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Abstract

We determine the independence number of the Kneser graph on
line-plane flags in the projective space PG(4, q).

1 Introduction

Let Γ be the graph with as vertices the line-plane flags (incident line-plane
pairs) in PG(4, q), where two flags (L,A), (L′, A′) are adjacent when they are
in general position, i.e., when L∩A′ = L′∩A = 0. In this note we determine
the maximum-size cocliques in Γ. It will turn out that Γ has independence
number (q2 + q + 1)(q3 + 2q2 + q + 1). In PG(4, q), a solid is the same as
a hyperplane. The hypotheses are self-dual: true statements remain true if
one interchanges the words ‘line’ and ‘plane’, and ‘point’ and ‘solid’.

2 Lower bound

Cocliques of size (q2 + q + 1)(q3 + 2q2 + q + 1) can be constructed in the
following four ways.

(i) Fix a solid S0, and take all (L,A) with A ⊆ S0, together with (ia) all
(L,A) with L = A∩ S0 and P0 ⊆ L, for some fixed point P0 ⊆ S0, or (ib) all
(L,A) with L = A ∩ S0 and L ⊆ A0, for some fixed plane A0 ⊆ S0.

(ii) Or, fix a point P0, and take all (L,A) with P0 ⊆ L, together with
(iia) all (L,A) with A = L + P0 and A ⊆ S0 for some fixed solid S0 ⊇ P0, or
(iib) all (L,A) with A = L + P0 and L0 ⊆ A for some fixed line L0 ⊇ P0.

∗The first author acknowledges support from ERC grant DISCRETECONT 227701
and OTKA Grant K 81310.
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3 Structure

Let C be a maximal coclique in Γ. We show that C must have some linear
structure.

Lemma 3.1 Let L and M be two lines in the plane A meeting in the point
P . If (L,A) ∈ C and (M,A) ∈ C, then also (K,A) ∈ C for all lines K in A
on the point P .

Proof. If (K,A) 6∈ C, then since C is maximal, there is a (N,B) ∈ C with
N ∩ A = K ∩ B = 0. Now B meets both L and M , and hence also K, a
contradiction. 2

Call a line L or a plane A a C-line or C-plane when they occur in a flag
(L,A) ∈ C, and call such a flag a C-flag. It immediately follows that

Lemma 3.2 Every C-plane A contains 1, q + 1 or q2 + q + 1 lines L such
that (L,A) ∈ C. Dually, a C-line L is contained in 1, q + 1 or q2 + q + 1
planes A such that (L,A) ∈ C. 2

Call a line or plane red, yellow or white when it occurs in q2 + q + 1, q + 1
or 1 C-flag(s). A yellow plane A carries a pencil of q+1 lines on a fixed point
PA in A. A yellow line L carries a pencil of q + 1 planes in a fixed solid SL

on L.

Lemma 3.3 Every C-line meets each red plane. Dually, every C-plane meets
each red line. Two red planes meet in a line. Dually, two red lines meet in a
point.

Proof. If (L,A) ∈ C and B is a red plane disjoint from L, then each line in
B meets A, but A∩B is a single point, contradiction. The other statements
follow. 2

Lemma 3.4 In the pencil spanned by two intersecting red lines, all lines are
red.

Proof. Let the red lines K,L meet in the point P , and let M be a line on
P in the plane K +L. If (M,A) 6∈ C for some plane A on M , then there is a
flag (N,B) ∈ C with N ∩ A = M ∩ B = 0. If B meets both K and L, then
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also M , contradiction. So suppose B ∩K = 0. Since K is red, (K,C) ∈ C
for each plane C on K. So N meets each plane on K, and hence meets K.
But that contradicts B ∩K = 0. 2

For a point-plane flag (P,A), let p(P,A) denote the collection of flags
(pencil) {(K,A) | P ⊆ K ⊆ A}.

Lemma 3.5 If A,B are yellow planes meeting in a single point, then PA ⊆
B or PB ⊆ A. Dually, if L,M are disjoint yellow lines, then L ⊆ SM or
M ⊆ SL.

Proof. If P := A ∩ B is distinct from PA, PB, then p(PA, A) ∪ p(PB, B) is
not independent. 2

4 Upper bound

Let C be a maximal coclique in Γ. We show that if |C| ≥ (q2 + q + 1)(q3 +
2q2 + q + 1), then equality holds and C is one of the examples.

