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Abstract

We describe the construction of a Lie algebra from a partial lin-
ear space with oriented lines of size 3, generalizing a construction by
Kaplansky. We determine all suitable partial linear spaces and the re-
sulting Lie algebras.

1 Lie oriented partial linear spaces

A partial linear space is an incidence structure (P,L) with points and lines,
such that the point-line incidence graph does not contain quadrangles. Let
(P,L) be a partial linear space with lines of size 3, and let F be a field of
characteristic 2. Construct an algebra L := LF (P,L) with bilinear multipli-
cation on the F -vector space FP with basis P by defining the multiplication
on the basis:

xy =

{
z if ` = {x, y, z} ∈ L,
0 otherwise (x = y or x, y noncollinear).

In some cases L is a Lie algebra. This construction was first studied by
Kaplansky [8] for symplectic spaces over fields of characteristic 2, and later
also by Rotman and Weichsel [10, 11]. The general case was studied by
Cuypers [4] who found that in characteristic 2 this construction only works
in the case described by Kaplansky: a subspace of the partial linear space
of hyperbolic lines of a symplectic space.

J. I. Hall suggested that if one associates a cyclic orientation to the
lines of the partial linear space, one might obtain Lie algebras over fields of
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arbitrary characteristic. In this paper, we investigate the Lie algebras arising
from this construction.

Let (P,L) be a partial linear space with lines of size 3, where each line
` = {x, y, z} ∈ L is provided with a cyclic orientation σ(`), one of the
two cyclic permutations (x, y, z) or (y, x, z). Let F be a field. Construct an
algebra L := LF (P,L, σ) with bilinear multiplication on the F -vector space
FP with basis P by defining the multiplication on the basis:

[x, y] =


z if ` = {x, y, z} ∈ L and σ(`) = (x, y, z),
−z if ` = {x, y, z} ∈ L and σ(`) = (y, x, z),
0 otherwise (x = y or x, y noncollinear).

We call L the Kaplansky algebra of the oriented partial linear space (P,L, σ)
over F . This algebra has a bilinear and antisymmetric multiplication, but
does not necessarily satisfy the Jacobi identity.

If LF (P,L, σ) is a Lie algebra for some field F of characteristic different
from 2, then (P,L, σ) is called a Lie oriented partial linear space and σ is
called a Lie orientation on (P,L). If (P,L, σ) is a Lie oriented partial linear
space for some σ, then we call (P,L) Lie orientable.

1.1 The examples

A partial linear space is called connected when its point-line incidence graph
is connected. As we shall see below, the connected Lie orientable partial
linear spaces are of four types, that we describe here.

(a) T (Ω,Ω′), the partial linear space obtained from two disjoint sets Ω,Ω′

by taking as points the subsets A of Ω ∪ Ω′ with |A ∩ Ω| = 2, and
as lines the triples {A,B,C} of points, where A + B + C = 0 in the
binary vector space 2Ω∪Ω′

.

(b) Sp(V,B), the partial linear space obtained from a binary vector space
V provided with a symplectic form B by taking as points the vectors
outside the radical of B, and as lines the hyperbolic lines.

(c) O(V,Q), the partial linear space obtained from a binary vector space
V provided with a quadratic form Q by taking as points the vectors
where Q is nonzero and that lie outside the radical of B, the symplectic
form associated to Q, and as lines the elliptic lines.

(d) PV \ PW , the partial linear space obtained by taking, for a binary
vector space V with subspace W of codimension 3, the points of PV
(the projective space associated to V ) that are not in PW , and the
lines of PV that are disjoint from PW . Here PW can be empty.
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1.2 Flipping

Let p ∈ P . Define σp by

σp(`) =

{
σ(`) if p 6∈ `,
(σ(`))−1 if p ∈ `.

