Chapter 1

Two-weight Codes

1.1	Gener	eralities					
1.2	Codes as projective multisets						
	1.2.1	Weights	3				
	1.2.2	Example	3				
1.3	Graphs						
	1.3.1	Difference sets	3				
	1.3.2	Using a projective set as difference set	4				
	1.3.3	Strongly regular graphs	4				
	1.3.4	Parameters	5				
	1.3.5	Complement	6				
	1.3.6	Duality	6				
	1.3.7	Field change	7				
1.4	Irredu	cible cyclic two-weight codes					
1.5	Cyclot	Cyclotomy					
	1.5.1	The Van Lint-Schrijver construction	9				
	1.5.2	The De Lange graphs	9				
	1.5.3	Generalizations	10				
1.6	Rank	3 groups	10				
	1.6.1	One-dimensional affine rank 3 groups	10				
1.7	Two-c	Two-character sets in projective space					
	1.7.1	Subspaces	11				
	1.7.2	Quadrics	12				
	1.7.3	Maximal arcs and hyperovals	13				
	1.7.4	Baer subspaces	13				
	1.7.5	Hermitean quadrics	13				
	1.7.6	Sporadic examples	14				
1.8	Nonpr	onprojective codes					
1.9	Brouwer - van Eupen duality 1						
	1.9.1	From projective code to two-weight code	15				
	1.9.2	From two-weight code to projective code	16				
	1.9.3	Remarks	16				

1.1 Generalities

A linear code C with length n, dimension m, and minimum distance d over the field \mathbb{F}_q (in short, an $[n, m, d]_q$ -code) is an m-dimensional subspace of the vector space \mathbb{F}_q^n such that any two code words (elements of C) differ in at least d coordinates.

The weight wt(c) of the code word c is its number of nonzero coordinates. A weight of C is the weight of some code word in C.

A two-weight code is a linear code with exactly two nonzero weights.

A generator matrix for C is an $m \times n$ matrix M such that its rows span C. The weight enumerator of C is the polynomial $\sum f_i X^i$ where the coefficient f_i of X^i is the number of words of weight i in C.

The dual code C^{\perp} of C is the (n-m)-dimensional code consisting of the vectors orthogonal to all of C for the inner product $(u, v) = \sum u_i v_i$.

1.2 Codes as projective multisets

Let C be a linear code of length n and dimension m over the field \mathbb{F}_q . Let the $m \times n$ matrix M be a generator matrix of C.

The columns of M are elements of $V = \mathbb{F}_q^m$, the *m*-dimensional vector space over \mathbb{F}_q , and up to coordinate permutation the code C is uniquely determined by the *n*-multiset of column vectors consisting of the columns of M.

Let us call a coordinate position where C is identically zero a zero position. The code C will have zero positions if and only if the dual code C^{\perp} has words of weight 1. Usually, zero positions are uninteresting and can be discarded.

Let PV be the projective space of which the points are the 1-spaces in V. If C does not have zero positions, then each column c of M determines a projective point $\langle c \rangle$ in PV, and we find a projective multiset X of size n in PV. Note that PV is spanned by X.

In this way we get a 1-1 correspondence between codes C without zero positions (up to equivalence) and projective multisets X (up to nonsingular linear transformations): If C' is an arbitrary code equivalent to C, and M' a generator matrix for C', then M' = AMB, where A is a nonsingular matrix of order m (so that AC = C), and B is a monomial matrix of order n (a matrix with a single nonzero entry in each row and column), so that XB = X.

The code C is called *projective* when no two coordinate positions are dependent, i.e., when the dual code C^{\perp} has minimum distance at least 3. This condition says that the multiset does not contain repeated points, i.e., is a set.

1.2.1 Weights

Let Z be the (multi)set of columns of M, so that $V = \langle Z \rangle$. We can extend any code word $u = (u(z))_{z \in Z} \in C$ to a linear functional on V. Let X be the projective (multi)set in PV determined by the columns of M. For $u \neq 0$, let H_u be the hyperplane in PV defined by u(z) = 0. The weight of the code word u is its number of nonzero coordinates, which equals wt $(u) = n - |X \cap H_u|$.

So, searching for codes with a large minimum distance is the same as searching for a projective (multi)set such that all hyperplane intersections are small. Searching for a code with few different weights is the same as searching for a projective (multi)set such that its hyperplane sections only have a few different sizes.

1.2.2 Example

Consider codes with dimension m = 3 and minimum distance d = n - 2. According to the above, these correspond to subsets X of the projective plane PG(2,q) such that each line meets X in at most 2 points. It follows that X is an arc (or a double point). For odd q the best one can do is to pick a conic (of size q + 1) and one finds $[q + 1, 3, q - 1]_q$ codes. For even q one can pick a hyperoval (of size q + 2) and one finds $[q + 2, 3, q]_q$ codes. The $[6, 3, 4]_4$ code is the famous hexacode ([16]).

1.3 Graphs

Let Γ be a graph with vertex set S of size s, undirected, without loops or multiple edges. For $x, y \in S$ we write x = y or $x \sim y$ or $x \not\sim y$ when the vertices x and y are equal, adjacent, or nonadjacent, respectively. The *adjacency matrix* of Γ is the matrix A of order s with rows and columns indexed by S, where $A_{xy} = 1$ if $x \sim y$ and $A_{xy} = 0$ otherwise. The *spectrum* of Γ is the spectrum of A, that is, its (multi)set of eigenvalues.

1.3.1 Difference sets

Given an abelian group G and a subset D of G such that D = -D and $0 \notin D$, we can define a graph Γ with vertex set G by letting $x \sim y$ whenever $y - x \in D$. This graph is known as the *Cayley graph* on G with difference set D.

If A is the adjacency matrix of Γ , and χ is a character of G, then $(A\chi)(x) = \sum_{y \sim x} \chi(y) = \sum_{d \in D} \chi(x+d) = (\sum_{d \in D} \chi(d))\chi(x)$. It follows that the eigenvalues of Γ are the numbers $\sum_{d \in D} \chi(d)$, where χ runs through the characters of G. In particular, the trivial character χ_0 yields the eigenvalue |D|, the valency of Γ .

1.3.2 Using a projective set as difference set

Let V be a vector space of dimension m over the finite field \mathbb{F}_q . Let X be a subset of size n of the point set of the projective space PV. Define a graph Γ with vertex set V by letting $x \sim y$ whenever $\langle y - x \rangle \in X$. This graph has $v = q^m$ vertices, and is regular of valency k = (q - 1)n.

