Strongly regular graphs satisfying the 4-vertex condition

A. E. Brouwer¹ & F. Ihringer² & W. M. Kantor¹

22 Jun 2021

Abstract

We survey the area of strongly regular graphs satisfying the 4-vertex condition and find several new families. We describe a switching operation on collinearity graphs of polar spaces that produces cospectral graphs. The obtained graphs satisfy the 4-vertex condition if the original graph belongs to a symplectic polar space.

1 Introduction

In this note we look at graphs with high combinatorial regularity, where this regularity is not an obvious consequence of properties of their group of automorphisms.

A graph Γ is said to satisfy the *t*-vertex condition if, for all triples (T, x_0, y_0) consisting of a *t*-vertex graph *T* together with two distinct distinguished vertices x_0, y_0 of *T*, and all pairs of distinct vertices x, y of Γ , the number of isomorphic copies of *T* in Γ , where the isomorphism maps x_0 to x and y_0 to y, does not depend on the choice of the pair x, y but only on whether x, y are adjacent or nonadjacent.

This concept was introduced by Hestenes & Higman [13] (who refer to the unpublished Sims [32]) in order to study rank 3 graphs. Clearly, a rank 3 graph satisfies the *t*-vertex condition for all *t*. If the graph Γ satisfies the *t*-vertex condition, where Γ has *v* vertices and $3 \leq t \leq v$, then Γ also satisfies the (t-1)-vertex condition. A graph satisfies the 3-vertex condition if and only if it is strongly regular (or complete or edgeless). It satisfies the *v*-vertex condition if and only if it is rank 3. Thus, we get a hierarchy of conditions of increasing strength between strongly regular and rank 3.

The present paper will focus almost exclusively on the case t = 4. A simple criterion for the 4-vertex condition is given in Proposition 2.1. Previously not many graphs were known that satisfy the 4-vertex condition without being rank 3. Here we survey the known examples and give several new constructions. One of our constructions proceeds by switching symplectic graphs (see Section 7). As a consequence we find

 $^{^{1}}$ Retired

²Dept. of Mathematics: Analysis, Logic and Discrete Math., Ghent University, Belgium. E-mail: ferdinand.ihringer@ugent.be

Theorem 1.1 For $v \ge 4$ there are at least $\lfloor v^{1/6} \rfloor$! strongly regular graphs of order at most v satisfying the 4-vertex condition.

It follows that among all non-isomorphic strongly regular graphs of order at most v that satisfy the 4-vertex condition the fraction that is determined by their spectrum goes to 0 when v goes to infinity.

2 The 4-vertex condition

A graph of order v is called *strongly regular* with parameters (v, k, λ, μ) if it is neither complete nor edgeless, each vertex has degree k, any two adjacent vertices have exactly λ common neighbors, and any two non-adjacent vertices have exactly μ common neighbors.

A graph with vertex set V has rank r if its automorphism group is transitive on V and has exactly r orbits on $V \times V$. Rank 3 graphs are strongly regular.

If x is a vertex of the graph Γ , then the *local graph* $\Gamma(x)$ of Γ at x is the induced subgraph in Γ on the neighborhood of x. We say that Γ is *locally* P when all local graphs of Γ have property P. If Γ is strongly regular, then its *1st subconstituent* (at a vertex x) is the local graph at x, while its 2nd subconstituent (at x) is the induced subgraph on the non-neighborhood of x. If xy is an edge (resp. nonedge) in Γ , then the subgraph induced on $\Gamma(x) \cap \Gamma(y)$ is called a λ -graph (resp. μ -graph).

See [6] for further information about strongly regular graphs.

Details on the parameters of graphs satisfying the 4-vertex condition are given in [13]. In particular, we have the following simple criterion for the 4vertex condition:

Proposition 2.1 (Sims [32]) A strongly regular graph Γ with parameters (v, k, λ, μ) satisfies the 4-vertex condition, with parameters (α, β) , if and only if the number of edges in $\Gamma(x) \cap \Gamma(y)$ is α (resp. β) whenever the vertices x, y are adjacent (resp. nonadjacent). In this case, $k(\binom{\lambda}{2} - \alpha) = \beta(v - k - 1)$.

The equality here follows by counting 4-cliques minus an edge.

It immediately follows that the collinearity graph of a generalized quadrangle (cf. [28]) or partial quadrangle (cf. [7]) satisfies the 4-vertex condition (with $\alpha = {\lambda \choose 2}$ and $\beta = 0$). The same holds for a graph Γ with $\lambda \leq 1$.

If Γ is locally strongly regular, say with local parameters (v', k', λ', μ') (where clearly v' = k and $k' = \lambda$), then $\Gamma(x) \cap \Gamma(y)$ has valency λ' (resp. μ') when $x \sim y$ (resp. $x \not\sim y$) so that Γ satisfies the 4-vertex condition with $\alpha = \lambda \lambda'/2$ and $\beta = \mu \mu'/2$.

2.1 A few rank 4 examples

Below we give a small table with the parameters of some edge-transitive rank 4 graphs satisfying the 4-vertex condition. Except for the example with group HJ.2 due to Reichard [30], these do not seem to have been noticed in print.

v	k	λ	μ	λ'	μ'	α	β	group	name	ref
144	55	22	20	-	9	87	90	$M_{12}.2$		
280	36	8	4	-	2	1	4	HJ.2		[30]
300	104	28	40	-	8	78	160	$PGO_5(5)$	$NO_{5}^{-}(5)$	§6
325	144	68	60	-	30	1153	900	$PGO_5(5)$	$NO_{5}^{+}(5)$	§6
512	196	60	84	14	20	420	840	$2^9.\Gamma L_3(8)$	dual hyperoval	$\S4$
729	112	1	20	0	0	0	0	$3^{6}.2.L_{3}(4).2$	Games graph	[5]
1120	729	468	486	297	306	69498	74358	$PSp_{6}(3).2$	disj. t.i. planes	§5
1849	462	131	110	-	-	2980	1845	$43^2:(42 \times D_{22})$	power diff. set	§3.6

The numbers λ', μ' give the valency of the λ - and μ -graphs in case these are regular (and then $\alpha = \lambda \lambda'/2$ and $\beta = \mu \mu'/2$).

The examples on 144 and 729 vertices also satisfy the 5-vertex condition.

2.2 Strongly regular graphs with strongly regular subconstituents

As we saw, graphs that are locally strongly regular satisfy the 4-vertex condition. Sometimes it follows that also the 2nd subconstituents must be strongly regular.

Lemma 2.2 Suppose that a strongly regular graph with parameters $(v, k, \lambda, \mu) = (4t^2, 2t^2 - \varepsilon t, t^2 - \varepsilon t, t^2 - \varepsilon t)$ (where $\varepsilon = \pm 1$) has first subconstituents that are strongly regular with parameters $(v', k', \lambda', \mu') = (2t^2 - \varepsilon t, t^2 - \varepsilon t, \frac{1}{2}t(t-\varepsilon), t(\frac{1}{2}t-\varepsilon))$). Then its second subconstituents are strongly regular with parameters $(v'', k'', \lambda', \mu') = (2t^2 - \varepsilon t, t^2 - \varepsilon t, \frac{1}{2}t(t-\varepsilon), t(\frac{1}{2}t-\varepsilon))$.

More generally, the spectrum of the 2nd subconstituent at any vertex of a strongly regular graph follows from that of the 1st subconstituent—see [8], Theorem 5.1.

Call the three parameter sets in the above lemma $A(\varepsilon t)$, $B(\varepsilon t)$, and $C(\varepsilon t)$, respectively. They occur again in §3.3. The parameter sets A(t) and A(-t)are known as (negative) Latin square parameters $LS_t(2t)$ (resp. $NL_t(2t)$). The complementary graphs have parameters $LS_{t+1}(2t)$ (resp. $NL_{t-1}(2t)$).

Cameron, Goethals & Seidel [8] studied the situation of a primitive strongly regular graph such that, for some vertex, both subconstituents are strongly regular, and found that such a graph either has a vanishing Krein parameter q_{11}^1 or q_{22}^2 , or has Latin square or negative Latin square parameters. They conjectured that every non-grid example of the latter has parameters as in the above lemma or has a complement with these parameters.

3 Survey of the known examples and results

3.1 Complements

A graph satisfies the *t*-vertex condition if and only if its complement does.

3.2 Generalized quadrangles

Higman [14] observed that the collinearity graphs of generalized quadrangles satisfy the 4-vertex condition (and there are many examples that are not rank 3, cf. [23]).

More generally the 4-vertex condition holds for partial quadrangles. For example, the Hill graph with parameters $(v, k, \lambda, \mu) = (4096, 234, 2, 14)$ (derived from the cap constructed in [15]) has a rank 10 group and satisfies the 4-vertex condition with $\alpha = 1, \beta = 0$.

Reichard [31] showed that the collinearity graphs of generalized quadrangles satisfy the 5-vertex condition, and that the collinearity graphs of generalized quadrangles $GQ(s, s^2)$ satisfy the 7-vertex condition.

More generally the 5-vertex condition holds for partial quadrangles.

3.3 Binary vector spaces with a quadratic form

The first non-rank-3 graph satisfying the 5-vertex condition was constructed by A. V. Ivanov [21]: a strongly regular graph Γ_0 whose subconstituents Γ_1, Γ_2 satisfy the 4-vertex condition. The parameters are as follows.

