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2 Two-weight Codes

1.1 Generalities
A linear code C with length n, dimension m, and minimum distance d over

the field Fq (in short, an [n,m, d]q-code) is an m-dimensional subspace of the
vector space Fqn such that any two code words (elements of C) differ in at
least d coordinates.

The weight wt(c) of the code word c is its number of nonzero coordinates.
A weight of C is the weight of some code word in C.

A two-weight code is a linear code with exactly two nonzero weights.

A generator matrix for C is an m×n matrix M such that its rows span C.
The weight enumerator of C is the polynomial

∑
fiX

i where the coefficient
fi of Xi is the number of words of weight i in C.

The dual code C⊥ of C is the (n−m)-dimensional code consisting of the
vectors orthogonal to all of C for the inner product (u, v) =

∑
uivi.

1.2 Codes as projective multisets
Let C be a linear code of length n and dimension m over the field Fq. Let

the m× n matrix M be a generator matrix of C.
The columns of M are elements of V = Fqm, the m-dimensional vector

space over Fq, and up to coordinate permutation the code C is uniquely de-
termined by the n-multiset of column vectors consisting of the columns of
M .

Let us call a coordinate position where C is identically zero a zero position.
The code C will have zero positions if and only if the dual code C⊥ has words
of weight 1. Usually, zero positions are uninteresting and can be discarded.

Let PV be the projective space of which the points are the 1-spaces in
V . If C does not have zero positions, then each column c of M determines a
projective point 〈c〉 in PV , and we find a projective multiset X of size n in
PV . Note that PV is spanned by X.

In this way we get a 1-1 correspondence between codes C without zero
positions (up to equivalence) and projective multisets X (up to nonsingular
linear transformations): If C ′ is an arbitrary code equivalent to C, and M ′ a
generator matrix for C ′, thenM ′ = AMB, where A is a nonsingular matrix of
order m (so that AC = C), and B is a monomial matrix of order n (a matrix
with a single nonzero entry in each row and column), so that XB = X.

The code C is called projective when no two coordinate positions are de-
pendent, i.e., when the dual code C⊥ has minimum distance at least 3. This
condition says that the multiset does not contain repeated points, i.e., is a set.
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1.2.1 Weights
Let Z be the (multi)set of columns of M , so that V = 〈Z〉. We can extend

any code word u = (u(z))z∈Z ∈ C to a linear functional on V . Let X be the
projective (multi)set in PV determined by the columns of M . For u 6= 0, let
Hu be the hyperplane in PV defined by u(z) = 0. The weight of the code word
u is its number of nonzero coordinates, which equals wt(u) = n− |X ∩Hu|.

So, searching for codes with a large minimum distance is the same as
searching for a projective (multi)set such that all hyperplane intersections are
small. Searching for a code with few different weights is the same as searching
for a projective (multi)set such that its hyperplane sections only have a few
different sizes.

1.2.2 Example
Consider codes with dimension m = 3 and minimum distance d = n − 2.

According to the above, these correspond to subsets X of the projective plane
PG(2, q) such that each line meets X in at most 2 points. It follows that X
is an arc (or a double point). For odd q the best one can do is to pick a conic
(of size q + 1) and one finds [q + 1, 3, q − 1]q codes. For even q one can pick a
hyperoval (of size q + 2) and one finds [q + 2, 3, q]q codes. The [6, 3, 4]4 code
is the famous hexacode ([16]).

1.3 Graphs
Let Γ be a graph with vertex set S of size s, undirected, without loops

or multiple edges. For x, y ∈ S we write x = y or x ∼ y or x 6∼ y when
the vertices x and y are equal, adjacent, or nonadjacent, respectively. The
adjacency matrix of Γ is the matrix A of order s with rows and columns
indexed by S, where Axy = 1 if x ∼ y and Axy = 0 otherwise. The spectrum
of Γ is the spectrum of A, that is, its (multi)set of eigenvalues.

1.3.1 Difference sets
Given an abelian group G and a subset D of G such that D = −D and

0 /∈ D, we can define a graph Γ with vertex set G by letting x ∼ y whenever
y − x ∈ D. This graph is known as the Cayley graph on G with difference set
D.

If A is the adjacency matrix of Γ, and χ is a character of G, then
(Aχ)(x) =

∑
y∼ x χ(y) =

∑
d∈D χ(x+ d) = (

∑
d∈D χ(d))χ(x). It follows that

the eigenvalues of Γ are the numbers
∑
d∈D χ(d), where χ runs through the

characters of G. In particular, the trivial character χ0 yields the eigenvalue
|D|, the valency of Γ.
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1.3.2 Using a projective set as difference set
Let V be a vector space of dimension m over the finite field Fq. Let X be

a subset of size n of the point set of the projective space PV . Define a graph
Γ with vertex set V by letting x ∼ y whenever 〈y − x〉 ∈ X. This graph has
v = qm vertices, and is regular of valency k = (q − 1)n.

