
Mordell’s theorem

1 Mordell’s theorem

Theorem 1.1 [Mordell] Let C be a nonsingular cubic curve with rational coef-
ficients. Then the group Γ of rational points on C is finitely generated.

That is, there are rational points P1, ..., Pt on C such that every rational
point on C is of the form n1P1 + ...+ ntPt with ni ∈ Z.

Viewing Γ as direct product of r copies of Z (r ≥ 0) and some cyclic groups
of prime power order, we can find generators P1, ..., Pr of infinite order and
Q1, ..., Qs of finite order, where Qi has order pei

i for some prime pi, such that
the representation P = n1P1 + ...+nrPr +m1Q1 + ...+msQs is unique (ni ∈ Z,
mi ∈ Z/pei

i Z).
The number r is called the rank of C.
The group Γ is finite if and only if r = 0.

It is easy to find the points of finite order.

Theorem 1.2 [Nagell-Lutz] Let C be a nonsingular cubic curve with integral
coefficients and equation y2 = x3 + ax2 + bx + c, provided with the zero point
O = (0, 1, 0). Then the points of finite order on C have integral coordinates. If
(x, y) has finite order, then either y = 0, or y|D, where D = −4a3c + a2b2 +
18abc− 4b3 − 27c2 is the discriminant of the curve.

In the general case where C has rational coefficients, one can use a coordinate
transformation x′ = d2x, y′ = d3y to make the coefficients integral.

Note that there may well be points (x, y) with y|D that do not have finite
order. (But the points (x, y) with y = 0 have order 2.)

The torsion group (subgroup of Γ consisting of the elements of finite order)
has restricted shape: there are only 15 possibilities.

Theorem 1.3 [Mazur] The torsion group is one of Z/nZ (1 ≤ n ≤ 10 or
n = 12) or Z/2mZ× Z/2Z (1 ≤ m ≤ 4).

So it is easy to find the Qi. There is no known algorithm to find the Pi, but
there are results for very many special cases.

It is unknown whether the rank r is bounded. Examples with larger r are
being found every year. The current champion is the curve

y2 + xy + y = x3 − x2 − 20067762415575526585033208209338542750930230312178956502x+

34481611795030556467032985690390720374855944359319180361266008296291939448732243429

with rank 28 found by Elkies (2006). For the record ranks for given torsion, see
http://web.math.hr/~duje/tors/tors.html.
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2 Proof of Mordell’s theorem

After a change of coordinates we may assume the curve has the equation y2 =
x3 + ax2 + bx+ c with integral a, b, c.

Define the height of a rational number r = m
n (with gcd(m,n) = 1) by

H(r) = H(
m

n
) = max(|m|, |n|)

and the height of a rational point P = (x, y) on C by

H(P ) = H(x).

Also define H(O) = 1. Let the logarithmic height of P be h(P ) := logH(P ).

The theorem is an easy consequence of four lemmas, the first three of which
use the height function to describe the growth of coordinates under addition.

Lemma 2.1 For any constant M , the set {P ∈ Γ | h(P ) ≤M} is finite.

Lemma 2.2 Let P0 ∈ Γ be fixed. There is a constant κ0 = κ0(a, b, c, P0) such
that h(P + P0) ≤ 2h(P ) + κ0 for all P ∈ Γ.

Lemma 2.3 There is a constant κ = κ(a, b, c) such that h(2P ) ≥ 4h(P ) − κ
for all P ∈ Γ.

The fourth lemma is the difficult part.

Lemma 2.4 The subgroup 2Γ has finite index in Γ.

Now the proof of Mordell’s theorem is straightforward from these lemmas.
Pick representatives Q1, ..., Qn of the cosets of 2Γ in Γ. Then for arbitrary P ∈ Γ
we can write

P = 2P1 +Qi1

and then
P1 = 2P2 +Qi2

...

Pm−1 = 2Pm +Qim
.

Let κ′ = κ′(a, b, c) be the largest of the constants κ0(a, b, c,−Qi). Then

h(P −Qi) ≤ 2h(P ) + κ′ for all P, Qi

and

4h(Pj) ≤ h(2Pj) + κ = h(Pj−1 −Qij ) + κ ≤ 2h(Pj−1) + κ+ κ′

so that h(Pm) ≤ κ+ κ′ for m sufficiently large. Now

{Q1, ..., Qm} ∪ {P | h(P ) ≤ κ+ κ′}

is a finite generating set for Γ. 2
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3 Proof of Lemmas 1-3

Lemma 1 is clear.