Let q be a power of the prime p, let $\zeta = e^{2\pi i/p}$ be a primitive p-th root of unity, and let $\operatorname{tr} : \mathbb{F}_q \to \mathbb{F}_p$ be the trace function. Let V^* be the dual vector space to V, that is the space of linear forms on V. Then the characters χ are of the form $\chi_a(x) = \zeta^{\operatorname{tr}(a(x))}$, with $a \in V^*$. Now

$$\sum_{\lambda \in \mathbb{F}_q} \chi_a(\lambda x) = \begin{cases} q & \text{if } a(x) = 0\\ 0 & \text{otherwise.} \end{cases}$$

It follows that $\sum_{d \in D} \chi_a(d) = q \cdot |H_a \cap X| - |X|$ where H_a is the hyperplane $\{\langle x \rangle \mid a(x) = 0\}$ in PV.

This can be formulated in terms of coding theory. To the set X corresponds a (projective) linear code C of length n and dimension m. Each $a \in V^*$ gives rise to the vector $(a(x))_{x \in X}$ indexed by X, and the collection of all these vectors is the code C. A code word a of weight w corresponds to a hyperplane H_a that meets X in n - w points, and hence to an eigenvalue q(n - w) - n = k - qw. The number of code words of weight w in C equals the multiplicity of the eigenvalue k - qw of Γ .

1.3.3 Strongly regular graphs

A strongly regular graph with parameters (v, k, λ, μ) is a graph on v vertices, regular of valency k, where 0 < k < v - 1 (there are both edges and non-edges), such that the number of common neighbours of any two distinct vertices equals λ if they are adjacent, and μ if they are nonadjacent. For the adjacency matrix A of the graph this means that $A^2 = kI + \lambda A + \mu(J - I - A)$, where J is the all-1 matrix. A regular graph is strongly regular precisely when apart from the valency it has precisely two distinct eigenvalues. The eigenvalues of Γ , that is, the eigenvalues of A, are the valency k and the two solutions of $x^2 + (\mu - \lambda)x + \mu - k = 0$.

In the above setting, with a graph Γ on a vector space, with adjacency defined by a projective set X as difference set, the graph Γ will be strongly regular precisely when $|H \cap X|$ takes only two different values for hyperplanes H, that is, when the code corresponding to X is a two-weight code.

This 1-1-1 correspondence between projective two-weight codes, projective sets that meet the hyperplanes in two cardinalities (these are known as 2-character sets), and strongly regular graphs defined on a vector space by a projective difference set, is due to DELSARTE [21].

The more general case of a code C with dual C^{\perp} of minimum distance at least 2 corresponds to a multiset X. BROUWER & VAN EUPEN [10] gives a 1-1

correspondence between arbitrary projective codes and arbitrary two-weight codes. See §1.9 below.

A survey of two-weight codes was given by CALDERBANK & KANTOR [13]. Additional families and examples are given in [19], [18]. In [7] numerical data (such as the number of nonisomorphic codes and the order of the automorphism group) is given for small cases.

1.3.4Parameters

Let V be a vector space of dimension m over \mathbb{F}_q . Let X be a subset of size n of the point set of PV, that meets hyperplanes in either m_1 or m_2 points, where $m_1 > m_2$. Let f_1 and f_2 be the numbers of such hyperplanes. Then f_1 and f_2 satisfy

$$f_1 + f_2 = \frac{q^m - 1}{q - 1},$$

$$f_1 m_1 + f_2 m_2 = n \frac{q^{m-1} - 1}{q - 1},$$

$$f_1 m_1 (m_1 - 1) + f_2 m_2 (m_2 - 1) = n(n - 1) \frac{q^{m-2} - 1}{q - 1}$$

and it follows that

$$(q^m - 1)m_1m_2 - n(q^{m-1} - 1)(m_1 + m_2 - 1) + n(n-1)(q^{m-2} - 1) = 0,$$

so that in particular $n \mid (q^m - 1)m_1m_2$.

The corresponding two-weight code is a q-ary linear code with dimension m, length n, weights $w_1 = n - m_1$ and $w_2 = n - m_2$, minimum distance w_1 , and weight enumerator $1 + (q-1)f_1X^{w_1} + (q-1)f_2X^{w_2}$. Here $(q-1)f_1 = \frac{1}{w_2 - w_1}(w_2(q^m - 1) - nq^{m-1}(q-1))$.

The corresponding strongly regular graph Γ has parameters

$$\begin{split} v &= q^m, \\ k &= (q-1)n, \\ r &= qm_1 - n, \\ s &= qm_2 - n, \\ \lambda &= \mu + r + s, \\ \mu &= rs + k = \frac{w_1w_2}{q^{m-2}}, \\ f &= (q-1)f_1, \\ g &= (q-1)f_2, \end{split}$$

where r, s are the eigenvalues of Γ other than k (with $r \ge 0 > s$) and f, g their multiplicities.

For example, the hyperoval in PG(2,4) (m = 3, q = 4, n = 6) gives the linear $[6,3,4]_4$ code (with weight enumerator $1+45X^4+18X^6$), but also corresponds to a strongly regular graph with parameters $(v, k, \lambda, \mu) = (64, 18, 2, 6)$ and spectrum $18^1 \ 2^{45} \ (-6)^{18}$.

It is not often useful, but one can also check the definition of strong regularity directly. The graph Γ defined by the difference set X will be strongly regular with constants λ, μ if and only if each point outside X is collinear with μ ordered pairs of points of X, while each point p inside X is collinear with $\lambda - (q-2)$ ordered pairs of points of $X \setminus \{p\}$.

1.3.5 Complement

Passing from a 2-character set X to its complement corresponds to passing from the strongly regular graph to its complement. The two-weight codes involved have a more complicated relation and will look very different, with different lengths and minimum distances.

For example, the dual of the ternary Golay code is a $[11, 5, 6]_3$ -code with weights 6 and 9. It corresponds to an 11-set in PG(4,3) such that hyperplanes meet it in 5 or 2 points. Its complement is a 110-set in PG(4,3) such that hyperplanes meet it in 35 or 38 points. It corresponds to a $[110, 5, 72]_3$ -code with weights 72 and 75.

1.3.6 Duality

Suppose X is a subset of the point set of PV that meets hyperplanes in either m_1 or m_2 points. We find a subset Y of the point set of the dual space PV^* consisting of the hyperplanes that meet X in m_1 points. Also Y is a 2-character set. If each point of PV is on n_1 or n_2 hyperplanes in Y, with $n_1 > n_2$, then $n_2 = \frac{n(q^{m-2}-1)-m_2(q^{m-1}-1)}{(q-1)(m_1-m_2)}$ and $(m_1-m_2)(n_1-n_2) = q^{m-2}$. It follows that the difference of the weights in a projective two-weight code is a power of the characteristic. (This is a special case of the duality for translation association schemes. See [22], §2.6, and [9], §2.10B.)

To a pair of complementary sets or graphs belongs a dual pair of complementary sets or graphs. The valencies k, v - k - 1 of the dual graph are the multiplicities f_1, f_2 of the graph.

