
Uniqueness of the Leech lattice

Abstract

We give Conway’s proof for the uniqueness of the Leech lattice.

1 Uniqueness of the Leech lattice

Theorem 1.1 There is a unique even unimodular lattice Λ in R24 without
vectors of squared length 2. It is known as the Leech lattice. The group .0
of automorphisms fixing the origin has order 8315553613086720000.

Let Λ be an even unimodular lattice in Rn where n < 32.
(‘Unimodular’ is the same as ‘self-dual’, and says that the volume of

the fundamental domain is 1. In other words, the lattice has one point per
unit volume. ‘Even’ means that the squared length |x|2 = (x, x) is an even
integer for each x ∈ Λ. It follows that all inner products (x, y) with x, y ∈ Λ
are integers: (x, y) = 1

2(|x + y|2 − |x|2 − |y|2).)

The theta function θΓ of a lattice Γ is defined by θΓ(z) =
∑

x∈Γ q
1
2
(x,x),

where q = e2πiz.

A code has a weight enumerator, and the MacWilliams relation describes
the relation between a weight enumerator of a linear code and its dual.
If the code is self-dual, this yields an invariance property for the weight
enumerator. For lattices similar things are true: there is a relation between
the theta function of a lattice and the theta function of its dual, and if the
lattice is self-dual its theta function has an invariance proterty. We quote
Hecke’s theorem.

Theorem 1.2 Let Γ be an even unimodular lattice in Rn. Then
(i) n ≡ 0 (mod 8), and
(ii) θΓ is a modular form of weight 1

2n.
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Let Mk be the vector space of modular forms of weight 2k, and let M0
k be

the subspace consisting of cusp forms, that is, of modular forms that vanish
at i∞. The following theorem says that there are not too many modular
forms, so that one has very strong information when something is a modular
form of low weight.

Theorem 1.3 (i) Mk = 0 for k < 0 and k = 1.
(ii) For k = 0, 2, 3, 4, 5 we have dim Mk = 1 and dim M0

k = 0.
(iii) Mk−6 ' M0

k .
(iv) For k ≥ 2 we have dim Mk = dim M0

k + 1.

(The proof is easy, but belongs elsewhere.)

Look at our even unimodular lattice Λ in Rn with n < 32. We have 8|n
and θΓ ∈ Mn/4. Let Nm be the number of vectors of squared length m, so
that N0 = 1 and N2 = 0, and θΓ(z) =

∑
m Nmqm/2.

If n = 8 then θΓ is uniquely determined by N0 = 1, since dim M2 = 1.
We already know an even unimodular lattice in R8, namely E8. It is a
root lattice, that is, is generated by vectors of squared length 2, so certainly
N2 6= 0. (In fact N2 = 240.)

If n = 16 then again θΓ is uniquely determined by N0 = 1, since
dim M4 = 1. And the lattice E8 ⊕ E8 shows that N2 6= 0 also here.

So n = 24. Here dim M6 = 2, and the two conditions N0 = 1, N2 = 0
determine the function uniquely. Computing the coefficients one finds N4 =
196560, N6 = 16773120, N8 = 398034000.

(In fact, N2m = 65520
691 (σ11(m) − τ(m)) for m > 0, where σh(m) =∑

d|m dh and τ(m) is Ramanujan’s function, defined by q
∏∞

m=1(1− qm)24 =∑∞
m=1 τ(m)qm.)

Call x ∈ Λ short if (x, x) ≤ 8.

Claim Each coset of 2Λ inside Λ contains a short vector. The classes
that contain more than a single pair ±x of short vectors are precisely the
classes that contain vectors of length

√
8, and these contain 48 short vectors,

namely 24 mutually orthogonal pairs ±x of vectors of length
√

8.

Indeed, let x, y be short vectors with y 6= ±x and y − x ∈ 2Λ. We
may suppose (x, y) ≥ 0. (Otherwise, replace y by −y.) Now |y − x|2 ≤
|y|2 + |x|2 ≤ 16, but for nonzero vectors u ∈ 2Λ we know |u|2 ≥ 16, so
equality must hold everywhere, and x and y are orthogonal. In R24 we can
have at most 24 mutually orthogonal pairs of vectors ±x. The number of
cosets that contain short vectors is at least N0

1 + N4
2 + N6

2 + N8
48 = 224, but
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since this is the total number of cosets, we must have equality everywhere.
This proves the claim.

