Peach 3

CS Colloquium at TU/e
29 November 2007

Tom Verhoeff
Eindhoven University of Technology
Department of Mathematics & Computer Science

Software Engineering & Technology

http://www.win.tue.nl/ wstomv/

© 2007, T. Verhoeff @ TUE.NL 1/24 Peach 3

Programming Education in the Past

e The year 2000: over 150 first-year students in CS

e Practical programming course: done on paper

e Five independent groups

e Process:
1. collect programs
2. evaluate programs

3. administrate results

© 2007, T. Verhoeff @ TUE.NL 2/24 Peach 3

Programming Contests

e ACM ICPC: 1988—-1990 European Finals, 1999 World Finals

IOI: IOI'95 in Eindhoven, IOI'96—'07

e NIO

e Process:
1. collect programs
2. evaluate programs automatically

3. administrate results automatically

© 2007, T. Verhoeff @ TUE.NL 3/24 Peach 3

Peach/vs

P rogramming E ducation A nd Contest H osting verification system
Developed in the summer of 2001 by Erik Scheffers
First used in September 2001 for Programming O

September 2007 (version 3): Peach

© 2007, T. Verhoeff @ TUE.NL 4/24 Peach 3

Feature Overview

e Web-based client-server system: peach.win.tue.nl
e Various user categories: student, grader, teacher, admin, observer

e Collect, store, evaluate, compare submitted work and results

Supports multiple courses, with groups, over multiple years
e Evaluation configurable per assignment

e Supports multiple (programming) languages

© 2007, T. Verhoeff @ TUE.NL 5/24 Peach 3

Peach As Communication Aid

Who should do/did what when with what result?
e Register participants
e Provide assignments (configurable open/close period)
e Define and enforce deadlines and number of attempts
e Collect and store the work (web-viewable by submitter and staff)
e Provide feedback (automatic and/or manual)

e Administrate results

G

2007, T. Verhoeff @ TUE.NL 6/24 Peach 3

What Peach Is (Not)

Peach is not intended as a full-blown generic

e student administration system

course management system (cf. Moodle.org)

web content management system (WCMS)

e workflow management system

program development environment (IDE)
e configuration/version management system (cf. Subversion)

© 2007, T. Verhoeff @ TUE.NL 7/24 Peach 3

Student View

e Register once (usercode/password; future: central login portal)
e Join course/group (once per course)
e Read assignment
e Submit work, check acceptance
e Read feedback/result
Repeat where necessary
Further support to interpret feedback (error messages) is desirable

© 2007, T. Verhoeff @ TUE.NL 8/24 Peach 3

Grader View

e View submission: files, checks
e Provide feedback
e Determine result

Grading scheme/criteria currently not stored in Peach

Teacher View

Prepare assignments

Can be developed stand-alone as a Peach package
e Make assignments (un)available

e Set deadlines and limits

Inspect results

View statistics

Further support for assignment preparation desirable

© 2007, T. Verhoeff @ TUE.NL 9/24 Peach 3 © 2007, T. Verhoeff @ TUE.NL 10/24 Peach 3
Manual Evaluation Automatic Evaluation
Grading scheme covering Typically, for submitted programs :
e Layout 1. Preprocess (e.g. max. program length, language, TODOS)
¢ Comments, (formal) annotation 2. Compile (possibly together with test framework)
e Naming 3. Execute (with defined environment/input)
e Definitions :
4. Check behavior/output
e Modularization . .
5. Determine score, repeat 2-5 as desired
e Codin atterns
9P Generally, can handle anything supported by analysis tools under Linux:
Automated support imaginable models, specifications, grammars, proofs, test cases, ...
© 2007, T. Verhoeff @ TUE.NL 11/24 Peach 3 © 2007, T. Verhoeff @ TUE.NL 12/24 Peach 3

Assignment Preparation

e Descriptive text: problem, input, output, constraints, hints, ...
e Allowed programming language(s)

e \What needs to be submitted, other preprocessing checks

e Compiler options, libraries, . ..

e Run-time limits, environment

e Test cases: input, expected output or output checker

e Scoring function; accept/reject criteria

e Good and bad programs, to test the assignment configuration

®)

2007, T. Verhoeff @ TUE.NL 13/24 Peach 3

Example Assignment: Candy (2IP05)

K Kids together receive C candies. Your program must determine
whether it is possible to divide all candies fairly , and if so, how many
candies each kid receives. This is a integer @ such that C =K xQ .

Input : The first line contains two integers K and C, separated by
one space, with 0 < K,C < 10°.

