The number of dominating sets of a finite graph is odd

A. E. Brouwer

May 23, 2009

To Reza Khosrovshahi on the occasion of his 70th birthday

Let Γ be a finite graph with vertex set $V=V \Gamma$. A subset D of V is called dominating when each vertex in $V \backslash D$ has a neighbour in D. The domination polynomial $p(\Gamma, X)$ is defined by $p(\Gamma, X)=\sum_{D} X^{|D|}$ where the sum is over all dominating sets D.
S. Akbari asked whether $p(\Gamma,-1)$ is always nonzero, and it is:

Theorem 0.1 The number of dominating sets of a finite graph is odd.
Proof: Let us write S^{+}for the set of vertices in S or with a neighbour in S. By induction on $|V|$, and for fixed $|V|$ on $|S|$, we prove the following two claims for $S \subseteq V$:
(i) $\#\left\{D \mid S \subseteq D \subseteq V, D^{+}=V\right\} \equiv \#\left\{E \mid E \subseteq V, E^{+}=V \backslash S\right\}(\bmod 2)$,
(ii) $\#\left\{D \mid D \subseteq V \backslash S, D^{+}=V\right\} \equiv \#\left\{E \mid E \subseteq V, V \backslash S \subseteq E^{+}\right\}(\bmod 2)$.

Indeed, if $S=\emptyset$ both (i) and (ii) are trivial. Assume $S \neq \emptyset$.
Let $U=S^{+} \backslash S$ and $W=V \backslash S$. Then (i) is equivalent to
(i') $\#\left\{D \mid D \subseteq W, W \backslash U \subseteq D^{+}\right\} \equiv \#\left\{E \mid E \subseteq W \backslash U, E^{+}=W\right\}(\bmod 2)$. for $U \subseteq W$. But this is precisely (ii), with W instead of V, and since $|W|<|V|$ this holds by induction. This proves (i).

If we sum the equality (ii) over all $S \subseteq T$, where $T \subseteq V$, the left hand side counts pairs (D, S) with $D^{+}=V$ and $S \subseteq T \backslash D$, so that each D is seen $2^{|T \backslash D|}$ times, which is $0(\bmod 2)$ except when $T \subseteq D$. The right hand side counts pairs (E, S) with $V \backslash T \subseteq V \backslash S \subseteq E^{+}$, so that each E is seen $2^{\left|E^{+} \backslash(V \backslash T)\right|}$ times, which is $0(\bmod 2)$ except when $E^{+}=V \backslash T$. The result is

$$
\#\left\{D \mid T \subseteq D \subseteq V, D^{+}=V\right\} \equiv \#\left\{E \mid E \subseteq V, E^{+}=V \backslash T\right\} \quad(\bmod 2)
$$

which is precisely (i), but using the variable T instead of S. Since (i) holds, and by induction (ii) holds for all proper subsets S of T, it follows that (ii) also holds for $S=T$. This completes the proof of (i) and (ii).
Now we can prove the theorem. If $V=\emptyset$ then there is precisely one dominating set. Otherwise, let $x \in V$ and put $W=V \backslash x$ and $S=N(x)$, the set of neighbours of x. The dominating sets in V are the dominating sets D in W that intersect S, and the sets $E \cup\{x\}$ where $E \subseteq W$ with $W \backslash S \subseteq E^{+}$. By induction, the number of dominating sets (of the graph $\Gamma \backslash x$) in W is odd. Adding equation (ii) (with W instead of V) yields the desired conclusion.