Let q be a power of the prime p, let ζ = e2πi/p be a primitive p-th root of
unity, and let tr : Fq → Fp be the trace function. Let V ∗ be the dual vector
space to V , that is the space of linear forms on V . Then the characters χ are
of the form χa(x) = ζtr(a(x)), with a ∈ V ∗. Now∑

λ∈Fq

χa(λx) =
{
q if a(x) = 0
0 otherwise.

It follows that
∑
d∈D χa(d) = q.|Ha ∩ X| − |X| where Ha is the hyperplane

{〈x〉 | a(x) = 0} in PV .
This can be formulated in terms of coding theory. To the setX corresponds

a (projective) linear code C of length n and dimension m. Each a ∈ V ∗

gives rise to the vector (a(x))x∈X indexed by X, and the collection of all
these vectors is the code C. A code word a of weight w corresponds to a
hyperplane Ha that meets X in n − w points, and hence to an eigenvalue
q(n − w) − n = k − qw. The number of code words of weight w in C equals
the multiplicity of the eigenvalue k − qw of Γ.

1.3.3 Strongly regular graphs
A strongly regular graph with parameters (v, k, λ, µ) is a graph on v ver-

tices, regular of valency k, where 0 < k < v − 1 (there are both edges and
non-edges), such that the number of common neighbours of any two distinct
vertices equals λ if they are adjacent, and µ if they are nonadjacent. For the
adjacency matrix A of the graph this means that A2 = kI+λA+µ(J−I−A),
where J is the all-1 matrix. A regular graph is strongly regular precisely when
apart from the valency it has precisely two distinct eigenvalues. The eigenval-
ues of Γ, that is, the eigenvalues of A, are the valency k and the two solutions
of x2 + (µ− λ)x+ µ− k = 0.

In the above setting, with a graph Γ on a vector space, with adjacency
defined by a projective set X as difference set, the graph Γ will be strongly
regular precisely when |H ∩X| takes only two different values for hyperplanes
H, that is, when the code corresponding to X is a two-weight code.

This 1-1-1 correspondence between projective two-weight codes, projective
sets that meet the hyperplanes in two cardinalities (these are known as 2-
character sets), and strongly regular graphs defined on a vector space by a
projective difference set, is due to Delsarte [21].

The more general case of a code C with dual C⊥ of minimum distance at
least 2 corresponds to a multiset X. Brouwer & van Eupen [10] gives a 1-1
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correspondence between arbitrary projective codes and arbitrary two-weight
codes. See §1.9 below.

A survey of two-weight codes was given by Calderbank & Kantor [13].
Additional families and examples are given in [19], [18]. In [7] numerical data
(such as the number of nonisomorphic codes and the order of the automor-
phism group) is given for small cases.

1.3.4 Parameters
Let V ba a vector space of dimension m over Fq. Let X be a subset of size

n of the point set of PV , that meets hyperplanes in either m1 or m2 points,
where m1 > m2. Let f1 and f2 be the numbers of such hyperplanes. Then f1
and f2 satisfy

f1 + f2 = qm − 1
q − 1 ,

f1m1 + f2m2 = n
qm−1 − 1
q − 1 ,

f1m1(m1 − 1) + f2m2(m2 − 1) = n(n− 1)q
m−2 − 1
q − 1

and it follows that

(qm − 1)m1m2 − n(qm−1 − 1)(m1 +m2 − 1) + n(n− 1)(qm−2 − 1) = 0,

so that in particular n | (qm − 1)m1m2.

The corresponding two-weight code is a q-ary linear code with dimension
m, length n, weights w1 = n −m1 and w2 = n −m2, minimum distance w1,
and weight enumerator 1 + (q − 1)f1X

w1 + (q − 1)f2X
w2 .

Here (q − 1)f1 = 1
w2−w1

(w2(qm − 1)− nqm−1(q − 1)).

The corresponding strongly regular graph Γ has parameters

v = qm,

k = (q − 1)n,
r = qm1 − n,
s = qm2 − n,
λ = µ+ r + s,

µ = rs+ k = w1w2

qm−2 ,

f = (q − 1)f1,

g = (q − 1)f2,

where r, s are the eigenvalues of Γ other than k (with r ≥ 0 > s) and f, g their
multiplicities.
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For example, the hyperoval in PG(2, 4) (m = 3, q = 4, n = 6) gives the
linear [6, 3, 4]4 code (with weight enumerator 1+45X4+18X6), but also corre-
sponds to a strongly regular graph with parameters (v, k, λ, µ) = (64, 18, 2, 6)
and spectrum 181 245 (−6)18.

