
Peach 3

CS Colloquium at TU/e
29 November 2007

Tom Verhoeff

Eindhoven University of Technology
Department of Mathematics & Computer Science

Software Engineering & Technology

http://www.win.tue.nl/~wstomv/

c© 2007, T. Verhoeff @ TUE.NL 1/24 Peach 3

Programming Education in the Past

• The year 2000: over 150 first-year students in CS

• Practical programming course: done on paper

• Five independent groups

• Process:

1. collect programs

2. evaluate programs

3. administrate results

c© 2007, T. Verhoeff @ TUE.NL 2/24 Peach 3

Programming Contests

• ACM ICPC: 1988–1990 European Finals, 1999 World Finals

• IOI: IOI’95 in Eindhoven, IOI’96–’07

• NIO

• Process:

1. collect programs

2. evaluate programs automatically

3. administrate results automatically

c© 2007, T. Verhoeff @ TUE.NL 3/24 Peach 3

Peach/vs

P rogramming E ducation A nd C ontest H osting verification system

Developed in the summer of 2001 by Erik Scheffers

First used in September 2001 for Programming 0

September 2007 (version 3): Peach

c© 2007, T. Verhoeff @ TUE.NL 4/24 Peach 3

Feature Overview

• Web-based client-server system: peach.win.tue.nl

• Various user categories: student, grader, teacher, admin, observer

• Collect, store, evaluate, compare submitted work and results

• Supports multiple courses, with groups, over multiple years

• Evaluation configurable per assignment

• Supports multiple (programming) languages

c© 2007, T. Verhoeff @ TUE.NL 5/24 Peach 3

Peach As Communication Aid

Who should do/did what when with what result?

• Register participants

• Provide assignments (configurable open/close period)

• Define and enforce deadlines and number of attempts

• Collect and store the work (web-viewable by submitter and staff)

• Provide feedback (automatic and/or manual)

• Administrate results

c© 2007, T. Verhoeff @ TUE.NL 6/24 Peach 3

What Peach Is (Not)

Peach is not intended as a full-blown generic

• student administration system

• course management system (cf. Moodle.org)

• web content management system (WCMS)

• workflow management system

• program development environment (IDE)

• configuration/version management system (cf. Subversion)

c© 2007, T. Verhoeff @ TUE.NL 7/24 Peach 3

Student View

• Register once (usercode/password; future: central login portal)

• Join course/group (once per course)

• Read assignment

• Submit work, check acceptance

• Read feedback/result

Repeat where necessary

Further support to interpret feedback (error messages) is desirable

c© 2007, T. Verhoeff @ TUE.NL 8/24 Peach 3

Grader View

• View submission: files, checks

• Provide feedback

• Determine result

Grading scheme/criteria currently not stored in Peach

c© 2007, T. Verhoeff @ TUE.NL 9/24 Peach 3

Teacher View

• Prepare assignments

Can be developed stand-alone as a Peach package

• Make assignments (un)available

• Set deadlines and limits

• Inspect results

• View statistics

Further support for assignment preparation desirable

c© 2007, T. Verhoeff @ TUE.NL 10/24 Peach 3

Manual Evaluation

Grading scheme covering

• Layout

• Comments, (formal) annotation

• Naming

• Definitions

• Modularization

• Coding patterns

Automated support imaginable

c© 2007, T. Verhoeff @ TUE.NL 11/24 Peach 3

Automatic Evaluation

Typically, for submitted programs :

1. Preprocess (e.g. max. program length, language, TODOs)

2. Compile (possibly together with test framework)

3. Execute (with defined environment/input)

4. Check behavior/output

5. Determine score , repeat 2–5 as desired

Generally, can handle anything supported by analysis tools under Linux:
models, specifications, grammars, proofs, test cases, . . .

c© 2007, T. Verhoeff @ TUE.NL 12/24 Peach 3

Assignment Preparation

• Descriptive text: problem, input, output, constraints, hints, . . .

• Allowed programming language(s)

• What needs to be submitted, other preprocessing checks

• Compiler options, libraries, . . .

• Run-time limits, environment

• Test cases: input, expected output or output checker

• Scoring function; accept/reject criteria

• Good and bad programs, to test the assignment configuration

c© 2007, T. Verhoeff @ TUE.NL 13/24 Peach 3

Example Assignment: Candy (2IP05)

K kids together receive C candies . Your program must determine
whether it is possible to divide all candies fairly , and if so, how many
candies each kid receives. This is a integer Q such that C = K ∗Q .

Input : The first line contains two integers K and C, separated by
one space, with 0 ≤ K, C < 109.

