
Characterization of a graph by its spectrum

A. Blokhuis & A. E. Brouwer

2011-04-23

Abstract

We characterize a 55-point graph by its spectrum 41, (−2)10, (−1 ±√
3)10, ((3 ±

√
5)/2)12. No interlacing is used: examination of trAm for

m ≤ 7 together with study of the representation in the eigenspace for the
eigenvalue −2 suffices.

1 A graph with few cycles

Fix a 2-(11,5,2) biplane, and construct a graph Γ on the 55 flags by defining
(x,B) ∼ (y, C) iff B ∩C = {x, y}. The distance distribution diagram of Γ is
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This graph has pentagons, but no other induced cycles of length less than 8. The
spectrum of Γ is 41, (−2)10, (−1±

√
3)10, ((3 ±

√
5)/2)12. We shall investigate

graphs with the same spectrum.

2 Cycles

Let now Γ be a graph with adjacency matrix A with spectrum 41, (−2)10,
(−1±

√
3)10, ((3±

√
5)/2)12. Write d(x, y) for the graph distance of the vertices

x and y in Γ. Write Γi(x) := {y | d(x, y) = i}. We show that Γ has the above
diagram around each of its vertices.

First of all, Γ has 55 vertices, since there are 55 eigenvalues. The number of
edges is 1

2
trA2 = 110 so that the average valency is 4, but 4 is the largest eigen-

value, so that Γ is regular of valency 4. Since the eigenvalue 4 has multiplicity
1, Γ is connected. Since trA3 = 0, there are no triangles.

We have trA4 = 1540. The contribution of trivial walks of length 4 (x-y-x-
z-x and x-y-z-y-x) is 55 · (4 · 4 + 4 · 3) = 1540, so this is all, and there are no
induced quadrangles.
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We have trA6 = 12760. The contribution of trivial walks of length 6 (x-y-x-
z-x-w-x and x-y-x-z-w-z-x and x-y-z-y-x-w-x and x-y-z-y-w-y-x and x-y-z-w-
z-y-x) is 55 · (4 · 4 · 4 + 2 · 4 · 4 · 3 + 4 · 3 · 3 + 4 · 3 · 3) = 12760, so this is all, and
there are no induced hexagons.

We have trA5 = 660 = 55 ·4 ·3 so that the average number of pentagons on a
2-claw is 1. But if two pentagons have two consecutive edges in common, we see
an induced hexagon, impossible. So, every 2-claw lies in exactly one pentagon,
and every vertex lies in 6 pentagons.

We have trA7 = 13860. The contribution of the walks of length 7 that
consist of a pentagon plus an edge traversed in both directions equals 55 · (4 ·
12+ 12 · 5 · 3+ 4 · 6) = 13860, so this is all, and there are no induced heptagons.
It follows that if vw is an edge in Γ3(x), then the only walk of length 7 from x
via vw back to x is x-y-z-w-v-u-y-x and v is the unique neighbour of w in Γ3(x)
(since the pentagon y-z-w-v-u-y is determined by w-z-y).

This gives most of the diagram. The final bits will be seen below.

3 10-Dimensional representation

Consider the matrix M = 2J − (A2 + 2A− 2I)(A2 − 3A+ I). Since AJ = JA,
eigenvectors of A are also eigenvectors of M , and we find that M has spectrum
045, 2210, hence is positive semi-definite of rank 10. Write M = N⊤N for a real
10 × 55 matrix N . The map x 7→ x̄ that sends x to the column of N indexed
by x is a representation of Γ in R

10. We shall show that

(x̄, ȳ) =























4 if d(x, y) = 0
−2 if d(x, y) = 1
0 if d(x, y) = 2
1 if d(x, y) = 3

2− c4 if d(x, y) ≥ 4

where c4 = c4(x, y) (for d(x, y) ≥ 4) is the number of neighbours of y that have
distance 3 to x.

Let Ai be the matrix with rows and columns indexed by the vertex set of Γ,
with (Ai)xy = 1 when d(x, y) = i, and (Ai)xy = 0 otherwise. From the (known
part of) the diagram we see that A2 = A2 − 4I and A3 = AA2 − 3A − A2, so
that M = 2J− (A2+2A+2I)(A2− 3A+5I) = 2J+2I− 4A−AA3 from which
the claim follows.

So far we have no use for this observation, but if a, b, c, d are the four neigh-
bours of x, then ||2x̄+ ā+ b̄+ c̄+ d̄||2 = 16−16 = 0, so that 2x̄+ ā+ b̄+ c̄+ d̄ = 0.