It is not often useful, but one can also check the definition of strong reg-
ularity directly. The graph Γ defined by the difference set X will be strongly
regular with constants λ, µ if and only if each point outside X is collinear with
µ ordered pairs of points of X, while each point p inside X is collinear with
λ− (q − 2) ordered pairs of points of X \ {p}.

1.3.5 Complement
Passing from a 2-character set X to its complement corresponds to passing

from the strongly regular graph to its complement. The two-weight codes
involved have a more complicated relation and will look very different, with
different lengths and minimum distances.

For example, the dual of the ternary Golay code is a [11, 5, 6]3-code with
weights 6 and 9. It corresponds to an 11-set in PG(4, 3) such that hyperplanes
meet it in 5 or 2 points. Its complement is a 110-set in PG(4, 3) such that
hyperplanes meet it in 35 or 38 points. It corresponds to a [110, 5, 72]3-code
with weights 72 and 75.

1.3.6 Duality
Suppose X is a subset of the point set of PV that meets hyperplanes in

either m1 or m2 points. We find a subset Y of the point set of the dual space
PV ∗ consisting of the hyperplanes that meet X in m1 points. Also Y is a
2-character set. If each point of PV is on n1 or n2 hyperplanes in Y , with
n1 > n2, then n2 = n(qm−2−1)−m2(qm−1−1)

(q−1)(m1−m2) and (m1−m2)(n1−n2) = qm−2. It
follows that the difference of the weights in a projective two-weight code is a
power of the characteristic. (This is a special case of the duality for translation
association schemes. See [22], §2.6, and [9], §2.10B.)

To a pair of complementary sets or graphs belongs a dual pair of comple-
mentary sets or graphs. The valencies k, v − k − 1 of the dual graph are the
multiplicities f1, f2 of the graph.

Let C be the two-weight code belonging to X. Then the graph belonging
to Y has vertex set C, where code words are joined when their difference has
weight w1.

For example, for the above [11, 5, 6]3-code (with weight enumerator 1 +
132X6 + 110X9) the corresponding strongly regular graph has parameters
(v, k, λ, µ) = (243, 22, 1, 2) and spectrum 221 4132 (−5)110. One of the two
dual graphs has parameters (v, k, λ, µ) = (243, 110, 37, 60) and spectrum
1101 2220 (−25)22. The corresponding two-weight code is a [55, 5, 36]3-code
with weights 36 and 45.
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1.3.7 Field change
Our graphs are defined by a difference set in an abelian group, and are

independent of a multiplicative field structure we put on that additive group.
Suppose V is a vector space of dimension m over F , where F has a subfield

F0 with [F : F0] = e, say F = Fq, F0 = Fr, with q = re. Let V0 be V , but
regarded as a vector space (of dimension me) over F0. Each projective point
in PV corresponds to q−1

r−1 projective points in PV0. If our graph belonged
to a projective subset X of size n of PV , it also belongs to a set X0 of
size n q−1

r−1 of PV0. If the intersection numbers were mi before, they will be
re−1
r−1 mi + re−1−1

r−1 (n − mi) now. We see that a q-ary code of dimension m,
length n, and weights wi becomes an r-ary code of dimension me, length
n q−1
r−1 and weights wi qr .

1.4 Irreducible cyclic two-weight codes
In the case of a vector space that is a field F , one conjectures that all

examples are known of difference sets that are subgroups of the multiplicative
group F ∗ containing the multiplicative group of the base field.

Conjecture 1.4.1 (Schmidt & White [62], Conj. 4.4; cf. [35], Conj. 1.2)
Let F be a finite field of order q = pf . Suppose 1 < e | (q − 1)/(p− 1) and let
D be the subgroup of F ∗ of index e. If the Cayley graph on F with difference
set D is strongly regular, then one of the following holds:

(i) (subfield case) D is the multiplicative group of a subfield of F .
(ii) (semiprimitive case) There exists a positive integer l such that pl ≡ −1

(mod u).
(iii) (exceptional case) |F | = pf , and (e, p, f) takes one of the following

eleven values: (11, 3, 5), (19, 5, 9), (35, 3, 12), (37, 7, 9), (43, 11, 7), (67, 17, 33),
(107, 3, 53), (133, 5, 18), (163, 41, 81), (323, 3, 144), (499, 5, 249).