Lemma 2

For Lemma 2, first observe that the denominator of x3 + ax2 + bx+ c is that of
x3 and equals that of y2, so that a point P = (x, y) of the curve satisfies x = m

e2

and y = n
e3 where m,n, e are integers with gcd(m, e) = gcd(n, e) = 1. It follows

that
m ≤ H(P ), e ≤ H(P )1/2, n ≤ K.H(P )3/2,

where that last inequality is from substitution of x = m
e2 and y = n

e3 in y2 =
x3+ax2+bx+c to get n2 = m3+am2e2+bme4+ce6 ≤ (1+ |a|+ |b|+ |c|)H(P )3.

Now let P = (x, y) and P0 = (x0, y0) and P + P0 = (ξ, η). We want to
bound h(P + P0) in terms of h(P ). (W.l.o.g. P 6= O, P0,−P0, those finitely
many points are handled by increasing κ0 later. Now all points are finite and
distinct.) The line y = λx + µ hits the curve y2 = x3 + ax2 + bx + c in three
points with x-coordinates satisfying (λx + µ)2 = x3 + ax2 + bx + c and their
sum is minus the coefficient of x2. It follows that x + x0 + ξ = λ2 − a, where
λ = y−y0

x−x0
. Now

ξ =
(
y − y0
x− x0

)2

− a− x0 − x =
Ay +Bx2 + Cx+D

Ex2 + Fx+G

for certain integers A,B,C,D,E, F,G independent of x (where y2 was replaced
by x3 + ax2 + bx+ c, cancelling the x3 term). Thus,

H(P + P0) = H(ξ) ≤ max(|Ane+Bm2 +Cme2 +De4|, |Em2 + Fme2 +Ge4|)

≤ max(|AK|+ |B|+ |C|+ |D|, |E|+ |F |+ |G|).H(P )2

and after taking logarithms

h(P + P0) ≤ 2h(P ) + κ0.

2

Lemma 3

For Lemma 3, put P = (x, y) and 2P = (ξ, η). W.l.o.g. 2P 6= O. As before we
get 2x+ ξ = λ2 − a, where λ = dY

dX (P ) = 3x2+2ax+b
2y , so that

ξ = λ2 − a− 2x =
x4 + ...

4x3 + ...

and numerator and denominator here have no common roots since the curve is
nonsingular.

It suffices to prove the lower bound in
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Lemma 3.1 Let f(x), g(x) ∈ Z[x] be two polynomials without common roots
(in C). Let d be the maximum of their degrees. Then, if r ∈ Q, g(r) 6= 0 then

dh(r)− κ ≤ h(
f(r)
g(r)

) ≤ dh(r) + κ

for some constant κ depending on f, g.

Proof Since gcd(f, g) = 1 there are u, v ∈ Q(x) with u(x)f(x)+v(x)g(x) = 1.
For r = m

n (with gcd(m,n) = 1) let F (r) = ndf(r) and G(r) = ndg(r) so
that F (r) and G(r) are integers. Now u(r)F (r) + v(r)G(r) = nd.

Let A be the l.c.m. of the denominators of the coefficients of u, v and let
e be the maximum of their degrees. Then Aneu(r) and Anev(r) are integers,
and hence gcd(F (r), G(r))|And+e. On the other hand, if say f(x) = a0x

d +
... + ad has degree d, then F (r) = a0m

d + ... + adn
d and gcd(n, F (r))|a0 and

gcd(F (r), G(r))|Aa0
d+e.

Put R := Aa0
d+e. Now

H(
f(r)
g(r)

) = H(
F (r)
G(r)

) ≥ 1
R

max(|F (r)|, |G(r)|)

gives
H( f(r)

g(r) )

H(r)d
≥ max(|F (r)|, |G(r)|)

Rmax(|m|d, |n|d)
=

max(|f(r)|, |g(r)|)
Rmax(|r|d, 1)

.

The righthand side is bounded below by a positive constant C (since there is
a finite nonzero limit when r tends to infinity, and a nonzero minimum on a
compact piece since f and g do not vanish simultaneously. So

H(
f(r)
g(r)

) ≥ C.H(r)d

and

h(
f(r)
g(r)

) ≥ dh(r)− κ

as desired. The other inequality is easier (and not needed). 2

4 2Γ has finite index in Γ

Remains to prove Lemma 4. Since that is difficult, we only do a special case,
namely that where x3 + ax2 + bx+ c has a rational root x0, that is, where there
is a rational point (x0, 0) of order 2. Change coordinates so that this point
becomes (0, 0). Now the equation is y2 = x3 + ax2 + bx, that is, c = 0.