Let there be mi lines, and ni planes, that occur in i flags from C. Then C
has size m1 + (q+ 1)mq+1 + (q2 + q+ 1)mq2+q+1 = n1 + (q+ 1)nq+1 + (q2 + q+
1)nq2+q+1. In Examples (ia), (ib) we have nq2+q+1 = q3 +q2 +q+1, nq+1 = 0,
n1 = q2(q2 + q + 1), mq2+q+1 = q2 + q + 1, mq+1 = q2(q2 + q + 1), m1 = 0.
And in Examples (iia), (iib) we find the same, with mi and ni interchanged.

Two red planes meet in a line, so either all red planes lie in a solid, or
all contain a fixed line. Dually, all red lines pass through one point, or are
all contained in a fixed plane. In Examples (ia), (ib), (iia) all red planes are
in a solid. In Example (iib) all red planes contain a fixed line. In Examples
(ia), (iia), (iib) all red lines pass through on a point. In Example (ib) all red
lines lie in a fixed plane.

All C-lines intersect all red planes, and dually all C-planes intersect all
red lines. For any two red lines, the pencil they span consists of red lines. If
there is one more red line through the common point then there are at least
q2 + q + 1. If there is one more red line not through this point, then one has
a plane full of red lines.

It follows that the collection of red lines (planes) is one of:

A: empty,
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B: a single line (plane),

C: q + 1 lines (planes) forming a pencil,

D: q2 + q + 1 lines in a plane (planes on a line),

E: q2 + q + 1 lines (planes) on a point in a solid,

F: all q3 + q2 + q + 1 lines on a point (planes in a solid).

4.1 Many red lines or planes

In this section we investigate the cases with at least q2 + q + 1 red lines, or
red planes.

F: If there are q3+q2+q+1 red planes, all in the solid S0, then all C-lines
are contained in S0, since a C-line and a red plane intersect. The C-lines L
occurring in flags (L,A) ∈ C where A 6⊆ S0 must meet pairwise, and hence
all such lines pass through a common point (and we have Example (ia)) or
are contained in a common plane (and we have Example (ib)). The dual
situation yields Examples (iia) and (iib).

We have settled Case F, and will from now on assume that there are at
most q2 + q + 1 red planes, and at most q2 + q + 1 red lines. If all C-lines
lie in some fixed solid S, then all planes in S are red and we are in Case F.
If all C-planes contain a fixed point P , we are in the dual situation. So, we
may assume that neither happens.

E: If there are q2 + q + 1 red planes, all on the point P0 and contained in
the solid S0, then any C-line either lies in S0, or contains P0. If (L,A) ∈ C
and P0 6⊆ A 6⊆ S0, then L = A ∩ S0. If we vary (L,A), we find a collection
L of pairwise intersecting lines L, hence all in a plane, or all on a point. Let
(M,B) ∈ C with M ∩ S0 = P0 and let K = B ∩ S0. Now K is a line in S0,
and at most q2 lines in L are disjoint from K. On the other hand, there are
q4 lines in S0 disjoint from K. Consider the at least q4 − q2 lines N disjoint
from K but not in a flag (N,A) in C where A 6⊆ S0. If (N,A) ∈ C, and
P0 6⊆ A, then M ∩ A = 0, and B ∩N = K ∩N = 0, contradiction. So, such
lines N are in precisely one flag, namely (N,P0 + N).

Now count flags on the various possible C-lines. We have q3 + q2 + q + 1
lines on P0, and q4 + q3 + q2 further lines in S0. At most q2 + q + 1 of
these lines are red, and contribute q2 + q + 1 flags each. At least q4 − q2
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of these lines contribute only a single flag. There remain 2q3 + 2q2 lines
(including the lines on P0) that contribute at most q + 1 flags. Altogether
|C| ≤ (q2 + q + 1)2 + (q4 − q2) + (2q3 + 2q2)(q + 1). If we assume |C| ≥
(q2 + q + 1)(q3 + 2q2 + q + 1), then this is a contradiction, except when q = 2
where equality holds. Now K is unique, so M occurs only once, and equality
does not hold. This settles Case E.