Then LF (P,L, σ) and LF (P,L, σp) are isomorphic by the algebra isomor-
phism that maps p to −p and fixes all other basis elements. So, if we simul-
taneously reverse the orientation of all lines in L through one point p, we
end up with an isomorphic algebra. This operation will be called flipping
at p. Similarly, we can define flipping at a subset S of P as the operation
that reverses the orientation of a line l exactly |l∩S| times. Note that these
automorphisms of the algebra generate an elementary Abelian 2-group.

Two orientations of (P,L) are called flipping equivalent, if one can be
obtained from the other by applying a flipping.

1.3 Main result

Our main result is the following theorem.

Theorem 1.1 Let (P,L, σ) be a connected Lie oriented partial linear space.
Then (P,L) is isomorphic to one of the spaces (a) T (Ω,Ω′), (b) Sp(V,B),
(c) O(V,Q), (d) PV \ PW as described above. Conversely, each of these
spaces is Lie orientable, and admits up to flipping a unique Lie orientation
σ. The resulting Kaplansky algebra LF (P,L, σ) is a Lie algebra, provided
that in case (d) the field F has characteristic 3.

The families (a)–(c) also occur in Kaplansky’s original construction. Part
of the results of this note were given earlier in [9].

2 Binary orthogonal geometries

A subspace of a partial linear space (P,L) is a subset S of the point set with
the property that each line meeting S in at least 2 points is contained in S.
We often identify a subspace S with the partial linear space with point set
S whose lines are the lines of (P,L) contained in S.

If (P,L) is equipped with an orientation then S is naturally equipped
with an orientation. One easily checks that the Kaplansky algebra of a sub-
space of (P,L) is isomorphic to the subalgebra of the Kaplansky algebra
generated by the points of the subspace.

In this section we prove that the partial linear spaces of types (a), (b),
and (c) are Lie orientable. As each of the spaces in (a) and (b) is isomorphic
to a subspace of some partial linear spaceO(V,Q) of type (c), see for example
[7], it suffies to handle case (c).
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Let Π = (P,L) be the partial linear space O(V,Q) and let φ : V → F2

be a bilinear form with the property that φ(v, v) = Q(v) for all v ∈ V . For
` = {x, y, z} ∈ L define σ = σφ by

σ(`) =

{
(x, y, z) if φ(x, y) + φ(y, z) + φ(z, x) = 0;
(x, z, y) if φ(x, y) + φ(y, z) + φ(z, x) = 1.

As a line l ∈ L consists of a triple of nonsingular vectors, we have φ(x, y) +
φ(y, x) = φ(x+ y, x+ y) + φ(x, x) + φ(y, y) = 1 so that σ is well-defined.

Since x + y + z = 0 we have φ(x, x) + φ(x, y) + φ(x, z) = 0 so that
φ(x, y) = φ(y, z) = φ(z, x).

The multiplication on the Kaplansky algebra LF (P,L, σ) can now be
expressed as follows. For any u, v ∈ P we have

[u, v] = Q(u+ v) · (−1)φ(u,v) · (u+ v).

Lemma 2.1 The Kaplansky algebra LF (P,L, σ) is a Lie algebra for every
field F . In particular, σ is a Lie orientation on Π.

Proof. Let F be a field. To prove the lemma, it suffices to check that the
Jacobi identity holds in the Kaplansky algebra LF (P,L, σ) .

Let u, v, w be three points in P . Then

[[u, v], w] = [Q(u+ v) · (−1)φ(u,v) · (u+ v), w]
= Q(u+ v + w) · (−1)φ(u+v,w) ·Q(u+ v) · (−1)φ(u,v)(u+ v + w)
= Q(u+ v + w) ·Q(u+ v) · (−1)φ(u,v)+φ(v,w)+φ(w,u)+1(u+ v + w).

Inside the subspace of V generated by u, v and w we easily check that
Q(u+ v + w) = 0 or Q(u+ v) +Q(v + w) +Q(w + u) = 0, and the Jacobi
identity [[u, v], w] + [[v, w], u] + [[w, u], v] = 0 follows. 2

2.1 E2-groups

The above construction of σ is closely related to the construction of extra-
special groups and the following generalization of orthogonal space, see [6].