In each of the mentioned cases the graph is strongly regular. These graphs
correspond to two-weight codes over Fp.

Since F ∗ has a partition into cosets of D, the point set of the projective
space PF is partitioned into isomorphic copies of the two-intersection set
X = {〈d〉 | d ∈ D}.

See also [60], [28], [65].
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1.5 Cyclotomy
More generally, the difference set D can be be a union of cosets of a

subgroup of F ∗, for some finite field F . Let F = Fq where q = pf , p is prime,
and let e | q−1, say q = em+1. Let K ⊆ F∗q be the subgroup of the e-th powers
(so that |K| = m). Let α be a primitive element of Fq. For J ⊆ {0, 1, . . . , e−1}
put u := |J | and D := DJ :=

⋃
{αjK | j ∈ J} = {αie+j | j ∈ J, 0 ≤ i < m}.

Define a graph Γ = ΓJ with vertex set Fq and edges (x, y) whenever y−x ∈ D.
Note that Γ will be undirected if q is even or e|(q − 1)/2.

As before, the eigenvalues of Γ are the sums
∑
d∈D χ(d) for the characters

χ of F . Their explicit determination requires some theory of Gauss sums. Let
us write Aχ = θ(χ)χ. Clearly, θ(1) = mu, the valency of Γ. Now assume
χ 6= 1. Then χ = χg for some g, where

χg(αj) = exp(2πi
p

tr(αj+g))

and tr : Fq → Fp is the trace function. If µ is any multiplicative character of
order e (say, µ(αj) = ζj , where ζ = exp( 2πi

e )), then

e−1∑
i=0

µi(x) =
{
e if µ(x) = 1
0 otherwise.

Hence,

θ(χg) =
∑
d∈D

χg(d) =
∑
j∈J

∑
y∈K

χj+g(y) = 1
e

∑
j∈J

∑
x∈F∗

q

χj+g(x)
e−1∑
i=0

µi(x) =

= 1
e

∑
j∈J

(−1 +
e−1∑
i=1

∑
x6=0

χj+g(x)µi(x)) = 1
e

∑
j∈J

(−1 +
e−1∑
i=1

µ−i(αj+g)Gi)

where Gi is the Gauss sum
∑
x 6=0 χ0(x)µi(x).

In a few cases these sums can be evaluated.

Proposition 1.5.1 (Stickelberger and Davenport & Hasse; see [56])
Suppose e > 2 and p is semiprimitive mod e, i.e., there exists an l such that
pl ≡ −1 (mod e). Choose l minimal and write f = 2lt. Then

Gi = (−1)t+1εit
√
q,

where
ε =

{
−1 if e is even and (pl + 1)/e is odd
+1 otherwise.
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Under the hypotheses of this proposition, we have
e−1∑
i=1

µ−i(αj+g)Gi =
e−1∑
i=1

ζ−i(j+g)(−1)t+1εit
√
q =

{
(−1)t√q if r 6= 1,

(−1)t+1√q(e− 1) if r = 1,

where r = rg,j = ζ−j−gεt (so that re = εet = 1), and hence

θ(χg) = u

e
(−1 + (−1)t√q) + (−1)t+1√q .#{j ∈ J | rg,j = 1}.

If we abbreviate the cardinality in this formula with # then: If εt = 1 then
# = 1 if g ∈ −J (mod e), and # = 0 otherwise. If εt = −1 (then e is even and
p is odd) then # = 1 if g ∈ 1

2e− J (mod e), and # = 0 otherwise. We proved:

Theorem 1.5.2 ([3], [12]) Let q = pf , p prime, f = 2lt and e | pl + 1 | q − 1.
Let u = |J |, 1 ≤ u ≤ e − 1. Then the graphs ΓJ are strongly regular with
eigenvalues

k = q−1
e u with multiplicity 1,

u
e (−1 + (−1)t√q) with multiplicity q − 1− k,

u
e (−1 + (−1)t√q) + (−1)t+1√q with multiplicity k.

The will yield two-weight codes over Fr in case K is invariant under mul-
tiplication by nonzero elements in Fr, i.e., when e | q−1

r−1 . This is always true
for r = pl, but also happens, for example, when q = p2lt, r = plt, e | pl + 1 and
t is odd.

1.5.1 The Van Lint-Schrijver construction
Van Lint & Schrijver [53] use the above setup in case e is an odd prime,

and p primitive mod e (so that l = (e − 1)/2 and f = (e − 1)t), and notice
that the group G consisting of the maps x 7→ axp

i +b, where a ∈ K and b ∈ F
and i ≥ 0 acts as a rank 3 group on F .