Let C be the two-weight code belonging to X. Then the graph belonging to Y has vertex set C, where code words are joined when their difference has weight w_1 .

For example, for the above $[11, 5, 6]_3$ -code (with weight enumerator $1 + 132X^6 + 110X^9$) the corresponding strongly regular graph has parameters $(v, k, \lambda, \mu) = (243, 22, 1, 2)$ and spectrum $22^1 \ 4^{132} \ (-5)^{110}$. One of the two dual graphs has parameters $(v, k, \lambda, \mu) = (243, 110, 37, 60)$ and spectrum $110^1 \ 2^{220} \ (-25)^{22}$. The corresponding two-weight code is a $[55, 5, 36]_3$ -code with weights 36 and 45.

1.3.7 Field change

Our graphs are defined by a difference set in an abelian group, and are independent of a multiplicative field structure we put on that additive group. Suppose V is a vector space of dimension m over F, where F has a subfield F_0 with $[F:F_0] = e$, say $F = \mathbb{F}_q$, $F_0 = \mathbb{F}_r$, with $q = r^e$. Let V_0 be V, but regarded as a vector space (of dimension me) over F_0 . Each projective point

in PV corresponds to $\frac{q-1}{r-1}$ projective points in PV_0 . If our graph belonged to a projective subset X of size n of PV, it also belongs to a set X_0 of size $n\frac{q-1}{r-1}$ of PV_0 . If the intersection numbers were m_i before, they will be $\frac{r^e-1}{r-1}m_i + \frac{r^{e-1}-1}{r-1}(n-m_i)$ now. We see that a q-ary code of dimension m, length n, and weights w_i becomes an r-ary code of dimension me, length $n\frac{q-1}{r-1}$ and weights $w_i\frac{q}{r}$.

1.4 Irreducible cyclic two-weight codes

In the case of a vector space that is a field F, one conjectures that all examples are known of difference sets that are subgroups of the multiplicative group F^* containing the multiplicative group of the base field.

Conjecture 1.4.1 (SCHMIDT & WHITE [62], Conj. 4.4; cf. [35], Conj. 1.2) Let F be a finite field of order $q = p^f$. Suppose $1 < e \mid (q-1)/(p-1)$ and let D be the subgroup of F^* of index e. If the Cayley graph on F with difference set D is strongly regular, then one of the following holds:

(i) (subfield case) D is the multiplicative group of a subfield of F.

(ii) (semiprimitive case) There exists a positive integer l such that $p^l \equiv -1$ (mod u).

(iii) (exceptional case) $|F| = p^{f}$, and (e, p, f) takes one of the following eleven values: (11, 3, 5), (19, 5, 9), (35, 3, 12), (37, 7, 9), (43, 11, 7), (67, 17, 33), (107, 3, 53), (133, 5, 18), (163, 41, 81), (323, 3, 144), (499, 5, 249).

In each of the mentioned cases the graph is strongly regular. These graphs correspond to two-weight codes over \mathbb{F}_p .

Since F^* has a partition into cosets of D, the point set of the projective space PF is partitioned into isomorphic copies of the two-intersection set $X = \{ \langle d \rangle \mid d \in D \}.$

See also [60], [28], [65].

1.5 Cyclotomy

More generally, the difference set D can be be a union of cosets of a subgroup of F^* , for some finite field F. Let $F = \mathbb{F}_q$ where $q = p^f$, p is prime, and let $e \mid q-1$, say q = em+1. Let $K \subseteq \mathbb{F}_q^*$ be the subgroup of the e-th powers (so that |K| = m). Let α be a primitive element of \mathbb{F}_q . For $J \subseteq \{0, 1, \ldots, e-1\}$ put u := |J| and $D := D_J := \bigcup \{\alpha^j K \mid j \in J\} = \{\alpha^{ie+j} \mid j \in J, 0 \leq i < m\}$. Define a graph $\Gamma = \Gamma_J$ with vertex set \mathbb{F}_q and edges (x, y) whenever $y - x \in D$. Note that Γ will be undirected if q is even or $e \mid (q-1)/2$.

As before, the eigenvalues of Γ are the sums $\sum_{d \in D} \chi(d)$ for the characters χ of F. Their explicit determination requires some theory of Gauss sums. Let us write $A\chi = \theta(\chi)\chi$. Clearly, $\theta(1) = mu$, the valency of Γ . Now assume $\chi \neq 1$. Then $\chi = \chi_g$ for some g, where

$$\chi_g(\alpha^j) = \exp(\frac{2\pi i}{p} \operatorname{tr}(\alpha^{j+g}))$$

and tr : $\mathbb{F}_q \to \mathbb{F}_p$ is the trace function. If μ is any multiplicative character of order e (say, $\mu(\alpha^j) = \zeta^j$, where $\zeta = \exp(\frac{2\pi i}{e})$), then

$$\sum_{i=0}^{e-1} \mu^i(x) = \begin{cases} e & \text{if } \mu(x) = 1\\ 0 & \text{otherwise.} \end{cases}$$

Hence,

$$\theta(\chi_g) = \sum_{d \in D} \chi_g(d) = \sum_{j \in J} \sum_{y \in K} \chi_{j+g}(y) = \frac{1}{e} \sum_{j \in J} \sum_{x \in \mathbb{F}_q^*} \chi_{j+g}(x) \sum_{i=0}^{e-1} \mu^i(x) =$$
$$= \frac{1}{e} \sum_{j \in J} (-1 + \sum_{i=1}^{e-1} \sum_{x \neq 0} \chi_{j+g}(x) \mu^i(x)) = \frac{1}{e} \sum_{j \in J} (-1 + \sum_{i=1}^{e-1} \mu^{-i}(\alpha^{j+g})G_i)$$

where G_i is the Gauss sum $\sum_{x\neq 0} \chi_0(x) \mu^i(x)$.

In a few cases these sums can be evaluated.