	1	$_{k}$,		β	1 - 1	remarks
								rank 4: $1 + 120 + 120 + 15$
Γ_1	120	56	28	24	216	144	$2^{12}\cdot 3^2\cdot 5\cdot 7$	rank 4: $1 + 56 + 56 + 7$
Γ_2	135	64	28	32	168	192	$2^{12}\cdot 3^2\cdot 5\cdot 7$	intransitive: $120 + 15$

In [4] an infinite family of graphs $\Gamma^{(m)}$ $(m \ge 1)$ is constructed by taking as vertex set \mathbb{F}_2^{2m} , where vectors are adjacent when the line joining them meets the hyperplane at infinity in a fixed hyperbolic quadric minus a maximal t.i. subspace. The graphs $\Gamma^{(m)}$ have parameters $A(2^{m-1})$ (see §2.2). They have a rank 4 group (for $m \ge 4$) and satisfy the 4-vertex condition.

The local graphs $\Delta^{(m)}$ are strongly regular with parameters $B(2^{m-1})$. They have a rank 4 group (for $m \ge 4$) and satisfy the 4-vertex condition.

By Lemma 2.2 also the 2nd subconstituents $E^{(m)}$ are strongly regular, with parameters $C(2^{m-1})$.

We checked by computer that the graph $\Gamma^{(4)}$ is isomorphic to the above Γ_0 .

In [30] it is shown that the graphs $\Gamma^{(m)}$ satisfy the 5-vertex condition.

In [29] it is shown that the graphs $\Gamma^{(m)}$ are triplewise 5-regular, a.k.a. (3,5)-regular, where (s, t)-regularity is the analog of the t-vertex condition where s instead of two vertices are distinguished. It follows that the 2nd subconstituents $E^{(m)}$ of the graphs $\Gamma^{(m)}$ also satisfy the 4-vertex condition.

In [22], two infinite families of graphs are constructed. One is the above $\Gamma^{(m)}$. The second family has members $\Sigma^{(m)}$ with vertex set \mathbb{F}_2^{2m} , where vectors are adjacent when the line joining them hits the hyperplane at infinity either in a fixed elliptic quadric minus a maximal t.i. subspace S or in $S^{\perp} \setminus S$. The graphs $\Sigma^{(m)}$ have parameters $A(-2^{m-1})$, have rank 5 (for $m \geq 5$), and satisfy the 4-vertex condition.

Let $\Gamma(V, X)$ be the graph on a vector space V where two vectors are adjacent precisely when the joining line hits the subset X of the hyperplane PV at infinity. Since $\Gamma(V, X)$ is strongly regular if and only if X is a 2-character set ([11]), that is, if and only if $|X \cap H|$ takes only two distinct values when H runs through the hyperplanes of PV, the set $(Q \setminus S) \cup (S^{\perp} \setminus S)$ is a 2-character set when Q is an elliptic quadric, and S a maximal t.i. subspace.

Let V be a vector space over \mathbb{F}_2 . Then the local graph of $\Gamma(V, X)$ is the collinearity graph of the partial linear space with point set X and whose lines are the projective lines (of size 3) contained in X.

The local graphs $T^{(m)}$ are strongly regular with parameters $B(-2^{m-1})$. They are intransitive (for $m \geq 5$).

It follows from Lemma 2.2 that also the 2nd subconstituents $\Upsilon^{(m)}$ are strongly regular, with parameters $C(-2^{m-1})$. There is a tower of graphs here: If Υ is the 2nd subconstituent of $\Sigma^{(m)}$ at a vertex x, and $s \in S$, then the local graph of Υ at its vertex x + s is isomorphic to $\Sigma^{(m-1)}$. (For a proof, see Appendix A.)

In [22] it is conjectured that the graphs $\Sigma^{(m)}$ satisfy the 5-vertex condition, and that the graphs $T^{(m)}$ and $\Upsilon^{(m)}$ satisfy the 4-vertex condition. The former was proved in [30]. The latter is proved in Appendix A. In [29] it is announced that $\Sigma^{(m)}$ is even (3,5)-regular, but we are not aware of a proof in print.

3.4 Block graphs of Steiner triple systems

Higman [14] investigated for which v-point Steiner triple systems the block graph satisfies the 4-vertex condition. He found that either the system is a projective

space PG(m, 2) or v is one of 9, 13, 25. In [25] the cases 13 and 25 are ruled out, so that the only other example is the affine plane AG(2, 3). The examples are rank 3.

3.5 Smallest example

In [26] it is shown that the smallest non-rank-3 strongly regular graphs satisfying the 4-vertex condition have v = 36 vertices. There are three examples. All have $(v, k, \lambda, \mu) = (36, 14, 4, 6)$ and $\alpha = 0, \beta = 4$.

3.6 Cyclotomic examples

Given (q, e, J), where $e \mid (q-1)/2$, and a fixed primitive element η of \mathbb{F}_q , consider the cyclotomic graph with vertex set \mathbb{F}_q , where two elements are adjacent when their difference is in $D = \{\eta^{ie+j} \mid 0 \leq i < (q-1)/e, j \in J\}$. In some cases this yields a strongly regular graph that satisfies the 4-vertex condition. We give a few examples. The examples on 11^2 and 23^2 vertices are due to Klin & Pech [27].

q	p^f	e	J	η	α	β	\mathbf{rk}
1849	43^{2}	4	$\{0\}$	any	2980	1845	4
146689	383^{2}	4	$\{0\}$	any	11353825	10662960	4
121	11^{2}	6	$\{0, 1, 2\}$	any	200	206	5
625	5^{4}	6	$\{0, 1, 2\}$	any	5913	6022	5
5041	71^{2}	6	$\{0, 1, 2\}$	any	395641	396270	5
529	23^{2}	8	$\{0, 1, 2, 3\}$	$\eta^2 = \eta + 4$	4215	4300	5

In all cases $q = p^f$ where p is semiprimitive mod e (that is, $e \mid (p^i + 1)$ for some i), so that the parameters of the strongly regular graph can be found in [6, Thm. 7.3.2].

4 Graphs from hyperovals

In [17], Huang, Huang & Lin constructed various families of graphs. The complement of one of them can be described as follows ([2]). For $q = 2^m$, take \mathbb{F}_q^3 as the vertex set of Γ . Let π be the plane at infinity of \mathbb{F}_q^3 . Let H^* be a dual hyperoval of π (that is, a set of q + 2 lines, no three on a point). The plane π is partitioned into two parts, $\frac{1}{2}(q+1)(q+2)$ points on two lines of H^* and $\frac{1}{2}q(q-1)$ exterior points on no line of H^* . Two vertices of Γ are adjacent when the line joining them hits π in one of the exterior points. Then Γ is strongly regular and has parameters

$$(v,k,\lambda,\mu) = \left(q^3, \frac{1}{2}q(q-1)^2, \frac{1}{4}q(q-2)(q-3), \frac{1}{4}q(q-1)(q-2)\right).$$

Its local graphs are strongly regular with parameters

$$\left(\frac{1}{2}q(q-1)^2, \frac{1}{4}q(q-2)(q-3), \frac{1}{8}q(q^2-9q+22), \frac{1}{8}q(q-3)(q-4)\right).$$

Hence, as noted in Section 2, Γ satisfies the 4-vertex condition. If m = 3, then Γ has rank 4.

5 Disjoint t.i. planes in symplectic 6-space

Let V be a 6-dimensional vector space over \mathbb{F}_q , provided with a nondegenerate symplectic form. Let Γ be the graph with as vertices the totally isotropic planes, adjacent when disjoint.

Proposition 5.1 The graph Γ is strongly regular, with parameters $v = (q^3 + 1)(q^2 + 1)(q + 1)$, $k = q^6$, $\lambda = q^2(q^3 - 1)(q - 1)$, $\mu = (q - 1)q^5$. If q is even, then Γ is rank 3, otherwise rank 4. Its local graph Δ is strongly regular with parameters v' = k, $k' = \lambda$, $\lambda' = \mu' - q^2(q - 2)$ and $\mu' = q^2(q - 1)(q^3 - q^2 - 1)$. It follows that Γ satisfies the 4-vertex condition.

For convenience, we give the parameters of $\overline{\Delta}$, the complement of Δ : $\overline{v} = q^6$, $\overline{k} = (q^2 + 1)(q^3 - 1)$, $\overline{\lambda} = q^4 + q^3 - q^2 - 2$, $\overline{\mu} = q^4 + q^2$.

Proof. The dual polar graph Σ belonging to $Sp_6(q)$ is distance-regular of diameter 3 and has eigenvalue -1. It follows that its distance-3 graph Γ is strongly regular (see [3], Prop. 4.2.17). More generally, the distance 1-or-2 graph of the symplectic dual polar space $Sp_{2m}(q)$ is distance-regular (cf. [3], Prop. 9.4.10). For m = 3 it is the complement of Γ .

For any vertex x, the subgraph induced by Σ on $\Sigma_3(x)$ is isomorphic to the symmetric bilinear forms graph on \mathbb{F}_q^3 (see [3], Prop. 9.5.10). If q is odd, then distance j (j = 0, 1, 2, 3) in $\Sigma_3(x)$ corresponds to $\operatorname{rk}(f - g) = j$ in the symmetric bilinear forms graph and hence to distance $\lfloor (j + 1)/2 \rfloor$ in the quadratic forms graph (see [3], §9.6). It follows that Δ is the complement of the quadratic forms graph, and has parameters as claimed.