Definition 2.2 A group E is called an E2-group if it is a 2-group and it
has a normal subgroup Z of order 2 such that E/Z is elementary Abelian.
Z is called the scalar subgroup of E.

Indeed, given a binary quadratic space (V,Q) and bilinear form φ : V →
F2 with φ(v, v) = Q(v) we can equip the set E = V × F2 with the following
multiplication for (v, ε) and (w, η) in E:

(v, ε) · (w, η) = (v + w, ε+ η + φ(v, w)).
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This multiplication turns E into an E2-group with scalar subgroup Z =
{0} × F2. Hall [6] shows that, up to isomorphism, every E2-group can be
obtained in this way.

The cyclic subgroups of order 4 and quaternion subgoups of order 8 of E
are in one-one correspondence (and hence can be identified) with the points
and lines, respectively, of O(V,Q). This partial linear space is therefore
called the geometry of E. The orientation on this geometry can be recovered
by fixing a generator of the form (v, 0) for each point in E. Indeed, if p, q
and r are three collinear points, with generators p̃ = (v, 0), q̃ = (u, 0) and
r̃ = (w, 0), then the orientation of the line equals (p, q, r) if p̃q̃ = r̃ and
(p, r, q) otherwise.

Given an E2-group E, we can identify the Kaplansky Lie algebra with
a subalgebra of the Lie algebra defined on the group algebra of E. To this
end we use the following construction by Plesken as described in [2].

Definition 2.3 Let G be a finite group. For g ∈ G, denote the element
g − g−1 of the group algebra F [G] by ĝ. We call LF (G) := 〈ĝ | g ∈ G〉, with
Lie bracket [ĝ, ĥ] := ĝĥ− ĥĝ, the Plesken Lie algebra of G over F .

The multiplication expands to

[ĝ, ĥ] = ĝh− ĝh−1 − ĝ−1h+ ̂g−1h−1,

so LF (G) is linearly spanned by the elements ĝ. Clearly ĝ = 0 if and only
if g = g−1. Furthermore, ĝ = −ĝ−1. If S is a set of algebra elements ĝ
where S does not contain ĝ−1 for any ĝ ∈ S, then its elements are linearly
independent: F [G] can be decomposed into subspaces 〈g, g−1〉F that are all
linearly independent, and the elements of S are nonzero and in different such
subspaces.

We turn our attention to the Plesken Lie algebra of an E2-group E. The
nonzero generators are those ĝ where g has order 4. If e is an element of
order 4, then ê = (1− z)e. Note that 1− z is a central element of the group
algebra, and

(1− z)2 = 1− 2z + z2 = 2(1− z).

Since ze = e−1, we also have zê = e−1−e = −ê. Furthermore, we can obtain
a basis of LF (E) by taking the algebra elements corresponding to a set of
representatives for the points (i.e., subgroups of order 4) of E. Let R be such
a set of representatives. If e, f and g are three elements of R with ef = zαg,
then

[ê, f̂ ] = (1−z)2(ef−fe) = (1−z)2(zαg−z1+αg) = zα(1−z)3g = 4 ·(−1)αĝ.

Since the dimensions of LF (E) and the Kaplansky algebra of the oriented
partial linear space of E are both equal to half the number of elements of E
of order 4, we have proven the following proposition:
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Figure 3.1: Oriented Fano plane

Proposition 2.4 Let E be an E2-group. Choose a set R of representatives
for the points of E. The map from the Plesken Lie algebra of E to the
Kaplansky algebra of the geometry of E with orientation obtained from R,
given by ẽ 7→ 4ê for e in R, where ê is the element of the Kaplansky algebra
corresponding to e, is an isomorphism if charF 6= 2.