Proposition 1.5.1 (Stickelberger and Davenport & Hasse; see [56]) Suppose e > 2 and p is semiprimitive mod e, *i.e.*, there exists an l such that $p^{l} \equiv -1 \pmod{e}$. Choose l minimal and write f = 2lt. Then

$$G_i = (-1)^{t+1} \varepsilon^{it} \sqrt{q}$$

where

$$\varepsilon = \begin{cases} -1 & \text{if } e \text{ is even and } (p^l + 1)/e \text{ is odd} \\ +1 & \text{otherwise.} \end{cases}$$

Under the hypotheses of this proposition, we have

$$\sum_{i=1}^{e-1} \mu^{-i}(\alpha^{j+g}) G_i = \sum_{i=1}^{e-1} \zeta^{-i(j+g)} (-1)^{t+1} \varepsilon^{it} \sqrt{q} = \begin{cases} (-1)^t \sqrt{q} & \text{if } r \neq 1, \\ (-1)^{t+1} \sqrt{q} (e-1) & \text{if } r = 1, \end{cases}$$

where $r = r_{g,j} = \zeta^{-j-g} \varepsilon^t$ (so that $r^e = \varepsilon^{et} = 1$), and hence

$$\theta(\chi_g) = \frac{u}{e} (-1 + (-1)^t \sqrt{q}) + (-1)^{t+1} \sqrt{q} \cdot \#\{j \in J \mid r_{g,j} = 1\}.$$

If we abbreviate the cardinality in this formula with # then: If $\varepsilon^t = 1$ then # = 1 if $g \in -J \pmod{e}$, and # = 0 otherwise. If $\varepsilon^t = -1$ (then *e* is even and *p* is odd) then # = 1 if $g \in \frac{1}{2}e - J \pmod{e}$, and # = 0 otherwise. We proved:

Theorem 1.5.2 ([3], [12]) Let $q = p^f$, p prime, f = 2lt and $e | p^l + 1 | q - 1$. Let u = |J|, $1 \le u \le e - 1$. Then the graphs Γ_J are strongly regular with eigenvalues

$$\begin{split} k &= \frac{q-1}{e} u & \text{with multiplicity 1,} \\ \frac{\frac{u}{e}(-1+(-1)^t\sqrt{q})}{e} & \text{with multiplicity } q-1-k, \\ \frac{u}{e}(-1+(-1)^t\sqrt{q})+(-1)^{t+1}\sqrt{q} & \text{with multiplicity } k. \end{split}$$

The will yield two-weight codes over \mathbb{F}_r in case K is invariant under multiplication by nonzero elements in \mathbb{F}_r , i.e., when $e \mid \frac{q-1}{r-1}$. This is always true for $r = p^l$, but also happens, for example, when $q = p^{2lt}$, $r = p^{lt}$, $e \mid p^l + 1$ and t is odd.

1.5.1 The Van Lint-Schrijver construction

VAN LINT & SCHRIJVER [53] use the above setup in case e is an odd prime, and p primitive mod e (so that l = (e - 1)/2 and f = (e - 1)t), and notice that the group G consisting of the maps $x \mapsto ax^{p^i} + b$, where $a \in K$ and $b \in F$ and $i \ge 0$ acts as a rank 3 group on F.

1.5.2 The De Lange graphs

DE LANGE [51] found that one gets strongly regular graphs in the following three cases (that are not semiprimitive).

p	f	e	J
3	8	20	$\{0, 1, 4, 8, 11, 12, 16\}$
3	8	16	$\{0, 1, 2, 8, 10, 11, 13\}$
2	12	45	$\{0, 5, 10\}$

One finds two-weight codes over \mathbb{F}_r for r = 9, 3, 8, respectively.

This last graph can be viewed as a graph with vertex set \mathbb{F}_q^3 for q = 16 such that each vertex has a unique neighbour in each of the $q^2 + q + 1 = 273$ directions.

1.5.3 Generalizations

The examples given by De Lange and by IKUTA & MUNEMASA [45, 46] $(p = 2, f = 20, e = 75, J = \{0, 3, 6, 9, 12\}$ and $p = 2, f = 21, e = 49, J = \{0, 1, 2, 3, 4, 5, 6\}$) and the sporadic cases of the Schmidt-White Conjecture 1.4.1 were generalized by FENG & XIANG [32], GE, XIANG & YUAN [35], MOMIHARA [57], and WU [66], who find several further infinite families of strongly regular graphs. See also [58].

1.6 Rank 3 groups

Let Γ be a graph and G a group of automorphisms of Γ . The group G is called *rank* 3 when it is transitive on vertices, edges, and non-edges. In this case, the graph Γ is strongly regular (or complete or empty).

All rank 3 groups have been classified in a series of papers by Foulser, Kallaher, Kantor, Liebler, Liebeck, Saxl and others. The affine case that interests us here was finally settled by LIEBECK [52]

1.6.1 One-dimensional affine rank 3 groups

Let $q = p^r$ be a prime power, where p is prime. Consider the group $A\Gamma L(1,q)$ consisting of the semilinear maps $x \mapsto ax^{\sigma} + b$ on \mathbb{F}_q . Let T be the subgroup of size q consisting of the translations $x \mapsto x + b$. We classify the rank 3 subgroups R of $A\Gamma L(1,q)$ that contain T. They are the groups generated by T and H, where H fixes 0 and has two orbits on the nonzero elements.

Consider the 1-dimensional semilinear group $G = \Gamma L(1,q)$ acting on the nonzero elements of \mathbb{F}_q . It consists of the maps $t_{a,i} : x \mapsto ax^{\sigma}$, where $a \neq 0$ and $\sigma = p^i$. FOULSER & KALLAHER ([34], §3) determined which subgroups Hof G have precisely two orbits.

Lemma 1.6.1 Let H be a subgroup of $\Gamma L(1,q)$. Then $H = \langle t_{b,0} \rangle$ for suitable b, or $H = \langle t_{b,0}, t_{c,s} \rangle$ for suitable b, c, s, where s | r and $c^{(q-1)/(p^s-1)} \in \langle b \rangle$.

Proof. The subgroup of all elements $t_{a,0}$ in H is cyclic and has a generator $t_{b,0}$. If this was not all of H, then $H/\langle t_{b,0} \rangle$ is cyclic again, and has a generator $t_{c,s}$ with s|r. Since $t_{c,s}{}^i = t_{c^j,is}$ where $j = 1 + p^s + p^{2s} + \cdots + p^{(i-1)s}$, it follows for i = r/s that $c^{(q-1)/(p^s-1)} \in \langle b \rangle$.

Theorem 1.6.2 $H = \langle t_{b,0} \rangle$ has two orbits if and only if q is odd and H consists precisely of the elements $t_{a,0}$ with a a square in \mathbb{F}_q^* .

Proof. Let b have multiplicative order m. Then m|(q-1), and $\langle t_{b,0} \rangle$ has d orbits, where d = (q-1)/m.

Let b have order m and put d = (q-1)/m. Choose a primitive element $\omega \in \mathbb{F}_q^*$ with $b = \omega^d$. Let $c = \omega^e$.

Theorem 1.6.3 $H = \langle t_{b,0}, t_{c,s} \rangle$ (where s|r and $d|e(q-1)/(p^s-1)$) has two orbits of different lengths n_1, n_2 , where $n_1 < n_2$, $n_1 + n_2 = q - 1$, if and only if (0) $n_1 = m_1 m$, where (1) the prime divisors of m_1 divide $p^s - 1$, and (2) $v := (q-1)/n_1$ is an odd prime, and p^{m_1s} is a primitive root mod v, and (3) $gcd(e, m_1) = 1$, and (4) $m_1s(v-1)|r$.