D: If there are q2 + q + 1 red lines, all in a plane A0, then all C-planes
must intersect A0 in a line. If (L,A) ∈ C, with L 6⊆ A0, and P = L ∩ A0,
then p(P,A) ⊆ C (recall that p(P,A) = {(K,A) |P ⊆ K ⊆ A}).

There are at least (q2 + q + 1)(q3 + q2) flags (L,A) ∈ C with L 6⊆ A0.
Consider the red planes. If there are q2 + q + 1 of them, all on a given point
and in a given solid, then we are in (the dual of) Case E, that we treated
already. Otherwise, if there are q2 + q + 1 of them, all on a fixed line L0,
then all C-lines meet L0, so necessarily L0 ⊆ A0. Apart from the flags (L,A)
with L ⊆ A0 (a total of (q2 + q + 1)2) and those with L0 ⊆ A (an additional
(q2 + q)2) we need q5 + q4 more flags (K,A) where A ∩ A0 is a line M and
K ∩ A0 = K ∩ L0 is a point P . If M1,M2 are two lines in A0 meeting L0 in
distinct points P1, P2, and (Ki, Ai) ∈ C with Ai ∩A0 = Mi, i = 1, 2, then K1

must lie in the solid A0 + A2, or K2 in the solid A0 + A1, that is, we must
have A0 +A1 = A0 +A2. But such a solid has q3 +q2 +q+1 planes A, q3 +q2

not on L0, and each plane A contains q lines on A∩L0 distinct from A∩A0,
so there would be at most q4 + q3 flags, not enough. So, all lines Mi have to
be concurrent, and again there are at most q4 + q3 flags, not enough.

If there are q+1 red planes (one of them A0), forming a pencil on the line
L0 in A0, then these contribute q(q2 + q) flags, and we still need q(q2 + q)2,
precisely what we would get with one p(P,A) in each further plane A meeting
A0 in a line, impossible. Finally, if A0 is the only red plane, then we still
need (q2 + q + 1)(q3 + q2) flags, and obtain the same contradiction.

4.2 Few red lines and planes

We have settled the cases D, E and F with at least q2 + q + 1 red lines, or at
least q2 + q + 1 red planes. From now on we assume that there are at most
q + 1 red lines, and at most q + 1 red planes.

Lemma 4.1 Let P be a point and A a plane containing P such that p(P,A) ⊆
C. If P is in r red planes that meet A in a single point, then there are at most
q3 + r(q2− q) flags (M,B) with M ∩A = 0. Each such flag has B = M +P .
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Proof. Suppose the C-plane A occurs in q+1 C-flags (L,A) (with the q+1
lines L forming a pencil on a fixed point P ), and that the C-line M has zero
intersection with A. If (M,B) ∈ C, then B must meet all lines L, and hence
contains P , so that B = M + P . In the local PG(3, q) at P , such planes B
form pairwise intersecting lines, so that they all lie in one plane or all pass
through the same point. Hence all planes B lie in a solid S on P , or all
contain a line K on P . In the former case the planes B become locally at
P lines in the plane S/P disjoint from the point (A ∩ S)/P , so there are at
most q2. In the latter case the planes B become locally at K points disjoint
from the line (K + A)/K, again at most q2. Each plane B contains at most
q2 lines M not on P , and if B is not red, then at most q such lines. 2

The next step settles the case of three pairwise disjoint yellow lines not
in a single solid, or, dually, three yellow planes that pairwise meet in a single
point, where these points are distinct.

Lemma 4.2 Suppose |C| ≥ (q2 + q + 1)(q3 + 2q2 + q + 1). Then there is no
triple of yellow or red planes that pairwise meet in a single point, where these
three points are distinct.