If charF = 2 and we take E as in the proposition, then the regular mul-
tiplication on the subalgebra 〈eZ | e ∈ R〉F of F [E/Z] turns out to satisfy
the Jacobi identity. This subalgebra is then isomorphic to the Kaplansky
algebra of the oriented partial linear space of E. This is easily checked by
hand.

3 Octonions and projective geometries

In this section we describe a class of Lie algebras arising as Kaplansky al-
gebras from the geometry of points and lines of a binary projective space
missing some fixed codimension 3 space.

We start with the Fano plane. It is well known that the 7 lines of the
Fano plane can be oriented in such a way that the corresponding Kaplansky
algebra over a field F is isomorphic to the algebra of split octonions over F
modulo its center F · 1, e.g. see [1].

Indeed, if the 7 points of the Fano plane are called e1, . . . , e7 then the
octonions can be described as the 8-dimensional algebra over F with basis
1, e1, . . . , e7 and multiplication defined by the orientation as given in Figure
3.

This orientation encodes the following multiplication table.
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× 1 e1 e2 e3 e4 e5 e6 e7

e1 e1 −1 e4 e7 −e2 e6 −e5 −e3

e2 e2 −e4 −1 e5 e1 −e3 e7 −e6

e3 e3 −e7 −e5 −1 e6 e2 −e4 e1

e4 e4 e2 −e1 −e6 −1 e3 e7 −e5

e5 e5 −e6 e3 −e2 −e7 −1 e1 e4

e6 e6 e5 −e7 e4 −e3 −e1 −1 e2

e7 e7 e3 e6 −e1 e5 −e4 −e2 −1

It is a straightforward task to check that over fields F of characteristic
3 the quotient of the octonions by its center satisfies the Jacobi identity. In
particular, the Fano plane is Lie orientable.

Next, let V be a binary vector space and let W be a subspace of V of
codimension 3. Let PV and PW be the corresponding projective spaces. Let
PV \PW denote the geometry of points and lines of PV disjoint from PW .
Fix a subspace F0 of the partial linear space PV \ PW isomorphic to the
Fano plane. Provide F0 with a Lie orientation σ0. Then σ0 can be extended
to a Lie orientation σ on PV \ PW in the following way.

Each point p of PV \ PW is equal or noncollinear to a unique point in
F0 which we denote by p. If l = {p, q, r} is a line then l = {p, q, r} is a line
in F0. For each line l = {p, q, r} of PV \ PW define σ(l) to be the cycle
(p, q, r) if and only if σ(l) = (p, q, r).

It is now straightforward to check that σ is a Lie orientation. So, we have
proved the following.

Proposition 3.1 Suppose V is a binary vector space and W a subspace of
codimension 3 in V . Then Π = PV \ PW admits a Lie orientation such
that for fields of characteristic 3 the corresponding Kaplanksy algebra is a
Lie algebra.

4 Partial linear spaces with a Lie orientation

In the previous sections we showed that the partial linear spaces of types
(a)–(d) are Lie orientable. In this section we show that no other connected
partial linear spaces are Lie orientable.

Let Π = (P,L) be a connected partial linear space admitting a Lie
orientation σ, such that for the field F of characteristic 6= 2 the Kaplansky
algebra LF (P,L, σ) is a Lie algebra.

As the intersection of subspaces of (P,L) is again a subspace, we can
define the subspace generated by a subset X of P to be the intersection of
all subspaces containing X. A subspace generated by (the union of) two
intersecting lines is called a plane.
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Proposition 4.1 All planes of Π are isomorphic to a dual affine plane or
a Fano plane.

Proof. Let {a, b, c} and {a, d, e} be two lines. We may assume that their
orientations are (abc) and (ade). By the Jacobi identity

[[b, c], d] + [[c, d], b] + [[d, b], c] = e+ [[c, d], b] + [[d, b], c] = 0.