If q is even, then Γ is rank 3 (by triality, it is the complement of the $O_8^+(q)$ polar graph), and Δ is the complement of the rank 3 graph $VO_6^+(q)$, with parameters as claimed. \Box

A more direct proof is given in Appendix B.

6 Nonsingular points joined by a tangent

Let V be a vector space of dimension 2m + 1 over \mathbb{F}_q with q odd, and let Q be a nondegenerate quadratic form on V. We also use Q as the symbol for the set of singular projective points.

The projective space PV has $(q^{2m+1}-1)/(q-1)$ points, $(q^{2m}-1)/(q-1)$ singular, and q^{2m} nonsingular. The nonsingular points come in two types: there are $\frac{1}{2}q^m(q^m + \varepsilon)$ points of type ε (where $\varepsilon = \pm 1$), with $\varepsilon = +1$ (resp. -1) for points x for which x^{\perp} is hyperbolic (resp. elliptic).

Consider the graph $NO_{2m+1}^{\varepsilon}(q)$ that has as vertex set the set of nonsingular points of type ε , where two points are adjacent when the joining line is a tangent.

Proposition 6.1 (Wilbrink [34], cf. [5]) Let $m \ge 2$. The graph $NO_{2m+1}^{\varepsilon}(q)$ is strongly regular with parameters $v = \frac{1}{2}q^m(q^m + \varepsilon)$, $k = (q^{m-1} + \varepsilon)(q^m - \varepsilon)$, $\lambda = 2(q^{2m-2} - 1) + \varepsilon q^{m-1}(q - 1)$, $\mu = 2q^{m-1}(q^{m-1} + \varepsilon)$.

For m = 1, $\varepsilon = -1$ the graph is edgeless. For m = 1, $\varepsilon = 1$ we have the triangular graph T(q + 1). Wilbrink also handled the case of even q. We give an explicit proof here; for a different and more general proof see [1].

Proof. The neighbors of a vertex x lie on the tangents joining x with a singular point of x^{\perp} , and x^{\perp} has $(q^{m-1} + \varepsilon)(q^m - \varepsilon)/(q - 1)$ singular points. This gives the value of k.

A common neighbor z of two adjacent vertices x, y lies on the line xy (and there are q-2 choices) or on some other tangent T on x. In the latter case the plane $\langle x, y, z \rangle$ meets Q in a conic or double line. If it is a conic, then z is uniquely determined on T by the fact that yz is the tangent on y other than xy. If it is a double line, then each nonsingular point of $T \setminus \{x\}$ is suitable. Let p be the singular point on xy. Then $\{p, x\}^{\perp}/\langle p \rangle$ is a nondegenerate

(2m-2)-space of type ε , and has $a = (q^{m-2} + \varepsilon)(q^{m-1} - \varepsilon)/(q-1)$ singular points. It follows that xy is in a planes that hit Q in a double line, and in q^{2m-2} planes that hit Q in a conic. Consequently, $\lambda = q - 2 + q^{2m-2} + (q-1)qa$, as desired.

A common neighbor z of two nonadjacent vertices x, y determines a nondegenerate plane $\pi = \langle x, y, z \rangle$ in which xz and yz are tangents, so that x, y, z are exterior points. Now x, y are on two tangents each, and π contains 4 common neighbors of x, y. If Q is a quadratic form on a (2m+1)-space, then a point p is exterior if and only if $(-1)^m \det(Q) Q(p)$ is a nonzero square. In order to have p exterior in π but a ε -point in V, the (2m-2)-space π^{\perp} must be an ε -subspace of the (2m-1)-space $\{x,y\}^{\perp}$. Since there are $b = \frac{1}{2}q^{m-1}(q^{m-1}+\varepsilon)$ such ε -subspaces, we find $\mu = 4b$, as desired. П

The graph has rank (q+3)/2 [1].

For $m = 2, \varepsilon = -1$, this is the collinearity graph of a semi-partial geometry found by Metz. Its lines have size s + 1 = q and there are $t + 1 = q^2 + 1$ lines on each point. Each point outside a line has either 0 or $\alpha = 2$ neighbors on the line. See Debroey [9], voorbeeld 1.1.3d, and Debroey-Thas [10], example 1.4d, and Hirschfeld-Thas [16], p. 268, and Brouwer-van Lint [5], §7A, and Brouwer-Van Maldeghem \$8.7, example (ix).

For $m = 2, \varepsilon = +1$ this is the collinearity graph of a geometry with t + 1 = $(q+1)^2$ lines of size s+1=q on each point, such that each point outside a line has 0, 2, or q neighbors on the line ([5], §7B).

We shall prove that these graphs satisfy the 4-vertex condition. First a lemma.

Lemma 6.2 Let S be a solid such that $Q|_{S}$ is nondegenerate. Let x, y, z be distinct nonsingular points of the same type ε such that $\langle z, x \rangle$ and $\langle z, y \rangle$ are tangents and $\langle x, y \rangle$ is nondegenerate. Put $\pi = \langle x, y, z \rangle$. Then there are either 0 or 2 nonsingular points $w \in S \setminus \pi$ of type ε such that $\langle x, w \rangle$, $\langle y, w \rangle$, and $\langle z, w \rangle$ are tangents. For x, y, z given, the number of w only depends on the type of S. It equals 2 if and only if the nonzero number $2(\frac{B(z,z)B(x,y)}{B(x,z)B(y,z)}-1)\det(Q|_S)$ is a square.

Proof.

Replace x by $\frac{B(z,z)}{B(x,z)}x$ and y by $\frac{B(z,z)}{B(y,z)}y$. Then B(x,z) = B(z,z) = B(y,z). Put $x_0 = x - z$, $y_0 = y - z$, $w_0 = w - z$, then $B(x_0, z) = B(y_0, z) = B(w_0, z) = 0$. Since the lines $\langle z, x \rangle$, $\langle z, y \rangle$, and $\langle z, w \rangle$ are tangents, the points x_0, y_0, z_0 are singular, that is, $Q(x_0) = Q(y_0) = Q(w_0) = 0$. The line $\langle x, w \rangle$ is a tangent, so Q(x+tw) = 0 has a unique solution t. Now

$$Q(x+tw) = Q(z+x_0+t(z+w_0)) = Q((1+t)z+x_0+tw_0)$$

= $(1+t)^2Q(z) + Q(x_0+tw_0) = (1+t)^2Q(z) + tB(x_0,w_0).$

It follows that $(2 + \frac{B(x_0, w_0)}{Q(z)})^2 = 4$, that is $\frac{B(x_0, w_0)}{Q(z)} \in \{0, -4\}$. As $Q|_S$ is nondegenerate, $z^{\perp} \cap S$ is a nondegenerate plane. If $B(x_0, w_0) = 0$ 0, then $\langle x_0, w_0 \rangle$ is a totally singular line in this plane, impossible. Hence, $B(x_0, w_0) = -4Q(z)$. Similarly, $B(y_0, w_0) = -4Q(z)$.

In the plane $z^{\perp} \cap S$, let u be the point of intersection of the tangents through the points x_0 and y_0 and write $w_0 = ax_0 + by_0 + cu$. Then $B(x_0, u) = B(y_0, u) =$ 0 and $-4Q(z) = B(x_0, w_0) = B(x_0, ax_0 + by_0 + cu) = bB(x_0, y_0)$. Similarly, $-4Q(z) = B(y_0, w_0) = aB(x_0, y_0)$, so that $a = b = \frac{-4Q(z)}{B(x_0, y_0)}$, independent of w. Also,

$$0 = Q(w_0) = Q(ax_0 + by_0 + cu) = abB(x_0, y_0) + c^2Q(u) = \frac{16Q(z)^2}{B(x_0, y_0)} + c^2Q(u).$$

If $-B(x_0, y_0)Q(u)$ is a square, then we have two solutions for c (so also w_0 and, therefore, w) and otherwise none. Since u is an exterior point in the plane $\sigma = z^{\perp} \cap S$, the number $-Q(u) \det Q|_{\sigma}$ is a square. Also, $\det Q|_{S} = Q(z) \det Q|_{\sigma}$ and $B(x, y) = B(x_0, y_0) + B(z, z)$.

Proposition 6.3 The graph $NO_{2m+1}^{\varepsilon}(q)$ satisfies the 4-vertex condition.

Proof. By Proposition 2.1 it suffices to check for $x \neq y$ that the number of edges in $\Gamma(x) \cap \Gamma(y)$ does not depend on the choice of the points x, y, but only on whether x, y are adjacent or not.

Since Aut Γ is edge-transitive, we only need to check $\Gamma(x) \cap \Gamma(y)$ for $x \not\sim y$. Claim: this subgraph $\Gamma(x) \cap \Gamma(y)$ is regular of valency $4q^{2m-3} + 3\varepsilon q^{m-1} -$

 $4\varepsilon q^{m-2} - 1$. In other words, this is the value of μ in the local graph (which is regular, but not strongly regular).

If $x \sim z \sim y$, $x \not\sim y$, then $\pi = \langle x, y, z \rangle$ is a nondegenerate plane in which the common neighbors of x, y form a 4-cycle, so that x, y, z have two common neighbors in π , say a and b.

The plane π lies in $(q^{2m-3} - \varepsilon q^{m-2})/2$ solids of type $O^{-}(4, q)$, equally many solids of type $O^{+}(4, q)$, and $(q^{m-2} + \varepsilon)(q^{m-1} - \varepsilon)/(q - 1)$ degenerate solids.