Output : The first line must be the string ' Yes ' if it is possible to
divide all candies fairly, and 'No' otherwise. If it is possible, then
there is a second line, containing integer @ (number of candies each
kid receives), with 0 < Q < 109. If there are multiple answers, then it
does not matter which answer your program writes.

- output
X input
Example: Yes
3 15
5
© 2007, T. Verhoeff @ TUE.NL 14/24 Peach 3

Checker Issues

e Output format: whitespace, newlines, upper/lower case
e If input uniquely determines output: expected output

— Can be generated by known-correct program

If input does not uniquely determine output: checker program

— Reads input, program’s output, optional additional data
— Verifies specified I/O relationship

— Must be robust: program’s output can be garbage
e Possibly no input/output, but provide a service or use a service

e GUI/web applications, distributed/parallel programs (not yet done)

© 2007, T. Verhoeff @ TUE.NL 15/24 Peach 3

Checker Example: Dice Game (2IP05)

e Players 1—4 each roll two regular dice (outcomes 1..6 4+ 1..6)
Player 5 rolls a dodecahedron (outcomes 1..12)
Unique maximum value wins, otherwise no winner

Is Player 5 better off or worse off than the others? How much?

e Assignment: Randomly simulate multiple rounds

Various programming errors possible

e Checker must test statistical hypothesis

© 2007, T. Verhoeff @ TUE.NL 16/24 Peach 3

Checker Example: Energy Pills (2IP05)

input output
34 138
Example: 0 130 O 0Ox 1 30 O
210 1 3 2% 10% 1 3
4 20 7 99 4 20% T*x 99%

e Consider monotonic paths from upper left to lower right corner
e Maximize the path sum (total energy)

e Evaluation must “catch” greedy algorithms and other errors

© 2007, T. Verhoeff @ TUE.NL 17/24 Peach 3

Checker Example: Bounded Queue (2IP05)

Assignment: Implement a bounded queue ADT, given its contract

constructor Create(. . .);
function Count;
function IsEmpty;
function IsFull;
function First;
procedure Pui(...);
procedure RemkFirst;

When precondition not satisfied, an exception must be raised

Evaluation must verify functionality and robustness

Done without using a known-correct bounded queue

© 2007, T. Verhoeff @ TUE.NL 18/24 Peach 3

Checker Example: Binary Search Test Driver (2IP10)

e Assignment: Write a test driver for a binary search routine

procedure Find (const s: List; const x: Entry;
var found: Boolean; var pos: Index);
{ pre: s is ascending (duplicates allowed)
post: found == (E i : 0 <= i < s.len : s.item[i] = x) /\
found ==> 0 <= pos < s.len /\ s.item[pos] = x }

e Evaluation based on coverage

e Compile with instrumented version of Find
Log each call; check precondition
Evaluate with various good and bad implementations of Find

Check distribution of parameter values over all Find calls

© 2007, T. Verhoeff @ TUE.NL 19/24 Peach 3

Plagiarism

Correlate submissions (same assignment, multiple years)
No search on internet (only in its own database)

False positives, false negatives, assignment dependence
Subsequent investigation is time consuming

Further tool support desirable

Cannot detect that someone else did the work

Alternative: give assignments under exam constraints

© 2007, T. Verhoeff @ TUE.NL 20/24 Peach 3

Availability

e Production environment on our own SET server
e Installable on other platforms (requirements ...)
e Open source license (except: authorization/comparison modules)

e Also used in Finland, India

© 2007, T. Verhoeff @ TUE.NL 21/24 Peach 3

Usage Statistics

#£ Courses | # Active | # Submis-

until + Contests Users sions
Aug. 2002 7 174 1808
Aug. 2003 18 483 5990
Aug. 2004 28 27 10509
Aug. 2005 38 937 14327
Aug. 2006 50 1158 18622
Aug. 2007 65 1673 24313
Dec. 2007* 68 1760 25747
Dec. 20077 6 233 2917

*Peach 2

tPeach 3

© 2007, T. Verhoeff @ TUE.NL 22/24

Peach 3

Conclusions

e Peach is a success:
1. Automated evaluation strictly enforces functional quality
2. Support for manual evaluation of other qualities
3. Uniform administration, easily accessible by all involved
4. Enforced deadlines, individually extendible

5. Plagiarism detection

e But automatic evaluation comes at a cost

e Future: interface to secure exam software, central login portal

© 2007, T. Verhoeff @ TUE.NL 23/24 Peach 3

Questions?

© 2007, T. Verhoeff @ TUE.NL 24/24

Peach 3