Any product of standard basis elements is either 0 or plus or minus a stan-
dard basis element, and therefore, so are the second and third terms of this
sum. Hence, either one of the terms is −e and the other is 0, or both are e
and charF = 3.

Case 1: Suppose [[c, d], b] = −e and [[d, b], c] = 0 (the case where these
values are switched is symmetric). Then c and d must be collinear; call the
third point on that line f = [c, d] (the case where f = −[c, d] leads to an
isomorphic oriented partial linear space). Then b, f and e must be on a
line as well, with [b, f ] = e. The plane containing only the points and lines
mentioned so far is the dual affine plane of order 2, and with this choice for
σ it satisfies the Jacobi identity.

If, in addition to the aforementioned points and lines, we have b ∼ d,
then the third point on that line (say g = [b, d]) cannot be collinear to c. The
Jacobi identity on g, d and a then requires that {a, g, f} is a line, oriented
(agf). This violates the Jacobi identity on a, b and d. Hence the dual affine
plane of order 2 is the only plane that can lead to a Lie algebra for fields
with characteristic other than 3.

Case 2: Now suppose charF = 3 and [[c, d], b] = [[d, b], c] = e. We cannot
have that [c, d] = ±[d, b]; for, if that would be the case, then by the axiom of
partial linear spaces, c = b. So let f = [c, d] and g = [d, b] (again, the cases
where f = −[c, d] and / or g = −[d, b] lead to isomorphic oriented partial
linear spaces). The Jacobi identity on a, b and d then requires that [a, g] = f .
This is the last line of the Fano plane. No more lines can be added, since
each point is already collinear with every other point. This plane, depicted
in Figure 3, also satisfies the Jacobi identity. The orientation on the lines is
the same as is often used to define the octonions, see e.g. [1]. 2

Proposition 4.2 Let (P,L, σ) be an oriented partial linear space. Then σ
is a Lie orientation if and only if for every plane of (P,L), the restriction
of σ to the plane induces a Lie orientation on this plane.

Proof. Let (P ′, L′) be a plane of (P,L). Clearly LF (P ′, L′, σ|L′) is a subal-
gebra of L. Hence, it is certainly necessary for L to be a Lie algebra that
LF (P ′, L′, σ|L′) be a Lie algebra. To show sufficiency, suppose that every
LF (P ′, L′, σ|L′) is a Lie algebra for planes (P ′, L′). Let p, q, r ∈ P . We will
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show that the Jacobi identity holds for p, q and r. If there are no two inter-
secting lines containing p, q and r, then the Jacobi identity certainly holds.
Otherwise, they are contained in a plane; then the Jacobi identity holds be-
cause of the assumption. So the Jacobi identity holds on all triples of basis
elements. Since the Jacobi identity is linear, we are done. 2

Proposition 4.1 gives us a powerful tool to analyze the partial linear
spaces that can be Lie oriented. Indeed, the connected partial linear spaces in
which any two lines generate a dual affine of Fano plane have been classified.
They come in two families. The spaces containing only dual affine planes are
called cotriangular. They have been classified by J. I. Hall [7] and are the
spaces as described in cases (a), (b) and (c) of Theorem 1.1. The partial
linear spaces containing at least one Fano plane are the spaces PV \ PW
obtained by removing the points and lines of a projective space PV , for V a
binary vector space, that meet a proper subspace W of V nontrivially. This
follows from the results of Hale [5] and Cuypers [3].

The following lemma shows that if the space PV \PW is Lie orientable,
then the subspace W has codimension at most 3.

Lemma 4.3 Let dimV = 4. Then PV has no Lie orientation.

Proof. Suppose the partial linear space (P,L) of points and lines in the
4-dimensional vector space over F2 has a Lie orientation σ. Let ` = {a, b, c}
and m = {x, y, z} be two disjoint lines in PV with σ(`) = (a, b, c) and
σ(m) = (x, y, z). Let ax denote the third point on the line on a and x, and
similarly for the other pairs of points in ` ×m. We have now named all 15
points. By potentially flipping w.r.t. ax, we may assume that σ({x, ax, a}) =
(x, ax, a), and similarly for the 8 other lines k connecting m to `: we assume
the orientation is such that σ(k) maps k ∩ ` to k ∩m.