If S is a degenerate solid through π with apex p, we see that $w \in S \setminus \pi$ is in $\Gamma(x) \cap \Gamma(y) \cap \Gamma(z)$ if and only if gets projected from p onto an element of $\{a, b, z\}$ in π . Hence, $|\Gamma(x) \cap \Gamma(y) \cap \Gamma(z) \cap S \setminus \pi| = 3(q-1)$. Hence, the total number of choices for w equals $3(q^{m-2} + \varepsilon)(q^{m-1} - \varepsilon)$.

Now let S be a nondegenerate solid on π , and let $p = S \cap \pi^{\perp}$. By Lemma 6.2, the number of w in S is 0 or 2, depending on the determinant of Q restricted to S. Since π^{\perp} contains equally many points p with Q(p) a square as with Q(p) a non-square, the total number of choices for w equals the number of choices for p which is $q^{2m-3} - \varepsilon q^{m-2}$.

So the induced subgraph on $\Gamma(x) \cap \Gamma(y)$ has valency $2 + 3(q^{m-2} + \varepsilon)(q^{m-1} - \varepsilon) + (q^{2m-3} - \varepsilon q^{m-2}) = 4q^{2m-3} + 3\varepsilon q^{m-1} - 4\varepsilon q^{m-2} - 1.$

7 Kantor switching

A *polar space* is a partial linear space such that for each line L any point outside L is collinear to either all or precisely one of the points of L. A *singular subspace* is a line-closed set of points, any two of which are collinear. The polar space is called *nondegenerate* when no point is collinear to all points. Finite nondegenerate polar spaces are the sets of totally isotropic (t.i.) or totally singular (t.s.) points and lines in a vector space over a finite field provided with a suitable symplectic, quadratic or hermitian form. The *rank* of the polar space is the (vector space) dimension of its maximal singular subspaces.

Let **P** be a nondegenerate polar space of rank $d \geq 3$ in a vector space V over \mathbb{F}_q . Its collinearity graph Γ_0 is strongly regular and satisfies the 4-vertex condition (since it is rank 3). We shall construct cospectral graphs that satisfy the 4-vertex condition (but are not rank 3) by a switching construction. Let x^{\perp} be the set of points collinear with x (including x itself).

Suppose U is a maximal singular subspace of **P** (i.e., a maximal clique in Γ_0), and let H_1, H_2 be two hyperplanes of U. We can redefine adjacency and make the points x with $x^{\perp} \cap U = H_1$ or H_2 adjacent to the points in H_2 or H_1 , respectively, and leave all other adjacencies unchanged. This is an example of WQH-switching (Wang, Qiu & Hu [33], cf. [19]) and yields a graph cospectral with Γ_0 . One can repeat this interchange of hyperplanes and get arbitrary permutations of all hyperplanes. We generalize this, even allowing different designs on U.

7.1 Construction

Let P be the point set of \mathbf{P} , and let the subset U be (the set of points of) a totally isotropic d-space. Let \mathbf{D} be a symmetric design with the same parameters as the symmetric design of points and hyperplanes of $\mathrm{PG}(d-1,q)$, so its parameters are $2 - \left(\frac{q^d-1}{q-1}, \frac{q^{d-2}-1}{q-1}, \frac{q^{d-2}-1}{q-1}\right)$. Let φ be a bijection from the set \mathcal{H} of hyperplanes of U to the blocks of \mathbf{D} . We assume that the points of U are also the points of \mathbf{D} .

Following ideas in [24] and [12] we define a graph Γ_{φ} on the vertex set of Γ_0 as follows:

- 1. Vertices in U are pairwise adjacent.
- 2. Distinct vertices $x, y \notin U$ are adjacent if $x \in y^{\perp}$.
- 3. Vertices $x \in U$, $y \notin U$ are adjacent if $x \in (y^{\perp} \cap U)^{\varphi}$.

Clearly, $\Gamma_{\varphi} = \Gamma_0$ if we take the hyperplanes of U for the blocks of **D** and φ as the identity.

Theorem 7.1 The graph Γ_{φ} is strongly regular with the same parameters as the classical graph Γ_0 .

Proof. Let x and y be any two vertices. We show that the number of common neighbors z of x, y in Γ_{φ} does not depend on φ (but depends on whether x, y are equal, adjacent or nonadjacent in Γ_{φ}).

If $x, y \in U$, then any $z \in U$ is a common neighbor. The number of $z \in P \setminus U$ such that $x, y \in (z^{\perp} \cap U)^{\varphi}$ does not depend on φ : each hyperplane H of U such that $x, y \in H^{\varphi}$ contributes $|H^{\perp} \setminus U|$ such z.

Suppose that $x, y \notin U$. Then we are counting the z in $(x^{\perp} \cap U)^{\varphi} \cap (y^{\perp} \cap U)^{\varphi}$, and also the z in $(x^{\perp} \cap y^{\perp}) \setminus U$. The numbers of such z does not depend on φ .

The remainder of the proof concerns the case $x \in U$, $y \notin U$. If $z \in U$ then the requirements are $z \neq x$ and $z \in (y^{\perp} \cap U)^{\varphi}$. The number of such z does not depend on φ .

So we need to count the $z \notin U$. First set $I := y^{\perp} \cap U$, so $Y := \langle y, I \rangle$ is totally isotropic. If $z \in Y$ then $I^{\varphi} = (z^{\perp} \cap U)^{\varphi}$, and x, z are adjacent if and only if x, y are adjacent. The number of such z is independent of φ .

It remains to count the z in $y^{\perp} \setminus Y$ such that $x \in (z^{\perp} \cap U)^{\varphi}$; here $z^{\perp} \cap U \neq I$ as $z \notin Y$. Let $H \neq I$ be a hyperplane of U such that $x \in H^{\varphi}$. The number of H does not depend on φ (note that $x \in I^{\varphi}$ if and only if x, y are adjacent in Γ_{φ}). We show that the number of z in $y^{\perp} \setminus Y$ with $z^{\perp} \cap U = H$ does not depend on φ or H. Using bars to project $(H \cap I)^{\perp}$ into the nondegenerate rank 2 polar space $(H \cap I)^{\perp}/(H \cap I)$, we see totally isotropic lines \overline{U} and \overline{Y} meeting at a point \overline{I} , and a nondegenerate 2-space $\langle \overline{y}, \overline{H} \rangle$; the number of \overline{z} in $\langle \overline{y}, \overline{H} \rangle^{\perp} \setminus \overline{I}$ does not depend on φ or H, so neither does the number of required z.

7.2 Isomorphisms

Emptying bijections φ

Call a vertex $e \in U$ emptying for φ if $\bigcap \{H \mid H \in \mathcal{H}, e \in H^{\varphi}\} = \emptyset$. Call φ emptying if the subspace U is spanned by emptying vertices.

Call a vertex $f \in U$ dually emptying for φ if $\bigcap \{H^{\varphi} \mid f \in H \in \mathcal{H}\} = \emptyset$. Call φ dually emptying if the subspace U is spanned by dually emptying vertices.

If a is not emptying, then $\bigcap \{H \mid H \in \mathcal{H}, a \in H^{\varphi}\} = \{b\}$ for some vertex b. If b is not dually emptying, then $\bigcap \{H^{\varphi} \mid b \in H \in \mathcal{H}\} = \{a\}$ for some vertex a. This establishes a 1-1 correspondence between not emptying vertices a and not dually emptying vertices b.

Proposition 7.2 If a permutation φ of \mathcal{H} is not dually emptying, then it is in $P\Gamma L(U)$.

Proof. Let *E* denote the set of emptying vertices of *U*, and put $A = U \setminus E$. Let *F* denote the set of dually emptying vertices of *U*, and put $B = U \setminus F$. Let $\psi: B \to A$ be the 1-1 correspondence found above. We show that if *L* is a line in *U* with $|L \cap B| \ge q$, then $L \subseteq B$ and L^{ψ} is a line.

Indeed, let $b, b' \in L \cap B$ and set $M = \langle b^{\psi}, b'^{\psi} \rangle$. Then $L \subseteq H$ is equivalent to $M \subseteq H^{\varphi}$ so that $(L \cap B)^{\psi} = M \cap A$. If all points of L are in B with a single exception w, then all points of M are in A with a single exception v, and all hyperplanes H with $w \in H$ satisfy $v \in H^{\varphi}$ (since every line meets every hyperplane), and $v = w^{\psi}$, that is, w was no exception.

If φ is not dually emptying, then there exists a hyperplane H such that $U \setminus H \subseteq B$. By the above this implies B = U and ψ is in $P\Gamma L(U)$ and induces φ on the set \mathcal{H} .

Large cliques

We use the presence of maximal cliques of various sizes to study the structure of the graphs Γ_{φ} when φ is a permutation.

Abbreviate the size $\frac{q^i-1}{q-1}$ of an *i*-space with m_i , so that maximal singular subspaces have size m_d . Since m_d is the Delsarte-Hoffman upper bound for the size of cliques in Γ_{φ} , each vertex outside a clique of this size is adjacent to precisely m_{d-1} vertices inside.

Lemma 7.3 Let $d \geq 3$.

(i) If $M \neq U$ is a maximal singular subspace of **P**, then $C = (M \setminus U) \cup \bigcap \{H^{\varphi} \mid M \cap U \subseteq H \in \mathcal{H}\}$ is a maximal clique in Γ_{φ} of size at least $q^{d-2}(q+1)$ (and $C \setminus U = M \setminus U$).