Proof. Suppose there are three yellow or red planes A,B,C that pairwise
meet in a single point, where these three points of intersection are distinct.
Then none of these planes is red. Each point of intersection is the center of
a pencil, so w.l.o.g. A ∩ B = PA, B ∩ C = PB, and C ∩ A = PC . Count
C-flags. The number of C-flags with a line disjoint from A, B, or C, is at most
3q3 + (q+ 1)(q2− q) where the second term bounds the number of additional
flags (M,D) for a red plane D. All remaining C-flags have a line that meets
each of A, B, and C. For Q in A distinct from PA, PC , there are q+1 lines on
Q meeting both B and C. For Q = PA or Q = PC , there are q2+q+1 lines on
Q meeting C or B (and the line PA +PB is counted twice). Altogether, there
are at most (q2 + q + 1)(q + 1) + 2q2 − 1 lines meeting each of A, B, and C.
At most q+ 1 of these are red. It follows that (q2 + q+ 1)(q3 + 2q2 + q+ 1) ≤
|C| ≤ 3q3 + (q + 1)(q2− q) + ((q2 + q + 1)(q + 1) + 2q2− 1)(q + 1) + (q + 1)q2,
a contradiction. 2

After this preparation, it also follows that there are no two disjoint yellow
lines, or, dually, no two yellow planes meeting in a single point.

Lemma 4.3 Suppose |C| ≥ (q2 + q + 1)(q3 + 2q2 + q + 1). Then there are no
two yellow or red planes that meet in a single point.

6



Proof. Suppose A,B are red or yellow planes and A ∩ B = P , a single
point. Count C-flags. The number of C-flags with a line disjoint from A or
B is at most 2q3 + (q + 1)(q2− q) where the second term bounds the number
of additional flags (M,D) for a red plane D = M +P . All remaining C-flags
have a line that meets both A and B.

Make a directed graph on the yellow lines not on P meeting both A and
B, with an edge L → M if L ∩M 6= 0 or L ⊆ SM . If P 6⊆ SM , then lines
meeting A,B and contained in SM are lines meeting both lines SM ∩ A and
SM ∩B. There are (q+1)2 of those, q2 disjoint from M . If P ⊆ SM and both
SM ∩ A, SM ∩ B are lines, then these two lines span a plane containing M ,
and there are no lines meeting both, not on P , and disjoint from M . Finally,
if A ⊆ SM and B ∩ SM is a line (or vice versa) then there are (q − 1)q2 lines
meeting A and B ∩ SM but not P or M .

In each case, there are at most (q−1)q2 lines in SM , disjoint from M and
not on P that meet both A and B. The number of lines distinct from M
meeting each of A,B and M but not on P is 2(q2+q−1)+(q−1)2 = 3q2−1.
If we count edges for intersecting pairs of lines for 1

2
at both ends, we find

that the vertex M has indegree at most d := (q − 1)q2 + (3q2 − 1)/2. The
underlying undirected graph is complete, so if there are s vertices, we have
s(s− 1)/2 ≤ sd and hence s ≤ 2d + 1 = (2q + 1)q2.

In other words, of the (q2 + q)2 lines meeting both planes outside P , at
most (2q + 1)q2 are yellow. There are at most q + 1 red lines. The red lines
contribute q2 + q + 1 flags, the yellow lines q + 1 flags, and the white lines 1
flag, so we find |C| ≤ 2q3 + (q + 1)(q2 − q) + (q + 1)q2 + (q3 + q2 + q + 1)(q +
1) + (2q+ 1)q3 + (q2 + q)2. This is a contradiction for q > 2, so assume q = 2.

For q = 2 we need an auxiliary step, and first show that a red plane and a
yellow plane cannot meet in a single point. So, let us suppose that B is red.
Since a red plane meets all C-lines, there are at most q3 +(q+1)(q2−q) = 14
C-flags with a line disjoint from A or B. If there are two disjoint yellow or
red lines L,M not on P meeting both A and B, then since there cannot be
three pairwise disjoint yellow or red lines not in a single solid, the point P is
on at most 7 yellow or red lines (and on none at all if P 6⊆ L+M). Our count
becomes 133 ≤ |C| ≤ 14+12+(15+14)+40+36 = 131, contradiction. This
shows that every two yellow or red lines not on P and meeting both A and
B must meet. Our count becomes 133 ≤ |C| ≤ 14 + 12 + 45 + 12 + 36 = 119,
contradiction again. So, a red plane and a yellow plane cannot meet in a
single point. And dually, a red line and a yellow line cannot be disjoint.
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Now let A,B again be yellow planes meeting in the point P = PA. If
there is a red line not on P , then P is on at most 3 red or yellow lines. Our
count becomes 133 ≤ |C| ≤ 22 + 12 + (15 + 6) + 40 + 36 = 131, contradiction.
Hence all red lines contain P .