1.5.2 The De Lange graphs
De Lange [51] found that one gets strongly regular graphs in the following

three cases (that are not semiprimitive).

p f e J
3 8 20 {0, 1, 4, 8, 11, 12, 16}
3 8 16 {0, 1, 2, 8, 10, 11, 13}
2 12 45 {0, 5, 10}

One finds two-weight codes over Fr for r = 9, 3, 8, respectively.
This last graph can be viewed as a graph with vertex set Fq3 for q = 16

such that each vertex has a unique neighbour in each of the q2 + q + 1 = 273
directions.
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1.5.3 Generalizations
The examples given by De Lange and by Ikuta & Munemasa [45, 46]

(p = 2, f = 20, e = 75, J = {0, 3, 6, 9, 12} and p = 2, f = 21, e = 49, J =
{0, 1, 2, 3, 4, 5, 6}) and the sporadic cases of the Schmidt-White Conjecture
1.4.1 were generalized by Feng & Xiang [32], Ge, Xiang & Yuan [35],
Momihara [57], and Wu [66], who find several further infinite families of
strongly regular graphs. See also [58].

1.6 Rank 3 groups
Let Γ be a graph and G a group of automorphisms of Γ. The group G is

called rank 3 when it is transitive on vertices, edges, and non-edges. In this
case, the graph Γ is strongly regular (or complete or empty).

All rank 3 groups have been classified in a series of papers by Foulser,
Kallaher, Kantor, Liebler, Liebeck, Saxl and others. The affine case that in-
terests us here was finally settled by Liebeck [52]

1.6.1 One-dimensional affine rank 3 groups
Let q = pr be a prime power, where p is prime. Consider the group

AΓL(1, q) consisting of the semilinear maps x 7→ axσ + b on Fq. Let T be
the subgroup of size q consisting of the translations x 7→ x + b. We classify
the rank 3 subgroups R of AΓL(1, q) that contain T . They are the groups
generated by T and H, where H fixes 0 and has two orbits on the nonzero
elements.

Consider the 1-dimensional semilinear group G = ΓL(1, q) acting on the
nonzero elements of Fq. It consists of the maps ta,i : x 7→ axσ, where a 6= 0
and σ = pi. Foulser & Kallaher ([34], §3) determined which subgroups H
of G have precisely two orbits.

Lemma 1.6.1 Let H be a subgroup of ΓL(1, q). Then H = 〈tb,0〉 for suitable
b, or H = 〈tb,0, tc,s〉 for suitable b, c, s, where s|r and c(q−1)/(ps−1) ∈ 〈b〉.

Proof. The subgroup of all elements ta,0 in H is cyclic and has a generator
tb,0. If this was not all of H, then H/〈tb,0〉 is cyclic again, and has a generator
tc,s with s|r. Since tc,si = tcj ,is where j = 1+ps+p2s+ · · ·+p(i−1)s, it follows
for i = r/s that c(q−1)/(ps−1) ∈ 〈b〉. �

Theorem 1.6.2 H = 〈tb,0〉 has two orbits if and only if q is odd and H
consists precisely of the elements ta,0 with a a square in F∗q .
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Proof. Let b have multiplicative order m. Then m|(q − 1), and 〈tb,0〉 has d
orbits, where d = (q − 1)/m. �

Let b have order m and put d = (q − 1)/m. Choose a primitive element
ω ∈ F∗q with b = ωd. Let c = ωe.

Theorem 1.6.3 H = 〈tb,0, tc,s〉 (where s|r and d | e(q − 1)/(ps − 1)) has
two orbits of different lengths n1, n2, where n1 < n2, n1 + n2 = q − 1, if
and only if (0) n1 = m1m, where (1) the prime divisors of m1 divide ps − 1,
and (2) v := (q − 1)/n1 is an odd prime, and pm1s is a primitive root mod v,
and (3) gcd(e,m1) = 1, and (4) m1s(v − 1)|r.

That settled the case of two orbits of different lengths. Next consider that of
two orbits of equal length. As before, let b have orderm and put d = (q−1)/m.
Choose a primitive element ω ∈ F∗q with b = ωd. Let c = ωe.

Theorem 1.6.4 H = 〈tb,0, tc,s〉 (where s|r and d | e(q−1)/(ps−1)) has exactly
two orbits of the same length (q − 1)/2 if and only if (0) (q − 1)/2 = m1m,
(1) the prime divisors of 2m1 divide ps − 1, (2) no odd prime divisor of m1
divides e, (3) m1s|r, (4) one of the following cases applies: (i) m1 is even,
ps ≡ 3 (mod 8), and e is odd, (ii) m1 ≡ 2 (mod 4), ps ≡ 7 (mod 8), and e is
odd, (iii) m1 is even, ps ≡ 1 (mod 4), and e ≡ 2 (mod 4), (iv) m1 is odd and
e is even.