(ii) If $C \neq U$ is a maximal clique in Γ_{φ} of size at least $q^{d-2}(q+1)$, then $M = \langle C \setminus U \rangle$ is a maximal singular subspace of **P**.

If, moreover, $|C| = m_d$, then $M \setminus U = C \setminus U$.

Proof. (i) Let M be a maximal singular subspace other than U. Then $C = (M \setminus U) \cup \bigcap \{H^{\varphi} \mid M \cap U \subseteq H \in \mathcal{H}\}$ is the largest clique in Γ_{φ} containing $M \setminus U$. (Indeed, the set of hyperplanes of U of the form $m^{\perp} \cap U$ where $m \in M \setminus U$ equals the set of hyperplanes containing $M \cap U$, so C is a clique. No further point outside $U \cup C$ can be adjacent to all of C, since $|M \setminus U| > m_{d-1}$.) If $\dim M \cap U = d - 1$, then $|C| = |M| = m_d$. If $\dim M \cap U \leq d - 2$, then $|C| \geq |M \setminus U| \geq m_d - m_{d-2} = q^{d-2}(q+1)$.

(ii) Let $C \neq U$ be a maximal clique of size at least $q^{d-2}(q+1)$. If $|C \setminus U| \leq m_{d-1}$, then $|C \cap U| \geq q^{d-2}(q+1) - m_{d-1} > m_{d-2}$. The set $C \cap U$ is the intersection of sets H^{φ} , each of size m_{d-1} , and any two distinct such sets meet

in m_{d-2} points. It follows that no two different H occur, that is, $H = c^{\perp} \cap U$ is independent of the choice of $c \in C \setminus U$. Now C is contained in, and hence equals, $H^{\varphi} \cup (C \setminus U)$, and $|C \setminus U| = m_d - m_{d-1} > m_{d-1}$, a contradiction.

If S is a clique in Γ_0 , then also $\langle S \rangle$ is a clique in Γ_0 . In particular, $\langle C \setminus U \rangle$ is a singular subspace. It is maximal since $|\langle C \setminus U \rangle| > m_{d-1}$.

If $|C| = m_d$, then each vertex outside C is adjacent to precisely m_{d-1} vertices inside. Hence no point outside $C \cup U$ can be adjacent to all of $C \setminus U$. \Box

Lemma 7.4 If the permutation φ is dually emptying, then U is uniquely determined within the graph Γ_{φ} .

Proof. The subspace U is a clique of size m_d in Γ_{φ} , with the two properties (i) in the subgraph induced on its complement $P \setminus U$ all maximal cliques N have size $m_d - m_i$ (where $m_i = |\langle N \rangle \cap U|$) for some $i, 0 \le i \le d - 1$, and

(ii) the number of maximal cliques of size m_d disjoint from U equals the number of maximal singular subspaces disjoint from any given one.

Let $E \neq U$ be a clique of Γ_{φ} of size m_d with the same two properties. First we use (i) to see that $E \cap U$ must be a hyperplane in U.

Since E is a maximal clique, and φ is a permutation, $E \cap U$ is an intersection of hyperplanes and hence a subspace of U. By hypothesis, we can find a dually emptying point f of U not in E. If $g \in f^{\perp} \cap (E \setminus U)$ (g will exist unless $f^{\perp} \cap E = U \cap E$) and M is a maximal singular subspace containing f and g, and meeting U in $\{f\}$, then $C = M \setminus \{f\}$ is a maximal clique in Γ_{φ} of size $m_d - 1$. And $N = C \setminus E$ is a maximal clique in $P \setminus E$ of size $m_d - m_i - 1$ in case $|M \cap E| = m_i$. (Note that $C \setminus U = M \setminus U$.)

Why is N maximal? No point can be added since $|N| > m_{d-1}$, unless q = 2 and $|N| = |M \cap E| = m_{d-1}$. In that case, no point outside U can be added since $\langle N \rangle = M$. And no point inside U can be added since N determines all hyperplanes on f, and f is dually emptying.

Since $M \cap E \neq \emptyset$, we have $1 \leq i \leq d-1$, and $m_d - m_i - 1$ is not of the form $m_d - m_h$, violating (i). Therefore, $f^{\perp} \cap E = U \cap E$, so that $H = \langle E \setminus U \rangle \cap U$ and $H^{\varphi} = E \cap U$ are hyperplanes.

Now we use (ii) to arrive at a contradiction.

We claim that if a maximal clique F of size m_d is disjoint from E, then $\langle F \setminus U \rangle$ is disjoint from $\langle E \setminus U \rangle$. Suppose not. Since $\langle E \setminus U \rangle \setminus U = E \setminus U$ and $\langle F \setminus U \rangle \setminus U = F \setminus U$, a common vertex must lie in U. If $\langle F \setminus U \rangle$ meets U in m_e vertices with $e \geq 2$, then F meets U in a subspace of dimension e, but that would meet H^{φ} , impossible. So, $\langle F \setminus U \rangle$ meets U in a singleton $\{f\}$ on the hyperplane H. As F has size m_d , f is not dually emptying, so $\bigcap \{H^{\varphi} \mid f \in H\} = \{f'\}$ for some point f'. Now $f' \in E \cap F$, a contradiction. This shows our claim.

By the claim and the previous lemma, we have an injection from the set of maximal cliques of size m_d disjoint from E into the set of maximal singular subspaces disjoint from $\langle E \setminus U \rangle$. Since E satisfies (ii), both sets have the same size, so the injection is also a surjection.

On the other hand, since φ is dually emptying, there is a dually emptying point o in $U \setminus H$. This o lies in a maximal singular subspace O disjoint from $\langle E \setminus U \rangle$, and this O is not in the image of the surjection. Contradiction.

Proposition 7.5 Let φ and χ be permutations of \mathcal{H} . If $\Gamma_{\varphi} \cong \Gamma_{\chi}$, then φ and χ are in the same $\Pr L(U)$ -double coset in $Sym(\mathcal{H})$.

Conversely, if φ and χ are in the same $P\Gamma L(U)$ -double coset, then Γ_{φ} and Γ_{χ} are isomorphic. Double cosets arise naturally in these types of results; cf. [24, Theorem 4.4].

Proof. If φ is in $P\Gamma L(U)$, then Γ_{φ} is isomorphic to Γ_0 and its group of automorphisms is transitive on the set of maximal singular subspaces. Otherwise, U can be recognized and hence Γ_{φ} is not isomorphic to Γ_0 . Hence, we can assume in the following that φ and χ are not in $P\Gamma L(U)$.

Let $g: \Gamma_{\varphi} \to \Gamma_{\chi}$ be an isomorphism. By Lemma 7.4, it sends U to itself.

The number of common neighbors of a triple of points in U equals $\lambda - 1$ for collinear triples and is smaller for noncollinear triples. It follows that g preserves projective lines in U, and hence induces a permutation \bar{g} of \mathcal{H} that is in $P\Gamma L(U)$.

Let *h* denote the restriction of *g* to $P \setminus U$. Then *h* preserves collinearity (since we have $\{x, y, z\}^{\perp} \cap (P \setminus U) = \{x, y\}^{\perp} \cap (P \setminus U)$ for a triple of pairwise adjacent points x, y, z of $P \setminus U$ if and only if x, y, z are collinear), and hence *h* is an automorphism of the partial linear space **L** obtained from **P** by removing the points of *U*. It can be extended to an automorphism *h'* of **P**.

Indeed, we can extend h as follows. For $u \in U$, let R be a maximal t.i. subspace with $U \cap R = \{u\}$. Then $R \setminus \{u\}$ is a subspace of \mathbf{L} of size |U| - 1 and is mapped by h to a similar subspace S. In \mathbf{P} this subspace is contained in a unique maximal t.i. subspace $\langle S \rangle (= S^{\perp})$ and we can define h'(u) = v when $\langle S \rangle \setminus S = \{v\}$.

This is well-defined: if R' is a maximal t.i. subspace with $U \cap R' = \{u\}$ and R, R' meet in codimension 1, and h maps $R' \setminus \{u\}$ to S', then $\langle S \cap S' \rangle = (S \cap S') \cup \{v\}$. Since the graph on such subspaces R, adjacent when they meet in codimension 1, is connected, v is well-defined.

This preserves orthogonality: if $u \in x^{\perp}$, then there is a maximal t.i. subspace R containing u, x with $R \cap U = \{u\}$. Now h(u) = v lies in the t.i. subspace $\langle h(R \setminus \{u\}) \rangle$ which also contains h(x).

Let \bar{h} be the permutation of \mathcal{H} induced by h'. Then $\bar{h} \in P\Gamma L(U)$.

For $x \in U$ and $y \notin U$, if x and y are adjacent in Γ_{φ} , then x^g and y^g are adjacent in Γ_{χ} . This says that $x \in (y^{\perp} \cap U)^{\varphi}$ implies that $x^g \in (y^{g^{\perp}} \cap U)^{\chi}$: g maps the points of any hyperplane of U to the points of another hyperplane. Then $(y^{\perp} \cap U)^{\varphi g} = (y^{g^{\perp}} \cap U)^{\chi} = (y^{h^{\perp}} \cap U)^{\chi} = (y^{\perp} \cap U)^{\bar{h}\chi}$, so that $\varphi \bar{g} = \bar{h}\chi$. \Box

Theorem 7.6 Let $d \geq 3$. There are at least q^{d-2} ! pairwise nonisomorphic strongly regular graphs having the same parameters as the collinearity graph Γ_0 of the polar space **P**.