4 Pentagons

The graph Γ has 66 pentagons, 6 on each vertex. If x-y-z-w-v-x is a pentagon,
then ||x̄+ ȳ + z̄ + w̄ + v̄||2 = 20− 20 = 0 so that x̄+ ȳ + z̄ + w̄ + v̄ = 0.

Fix a vertex a, and look at the distributions of distances from a to the five
vertices of each pentagon. Claim: these are as follows.
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(ā, x̄) 4 −2 0 1 −2 −1
d(a, x) 0 1 2 3 4a 4b #

1 2 2 0 0 0 6
0 1 2 2 0 0 12
0 0 2 2 1 0 12
0 0 1 2 0 2 12
0 0 0 3 1 1 24

Of course, for a pentagon {x1, x2, x3, x4, x5} we must have
∑

5

i=1
(ā, xi) = 0.

Also recall that each 2-claw is in a unique pentagon.
The first two rows are clear and cover all pentagons on a or a neighbour of

a. Consider a pentagon with distance at least 2 to a. With an edge in Γ2(a) the
distribution must be as given by the third row, with a vertex z in Γ4(a) for which
(ā, z̄) = −2, i.e., c4(a, z) = 4. With a single vertex in Γ2(a) we cannot have
an edge in Γ3(a) (since that would force a distribution as in the second row),
so have a distribution as in the fourth row, with an edge yz in Γ4(a), where
c4(a, y) + c4(a, z) = 6. But c4(a, y), c4(a, z) ≤ 3 since y, z have a neighbour
in Γ4(a), so c4(a, y) = c4(a, z) = 3 in this case. This shows that each vertex
in Γ3(a) has two neighbours y, z in Γ4(a), one with c4(a, y) = 3 and one with
c4(a, z) = 4. This completes the proof for the distribution diagram, and also
shows that the remaining pentagons are described by the last row of the above
table.

We shall use Γ4a(x) and Γ4b(x) for the sets of vertices at distance 4 from x
in relation 4a or 4b, respectively.

5 Labels

We show that Γ can be described as follows. The vertices are labeled ∞,
i, ij, ijk, ijkl, ijk∗ with i, j, k, l distinct elements of I = {1, 2, 3, 4}, where
the four labels ijkl, jilk, klji, lkij denote the same vertex and the three la-
bels jik∗, kil∗, lij∗ denote the same vertex (for all sets of pairwise distinct
i, j, k, l ∈ I), so that the number of vertices is 1+4+12+24+24/4+24/3 = 55.

The adjacencies are given by

vertex ∞ i ij ijk ijkl ijk∗
neighbours i ∞, ij i, ji, ijk ij, ikj, ijkl, ijk∗ ijk ijk, ijl∗
That this labeling and these adjacencies are forced uniquely will show that

Γ is determined by its spectrum.

Fix a vertex and label it ∞. Label its four neighbours i for i ∈ I. From the
diagram, and the known pentagons we now see that all vertices can be labeled
uniquely as described, with all adjacencies as described. The only thing left to
show is which sets of three or four labels belong to the same vertex in Γ4(∞).

We need some more detailed information first, and collect the relation of all
vertices to the vertices ∞ and i.

(i) With respect to ∞ we have, by definition,
∞ i ij ijk ijkl ijk∗

dist 0 1 2 3 4a 4b
inprod 4 −2 0 1 −2 −1
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(ii) With respect to 1 we have (with 2, 3, 4 still equivalent)
∞ 1 2 12 21 23 123 213 231 234

dist 1 0 2 1 2 3 2 3 4a 4b
inprod −2 4 0 −2 0 1 0 1 −2 −1

ijkl 123∗ 213∗ 231∗ 234∗
dist 3 3 4b 3 3

inprod 1 1 −1 1 1

Indeed, the path 1 ∼ 12 ∼ 21 ∼ 213 shows that d(1, 213) is at most 3, but
d(1, 213) is not 2, since the unique pentagon on 1 ∼ 12 ∼ 21 is ∞ ∼ 1 ∼ 12 ∼
21 ∼ 2 ∼ ∞.

The pentagon 2 ∼ 21 ∼ 213 ∼ 231 ∼ 23 ∼ 2 has inprods summing to zero,
and we already see 0 + 0 + 1 + 1, so that 231 must contribute −2.

Since d(∞, 123) = 3, the distances d(1, 123), d(2, 123), d(3, 123), d(4, 123)
must be 2, 3, 4a, 4b in some order, and therefore in this order. This shows that
d(1, 234) = 4b.

