1 Projective space

The ordinary plane R? has the problem that parallel lines do not meet. So,
introduce ‘ideal’ points at infinity, and an ideal line containing those points, to
get a projective plane in which two points always determine a unique line, and
two lines always determine a unique point.

A model of this projective plane is found in R3 by taking the lines through
the origin as projective points. The original plane can be taken to be the plane
Z = 1. Each line ((x,y, z)) with z # 0 hits this plane in a unique point, namely
(x/z,y/z,1), the ‘old point’ (x/z,y/z). The lines {(x,y,0)) correspond to the
ideal points, the plane Z = 0 to the ideal line (the ‘line at infinity’).

Now generalize to arbitrary fields and dimensions.

Let V be a vector space over a field F'. The associated projective space PV
is the lattice of subspaces of V' (where incidence is inclusion). Projective points,
lines, planes, ..., i-spaces, ... are d-dimensional linear subspaces of V with d = 1,
2,3, ...,1+1, ... . We shall always use vector space dimension, never projective
dimension. Points will be projective points - elements of V' are called vectors.

When V is coordinatized, a projective point is a 1-space {(Az1, ..., Az, )|\ €
F'} and we can say that this point has coordinates (z1, ..., ) provided we agree
that (x1,...,2,) and (a1, ..., ax,) denote the same point (for @ € F, a # 0).
Such coordinates are called homogeneous coordinates.

We would like to describe sets of points by an equation f(Xj,...,X,) = 0.
For this to be meaningful, one wishes f(z1,...,z,) = 0 iff f(az,...,az,) =0
(for « € F, a # 0). This leads us to consider homogeneous polynomials, that is,
polynomials in which the total degree of each term is the same (say d). These
satisfy our restraint, since f(axy,...,ar,) = alf(zy,...,2,).

2 Chevalley-Warning

Below we shall need that a quadric on a projective plane over a finite field F
has at least one point. This is a very special case of the following.

Theorem 2.1 Given homogeneous polynomials f1, ..., fm over F (of respective
degrees dy, ...,d, ) in the variables X, ..., X,,, where > d; < n. Then there is a
common zero (x1,...,x,) # (0,...,0).

Proof: Consider

> T fi@)r ).

TEF™ 4

It is the total number of solutions (considered as an element of F') of f1 = ... =
Jm = 0. But > _p 23 = 0 unless j is a nonzero multiple of ¢ — 1, so in the
expansion of the above sum only terms of degree at least n(q — 1) contribute,
but there are no such terms. Consequently, the number of solutions is 0 (mod
charF'). Since (0, ...,0) is a solution, there are also other solutions. O

It follows that a quadric in dimension at least 3 is nonempty.



3 Quadrics over finite fields

A homogeneous polynomial of degree one (a linear form) defines a hyperplane.
A homogeneous polynomial of degree two (a quadratic form) defines a quadric.
We want to classify quadrics in projective spaces over finite fields.

3.1 Quadratic forms

Let us first describe quadratic forms in a coordinate-free way. A quadratic form
is a map Q : V — F such that Q(A\u) = \2Q(u) (for A € F, u € V) and having
the property that B defined by B(u,v) = Q(u + v) — Q(u) — Q(v) is a bilinear
form. We have B(u,u) = 2Q(u), so if charF' # 2 then we can retrieve ) from
B. (But if charF' = 2, then many quadratic forms yield the same bilinear form.)

3.2 Nondegeneracy

Two points (u) and (v) are called orthogonal if B(u,v) = 0. If U is a subspace
of V, then Ut denotes the subspace of V consisting of the vectors orthogonal
to each element of U. The bilinear form B is called nondegenerate if V- = 0.
The quadratic form @ is called nondegenerate if () does not vanish on any point
in V*.

3.3 Orthogonal direct sums

Wewrite V=ULWifV=U@W (thatis, V=U+W and UNW = 0)
and B(u,w) =0 for all w € U, w € W. If this is the case, then @ is determined
by its restrictions to U and W. Indeed, Q(u + w) = Q(u) + Q(w). And
conversely, given arbitrary quadratic forms Qu on U and Qw on W, the formula
Q(u+w) = Qu(u)+ Qw(w) defines a quadratic form Q on U @ W, and for this
form V=U_1W.

3.4 Classification

Thus, it suffices to classify pairs (V,Q) where V cannot be decomposed as
orthogonal direct sum. In particular, we may suppose that V+ = 0 (unless
V = V4 is of dimension 1 and we have Q = 0).

Now suppose dimV > 3. Then by Chevalley-Warning there is a point (u)
with Q(u) = 0. Since V1 = 0 there is a vector w with B(u,w) = X # 0.
With v = w + fu we find Q(v) = Q(w) + B\, so for B8 = —Q(w)/A we have
Q(v) = 0. After scaling v we may assume that B(u,v) = 1. Thus, we have
found a line H = (u) + (v) with quadratic form defined by Q(u) = Q(v) = 0 and
B(u,v) = 1. (With uw and v as unit vectors, the form is X;X5.) Such a line is
called a hyperbolic line. Clearly, H is nondegenerate, and we have V.= H | H+
where also H* is nondegenerate. In this way we can peel off hyperbolic lines
until the dimension n of V' has become less than 3.

If n = 0 then PV has no points and @ = 0.

If n = 1 then PV has a single point and the number of nonisomorphic
possibilities equals 1+ |F*/F*2|. Indeed, if the single point is (u), then changing
u by a constant o changes Q(u) by a2, so either Q(u) = 0 (u is singular) or Q(u)
lies in one of the cosets of F*? in F*. For finite fields this means that either



charF' = 2 and there are just two possibilities: @)(u) vanishes or not, or charF'
is odd, and there are three possibilities: Q(u) is zero, a square or a nonsquare.

If n =2 and V is not a hyperbolic line, then @) never vanishes on PV, and
the line is called an elliptic line.

Thus: V is the orthogonal direct sum of its radical V*, a number of hyper-
bolic lines, and perhaps a single point or an elliptic line.

By change of coordinates H | P can be transformed into H 1 P’ where
Q(P) consists of squares, and Q(P’) of nonsquares. So, for odd n > 1 the
type of the point occurring in the decomposition on a nondegenerate quadratic
form is irrelevant. Also, any two elliptic lines are equivalent. The parity of the
number of elliptic lines occurring in a decomposition is an invariant (found from
the determinant of Q).

Thus: over a finite field we have in even dimension n > 0 precisely two types
of nondegenerate quadrics: hyperbolic quadrics that are an orthogonal direct
sum of hyperbolic lines, and elliptic quadrics, that are not. In odd dimension
n > 1 there is only one type of nondegenerate quadric.

The maximal totally singular subspaces (subspaces where @) vanishes iden-
tically) have dimension m for a hyperbolic quadric in n = 2m dimensions, and
m — 1 for an elliptic quadric in n = 2m dimensions, and m for a nondegenerate
quadric in n = 2m + 1 dimensions.

The (vector space) dimension of the maximal totally singular subspaces is
called the Witt index.