Proof. Let $q = p^e$, where p is prime. Then $|P\Gamma L(U)| < eq^{d^2}$. In view of Proposition 7.5, we have obtained at least $m_d!/|P\Gamma L(U)|^2 > q^{d-2}!$ pairwise nonisomorphic strongly regular graphs unless (d, q) = (3, 2). For (d, q) = (3, 2), we have four $P\Gamma L(U)$ -double cosets in $Sym(\mathcal{H})$.

All of these examples have fairly large automorphism groups: the pointwise stabilizer N of U in Aut(\mathbf{P}) lies in each Aut(Γ_{φ}) and has order at least $q^{d^2/5} >$ $|\operatorname{Aut}(\mathbf{P})|^{1/25}$. More precisely, as in [24, Theorem 4.4 (ii)], the converse of Proposition 7.5 implies that Aut(Γ_{φ}) is a semidirect product of the normal subgroup N with $\operatorname{P}\Gamma L(U)^{\varphi} \cap \operatorname{P}\Gamma L(U)$.

7.3 Switched symplectic graphs with 4-vertex condition

We show that in the symplectic case the graphs Γ_{φ} satisfy the 4-vertex condition. Let **P** be $Sp_{2d}(q)$, and let V be a 2d-dimensional vector space over \mathbb{F}_q , provided with a nondegenerate symplectic form. The parameters of Γ_0 are $v = (q^{2d} - 1)/(q - 1)$, $k = q(q^{2d-2} - 1)/(q - 1)$, $v - k - 1 = q^{2d-1}$, $\lambda = q^2(q^{2d-4} - 1)/(q - 1) + q - 1$, $\mu = (q^{2d-2} - 1)/(q - 1)$ and $\binom{\lambda}{2} - \alpha = \frac{1}{2}q^{2d-1}(q^{2d-4} - 1)/(q - 1)$, $\beta = \frac{1}{2}q(q^{2d-2} - 1)(q^{2d-4} - 1)/(q - 1)^2$, and those of Γ_{φ} will turn out to be the same.

Proposition 7.7 The graph Γ_{φ} satisfies the 4-vertex condition.

Proof. Let x, y be two vertices of Γ_{φ} . We show that the number of edges in $\Gamma_{\varphi}(x) \cap \Gamma_{\varphi}(y)$ is independent of φ , and only depends on whether x, y are adjacent or nonadjacent. Since Γ_0 satisfies the 4-vertex condition, Γ_{φ} does too.

Count edges ab in $\Gamma_{\varphi}(x) \cap \Gamma_{\varphi}(y)$. The vertices x, y, a, b are pairwise adjacent, except that x and y need not be adjacent. We distinguish nine cases depending on which of x, y, a, b are in U. Each of the separate counts will be independent of φ . If $x \notin U$ then let $X = x^{\perp} \cap U$. If $y \notin U$ then let $Y = y^{\perp} \cap U$.

Case $x, y, a, b \notin U$. In this case adjacencies and counts do not involve φ .

Case $a, b \in U$. Here a, b must be chosen distinct from x, y in case $x, y \in U$, or distinct from x and in Y^{φ} in case $x \in U$, $y \notin U$ (and the count depends on whether $x \sim y$), or in $X^{\varphi} \cap Y^{\varphi}$ in case $x, y \notin U$ (and the count depends on whether X = Y). In all cases the count is independent of φ .

Case $x, y, a \in U, b \notin U$. For each hyperplane H such that $x, y \in H^{\varphi}$ we count the $b \in H^{\perp} \setminus U$ and the $a \in H^{\varphi}$ distinct from x, y.

Case $x, y \in U$, $a, b \notin U$. For any two hyperplanes H, H' of U with $x, y \in H^{\varphi} \cap H'^{\varphi}$ count adjacent a, b with $a \in H^{\perp} \setminus U$ and $b \in H'^{\perp} \setminus U$. (The counts will depend on whether H = H', but not on φ .)

Case $x, a \in U, y, b \notin U$. For each hyperplane H with $x \in H^{\varphi}$, count the $a \in H^{\varphi} \cap Y^{\varphi}$ distinct from x, and $b \in H^{\perp} \setminus U$ adjacent to y. (Here H = Y occurs when $x \sim y$. The counts for $H \neq Y$ do not depend on H.)

Case $x \in U$, $y, a, b \notin U$. For any two hyperplanes H, H' with $x \in H^{\varphi} \cap H'^{\varphi}$, count edges ab with $a \in H^{\perp}$ and $b \in H'^{\perp}$ in $y^{\perp} \setminus (U \cup \{y\})$. (Here H = Y or H' = Y occur when $x \sim y$. The counts for $H, H' \neq Y$ do not depend on the hyperplanes chosen but only on whether H = Y or H' = Y or H = H'.)

Finally the least trivial case.

Case $a \in U$, $x, y, b \notin U$. Count a, H, b with $a \in X^{\varphi} \cap Y^{\varphi}$ and H a hyperplane of U on a and $b \in \langle x, y, H \rangle^{\perp} \setminus (U \cup \{x, y\})$. The count for a depends on whether X = Y, that for b depends on whether H = X or H = Y or $H \supseteq X \cap Y$, but does not otherwise depend on the choice of H.

Since all counts were independent of φ , this proves our proposition. \Box

By Theorem 7.6, this shows that there are many strongly regular graphs with satisfy the 4-vertex condition. But we still have to show the simplified version of this statement given in the introduction as Theorem 1.1. **Proof of Theorem 1.1.** Note that here v refers to a nonnegative integer as in Theorem 1.1 and no longer is the number of vertices in Γ_{φ} .

Apply Theorem 7.6 for d = 3 to find at least q! strongly regular graphs satisfying the 4-vertex condition on \tilde{v} vertices, for $\tilde{v} = \frac{q^6-1}{q-1}$. Given v, there is a prime q between $v^{1/6}$ and $2v^{1/6}$ by Bertrand's postulate. Now $\tilde{v} < 2q^5 < 64v^{5/6} < v$ for $v > 2^{36}$. Checking the prime powers q for $7 \le q \le 64$ one sees that there is a q with $\tilde{v} \le v \le q^6$ for $v \ge 19608$. One easily verifies the assertion for v < 19608 using rank 3 graphs.

Further graphs with the same parameters satisfy the 4-vertex condition. Additional examples can be obtained by repeated WQH-switching, see §7.4 and [19], and there are more examples among the graphs constructed in [18]. We have not tried (much) to determine precisely which graphs in [18] do satisfy the 4-vertex condition. Similarly, we do not know when WQH-switching preserves the 4-vertex condition.

7.4 Small examples

Examples on 63 vertices

In [20] a large number of strongly regular graphs are found by applying GMswitching to the $Sp_6(2)$ polar graph. Among these are 280 non-rank-3 strongly regular graphs with $(v, k, \lambda, \mu) = (63, 30, 13, 15)$ satisfying the 4-vertex condition. All have $\alpha = 30$ and $\beta = 45$. Three of these are among the Γ_{φ} constructed above.

We list for each occurring group size the number of examples found.

- 0	G	4	8	16	32	48	64	96	128	192	256	384	512	768	1344	1536	4608	
-	#	3	16	76	62	1	60	2	30	5	12	3	3	2	1	3	1	

None of these examples has a transitive group. We list the orbit lengths in the seven cases with fewer than six orbits.

G	768	768	1344	1536	1536 (twice)	4608
orbits	3+12+48	1+6+24+32	7 + 56	1+6+24+32	3+4+8+48	3+12+48

Permutations of hyperplanes

Let **P** be $Sp_{2d}(q)$, and let φ be a permutation of the set \mathcal{H} of hyperplanes of U. For (d,q) = (3,2), (3,3), (4,2), the number of double cosets of $P\Gamma L(d,q)$ in $Sym(\mathcal{H})$ is 4, 252, and 3374, respectively, and these are the numbers of nonisomorphic graphs Γ_{φ} . In each case, exactly one has rank 3. None of the others has a transitive group (since U can be recognized). The pointwise stabiliser of U in $Aut(\Gamma_0)$ has size $N = q^{\binom{d+1}{2}}(q-1)$ and is always contained in $Aut(\Gamma_{\varphi})$. Hence, N divides $|Aut(\Gamma_{\varphi})|$.

Case (d,q) = (3,3). Here N = 1458. We list the group sizes for the 251 graphs Γ_{φ} other than Γ_0 .

G /N	1	2	3	4	6	8	12	16	18	24	39	54	72	144	
#	172	26	29	6	3	2	2	2	1	1	3	1	2	1	

We list the orbit lengths in the five cases with fewer than six orbits.

G /N	39 (thrice)	72	144
orbits	13 + 351	1+12+108+243	1+12+108+243

Case (d,q) = (4,2). Here N = 1024. We list the group sizes for the 3373 graphs Γ_{φ} other than Γ_0 .

G /N	1	2	3	4	5	6	7	8	12	16	18	21	24	32	56	60	96	192	288	1344
#	3148	85	40	24	4	10	6	26	1	4	1	2	11	2	2	1	2	2	1	1

We list the orbit lengths in the eight cases with fewer than six orbits.

G /N	12		18		24		56 (twice)			
orbits	3+12+48	+192	6+9+96-	-144	3+12+48	+192	1+14+112+128			
G /N	60	:	288		1344					
orbits	15+240	3+12-	+48+192	7+8	+16+224					

Other polar spaces

We made the same exhaustive investigation of all permutations φ for the other choices of **P** in the cases $(d,q) \in \{(3,2), (3,3), (4,2)\}$. The only non-rank-3 examples satisfying the 4-vertex condition occur for $O_7(3)$. Here we obtain 252 graphs in total, of which one is rank 3, and three more satisfy the 4-vertex condition. They all have two orbits (of sizes 13+351) and an automorphism group of size 56862. All other graphs Γ_{φ} obtained from $O_7(3)$ have more than two orbits.