The graphs from Theorem 1.6.2 are the Paley graphs.
The Van Lint-Schrijver construction from §1.5.1 is the special case of The-

orem 1.6.3 where s = 1, e = 0, m1 = 1.

1.7 Two-character sets in projective space
Since projective two-weight codes correspond to 2-character sets in projec-

tive space, we want to classify the latter. The surrounding space will always
be the projective space PV , where V is an m-dimensional vector space over
Fq.

1.7.1 Subspaces
(i) Easy examples are subspaces of PV . A subspace with vector space

dimension i (projective dimension i − 1), where 1 ≤ i ≤ m − 1, has size
n = qi−1

q−1 and meets hyperplanes in either m1 = qi−1
q−1 or m2 = qi−1−1

q−1 points.
Here m1 −m2 = qi−1 can take many values.

(ii) If m = 2l is even, we can take the union of any family of pairwise
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disjoint l-subspaces. A hyperplane will contain either 0 or 1 of these, so that
n = ql−1

q−1 u, m1 = ql−1−1
q−1 u + ql−1, m2 = ql−1−1

q−1 u where u is the size of the
family, 1 ≤ u ≤ ql.

Clearly, one has a lot of freedom choosing this family of pairwise disjoint
l-subspaces, and one obtains exponentially many nonisomorphic graphs with
the same parameters (cf. [49]). There are many further constructions with
these parameters, see, e.g., §1.7.2 (ii) below, the alternating forms graphs on
Fq5 (with u = q2 + 1, see [9], Thm. 9.5.6), and [15], [4], [5], [20], [27].

1.7.2 Quadrics
(i) Let X = Q be the point set of a nondegenerate quadric in PV . Inter-

sections Q∩H are quadrics in H, and in the cases where there is only one type
of nondegenerate quadric in H, there are two intersection sizes, dependent on
whether H is tangent or not.

More in detail: If m is even, then n = |Q| = qm−1−1
q−1 + εqm/2−1 with ε = 1

for a hyperbolic quadric, and ε = −1 for an elliptic quadric. A nondegenerate
hyperplane meets Q in m1 = qm−2−1

q−1 points, and a tangent hyperplane meets
Q in m2 = qm−2−1

q−1 + εqm/2−1 points. (Here we dropped the convention that
m1 > m2.) The corresponding weights are w1 = qm−2 + εqm/2−1 and w2 =
qm−2.

The corresponding graphs are known as the affine polar graphs V Oε(m, q).

In the special case m = 4, ε = −1 one has n = q2 + 1, m1 = q + 1,
m2 = 1, and not only the elliptic quadrics but also the Tits ovoids have these
parameters.

(ii) The above construction with ε = 1 has the same parameters as the
subspaces construction in §1.7.1 (ii) with u = qm/2−1 +1. Brouwer et al. [11]
gave a common generalization of both by taking (for m = 2l) the disjoint
union of pairwise disjoint l-spaces and nondegenerate hyperbolic quadrics,
where possibly a number of pairwise disjoint l-spaces contained in some of the
hyperbolic quadrics is removed.

(iii) For odd q and even m, consider a nondegenerate quadric Q of type
ε = ±1 in V , the m-dimensional vector space over Fq. The nonisotropic points
fall into two classes of equal size, depending on whether Q(x) is a square or
not. Both sets are (isomorphic) 2-character sets.

LetX be the set of nonisotropic projective points x whereQ(x) is a nonzero
square (this is well-defined). Then |X| = 1

2 (qm−1 − εqm/2−1) and m1,m2 =
1
2q
m/2−1(qm/2−1 ± 1) (independent of ε).
The corresponding graphs are known as V NOε(m, q).

(iv) In Brouwer [8] a construction for two-weight codes is given by taking
a quadric defined over a small field and cutting out a quadric defined over a
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larger field. Let F1 = Fr, and F = Fq, where r = qe for some e > 1. Let V1
be a vector space of dimension d over F1, where d is even, and write V for V1
regarded as a vector space of dimension de over F . Let tr : F1 → F be the
trace map. Let Q1 : V1 → F1 be a nondegenerate quadratic form on V1. Then
Q = tr ◦ Q1 is a nondegenerate quadratic form on V . Let X = {x ∈ PV |
Q(x) = 0 and Q1(x) 6= 0}. Write ε = 1 (ε = −1) if Q is hyperbolic (elliptic).

