \frac{1}{\dots}, \quad \omega^2 + \omega, \quad \frac{2}{\dots}, \quad \omega^2 + \omega^2 = \omega^2 * 2$ ²..., $\omega^2 * 3$, ²..., $\omega^2 * 4$, ³..., $\omega^2 * \omega = \omega^3$ $\overset{4}{\ldots}, \quad \omega^4, \quad \overset{5}{\ldots}, \quad \omega^5, \quad \overset{\omega}{\ldots}, \quad \omega^{\omega}$

Generalize base-*B* expansion , taking $B = \omega$:

$$N = B^{k} * c_{k} + B^{k-1} * c_{k-1} + \dots + B^{2} * c_{2} + B * c_{1} + c_{0}$$

where $0 \le c_i < B$, so now unbounded coefficients.

Normal form of $\alpha < \omega^{\omega}$:

$$\alpha = \omega^{k} * c_{k} + \omega^{k-1} * c_{k-1} + \dots + \omega^{2} * c_{2} + \omega * c_{1} + c_{0}$$

where k and all c_i are finite.

Solution to Lotto Ball Game: $c_i =$ number of balls with value *i*

Super-expand N in base B.

Replace every *B* by ω .

The result $f_G(N, B)$ is an ordinal number $< \underbrace{\omega^{\omega^{\omega^{\omega^{*}}}}}_{\omega \times} = \epsilon_0.$

For example:
$$f_G(266, 2) = \omega^{\omega^{\omega+1}} + \omega^{\omega+1} + \omega$$

Claim: If $N, B \rightarrow N', B'$ in the Goodstein sequence, then

 $f_G(N',B') < f_G(N,B)$

Ordinal numbers are well ordered : every decreasing sequence ends.

Be Successful in Your Endeavours: Can You Grow Too Fast?

© 2007, T. Verhoeff @ TUE.NL

Infinity in Math & CS