One might wonder whether a graph Γ_{φ} from $O_{2d+1}(q)$ satisfies the 4-vertex condition if and only if it has at most two orbits. And whether a non-rank-3 graph Γ_{φ} can only satisfy the 4-vertex condition if **P** is $Sp_{2d}(q)$ or $O_{2d+1}(q)$.

Other designs

There are four 2-(15, 7, 3) designs **D** other than that of the hyperplanes of PG(3, 2). We investigated the case where (d, q) = (4, 2) and **P** is $Sp_2(8)$, so that the resulting examples satisfy the 4-vertex condition. We generated several hundred thousand graphs Γ_{φ} for each of these designs. None of these graphs occurs for two different designs. We believe our enumeration to be complete.

$ \operatorname{Aut}(\mathbf{D}) $	point orbits	block orbits	$\# \Gamma_{arphi}$
576	3+12	3+12	113519
168	7 + 8	1 + 14	340730
168	1 + 14	7 + 8	328078
96	1+6+8	1+6+8	677460

Appendix

A Details on Ivanov's graphs

In Section 3.3 we discussed the graphs $\Gamma^{(m)}$ from [4] and $\Sigma^{(m)}$ from [22]. Here we give some more detail on the latter.

For $m \geq 2$, consider $V = \mathbb{F}_2^{2m}$ provided with the elliptic quadratic form $q(x) = x_1^2 + x_2^2 + x_1x_2 + x_3x_4 + \ldots + x_{2m-1}x_{2m}$. Identify the set of projective points (1-spaces) in V with $V^* = V \setminus \{0\}$. Let $Q = \{x \in V^* \mid q(x) = 0\}$ and let S be the maximal t.s. subspace given by $S = \{x \in V^* \mid x_1 = x_2 = 0 \text{ and } x_{2i-1} = 0 \ (2 \leq i \leq m)\}$. Then $S^{\perp} = \{x \in V^* \mid x_{2i-1} = 0 \ (2 \leq i \leq m)\}$. The graph $\Sigma^{(m)}$ has V as vertex set, where two distinct vertices v, w are adjacent when $v - w \in (Q \cup S^{\perp}) \setminus S$. Let $T^{(m)}$ and $\Upsilon^{(m)}$ be the induced subgraphs on the neighbors (nonneighbors) of the vertex 0. Put $R = V^* \setminus (Q \cup S^{\perp})$.

Proposition A.1 (i) For $m \leq 4$, the graphs $\Sigma^{(m)}$ are rank 3, and are isomorphic to the complement of $VO_{2m}^{-}(2)$.

(ii) For $m \geq 5$, the automorphism group of $T^{(m)}$ has two vertex orbits $S^{\perp} \setminus S$ and $Q \setminus S$, of sizes $3 \cdot 2^{m-1}$ and $2^{2m-1} - 2^m$, respectively. For $2 \leq m \leq 4$, the group is rank 3, and the graph is the complement of $NO_{2m}^{-}(2)$. (iii) For $m \geq 5$, the automorphism group of $\Upsilon^{(m)}$ has two vertex orbits S and R of sizes $2^{m-1} - 1$ and $2^{2m-1} - 2^m$, respectively. For $3 \leq m \leq 4$, the group is rank 3, and the graph

is the complement of $O_{2m}^{-}(2)$.

(iv) The λ - and μ -graphs in $\Upsilon^{(m)}$ and the μ -graphs in $\Upsilon^{(m)}$ are all regular of valency $2^{m-2}(2^{m-2}+1)$. In particular, $\Upsilon^{(m)}$ satisfies the 4-vertex condition.

(v) The λ -graphs in $T^{(m)}$ have vertices of valencies in 0, $2^{2m-4}-2^m$, 2^{2m-4} . $2^{2m-3}-2^m$. Edges not in a line contained in Q have λ -graphs with a single isolated vertex and $\lambda - 1$ vertices of valency 2^{2m-4} . For edges in a line contained in Q the λ -graphs have a single vertex with valency $2^{2m-3} - 2^m$, and $2^{m-3} - 1$ vertices with valency $2^{2m-4} - 2^m$, and the remaining $2^{2m-3} + 2^{m-3}$ vertices have valency 2^{2m-4} . In particular, $T^{(m)}$ satisfies the 4-vertex condition, with $\alpha = 2^{2m-5}(2^{2m-3} + 2^{m-2} - 1)$ and $\beta = \frac{1}{2}\mu\mu' = 2^{2m-4}(2^{m-2} + 1)^2$. (vi) The local graph of $\Upsilon^{(m)}$ at a vertex $s \in S$ is isomorphic to $\Sigma^{(m-1)}$.

Proof. (i)–(iii) This is clear, and can also be found in [22].

(iv)-(v) (the part about $T^{(m)}$):

Let (v, w) = q(v + w) - q(v) - q(w) be the symmetric bilinear form belonging to q. Let $X = (Q \cup S^{\perp}) \setminus S$. Then $T^{(m)}$ is the graph with vertex set X, where two vertices x, y are adjacent when the projective line $\{x, y, x + y\}$ they span is contained in X. If at least one of x, y is in $S^{\perp} \setminus S$, then this is equivalent to (x, y) = 1. If both are in $Q \setminus S$, then this is equivalent to $((x, y) = 0 \text{ and } x + y \notin S)$ or $((x, y) = 1 \text{ and } x + y \in S^{\perp} \setminus S)$.

Let x, y, z be pairwise adjacent vertices. The valency c of z in the λ -graph $\lambda(x, y)$ is the number of common neighbors of x, y, z. Distinguish several cases.

If z = x + y, then if $x, y, z \in Q$ we find $c = |\{x, y\}^{\perp} \cap (Q \setminus S)| - 3 = 2^{2m-3} - 2^m$. If z = x + y and at least one of x, y, z lies in S^{\perp} , then c = 0.

Now let $z \neq x + y$. The claims are true for $m \leq 4$. Let $m \geq 5$ and use induction on m. Choose coordinates so that x, y, z have final coordinates 00 and let x', y', z' be these points without the final two coordinates. If they have c' common neighbors w' in $T^{(m-1)}$, then we find 2c' common neighbors w = (w', 0, *). Moreover (since x, y, z are linearly independent), we find 2^{2m-5} common neighbors (w', 1, q'(w')) in Q, where w' runs through all vectors with the desired inner products with x', y', z'. Altogether $c = 2c' + 2^{2m-5}$, as claimed.

For the μ -graphs the argument is similar and simpler: by the definition of adjacency three dependent vertices are pairwise adjacent, so that the case z = x + y does not occur here.

(iv) (the part about $\Upsilon^{(m)}$): Let $Y = V^* \setminus X$. Then $\Upsilon^{(m)}$ is the graph with vertex set Y, where two vertices x, y are adjacent when the projective line $\{x, y, x + y\}$ they span is not contained in Y. The same argument as before yields the valencies of the λ - and μ -graphs.

(vi) Consider the graph $\Sigma^{(m)}$. The nonneighbors z of 0 that are neighbors of s are the vertices of the form z = s + b with $z \in S \cup R$ and $b \in (Q \cup S^{\perp}) \setminus S$. It follows that $s + z \in Q \setminus s^{\perp}$. Let $s = (0 \dots 01)$, then $Q \setminus s^{\perp}$ can be identified with $W = \mathbb{F}_2^{2m-2}$ via $w \to i(w) = (w, 1, \bar{q}(w))$ for $w \in \mathbb{F}_2^{2m-2}$ and $\bar{q}(w)$ determined by q(i(w)) = 0. The local graph of Υ at s can be identified with the graph with vertices w, where w, w' are adjacent when the line joining i(w), i(w') has third point $(w + w', 0, *) \in (Q \cup S^{\perp}) \setminus S$, that is, the line joining w, w' has third point w'' = w + w' satisfying $w'' \notin T$ and $(\bar{q}(w'') = 0 \text{ or } w'' \in T^{\perp})$ where $T = \{ w \in W \mid w_1 = w_2 = w_3 = w_5 = \dots = w_{2m-3} = 0 \}$. But this is $\Sigma^{(m-1)}$.

Another proof of Proposition 5.1 В

Let V be a 6-dimensional vector space over \mathbb{F}_q , provided with a nondegenerate symplectic form. Let x be a fixed t.i. plane, and let $\overline{\Delta}$ be the graph with as vertices the t.i. planes disjoint from x, adjacent when they have a nonempty intersection. We give a direct proof of (the non-trivial part of) Proposition 5.1.

Proposition B.1 The graph $\overline{\Delta}$ is strongly regular, with parameters $\overline{v} = q^6$, $\overline{k} = (q^2 + 1)(q^3 - 1)$, $\overline{\lambda} = q^4 + q^3 - q^2 - 2$, $\overline{\mu} = q^4 + q^2$.

Proof. Two planes y, y' in $\overline{\Delta}$ are adjacent if y and y' meet in a line or a point.

Since Δ is the local graph of a strongly regular graph with $k = q^6$, $\lambda = q^2(q^3 - 1)(q - 1)$, it satisfies $v' = q^6$, $k' = q^2(q^3 - 1)(q - 1)$, and hence $\bar{v} = q^6$ and $\bar{k} = v' - k' - 1 = (q^2 + 1)(q^3 - 1)$.