The discriminant becomes D = b2(a2− 4b), and since the curve is nonsingu-
lar, this is nonzero.

Play with two curves: C defined by y2 = x3 + ax2 + bx and C̄ defined by
y2 = x3 + āx2 + b̄x, where ā = −2a and b̄ = a2 − 4b.

Now ¯̄a = 4a and ¯̄b = ā2 − 4b̄ = 16b so that ¯̄C becomes the curve y2 =
x3 + 4ax2 + 16bx, and (x, y) ∈ ¯̄C iff ( 1

4x,
1
8y) ∈ C.
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Define φ : C → C̄ by (x, y) 7→ (x̄, ȳ) with x̄ = x+a+ b
x = y2

x2 and ȳ = y(1− b
x2 )

for x 6= 0, and map both (0, 0) and O to Ō. Then φ is a group homomorphism
with kernel {(0, 0),O}.

Define ψ : C̄ → C as the composition of φ̄ and (x, y) 7→ ( 1
4x,

1
8y). Then ψ is

a group homomorphism with kernel {(0, 0), Ō}.
The composition of φ and ψ is the map P 7→ 2P on C.
All these statements follow by straightforward computation.

The desired result that 2Γ has finite index in Γ will follow from the two facts
that φΓ has finite index in Γ̄, and ψΓ̄ has finite index in Γ. By symmetry it
suffices to show one of these, say the latter.

We need a description of φΓ. We have
(i) Ō ∈ φΓ.
(ii) (0, 0) ∈ φΓ iff b̄ = a2 − 4b is a square.
(iii) (x̄, ȳ) ∈ φΓ for x̄ 6= 0 iff x̄ is a square in Q.
(Indeed, (i) is clear. We have x̄ = y2

x2 , so x̄ is a square, and x̄ = 0 iff y = 0,
that is, x(x2 + ax + b) = 0 for some rational point (x, y) with x 6= 0 on C,
that is, if a2 − 4b is a square. Finally, if x̄ = r2, then the point (x, y) with
x = 1

2 (r2 − a+ ȳ
r ) and y = xr lies on C and maps to (x̄, ȳ).)

Let Q∗ be the multiplicative group of the nonzero rationals, and Q∗2 the
subgroup of squares. Define a map α : Γ → Q∗/Q∗2 by P = (x, y) 7→ x for
x 6= 0, (0, 0) 7→ b, O 7→ 1.

Now α is a group homomorphism: First of all, it maps the unit element O to
the unit element 1. Suppose P1+P2+P3 = O. We show that α(P1)α(P2)α(P3) =
1. (And that suffices to prove that α is a homomorphism.) The points P1, P2, P3

lie on a line y = λx + µ and x1, x2, x3 are roots of (λx + µ)2 = x3 + ax2 + bx.
The product of the roots is minus the constant term, that is, is µ2, so that
α(P1)α(P2)α(P3) = x1x2x3 = µ2 = 1 in Q∗/Q∗2. If P1 = (0, 0) then µ = 0 and
x2, x3 are roots of λ2x = x2 + ax + b and α(P1)α(P2)α(P3) = bx2x3 = b2 = 1
in Q∗/Q∗2. If P1 = O then P2 = −P3 and x2 = x3 and α(P1)α(P2)α(P3) =
1.x2x3 = 1 in Q∗/Q∗2. 2

Next, the image of α is finite (and is contained in the set of divisors of b): Let
P = (x, y) = ( m

e2 ,
n
e3 ) be a point of C. Then α(P ) = m

e2 = m in Q∗/Q∗2. From
n2 = m(m2 + ame2 + be4) we see that each prime divisor p of m occurs to some
even power in m, unless it also occurs (to an odd power) in m2 + ame2 + be4

and hence in be4, and hence in b, since gcd(m, e) = 1.

Next, from the description of the image of φ (applied to ψ) it is clear that the
kernel of α is precisely the image of ψ. Consequently, α induces an isomorphism
from Γ/ψ(Γ̄) to a subgroup of Q∗/Q∗2 contained in the subgroup of divisors of
b. In particular, Γ/ψ(Γ̄) is finite. 2
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