That settled the case of two orbits of different lengths. Next consider that of two orbits of equal length. As before, let b have order m and put d = (q-1)/m. Choose a primitive element $\omega \in \mathbb{F}_q^*$ with $b = \omega^d$. Let $c = \omega^e$.

Theorem 1.6.4 $H = \langle t_{b,0}, t_{c,s} \rangle$ (where s|r and $d|e(q-1)/(p^s-1)$) has exactly two orbits of the same length (q-1)/2 if and only if $(0) (q-1)/2 = m_1 m$, (1) the prime divisors of $2m_1$ divide $p^s - 1$, (2) no odd prime divisor of m_1 divides e, (3) $m_1 s|r$, (4) one of the following cases applies: (i) m_1 is even, $p^s \equiv 3 \pmod{8}$, and e is odd, (ii) $m_1 \equiv 2 \pmod{4}$, $p^s \equiv 7 \pmod{8}$, and e is odd, (iii) m_1 is even, $p^s \equiv 1 \pmod{4}$, and $e \equiv 2 \pmod{4}$, (iv) m_1 is odd and e is even.

The graphs from Theorem 1.6.2 are the Paley graphs.

The Van Lint-Schrijver construction from §1.5.1 is the special case of Theorem 1.6.3 where $s = 1, e = 0, m_1 = 1$.

1.7 Two-character sets in projective space

Since projective two-weight codes correspond to 2-character sets in projective space, we want to classify the latter. The surrounding space will always be the projective space PV, where V is an m-dimensional vector space over \mathbb{F}_{q} .

1.7.1 Subspaces

(i) Easy examples are subspaces of PV. A subspace with vector space dimension i (projective dimension i-1), where $1 \le i \le m-1$, has size $n = \frac{q^i-1}{q-1}$ and meets hyperplanes in either $m_1 = \frac{q^i-1}{q-1}$ or $m_2 = \frac{q^{i-1}-1}{q-1}$ points. Here $m_1 - m_2 = q^{i-1}$ can take many values.

(ii) If m = 2l is even, we can take the union of any family of pairwise

disjoint *l*-subspaces. A hyperplane will contain either 0 or 1 of these, so that $n = \frac{q^{l-1}}{q-1}u$, $m_1 = \frac{q^{l-1}-1}{q-1}u + q^{l-1}$, $m_2 = \frac{q^{l-1}-1}{q-1}u$ where *u* is the size of the family, $1 \le u \le q^l$.

Clearly, one has a lot of freedom choosing this family of pairwise disjoint *l*-subspaces, and one obtains exponentially many nonisomorphic graphs with the same parameters (cf. [49]). There are many further constructions with these parameters, see, e.g., §1.7.2 (ii) below, the alternating forms graphs on \mathbb{F}_q^5 (with $u = q^2 + 1$, see [9], Thm. 9.5.6), and [15], [4], [5], [20], [27].

1.7.2 Quadrics

(i) Let X = Q be the point set of a nondegenerate quadric in PV. Intersections $Q \cap H$ are quadrics in H, and in the cases where there is only one type of nondegenerate quadric in H, there are two intersection sizes, dependent on whether H is tangent or not.

Whether *H* is tangent or not. More in detail: If *m* is even, then $n = |Q| = \frac{q^{m-1}-1}{q-1} + \varepsilon q^{m/2-1}$ with $\varepsilon = 1$ for a hyperbolic quadric, and $\varepsilon = -1$ for an elliptic quadric. A nondegenerate hyperplane meets *Q* in $m_1 = \frac{q^{m-2}-1}{q-1}$ points, and a tangent hyperplane meets *Q* in $m_2 = \frac{q^{m-2}-1}{q-1} + \varepsilon q^{m/2-1}$ points. (Here we dropped the convention that $m_1 > m_2$.) The corresponding weights are $w_1 = q^{m-2} + \varepsilon q^{m/2-1}$ and $w_2 = q^{m-2}$.

The corresponding graphs are known as the affine polar graphs $VO^{\varepsilon}(m,q)$.

In the special case m = 4, $\varepsilon = -1$ one has $n = q^2 + 1$, $m_1 = q + 1$, $m_2 = 1$, and not only the elliptic quadrics but also the Tits ovoids have these parameters.

(ii) The above construction with $\varepsilon = 1$ has the same parameters as the subspaces construction in §1.7.1 (ii) with $u = q^{m/2-1} + 1$. BROUWER et al. [11] gave a common generalization of both by taking (for m = 2l) the disjoint union of pairwise disjoint *l*-spaces and nondegenerate hyperbolic quadrics, where possibly a number of pairwise disjoint *l*-spaces contained in some of the hyperbolic quadrics is removed.

(iii) For odd q and even m, consider a nondegenerate quadric Q of type $\varepsilon = \pm 1$ in V, the *m*-dimensional vector space over \mathbb{F}_q . The nonisotropic points fall into two classes of equal size, depending on whether Q(x) is a square or not. Both sets are (isomorphic) 2-character sets.

Let X be the set of nonisotropic projective points x where Q(x) is a nonzero square (this is well-defined). Then $|X| = \frac{1}{2}(q^{m-1} - \varepsilon q^{m/2-1})$ and $m_1, m_2 = \frac{1}{2}q^{m/2-1}(q^{m/2-1} \pm 1)$ (independent of ε).

The corresponding graphs are known as $VNO^{\varepsilon}(m,q)$.

(iv) In BROUWER [8] a construction for two-weight codes is given by taking a quadric defined over a small field and cutting out a quadric defined over a

larger field. Let $F_1 = \mathbb{F}_r$, and $F = \mathbb{F}_q$, where $r = q^e$ for some e > 1. Let V_1 be a vector space of dimension d over F_1 , where d is even, and write V for V_1 regarded as a vector space of dimension de over F. Let $\mathrm{tr} : F_1 \to F$ be the trace map. Let $Q_1 : V_1 \to F_1$ be a nondegenerate quadratic form on V_1 . Then $Q = \mathrm{tr} \circ Q_1$ is a nondegenerate quadratic form on V. Let $X = \{x \in PV \mid Q(x) = 0 \text{ and } Q_1(x) \neq 0\}$. Write $\varepsilon = 1$ ($\varepsilon = -1$) if Q is hyperbolic (elliptic).

Proposition 1.7.1 In the situation described, the corresponding two-weight code has length $n = |X| = (q^{e-1} - 1)(q^{de-e} - \varepsilon q^{de/2-e})/(q-1)$, and weights $w_1 = (q^{e-1} - 1)q^{de-e-1}$ and $w_2 = (q^{e-1} - 1)q^{de-e-1} - \varepsilon q^{de/2-1}$.