Proposition 1.7.1 In the situation described, the corresponding two-weight
code has length n = |X| = (qe−1 − 1)(qde−e − εqde/2−e)/(q − 1), and weights
w1 = (qe−1 − 1)qde−e−1 and w2 = (qe−1 − 1)qde−e−1 − εqde/2−1.

For example, this yields a projective binary [68, 8]-code with weights 32,
40. This construction was generalized in Hamilton [40].

1.7.3 Maximal arcs and hyperovals
A maximal arc in a projective plane PG(2, q) is a 2-character set with

intersection numbers m1 = a, m2 = 0, for some constant a (1 < a < q).
Clearly, maximal arcs have size n = qa− q+a, and necessarily a | q. For a = 2
these objects are called hyperovals, and exist for all even q. Denniston [23]
constructed maximal arcs for all even q and all divisors a of q. Ball et al. [1]
showed that there are no maximal arcs in PG(2, q) when q is odd.

These arcs show that the difference between the intersection numbers need
not be a power of q. Also for a unital one has intersection sizes 1 and √q+ 1.

1.7.4 Baer subspaces
Let q = r2 and let m be odd. Then PG(m − 1, q) has a partition into

pairwise disjoint Baer subspaces PG(m − 1, r). Each hyperplane hits all of
these in a PG(m − 3, r), except for one which is hit in a PG(m − 2, r). Let
X be the union of u such Baer subspaces, 1 ≤ u < (rm + 1)/(r + 1). Then
n = |X| = u(rm − 1)/(r − 1), m2 = u(rm−2 − 1)/(r − 1), m1 = m2 + rm−2.

1.7.5 Hermitean quadrics
Let q = r2 and let V be provided with a nondegenerate Hermitean form.

Let X be the set of isotropic projective points. Then

n = |X| = (rm − ε)(rm−1 + ε)/(q − 1),
w2 = r2m−3,

w1 − w2 = εrm−2,

where ε = (−1)m. If we view V as a vector space of dimension 2m over
Fr, the same set X now has n = (rm − ε)(rm−1 + ε)/(r − 1), w2 = r2m−2,
w1 − w2 = εrm−1, as expected, since the form is a nondegenerate quadratic
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form in 2m dimensions over Fr. Thus, the graphs that one gets here are also
graphs one gets from quadratic forms, but the codes here are defined over a
larger field.

1.7.6 Sporadic examples
We give some small sporadic examples (or series of parameters for which

examples are known, some of which are sporadic). Many of these also have a
cyclotomic description.

q m n w1 w2−w1 comments
2 9 73 32 8 Fiedler & Klin [33]; [50]
2 9 219 96 16 dual
2 10 198 96 16 Kohnert [50]
2 11 276 128 16 Conway-Smith 211.M24 rank 3 graph
2 11 759 352 32 dual; [36]
2 12 65i 32i 32 Kohnert [50] (12 ≤ i ≤ 31, i 6= 19)
2 24 98280 47104 2048 Rodrigues [61]
4 5 11i 8i 8 Dissett [29] (7 ≤ i ≤ 14, i 6= 8)
4 6 78 56 8 Hill [42]
4 6 429 320 32 dual
4 6 147 96 16 [8]; Cossidente et al [17]
4 6 210 144 16 Cossidente et al [17]
4 6 273 192 16 §1.7.1; De Wispelaere & Van Maldeghem [26]
4 6 315 224 16 [8]; Cossidente et al [17]
8 4 117 96 8 De Lange [51]
16 3 78 72 4 De Resmini & Migliori [25]
3 5 11 6 3 dual of the ternary Golay code
3 5 55 36 9 dual
3 6 56 36 9 Games graph, Hill cap [41]
3 6 84 54 9 Gulliver [37]; [55]
3 6 98 63 9 Gulliver [37]; [55]
3 6 154 99 9 Van Eupen [31]; [38]
3 8 82i 54i 27 Kohnert [50] (8 ≤ i ≤ 12)
3 8 41i 27i 27 Kohnert [50] (26 ≤ i ≤ 39)
3 8 1435 945 27 De Lange [51]
3 12 32760 21627 243 Liebeck [52] 312.2.Suz rank 3 graph
9 3 35 30 3 De Resmini [24]
9 3 42 36 3 Penttila & Royle [59]
9 4 287 252 9 De Lange [51]
5 4 39 30 5 Dissett [29]; [7]
5 6 1890 1500 25 Liebeck [52] 56.4.J2 rank 3 graph