Fix one set of 24 mutually orthogonal pairs of vectors of length
√

8 to
define a basis of R24. Then Λ contains the vectors 1√

8
(±8, 023) and their

halved differences 1√
8
((±4)2, 022) (where this notation means that there are

2 places with ±4 and 22 places with 0, in any order). These vectors generate
a sublattice Λ0 of Λ, and Λ0 = { 1√

8
(x1, . . . , x24) | 4|xi for all i and 8|

∑
xi}.

Consider an arbitrary vector x = 1√
8
(x1, . . . , x24) ∈ Λ. Since the inner

products with vectors in Λ0 must be integers, it follows that the xi must be
integers, all of the same parity (all even or all odd). If there is such a vector
with all xi odd, then pick one and make sure that for that one xi ≡ 1 (mod 4)
for all i, by changing the sign of some coordinates, if necessary.

The next step identifies the extended binary Golay code inside the lattice.
Consider the sublattice Λ1 of Λ consisting of the vectors for which all xi

are even, and let C be the image of Λ1 in {0, 1}24 under the map defined
coordinatewise by sending 0 (mod 4) to 0 and 2 (mod 4) to 1. Note that if
x 7→ c then also x+x0 7→ c for any x0 ∈ Λ0 (since such x0 has all coordinates
divisible by 4).

Claim C is the extended binary Golay code.

There is a unique linear code with word length 24, dimension 12 and
minimum distance 8. Clearly, C is a linear code with word length 24. Sup-
pose c ∈ C, c 6= 0. Then c is the image of some x ∈ Λ, and by subtracting
a vector in Λ0 we may assume that xi ∈ {0, 2} for all i except one, and
xi ∈ {−2, 2} for the last i. Now 4 ≤ (x, x) = 4

8wt(c), so that wt(c) ≥ 8.
This shows that C has minimum distance at least 8.

Look at the supports of code words of weight 8. No 5-set can be covered
twice, otherwise the minimum distance would be smaller than 8. Since each
8-set covers

(8
5

)
5-sets, and there are

(24
5

)
5-sets altogether, there cannot be

more than
(24

5

)
/
(8
5

)
= 759 words of weight 8 in C.

The balls of radius 4 around code words cover the words at distance less
than 4 to C precisely once, and the words at distance 4 to C at most six
times: if a word w has distance 4 to distinct code words c1 and c2, then
c1 − w and c2 − w are vectors of weight 4 with disjoint supports (since c1

and c2 have distance 8), and there are at most six disjoint 4-sets in a 24-set.
Since 1 + 24 +

(24
2

)
+

(24
3

)
+ 1

6

(24
4

)
= 212, there can be at most 224/212 = 212

code words, i.e. C has dimension at most 12.
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Now count vectors of length 2. If (x, x) = 4, then
∑

x2
i = 32, and x must

have one of the shapes 1√
8
((±4)2, 022) or 1√

8
((±2)8, 016) or 1√

8
(∓3, (±1)23).

The number of vectors of these shapes is at most
(24

2

)
.22 +759.27 +24.212 =

196560. But this is N4, so we must have equality everywhere.
(For the vectors of shape 1√

8
((±2)8, 016) there are 28 choices for the signs,

but we can use only half of these, since two choices that differ in only one
place would differ by a vector of squared length 2.

For the vectors of shape 1√
8
(∓3, (±1)23), subtract a vector with all co-

ordinates 1 (mod 4) to get a vector with all xi even. The fact that C
has dimension at most 12 means that at most 212 choices for the signs are
possible.)

This shows that C has dimension 12, and therefore is the extended binary
Golay code.

Now we can describe the Leech lattice.

Theorem 1.4 x = 1√
8
(x1, ..., x24) ∈ Λ if and only if

(i) xi ∈ Z, all xi have the same parity; and
(ii) if all xi are even, then

∑
xi ≡ 0 (mod 8); if all xi are odd, then then∑

xi ≡ 4 (mod 8); and
(iii) {i | xi ≡ a (mod 4)} ∈ S for a = 0, 1, 2, 3, where S is the collection

of supports of vectors in C.

Proof: Exercise. 2

About the group of automorphisms: starting from any of the N8/48
sets of 24 mutually orthogonal pairs of vectors ±x of length

√
8, we ar-

rived at a unique description of Λ. That means that its group of auto-
morphisms is transitive on these N8/48 coordinate frames. If we fix a
frame, then the possible automorphisms consist of sign changes and per-
mutations of the coordinates, and correspond to automorphisms of the ex-
tended binary Golay code, which has group 212.M24. Altogether we find
a group of order (N8/48).212.|M24| = 8292375.4096.24.23.22.21.20.48 =
8315553613086720000 = 222.39.54.72.11.13.23.