For example, this yields a projective binary [68, 8]-code with weights 32, 40. This construction was generalized in HAMILTON [40].

1.7.3 Maximal arcs and hyperovals

A maximal arc in a projective plane PG(2,q) is a 2-character set with intersection numbers $m_1 = a$, $m_2 = 0$, for some constant a (1 < a < q). Clearly, maximal arcs have size n = qa - q + a, and necessarily $a \mid q$. For a = 2these objects are called *hyperovals*, and exist for all even q. DENNISTON [23] constructed maximal arcs for all even q and all divisors a of q. BALL et al. [1] showed that there are no maximal arcs in PG(2,q) when q is odd.

These arcs show that the difference between the intersection numbers need not be a power of q. Also for a unital one has intersection sizes 1 and $\sqrt{q} + 1$.

1.7.4 Baer subspaces

Let $q = r^2$ and let m be odd. Then PG(m-1,q) has a partition into pairwise disjoint Baer subspaces PG(m-1,r). Each hyperplane hits all of these in a PG(m-3,r), except for one which is hit in a PG(m-2,r). Let X be the union of u such Baer subspaces, $1 \le u < (r^m + 1)/(r + 1)$. Then $n = |X| = u(r^m - 1)/(r - 1), m_2 = u(r^{m-2} - 1)/(r - 1), m_1 = m_2 + r^{m-2}$.

1.7.5 Hermitean quadrics

w

Let $q = r^2$ and let V be provided with a nondegenerate Hermitean form. Let X be the set of isotropic projective points. Then

$$n = |X| = (r^m - \varepsilon)(r^{m-1} + \varepsilon)/(q-1),$$
$$w_2 = r^{2m-3},$$
$$w_1 - w_2 = \varepsilon r^{m-2},$$

where $\varepsilon = (-1)^m$. If we view V as a vector space of dimension 2m over \mathbb{F}_r , the same set X now has $n = (r^m - \varepsilon)(r^{m-1} + \varepsilon)/(r-1)$, $w_2 = r^{2m-2}$, $w_1 - w_2 = \varepsilon r^{m-1}$, as expected, since the form is a nondegenerate quadratic

form in 2m dimensions over \mathbb{F}_r . Thus, the graphs that one gets here are also graphs one gets from quadratic forms, but the codes here are defined over a larger field.

1.7.6 Sporadic examples

We give some small sporadic examples (or series of parameters for which examples are known, some of which are sporadic). Many of these also have a cyclotomic description.

\overline{q}	m	n	w_1	$w_2 - w_1$	comments
2	9	73	32	8	Fiedler & Klin [33]; [50]
2	9	219	96	16	dual
2	10	198	96	16	Kohnert [50]
2	11	276	128	16	Conway-Smith $2^{11}.M_{24}$ rank 3 graph
2	11	759	352	32	dual; [36]
2	12	65i	32i	32	Kohnert [50] $(12 \le i \le 31, i \ne 19)$
2	24	98280	47104	2048	Rodrigues [61]
4	5	11i	8i	8	Dissett [29] $(7 \le i \le 14, i \ne 8)$
4	6	78	56	8	Hill [42]
4	6	429	320	32	dual
4	6	147	96	16	[8]; Cossidente et al [17]
4	6	210	144	16	Cossidente et al [17]
4	6	273	192	16	§1.7.1; De Wispelaere & Van Maldeghem [26]
4	6	315	224	16	[8]; Cossidente et al [17]
8	4	117	96	8	De Lange [51]
16	3	78	72	4	De Resmini & Migliori [25]
3	5	11	6	3	dual of the ternary Golay code
3	5	55	36	9	dual
3	6	56	36	9	Games graph, Hill cap [41]
3	6	84	54	9	Gulliver [37]; [55]
3	6	98	63	9	Gulliver [37]; [55]
3	6	154	99	9	Van Eupen [31]; [38]
3	8	82i	54i	27	Kohnert [50] $(8 \le i \le 12)$
3	8	41i	27i	27	Kohnert [50] $(26 \le i \le 39)$
3	8	1435	945	27	De Lange [51]
3	12	32760	21627	243	Liebeck [52] 3 ¹² .2.Suz rank 3 graph
9	3	35	30	3	De Resmini [24]
9	3	42	36	3	Penttila & Royle [59]
9	4	287	252	9	De Lange [51]
5	4	39	30	5	Dissett $[29]; [7]$
5	6	1890	1500	25	Liebeck [52] $5^6.4.J_2$ rank 3 graph
125	3	829	820	5	Batten & Dover [2]
125	3	7461	7400	25	dual
343	3	3189	$\overline{3178}$	7	Batten & Dover [2]
343	3	28701	28616	49	dual

Usually, if m is even, then $w_2 - w_1 = q^{m/2-1}$. An exception is the Hill example with (q, m, n) = (4, 6, 78). Also subspaces are exceptions. Are there any further exceptions when m = 4?

1.8 Nonprojective codes

When the code C is not projective (which is necessarily the case when $n > \frac{q^m - 1}{q - 1}$) the set X is a multiset. Still, it allows a geometric description of the code, which is very helpful. For example, see CHEON et al. [14].

Two-weight $[n, m, d]_q$ codes with the two weights d and n were classified in JUNGNICKEL & TONCHEV [48]—the corresponding multiset X is either a multiple of a plane maximal arc, or a multiple of the complement of a hyperplane.

Part of the literature is formulated in terms of the complement Z of X in PV (or the multiset containing some fixed number t of copies of each point of PV). The code C will have minimum distance at least d when $|X \cap H| \leq n-d$ for all hyperplanes H. For Z that says $|Z \cap H| \geq t \frac{q^{m-1}-1}{q-1} - n + d$ for all hyperplanes H. Such sets Z are studied under the name minihypers, especially when they correspond to codes meeting the Griesmer bound $n \geq \sum_{i=0}^{m-1} \lfloor \frac{d}{q^i} \rfloor$. See, e.g., HAMADA & DEZA [39], STORME [63], HILL & WARD [44].

For projective two-weight codes we saw that $w_2 - w_1$ is a power of the characteristic. So, whenever this does not hold, the code must be nonprojective. (This settles, e.g., a question in [54].)

1.9 Brouwer - van Eupen duality

BROUWER & VAN EUPEN [10] gives a correspondence between arbitrary projective codes and arbitrary two-weight codes. The correspondence can be said to be 1-1, even though there are choices to be made in both directions.

1.9.1 From projective code to two-weight code

Given a linear code C with length n, let n_C be its *effective length*, that is, the number of coordinate positions where C is not identically zero.