125 3 829 820 5 Batten & Dover [2]
125 3 7461 7400 25 dual
343 3 3189 3178 7 Batten & Dover [2]
343 3 28701 28616 49 dual

Usually, if m is even, then w2 − w1 = qm/2−1. An exception is the Hill
example with (q,m, n) = (4, 6, 78). Also subspaces are exceptions. Are there
any further exceptions when m = 4?
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1.8 Nonprojective codes
When the code C is not projective (which is necessarily the case when

n > qm−1
q−1 ) the set X is a multiset. Still, it allows a geometric description of

the code, which is very helpful. For example, see Cheon et al. [14].
Two-weight [n,m, d]q codes with the two weights d and n were classified

in Jungnickel & Tonchev [48]—the corresponding multiset X is either
a multiple of a plane maximal arc, or a multiple of the complement of a
hyperplane.

Part of the literature is formulated in terms of the complement Z of X in
PV (or the multiset containing some fixed number t of copies of each point of
PV ). The code C will have minimum distance at least d when |X∩H| ≤ n−d
for all hyperplanes H. For Z that says |Z ∩ H| ≥ t q

m−1−1
q−1 − n + d for all

hyperplanes H. Such sets Z are studied under the name minihypers, especially
when they correspond to codes meeting the Griesmer bound n ≥

∑m−1
i=0 d

d
qi e.

See, e.g., Hamada & Deza [39], Storme [63], Hill & Ward [44].
For projective two-weight codes we saw that w2−w1 is a power of the char-

acteristic. So, whenever this does not hold, the code must be nonprojective.
(This settles, e.g., a question in [54].)

1.9 Brouwer - van Eupen duality
Brouwer & van Eupen [10] gives a correspondence between arbitrary

projective codes and arbitrary two-weight codes. The correspondence can be
said to be 1-1, even though there are choices to be made in both directions.

1.9.1 From projective code to two-weight code
Given a linear code C with length n, let nC be its effective length, that is,

the number of coordinate positions where C is not identically zero.
Let C be a projective [n,m, d]q code with nonzero weights w1, . . . , wt.

In a subcode D of codimension 1 in C these weights occur with frequencies
f1, . . . , ft, where

∑
fi = qm−1−1 and

∑
(nD−wi)fi = nD(qm−2−1). It follows

that for arbitrary choice of α, β the sum
∑

(αwi + β)fi does not depend on
D but only on nD.

Since C is projective, we have nD = n− 1 for n subcodes D, and nD = n
for the remaining qm−1

q−1 − n subcodes of codimension 1. Therefore, the above
sum takes only two values.

Fix α, β in such a way that all numbers αwi + β are nonnegative integers,
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and consider the multiset Y in PC consisting of the 1-spaces 〈c〉 with c ∈ C
taken αw+β times, where w is the weight of c. Since an arbitrary hyperplane
D meets Y in αqm−2nD + β q

m−1
q−1 points, the set Y defines a two-weight code

of length |Y | = β q
m−1
q−1 + qm−1αn, dimension m, and weights w = |Y | − |Y |−βq

and w′ = w + αqm−2.
For example, if we start with the unique [16, 5, 9]3-code, with weight enu-

merator 01 9116 12114 1512 and take α = 1/3, β = −3, we find a [69, 5, 45]3-
code with weight enumerator 01 45210 5432. With α = −1/3, β = 5, we find a
[173, 5, 108]3-code with weight enumerator 01 10832 117210.

1.9.2 From two-weight code to projective code
Let C be a two-weight [n,m, d]q-code with nonzero weights w1 and w2. Let

X be the corresponding projective multiset. Let Y be the set of hyperplanes
meeting X in |X| − w2 points. Then Y defines a projective code of length
|H| = 1

w2−w1
(nqm−1 − w1

qm−1
q−1 ) and dimension m, and with a number of

distinct weights equal to the number of distinct multiplicities in X.

1.9.3 Remarks
In both directions there is a choice: pick α, β or pick w2 ∈ {w1, w2}. The

correspondence is 1-1 in the sense that if C∗ is a BvE-dual of C, then C is a
BvE-dual of C∗.

If the projective code C one starts with has only two different weights,
then one can choose α, β so that Y becomes a set and the BvE-dual coincides
with the Delsarte dual.

For another introduction and further examples, see Hill & Kolev [43].
In the above, the degree 1 polynomial p(w) = αw + β was used. One

can use higher degree polynomials when more information about subcodes is
available. See the last section of [10] and Dodunekov & Simonis [30].

See also [47], [64] (Lemma 5.1), and [6].
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