Output : The first line must be the string ’ Yes ’ if it is possible to
divide all candies fairly, and ’ No ’ otherwise. If it is possible, then
there is a second line, containing integer Q (number of candies each
kid receives), with 0 ≤ Q < 109. If there are multiple answers, then it
does not matter which answer your program writes.

Example:
input
3 15

output
Yes
5

c© 2007, T. Verhoeff @ TUE.NL 14/24 Peach 3

Checker Issues

• Output format : whitespace, newlines, upper/lower case

• If input uniquely determines output: expected output

– Can be generated by known-correct program

• If input does not uniquely determine output: checker program

– Reads input, program’s output, optional additional data

– Verifies specified I/O relationship

– Must be robust: program’s output can be garbage

• Possibly no input/output, but provide a service or use a service

• GUI/web applications, distributed/parallel programs (not yet done)

c© 2007, T. Verhoeff @ TUE.NL 15/24 Peach 3

Checker Example: Dice Game (2IP05)

• Players 1–4 each roll two regular dice (outcomes 1..6 + 1..6)

Player 5 rolls a dodecahedron (outcomes 1..12)

Unique maximum value wins, otherwise no winner

Is Player 5 better off or worse off than the others? How much?

• Assignment: Randomly simulate multiple rounds

Various programming errors possible

• Checker must test statistical hypothesis

c© 2007, T. Verhoeff @ TUE.NL 16/24 Peach 3

Checker Example: Energy Pills (2IP05)

Example:

input
3 4

0 1 30 0
2 10 1 3
4 20 7 99

output
138

0* 1 30 0
2* 10* 1 3
4 20* 7* 99*

• Consider monotonic paths from upper left to lower right corner

• Maximize the path sum (total energy)

• Evaluation must “catch” greedy algorithms and other errors

c© 2007, T. Verhoeff @ TUE.NL 17/24 Peach 3

Checker Example: Bounded Queue (2IP05)

• Assignment: Implement a bounded queue ADT, given its contract

constructor Create(. . .);
function Count;
function IsEmpty;
function IsFull ;
function First;
procedure Put(. . .);
procedure RemFirst;

When precondition not satisfied, an exception must be raised

• Evaluation must verify functionality and robustness

Done without using a known-correct bounded queue

c© 2007, T. Verhoeff @ TUE.NL 18/24 Peach 3

Checker Example: Binary Search Test Driver (2IP10)

• Assignment: Write a test driver for a binary search routine

procedure Find (const s: List; const x: Entry;
var found: Boolean; var pos: Index);

{ pre: s is ascending (duplicates allowed)
post: found == (E i : 0 <= i < s.len : s.item[i] = x) /\

found ==> 0 <= pos < s.len /\ s.item[pos] = x }

• Evaluation based on coverage

• Compile with instrumented version of Find

Log each call; check precondition

Evaluate with various good and bad implementations of Find

Check distribution of parameter values over all Find calls

c© 2007, T. Verhoeff @ TUE.NL 19/24 Peach 3

Plagiarism

• Correlate submissions (same assignment, multiple years)

• No search on internet (only in its own database)

• False positives, false negatives, assignment dependence

• Subsequent investigation is time consuming

• Further tool support desirable

• Cannot detect that someone else did the work

• Alternative: give assignments under exam constraints

c© 2007, T. Verhoeff @ TUE.NL 20/24 Peach 3

Availability

• Production environment on our own SET server

• Installable on other platforms (requirements . . .)

• Open source license (except: authorization/comparison modules)

• Also used in Finland, India

c© 2007, T. Verhoeff @ TUE.NL 21/24 Peach 3

Usage Statistics

Courses # Active # Submis-

Until + Contests Users sions

Aug. 2002 7 174 1808

Aug. 2003 18 483 5990

Aug. 2004 28 727 10509

Aug. 2005 38 937 14327

Aug. 2006 50 1158 18622

Aug. 2007 65 1673 24313

Dec. 2007∗ 68 1760 25747

Dec. 2007† 6 233 2917

∗Peach 2
†Peach 3

c© 2007, T. Verhoeff @ TUE.NL 22/24 Peach 3

Conclusions

• Peach is a success:

1. Automated evaluation strictly enforces functional quality

2. Support for manual evaluation of other qualities

3. Uniform administration, easily accessible by all involved

4. Enforced deadlines, individually extendible

5. Plagiarism detection

• But automatic evaluation comes at a cost

• Future: interface to secure exam software, central login portal

c© 2007, T. Verhoeff @ TUE.NL 23/24 Peach 3

Questions?

?

c© 2007, T. Verhoeff @ TUE.NL 24/24 Peach 3