Now let us determine $\overline{\lambda}$. Let y and y' be adjacent planes in $\overline{\Delta}$. We want to count the common neighbors z of y and y' in $\overline{\Delta}$.

First consider the case that $y \cap y'$ is a line ℓ . Note that $z \cap \ell$ is a point or a line. Otherwise, the totally isotropic subspace $\langle z \cap y, z \cap y', \ell \rangle$ contains a solid which is impossible. Let p be a point in $z \cap \ell$. Then in p^{\perp}/p , which is a generalized quadrangle of order q, the lines y/p and y'/p meet in a point, the line z/p meets y/p and y'/p trivially or in a point, and $(x \cap p^{\perp})/p$ is disjoint from y/p, y'/p, and z/p. Hence, we have $(q^2 + 1)(q + 1) - 3 - (q + 1)q = q^3 - 2$ choices for z/p, q - 2 of which contain ℓ/p (so we count them for all choices of p), and $q^3 - q$ which do not. As we have q + 1 choices for p, the total number of choices for z equals $q - 2 + (q + 1)(q^3 - q) = q^4 + q^3 - q^2 - 2$.

Now consider the case that $y \cap y'$ is a point p. In p^{\perp}/p , the lines y/p, y'/p, $(x \cap p^{\perp})/p$ are then pairwise disjoint.

If p is in z, then z/p is a line disjoint from $(x \cap p^{\perp})/p$, but not equal to y/p or y'/p. Hence, in this case the total number of choices for z is $q^3 - 2$.

If p is not in z, then $(z \cap p^{\perp})/p$ meets y/p and y'/p in a point (otherwise, the totally isotropic subspace $\langle p, z \cap y, z \cap y' \rangle$ contains a solid which is impossible). Hence, $r = y \cap z$ and $r' = y' \cap z$ are points and $\langle r, r', p \rangle/p$ is a line meeting y/p and y'/p. Let m be a line in p^{\perp}/p which meets y/p and y'/p. Clearly, we have q + 1 choices for m.

Claim: Each *m* contributes $q^2(q-1)$ neighbors.

First consider the case that m is disjoint from $(x \cap p^{\perp})/p$. Then the plane m' defined by m'/p = m does not meet x and we have q^2 choices for (r, r') with $\langle p, r \rangle/p = m \cap \ell$. The line $\langle r, r' \rangle$ lies on q-1 planes which do not meet x or contain p.

Now consider the case that m meets $(x \cap p^{\perp})/p$ in a point. Then the plane m' defined by m'/p = m meets x in a point s. Then we have q(q-1) choices for (r, r') (as we have to avoid $\langle r, r' \rangle = \langle r, s \rangle$). In this case $\langle p, r, r' \rangle$ is the unique plane on $\langle r, r' \rangle$ which meets x, so z can be any of the q remaining planes on $\langle r, r' \rangle$.

Hence, the total number of choices for z which do not contain p is $(q+1) \cdot q^2(q-1) = q^4 - q^2$. We get that $\bar{\lambda} = q^4 + q^3 - q^2 - 2$.

As the collineation group of the symplectic polar space acts transitively on triples of pairwise disjoint totally isotropic planes, we obtain that two non-adjacent vertices of $\bar{\Delta}$ have a constant number $\bar{\mu}$ of common neighbors. Then $(\bar{v} - \bar{k} - 1)\bar{\mu} = \bar{k}(\bar{k} - \bar{\lambda} - 1)$ yields $\bar{\mu} = q^4 + q^2$.

Acknowledgment The second author is supported by a postdoctoral fellowship of the Research Foundation – Flanders (FWO).

References

- E. Bannai, S. Hao & S.-Y. Song, Character tables of the association schemes of finite orthogonal groups acting on the nonisotropic points, J. Comb. Th. (A) 54 (1990) 164–200.
- [2] A. E. Brouwer, Strongly regular graphs from hyperovals, https:// www.win.tue.nl/~aeb/preprints/hhl.pdf, accessed on 2021-02-21.
- [3] A. E. Brouwer, A. M. Cohen & A. Neumaier, *Distance-regular graphs*, Springer, Heidelberg, 1989.
- [4] A. E. Brouwer, A. V. Ivanov & M. H. Klin, Some new strongly regular graphs, Combinatorica 9 (1989) 339–344.

- [5] A. E. Brouwer & J. H. van Lint, Strongly regular graphs and partial geometries, pp. 85–122 in: Enumeration and design (Waterloo, Ont., 1982), Academic Press, 1984.
- [6] A. E. Brouwer & H. Van Maldeghem, Strongly regular graphs, draft, 2021. https://homepages.cwi.nl/~aeb/math/srg/rk3/srgw.pdf
- [7] P. J. Cameron, Partial quadrangles, Quart. J. Math. Oxford, 25(3) (1974), 1–13.
- [8] P. J. Cameron, J. M. Goethals & J. J. Seidel, Strongly regular graphs having strongly regular subconstituents, J. Algebra 55 (1978) 257–280.
- [9] I. Debroey, Semi partiële meetkunden, Ph. D. thesis, University of Ghent, 1978.
- [10] I. Debroey & J. A. Thas, On semipartial geometries, J. Comb. Th. (A) 25 (1978) 242–250.
- Ph. Delsarte, Weights of linear codes and strongly regular normed spaces, Discr. Math. 3 (1972) 47–64.
- [12] U. Dempwolff & W. M. Kantor, *Distorting symmetric designs*, Des. Codes Cryptogr. 48 (2008) 307–322.
- [13] M. D. Hestenes & D. G. Higman, Rank 3 groups and strongly regular graphs, pp. 141–159 in: Computers in algebra and number theory (Proc. New York Symp., 1970), G. Birkhoff & M. Hall jr (eds.), SIAM-AMS Proc., Vol IV, Providence, R.I., 1971.
- [14] D. G. Higman, Partial geometries, generalized quadrangles and strongly regular graphs, pp. 263–293 in: Atti del Convegno di Geometria Combinatoria e sue Applicazioni (Univ. Perugia, Perugia, 1970), Ist. Mat., Univ. Perugia, Perugia (1971).
- [15] R. Hill, Caps and groups, pp. 389–394 in: Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973), Tomo II, Atti dei Convegni Lincei, No. 17, Accad. Naz. Lincei, Rome, 1976.
- [16] J. W. P. Hirschfeld & J. A. Thas, Sets of type (1, n, q + 1) in PG(d, q), Proc. London Math. Soc. (3) **41** (1980) 254–278.
- [17] T. Huang, L. Huang & M.-I. Lin, On a class of strongly regular designs and quasi-semisymmetric designs, pp. 129–153 in: Recent developments in algebra and related areas, Proceedings Conf. Beijing 2007, Chongying Dong et al. (eds.), Adv. Lect. Math. (ALM) 8, Higher Education Press and Int. Press, Beijing-Boston, 2009.
- [18] F. Ihringer, A switching for all strongly regular collinearity graphs from polar spaces, J. Algebr. Comb. 46 (2017), 263–274.
- [19] F. Ihringer & A. Munemasa, New strongly regular graphs from finite geometries via switching, Linear Algebra Appl. 580 (2019), 464–474.

- [20] F. Ihringer, Switching for Small Strongly Regular Graphs, arXiv: 2012.08390v1 (2020).
- [21] A. V. Ivanov, Non rank 3 strongly regular graphs with the 5-vertex condition, Combinatorica 9 (1989) 255–260.
- [22] A. V. Ivanov, Two families of strongly regular graphs with the 4-vertex condition, Discr. Math. 127 (1994) 221–242.
- W. M. Kantor, Some generalized quadrangles with parameters (q², q), Math.
 Z. 192 (1986) 45–50.
- [24] W. M. Kantor, Automorphisms and isomorphisms of symmetric and affine designs, J. Alg. Comb. 3 (1994) 307–338.
- [25] P. Kaski, M. Khatirinejad & P. R. J. Östergård, Steiner triple systems satisfying the 4-vertex condition, Des. Codes Cryptogr. 62 (2012) 323–330.
- [26] M. Klin, M. Meszka, S. Reichard & A. Rosa, The smallest non-rank 3 strongly regular graphs which satisfy the 4-vertex condition, Bayreuther Mathematische Schriften 74 (2005) 145–205.
- [27] M. Klin & C. Pech, May 2008, unpublished notes.
- [28] S. E. Payne & J. A. Thas, *Finite generalized quadrangles*, Research Notes in Mathematics, 110. Pitman (Advanced Publishing Program), Boston, MA, 1984. vi+312 pp.
- [29] C. Pech & M. Pech, On a family of highly regular graphs by Brouwer, Ivanov, and Klin, Discr. Math. 342 (2019) 1361–1377.
- [30] S. Reichard, A criterion for the t-vertex condition on graphs, J. Comb. Th. (A) 90 (2000) 304–314.
- [31] S. Reichard, Strongly regular graphs with the 7-vertex condition, J. Algebr. Comb. 41 (2015) 817–842.
- [32] C. C. Sims, On graphs with rank 3 automorphism groups, unpublished, 1968.
- [33] W. Wang, L. Qiu & Y. Hu, Cospectral graphs, GM-switching and regular rational orthogonal matrices of level p, Lin. Alg. Appl. 563 (2019) 154–177.
- [34] H. A. Wilbrink, unpublished, 1982.