Let C be a projective $[n, m, d]_q$ code with nonzero weights w_1, \ldots, w_t . In a subcode D of codimension 1 in C these weights occur with frequencies f_1, \ldots, f_t , where $\sum f_i = q^{m-1} - 1$ and $\sum (n_D - w_i)f_i = n_D(q^{m-2} - 1)$. It follows that for arbitrary choice of α, β the sum $\sum (\alpha w_i + \beta)f_i$ does not depend on D but only on n_D .

Since C is projective, we have $n_D = n - 1$ for n subcodes D, and $n_D = n$ for the remaining $\frac{q^m - 1}{q - 1} - n$ subcodes of codimension 1. Therefore, the above sum takes only two values.

Fix α, β in such a way that all numbers $\alpha w_i + \beta$ are nonnegative integers,

and consider the multiset Y in PC consisting of the 1-spaces $\langle c \rangle$ with $c \in C$ taken $\alpha w + \beta$ times, where w is the weight of c. Since an arbitrary hyperplane D meets Y in $\alpha q^{m-2}n_D + \beta \frac{q^m-1}{q-1}$ points, the set Y defines a two-weight code of length $|Y| = \beta \frac{q^m-1}{q-1} + q^{m-1}\alpha n$, dimension m, and weights $w = |Y| - \frac{|Y| - \beta}{q}$ and $w' = w + \alpha q^{m-2}$.

For example, if we start with the unique $[16, 5, 9]_3$ -code, with weight enumerator $0^1 \ 9^{116} \ 12^{114} \ 15^{12}$ and take $\alpha = 1/3$, $\beta = -3$, we find a $[69, 5, 45]_3$ -code with weight enumerator $0^1 \ 45^{210} \ 54^{32}$. With $\alpha = -1/3$, $\beta = 5$, we find a $[173, 5, 108]_3$ -code with weight enumerator $0^1 \ 108^{32} \ 117^{210}$.

1.9.2 From two-weight code to projective code

Let C be a two-weight $[n, m, d]_q$ -code with nonzero weights w_1 and w_2 . Let X be the corresponding projective multiset. Let Y be the set of hyperplanes meeting X in $|X| - w_2$ points. Then Y defines a projective code of length $|H| = \frac{1}{w_2 - w_1} (nq^{m-1} - w_1 \frac{q^m - 1}{q-1})$ and dimension m, and with a number of distinct weights equal to the number of distinct multiplicities in X.

1.9.3 Remarks

In both directions there is a choice: pick α, β or pick $w_2 \in \{w_1, w_2\}$. The correspondence is 1-1 in the sense that if C^* is a BvE-dual of C, then C is a BvE-dual of C^* .

If the projective code C one starts with has only two different weights, then one can choose α, β so that Y becomes a set and the BvE-dual coincides with the Delsarte dual.

For another introduction and further examples, see HILL & KOLEV [43].

In the above, the degree 1 polynomial $p(w) = \alpha w + \beta$ was used. One can use higher degree polynomials when more information about subcodes is available. See the last section of [10] and DODUNEKOV & SIMONIS [30].

See also [47], [64] (Lemma 5.1), and [6].

- S. Ball, A. Blokhuis & F. Mazzocca, Maximal arcs in Desarguesian planes of odd order do not exist, Combinatorica 17 (1997) 31–41
- [2] L. Batten & J. M. Dover, Some sets of type (m, n) in cubic order planes, Des. Codes Cryptogr. 16 (1999) 211–213.
- [3] L. D. Baumert, W. H. Mills & R. L. Ward, Uniform Cyclotomy, J. Number Th. 14 (1982) 67–82.
- [4] A. Blokhuis & M. Lavrauw, Scattered spaces with respect to a spread in PG(n,q), Geom. Dedicata **81** (2000) 231–243.
- [5] A. Blokhuis & M. Lavrauw, On two-intersection sets with respect to hyperplanes in projective spaces, J. Comb. Th. (A) 99 (2002) 377–382.
- [6] Iliya G. Bouyukliev, Classification of Griesmer codes and dual transform, Discr. Math. 309 (2009) 4049–4068.
- [7] Iliya Bouyukliev, Veerle Fack, Wolfgang Willems & Joost Winne, Projective two-weight codes with small parameters and their corresponding graphs, Des. Codes Cryptogr. 41 (2006) 59–78.
- [8] A. E. Brouwer, Some new two-weight codes and strongly regular graphs, Discrete Appl. Math. 10 (1985) 111–114.
- [9] A. E. Brouwer, A. M. Cohen & A. Neumaier, *Distance-regular graphs*, Springer, 1989.
- [10] A. E. Brouwer & M. van Eupen, The correspondence between projective codes and 2-weight codes, Des. Codes Cryptogr. 11 (1997) 261–266.
- [11] A. E. Brouwer, A. V. Ivanov & M. H. Klin, Some new strongly regular graphs, Combinatorica 9 (1989) 339–344.
- [12] A. E. Brouwer, R. M. Wilson & Qing Xiang, Cyclotomy and Strongly Regular Graphs, J. Alg. Combin. 10 (1999) 25–28.
- [13] A. R. Calderbank & W. M. Kantor, The geometry of two-weight codes, Bull. London Math. Soc. 18 (1986) 97–122.

- [14] Eun Ju Cheon, Yuuki Kageyama, Seon Jeong Kim, Namyong Lee & Tatsuya Maruuta, A construction of two-weight codes and its applications, Bull. Korean Math. Soc. 54 (2017) 731–736.
- [15] F. De Clerck & M. Delanote, Two-weight codes, partial geometries and Steiner systems, Des. Codes Cryptogr. 21 (2000) 87–98.
- [16] J. H. Conway & N. J. A. Sloane, Sphere packings, lattices and groups, Springer, 1988.
- [17] A. Cossidente, N. Durante, G. Marino, T. Penttila & A. Siciliano, The geometry of some two-character sets, Des. Codes Cryptogr. 46 (2008) 231–241.
- [18] A. Cossidente & Oliver H. King, Some two-character sets, Des. Codes Cryptogr. 56 (2010) 105–113.
- [19] A. Cossidente & G. Marino, Veronese embedding and two-character sets, Des. Codes Cryptogr. 42 (2007) 103–107.
- [20] A. Cossidente & H. Van Maldeghem, The exceptional simple group $G_2(q)$, q even, and two-character sets, J. Combin. Theory (A) **114** (2007) 964–969.
- [21] Ph. Delsarte, Weights of linear codes and strongly regular normed spaces, Discrete Math. 3 (1972) 47–64.
- [22] Ph. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. 10 (1973).
- [23] R. H. F. Denniston, Some maximal arcs in finite projective planes, J. Comb. Theory 6 (1969) 317–319.
- [24] M. J. de Resmini, A 35-set of type (2,5) in PG(2,9), J. Combin. Theory
 (A) 45 (1987) 303–305.
- [25] M. J. de Resmini & G. Migliori, A 78-set of type (2,6) in PG(2,16), Ars Combinatoria 22 (196) 73–75.
- [26] A. De Wispelaere & H. Van Maldeghem, Codes from generalized hexagons, Des. Codes Cryptogr. 37 (2005) 435–448.
- [27] A. De Wispelaere & H. Van Maldeghem, Some new two-character sets in $PG(5,q^2)$ and a distance-2 ovoid in the generalized hexagon H(4), Discrete Math. **308** (2008) 2976–2983.
- [28] Cunsheng Ding & Jing Yang, Hamming weights in irreducible cyclic codes, Discr. Math. 313 (2013) 434–446.
- [29] Luis A. Dissett, Combinatorial and computational aspects of finite geometries, Ph.D. Thesis, Toronto, 2000.

