The number of dominating sets of a finite graph is odd

A. E. Brouwer

June 2, 2009

Let Γ be a finite graph with vertex set $V=V \Gamma$. A subset D of V is called dominating when each vertex in $V \backslash D$ has a neighbour in D. The following theorem answers a question by S. Akbari.

Theorem The number of dominating sets of a finite graph is odd.
Today, there are three proofs, by Andries Brouwer, Péter Csorba and Lex Schrijver, respectively. Let us give all three.

First proof: Let us write S^{+}for the set of vertices in S or with a neighbour in S. By induction on $|V|$, and for fixed $|V|$ on $|S|$, we prove the following two claims for $S \subseteq V$:
(i) $\#\left\{D \mid S \subseteq D \subseteq V, D^{+}=V\right\} \equiv \#\left\{E \mid E \subseteq V, E^{+}=V \backslash S\right\}(\bmod 2)$,
(ii) $\#\left\{D \mid D \subseteq V \backslash S, D^{+}=V\right\} \equiv \#\left\{E \mid E \subseteq V, V \backslash S \subseteq E^{+}\right\}(\bmod 2)$.

Indeed, if $S=\emptyset$ both (i) and (ii) are trivial. Assume $S \neq \emptyset$.
Let $U=S^{+} \backslash S$ and $W=V \backslash S$. Then (i) is equivalent to
(i') $\#\left\{D \mid D \subseteq W, W \backslash U \subseteq D^{+}\right\} \equiv \#\left\{E \mid E \subseteq W \backslash U, E^{+}=W\right\}(\bmod 2)$. for $U \subseteq W$. But this is precisely (ii), with W instead of V, and since $|W|<|V|$ this holds by induction. This proves (i).

If we sum the equality (ii) over all $S \subseteq T$, where $T \subseteq V$, the left hand side counts pairs (D, S) with $D^{+}=V$ and $S \subseteq T \backslash D$, so that each D is seen $2^{|T \backslash D|}$ times, which is $0(\bmod 2)$ except when $T \subseteq D$. The right hand side counts pairs (E, S) with $V \backslash T \subseteq V \backslash S \subseteq E^{+}$, so that each E is seen $2^{\left|E^{+} \backslash(V \backslash T)\right|}$ times, which is $0(\bmod 2)$ except when $E^{+}=V \backslash T$. The result is

$$
\#\left\{D \mid T \subseteq D \subseteq V, D^{+}=V\right\} \equiv \#\left\{E \mid E \subseteq V, E^{+}=V \backslash T\right\}(\bmod 2)
$$

which is precisely (i), but using the variable T instead of S. Since (i) holds, and by induction (ii) holds for all proper subsets S of T, it follows that (ii) also holds for $S=T$. This completes the proof of (i) and (ii).

Now we can prove the theorem. If $V=\emptyset$ then there is precisely one dominating set. Otherwise, let $x \in V$ and put $W=V \backslash x$ and $S=N(x)$, the set of neighbours of x. The dominating sets in V are the dominating sets D in W that intersect S, and the sets $E \cup\{x\}$ where $E \subseteq W$ with $W \backslash S \subseteq E^{+}$. By induction, the number of dominating sets (of the graph $\Gamma \backslash x$) in W is odd. Adding equation (ii) (with W instead of V) yields the desired conclusion.

Second proof: Let $n>0$, and look at the simplicial complex P of all nonempty non-dominating sets. The Euler characteristic $\chi(P)$ is an alternating sum, and mod 2 one has $|P|=\chi(P)$. The Euler characteristic of a simplicial complex equals that of its barycentric subdivision. In this case that means that we go to the simplicial complex of all chains in the poset P.

Let $f(A)$ be the set of all vertices of Γ not equal or adjacent to anything in A. If A is non-dominating, then also $f(A)$ is non-dominating, and f defines a Galois correspondence so that f^{2} is a closure operator.

Consider an increasing chain $C=\left(A_{1}, \ldots, A_{m}\right)$ in P. If all A_{j} in C are closed, then pair C with $\left(f\left(A_{1}\right), \ldots, f\left(A_{m}\right)\right)$. Otherwise, if A_{j} is the last nonclosed element in the chain, and $f^{2}\left(A_{j}\right)=A_{j+1}$ then pair C with $C \backslash A_{j+1}$, otherwise pair C with $C \cup f^{2}\left(A_{j}\right)$.

This pairing shows that the complex of all chains in the poset P has an even number of vertices, and hence $|P|$ is even. Including the empty set we see that the total number of non-dominating sets is odd, and therefore the number of dominating sets is odd.

Third proof: Let

$$
A:=\{(S, T) \mid S, T \subseteq V, S \cap T=\emptyset, s \nsim t \text { for all } s \in S, t \in T\}
$$

A subset S of V is dominating precisely when $\#\{T \mid(S, T) \in A\}$ is odd, and hence the number of dominating sets equals $|A|(\bmod 2)$. But $(S, T) \in A$ iff $(T, S) \in A$, and $(S, T)=(T, S)$ only if $S=T=\emptyset$, so $|A|$ is odd.