2 Related sporadic simple groups

Co.1 The group of the Leech lattice stabilizing the origin 0 is called .0
and was found above to have order 8315553613086720000. It has a center
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of order 2 (the map x 7→ −x) and the quotient is a simple group called .1 or
Co1 of order 1

2 |.0| = 221.39.54.72.11.13.23.

Co.2 The subgroup of .0 fixing a vector of squared length 4 is Co2 of
order |.0|/N4 = 218.36.53.7.11.23. This is the group of automorphisms of a
strongly regular graph on 2300 points.

Co.3 The subgroup of .0 fixing a vector of squared length 6 is Co3 of
order |.0|/N6 = 210.37.53.7.11.23. This is the group of automorphisms of a
regular 2-graph on 276 points.

McL The subgroup of .0 fixing a triangle with sides of squared lengths 4,
4, 6 is McL of order 27.36.53.7.11. The group McL.2 is the point stabilizer
of Co3 in its action on 276 points. It is the group of automorphisms of a
strongly regular graph on 275 points.

HS The subgroup of .0 fixing a triangle with sides of squared lengths 4,
6, 6 is HS of order 29.32.53.7.11. The group HS.2 is the group of automor-
phisms of a strongly regular graph on 100 points.

M24 The group M24 of order 210.33.5.7.11.23 is 5-transitive on 24 points
(and the subgroup fixing 5 points has order 48, so |M24| = 24.23.22.21.20.48).
It is the automorphism group of the Steiner system S(5, 8, 24). The auto-
morphism group of the extended binary Golay code (both translations and
coordinate permutations) is 212.M24.

M23 A point stabilizer in M24 is M23 of order 1
24 |M24| = 27.32.5.7.11.23.

It is the automorphism group of the Steiner system S(4, 7, 23). The auto-
morphism group of the perfect binary Golay code is 212.M23.

M22 A point stabilizer in M23 is M22 of order 1
23 |M23| = 27.32.5.7.11. It

is the automorphism group of the Steiner system S(3, 6, 22). It is the group
of automorphisms of a strongly regular graph on 77 points.

M12 The group M12 of order 12.11.10.9.8 = 26.33.5.11 is sharply 5-
transitive on 12 points. It is the stabilizer of a word of weight 12 in the
action of M24 on the extended binary Golay code. It is the automorphism
group of the Steiner system S(5, 6, 12). The automorphism group of the
extended ternary Golay code is 36.2.M12.

M11 A point stabilizer in M12 is M11 of order 1
12 |M12| = 24.32.5.11. It

is the automorphism group of the Steiner system S(4, 5, 11).

The letters here abbreviate Co: Conway, McL: McLaughlin, HS or HiS:
Higman-Sims, M: Mathieu.
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3 Theta functions

Let us give some more detail for the sentence above that said ‘Computing
the coefficients one finds N4 = 196560, N6 = 16773120, N8 = 398034000’.

The theta function for the E8 lattice is

1 + 240
∞∑

m=1

σ3(m)qm = 1 + 240(q + 9q2 + 28q3 + 73q4 + · · · ).

The theta function for the two nonisomorphic even unimodular lattices
in R16 is

1 + 480
∞∑

m=1

σ7(m)qm = 1 + 480(q + 129q2 + 2188q3 + 16513q4 + · · · ).

Since one of these lattices is E8 ⊕ E8 with theta function

(1 + 240
∞∑

m=1

σ3(m)qm)2,

we find the identity 1 + 480
∑∞

m=1 σ7(m)qm = (1 + 240
∑∞

m=1 σ3(m)qm)2.

A basis for the 2-dimensional space M6 of modular forms of weight 12
is given by f = 1 + 65520

691

∑∞
m=1 σ11(m)qm and g = q

∏∞
m=1(1 − qm)24 =∑∞

m=1 τ(m)qm. Since

f = 1 +
65520
691

(q + 2049q2 + 177148q3 + 4196353q4 + · · · )

and
g = q − 24q2 + 252q3 − 1472q4 + · · · ,

a linear combination af + bg = 1+0q + · · · must have a = 1 and b = −65520
691 .

Therefore, the theta function of the Leech lattice is

θΛ(z) = 1 +
65520
691

∞∑
m=1

(σ11(m)− τ(m))qm

= 1 +
65520
691

(2073q2 + 176896q3 + 4197825q4 + · · · )

= 1 + 196560q2 + 16773120q3 + 398034000q4 + · · ·

as desired.
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