- [30] S. Dodunekov & J. Simonis, Codes and projective multisets, Electr. J. Combin. 5 (1998) R37.
- [31] M. van Eupen, Some new results for ternary linear codes of dimension 5 and 6, IEEE Trans. Inf. Th. 41 (1995) 2048–2051.
- [32] Tao Feng & Qing Xiang, Strongly regular graphs from unions of cyclotomic classes, J. Combin. Theory (B) 102 (2012) 982–995.
- [33] F. Fiedler & M. Klin, A strongly regular graph with the parameters (512, 73, 438, 12, 10) and its dual graph, Preprint MATH-AL-7-1998, Technische Universität Dresden, July 1998, 23 pp.
- [34] D. A. Foulser & Michael J. Kallaher, Solvable, flag-transitive, rank 3 collineation groups, Geometriae Dedicata 7 (1978) 111–130.
- [35] Gennian Ge, Qing Xiang & Tao Yuan, Constructions of strongly regular Cayley graphs using index four Gauss sums, J. Alg. Combin. 37 (2013) 313–329.
- [36] J.-M. Goethals & J. J. Seidel, Strongly regular graphs derived from combinatorial designs, Canad. J. Math. 22 (1970) 597–614.
- [37] T. A. Gulliver, Two new optimal ternary two-weight codes and strongly regular graphs, Discr. Math. 149 (1996) 83–92.
- [38] T. A. Gulliver, A new two-weight code and strongly regular graph, Appl. Math. Letters 9 (1996) 17–20.
- [39] N. Hamada & M. Deza, A survey of recent works with respect to a characterization of an (n, k, d; q)-code meeting the Griesmer bound using a min.hyper in a finite projective geometry, Discr. Math. 77 (1989) 75–87.
- [40] N. Hamilton, Strongly regular graphs from differences of quadrics, Discr. Math. 256 (2002) 465–469.
- [41] Raymond Hill, On the largest size of cap in $S_{5,3}$, Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat. (8) **54** (1973) 378–384.
- [42] R. Hill, Caps and groups, pp. 389–394 in: Proc. Rome 1973, Atti dei Convegni Lincei, 1976.
- [43] R. Hill & E. Kolev, A survey of recent results on optimal linear codes, pp. 127–152 in: F.C. Holroyd, et al. (eds.), Combinatorial Designs and their Applications, CRC Press, Boca Raton, 1999.
- [44] R. Hill & H. Ward, A geometric approach to classifying Griesmer codes, Des. Codes Cryptogr. 44 (2007) 169–196.
- [45] Takuya Ikuta & Akihiro Munemasa, A new example of non-amorphous association schemes, Contrib. to Discr. Math. 3 (2008) 31–36.

- [46] T. Ikuta & A. Munemasa, Pseudocyclic association schemes and strongly regular graphs, European J. Combin. 31 (2010) 1513–1519.
- [47] D. B. Jaffe & J. Simonis, New binary linear codes which are dual transforms of good codes, IEEE Trans. Inf. Th. 45 (1999) 2136–2137.
- [48] D. Jungnickel & V. D. Tonchev, The classification of antipodal twoweight linear codes, Finite Fields Appl. 50 (2018) 372–381.
- [49] W. M. Kantor, Exponential numbers of two-weight codes, difference sets and symmetric designs, Discr. Math. 46 (1983) 95–98.
- [50] Axel Kohnert, Constructing two-weight codes with prescribed groups of automorphisms, Discr. Appl. Math. 155 (2007) 1451–1457.
- [51] C. L. M. de Lange, Some new cyclotomic strongly regular graphs, J. Alg. Combin. 4 (1995) 329–330.
- [52] Martin W. Liebeck, The affine permutation groups of rank three, Proc. London Math. Soc. (3) 54 (1987) 477–516.
- [53] J. H. van Lint & A. Schrijver, Constructions of strongly regular graphs, two-weight codes and partial geometries by finite fields, Combinatorica 1 (1981) 63–73.
- [54] Gaojun Luo & Xiwang Cao, A construction of linear codes and stronglyb regular graphs from q-polynomials, Discr. Math. 340 (2017) 2262–2274.
- [55] M. Martis, J. Bamberg & S. Morris, An enumeration of certain projective ternary two-weight codes, J. Combin. Designs 24 (2016) 21–35.
- [56] R. J. McEliece & H. Rumsey, jr., Euler products, cyclotomy and coding, J. Number Th. 4 (1972) 302–311.
- [57] Koji Momihara, Strongly regular Cayley graphs, skew Hadamard difference sets, and rationality of relative Gauss sums, European J. Combin. 34 (2013) 706–723.
- [58] Koji Momihara, Strongly regular Cayley graphs on F_{2²(2s+2)} from cyclotomy, Finite Fields Appl. 25 (2014) 280–292.
- [59] T. Penttila & G. F. Royle, Sets of type (m, n) in the affine and projective planes of order nine, Des. Codes Cryptogr. 6 (1995) 229–245.
- [60] A. Rao & N. Pinnawala, A family of two-weight irreducible cyclic codes, IEEE Trans. Inf. Theory 56 (2010) 2568–2570.
- [61] B. G. Rodrigues, A projective two-weight code related to the simple group Co1 of Conway, Graphs Combin. 34 (2018) 509–521.

- [62] B. Schmidt & C. White, All two-weight irreducible cyclic codes?, Finite Fields Appl. 8 (2002) 1–17.
- [63] Leo Storme, Linear codes meeting the Griesmer bound, minihypers and geometric applications, Le Matematiche 59 (2004) 367–392.
- [64] M. Takenaka, K. Okamoto & T. Maruta, On optimal non-projective ternary linear codes, Discr. Math. 308 (2008) 842–854.
- [65] G. Vega, A critical review and some remarks about one- and two-weight irreducible cyclic codes, Finite Fields Appl. 33 (2015) 1–13.
- [66] Fan Wu, Constructions of Strongly Regular Cayley Graphs Using Even Index Gauss Sums, J. Combin. Designs 21 (2013) 432–446.