Since the relation 4a is symmetric (it is equivalent to having distance 4 where
the representing vectors have inner product −2), ∞ has relation 4a to each ijkl,
so its neighbour 1 has distance 3 to ijkl.

Since d(1, 213) = 3, the distances d(1, 21), d(1, 2134), d(1, 231), d(1, 213∗)
must be 2, 3, 4a, 4b in some order, and therefore in this order. Now ∞ and 1
have relation 4b to 213∗, while the other neighbours 2, 3, 4 of ∞ have relation
3 to 213∗. We see that the three labels of ijk∗ start with i, k, l but not with j.

That settles the above table. Now back to the labels.

We already saw that a vertex x ∈ Γ4a(∞) has four labels, starting with four
distinct symbols. The pentagon ij ∼ ijk ∼ ijkl ∼ ji? ∼ ji ∼ ij shows that
if x has label ijkl, then also ji??. For ijkl = 2314, the inner products of the
representing vectors of the vertices of this pentagon with 1̄ must add up to zero.
We see (omitting the bars) (1, 23) = (1, 32) = (1, 2314) = 1, (1, 231) = −2, so
that the fifth inner product must be −1 and the fifth vertex 32? was 324. It
follows that 2314 and 3241 label the same vertex.

We have shown that the four labels of 1234 are 1234, 2143, 34??, 43??. These
last two labels will be 3421 and 4312 if we show that 1234 is distinct from 3412.
Make a table with relations and inner products with respect to 13.

12 21 34 43 123 214 341 432
dist 2 3 3 4a 2 4a 3 3

inprod 0 1 1 −2 0 −2 1 1

(For 43, look at the pentagon ∞ ∼ 3 ∼ 34 ∼ 43 ∼ 4 ∼ ∞ and take inner
products with 13. Since d(13, 43) = 4a and 43 ∼ 432, we have d(13, 432) = 3.
For 214 look at the pentagon ∞ ∼ 1 ∼ 13 ∼ 31 ∼ 3 ∼ ∞ and take inner
products with 214.)

Using the pentagons 12 ∼ 123 ∼ 1234 = 2143 ∼ 214 ∼ 21 ∼ 12 and
34 ∼ 341 ∼ 3412 = 4321 ∼ 432 ∼ 43 ∼ 34, we see that (13, 1234) = 1 and
(13, 3412) = −1, so that 1234 and 3412 label different vertices.

That settles the labeling of Γ4a(∞). Next Γ4b(∞). We already know that
each vertex has three labels, with three different first elements, and the same
second element, so that 123*, 32?*, 42?* label the same vertex. These last two
labels will be 324* and 421* if we show that 123* is distinct from 321*.
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Look at the pentagon 12 ∼ 123 ∼ 123∗ ∼ 124∗ ∼ 124 ∼ 12. Since d(13, 12) =
d(13, 123) = 2, we must have d(13, 124) = d(13, 123∗) = 3 and d(13, 124∗) = 4a.
Look at the pentagon 32 ∼ 321 ∼ 321∗ ∼ 324∗ ∼ 324 ∼ 32. Since d(13, 32) =
d(13, 321) = 3 we have d(13, 321∗) 6= 3. This proves everything.

We proved

Theorem 5.1 There is a unique graph Γ with spectrum 41, (−2)10, (−1±
√
3)10,

((3 ±
√
5)/2)12.

6 Remarks

The graph Γ has automorphism group L2(11).2 with point stabilizer Sym(4).
Related graphs occur in the literature. The graph Γ4a of valency 6 has

λ = 1 and hence is the collinearity graph of a partial linear space with 55 points
and 55 lines. The point-line incidence graph ∆ of this partial linear space is
known as the Iofinova-Ivanov graph on 110 vertices. It was first constructed in
Ivanov [1] and characterized by Ivanov & Iofinova [2] as one of the five connected
bipartite cubic graphs with an automorphism group that is edge-transitive but
not point-transitive, acting primitively on the two point orbits.

It follows that Γ4a is not characterized by its spectrum: the two connected
components of ∆2 are cospectral but nonisomorphic.
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M. H. Klin, A. J. Woldar (eds.), Kluwer, 1994, pp. 275-282.

[2] A. A. Ivanov & M. E. Iofinova, Bi-primitive cubic graphs, in: Investigations
in the Algebraic Theory of Combinatorial Objects, Institute for System
Studies, Moscow, pp. 123-134, 1985 (Russian). Translation Kluwer, 1994,
pp. 459-472.

5