If there are at last two red lines, then there are at most four yellow lines
not on P , and our count becomes 133 ≤ |C| ≤ 22 + 12 + 45 + 8 + 36 = 123,
contradiction. If there is precisely one red line, our count becomes 133 ≤
|C| ≤ 22 + 4 + 45 + 24 + 36 = 131, contradiction. So there are no red lines
and no red planes.

If PA = PB for every choice of two yellow planes A,B that meet in a
single point, then for every C-line M disjoint from a yellow plane A the plane
M+PA is not yellow and hence occurs in a unique C-flag. Our count becomes
133 ≤ |C| ≤ 8 + 45 + 40 + 36 = 129, contradiction. So, we may suppose that
P = PA 6= PB. Now if M is a C-line disjoint from B, the plane M + PB

meets A in a point other than PA, so this plane is not yellow. Our count
becomes 133 ≤ |C| ≤ (8 + 4) + 45 + 40 + 36 = 133 and equality holds. In the
directed graph, each of the 20 vertices has 4 inarrows and 4 outarrows and 11
neighbours that are intersecting lines. So if two lines L,M meet, and both
meet A and B but not P , and L is yellow, then also M is yellow. But that
means that the number of such yellow lines is either 0 or 36, contradiction.
2

At this point we know that no two yellow or red planes meet in a single
point, and dually no two yellow or red lines are disjoint. Now all yellow or
red lines pass through one point, or all are in one plane. Dually, all yellow
or red planes are contained in one solid, or all have a common line.

After removing at most 2q2(q + 1) flags, no red lines or planes are left.
After removing at most 2(q3 + q2 + q + 1)q further flags, no yellow lines or
planes are left. How big can a coclique C ′ be when all lines and planes are
white?

Define a directed graph on the C ′-flags: F = (L,A), and for F = (L,A),
F ′ = (L′, A′), let F → F ′ if L meets A′.

For a point P , the C-planes on P with line not on P meet pairwise in a
line, so that there are at most q2 + q + 1 of them. So given a line L, there
are at most (q + 1)(q2 + q + 1) C ′-flags of which the plane meets L, but the
line does not.

For any two flags F, F ′ ∈ C ′, there is at least one arrow between them.
Moreover, for each vertex, the number of out-neighbours that are not also
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in-neighbours, is at most (q + 1)(q2 + q + 1). It follows that the number of
directed edges is at least c(c− 1− (q + 1)(q2 + q + 1)), where c = |C ′|.

Given L, there are at most (q + 1)(q2 + q + 1) flags F ′ where L meets
A′ but not L′. And at most (q + 1)(q3 + q2 + q) flags F ′ where L meets L′.
Counting pairs (F, F ′) with F → F ′, we find c − 1 − (q + 1)(q2 + q + 1) ≤
(q+1)(q2+q+1)+(q+1)(q3+q2+q), so that c ≤ (q+1)(q+2)(q2+q+1)+1.
Now |C| ≤ 2(q+ 1)q2 + 2(q3 + q2 + q+ 1)q+ c yields a contradiction for q > 2.

If C is a red plane, then each C-line meets C. Dually, if N is a red line,
then each C-plane meets N . Suppose C is a red plane and N is a red line and
N 6⊆ C. We can bound c by the at most 3 · 7 = 21 flags F = (L,A) where N
meets A but not L, together with the at most 6 + 6 + 14 such flags where N
meets L, and at most one flag with N = L. Now 133 ≤ |C| ≤ 24 + 60 + 48 =
132, a contradiction. It follows that each red plane contains each red line,
and |C| ≤ 16 + 60 + c.

Suppose there are two intersecting red lines M,N . We can bound c by
the at most 5 · 7 = 35 flags F = (L,A) where L is disjoint from M or from
N , together with the at most 15 + 4 = 19 such flags where L meets both M
and N . Now 133 ≤ |C| ≤ 16 + 60 + 54 = 130, a contradiction. It follows that
there is at most one red line, and at most one red plane, and |C| ≤ 8+60+ c.

Suppose that there is a red line N . We can bound c by the at most
3 · 7 = 21 flags F = (L,A) where L is disjoint from N , together with the
at most 3 · 14 + 1 = 43 such flags where L meets N . Now 133 ≤ |C| ≤
8 + 60 + 64 = 132, a contradiction. It follows that there are no red lines or
red planes, and |C| ≤ 60 + c.

Suppose there is a solid S that contains at least 8 yellow planes. Then
for each C-flag (L,A) with A 6⊆ S we must have L = A ∩ S. Now we can
bound c by the at most 35 C-lines in S, together with the at most 15 C-
planes in S, so that 133 ≤ |C| ≤ 60 + 50 = 110, a contradiction. It follows
that there are at most 7 yellow planes, and at most 7 yellow lines, and
133 ≤ |C| ≤ 28 + c ≤ 28 + 85 = 113, a contradiction.

This rules out q = 2 and shows that there are no other cocliques of size
at least (q2 + q + 1)(q3 + 2q2 + q + 1) than the ones described above.

5 Generalizations

The problem studied in this note is a special case of a variation on the Erdős-
Ko-Rado theme. The Erdős-Ko-Rado theorem [3] determines the largest
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cocliques in the Kneser graph K(n,m) of which the vertices are the m-subsets
of an n-set, adjacent when disjoint (assuming n > 2m). The Frankl-Wilson
theorem [4] determines the largest cocliques in the Kneser graph Kq(n,m)
of which the vertices are the m-subspaces of an n-space, adjacent when they
have zero intersection (assuming n ≥ 2m). Much more generally, one can
take as vertices the flags of a certain type in a spherical building, where two
flags are adjacent when they are in mutual general position.

Earlier, there was an obvious candidate for the largest coclique, and the
work was to prove that this candidate is indeed the largest, or even the only
largest. Here, it is already nontrivial to come up with plausible candidates
for the largest coclique. Below we give a construction that yields the largest
cocliques in the case of point-hyperplane flags [1], and in our present case of
line-plane flags in PG(4, q). For a much more thorough investigation of the
case of point-plane flags in PG(4, q) see [2].

5.1 A construction

Let V be a vector space of dimension n over the field Fq. Let 0 < i < n/2,
and let Γ be the Kneser graph on the flags (A,B), where A,B are subspaces
of V of respective dimensions i and n− i, and (A,B) is adjacent to (A′, B′)
when A ∩B′ = A′ ∩B = 0. We construct large cocliques in Γ.

Let X = (X0, . . . , Xn) be a series of subspaces of V , with dimXi = i and
Xi ⊆ Xj when i ≤ j. Fix an integer h with i ≤ h ≤ n− i + 1.

Let Ch(X) consist of all flags (A,B) where A is an i-space and B an
(n − i)-space, and A ⊆ T ⊆ B for some j-space T , where either j < h and
Xj−i+1 ⊆ T , or j ≥ h and Xh−i ⊆ T ⊆ Xj+i−1.

Let C ′h(X) consist of all flags (A,B) where A is an i-space and B an
(n − i)-space, and A ⊆ T ⊆ B for some j-space T , where either j < h and
Xj−i+1 ⊆ T ⊆ Xh+i−1, or j ≥ h and T ⊆ Xj+i−1.

Theorem 5.1 Ch(X) and C ′h(X) are cocliques in Γ.

Proof. Since C ′h(X) is the dual of Ch(X), it suffices to look at Ch(X). If
A ⊆ T ⊆ B and A′ ⊆ T ′ ⊆ B′ and dimT = j, dimT ′ = j′, and j ≤ j′, then
either j < h and Xj−i+1 ⊆ T ∩ T ′, or j ≥ h and T + T ′ ⊆ Xj′+i−1, so that in
both cases dim(T ∩T ′) ≥ j− i+ 1, or, equivalently, dim(T +T ′) ≤ j′+ i− 1.
It follows that A and T ∩T ′ cannot be disjoint inside T , so that 0 6= A∩T ′ ⊆
A ∩B′, and the flags are not in general position. 2
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In the cases of point-hyperplane flags in PG(n − 1, q), and of line-plane
flags in PG(4, q), these cocliques Ch(X) and C ′h(X) are precisely all the largest
cocliques.
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