We define projections π` : P \m → ` and πm : P \ ` → m, mapping the
point pq, with p ∈ ` and q ∈ m, to p or to q respectively (and fixing ` and
m, respectively). If a plane Π contains m or `, then we will see that the
restriction of σ to Π is fully determined by the choices that we have made,
as follows. Take for Π the plane containing ` and x. The Jacobi identity on
a, c and x tells us that

−bx+ [cx, a] + [ax, c] = 0;

since all three of these terms are ±bx, we find [cx, a] = [ax, c] = −bx. This
determines the value of σ on the lines {cx, bx, a} and {c, bx, ax}. The Jacobi
identity on a, b and x additionally gives the value on {cx, b, ax}. We see that
π` is orientation-reversing on these lines.

The same is true if we take for Π a different plane containing `, and if
we take for Π a plane containing m, then πm is orientation-reversing on the
lines in there as well.
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Now take a plane containing only one point of both ` and m, e.g. the
plane containing a, x and by. The Jacobi identity on these three points
cannot be satisfied anymore:

[[a, x], by]+[[x, by], a]+[[by, a], x] = [ax, by]−[bz, a]+[cy, x] = [ax, by] = ±cz.

2

Using the results of Hall [7], M.P. Hale, Jr. [5] in the finite case and
Theorem 1.1 of [3] we obtain the classification part of Theorem 1.1: any
connected Lie oriented partial linear space is of one of the four types givem
there.

5 Uniqueness of the Lie orientation

In this section we prove that each of the partial linear spaces in the conclu-
sion of Theorem 1.1 admits, up to flipping, a unique Lie orientation.

Let Π be one of the partial linear spaces of Theorem 1.1. An even col-
lection of lines of Π is a set of lines that covers each point an even number
of times.

Proposition 5.1 In Π any finite even collection of lines is the sum (in the
binary vector space 2L) of even collections of size four.

Proof. As any finite set of even lines is contained in a finite subspace of Π,
we can assume Π to be finite and use induction on the the number of points
of Π. Let H be a (geometric) hyperplane of Π = (P,L) (arbitrary, or to be
chosen later). Given a finite even collection C of lines in Π, we show that C
is the sum of an even collection in H and some even collections of size 4.

The lines in L not contained in H become edges of a graph G on the
complement ofH, and the collection C becomes the set of edges of a subgraph
C of G that has even degree at each vertex. If C can be triangulated (i.e.,
is a sum of triangles in G), then we are done, since a triangle x, y, z in G is
contained in a plane of Π meeting H in a line, and hence derived from lines
{a, x, y}, {b, y, z}, and {c, z, x} with a, b, c ∈ H, where {a, b, c} is a line. So,
the set of three lines of such a triangle is the sum of an even 4-set and a line
contained in H.

So, it remains to prove that the graph C can be triangulated.
Induction on the size of C. We distinguish cases (a)–(d) as in the classi-

fication of Theorem 1.1.

In case (d), PG(V \W ), choose H a hyperplane not containing W . The
points outside PG(W ) fall into at least 7 cosets, and two points are joined
by an edge when they lie in distinct cosets. Given a cycle ... ∼ w ∼ x ∼ y ∼
z ∼ ... we can pick p outside H in a coset not containing w, x, y, z and see
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that the cycle is the sum of the shorter cycle ... ∼ w ∼ p ∼ z ∼ ... and the
triangles w, x, p and x, y, p and y, z, p. Repeating this proces will eventually
provide a triangulation of the cycle.

In case (a), T (Ω,Ω′), first suppose |Ω| > 3. Let α ∈ Ω, and let H be
the hyperplane of points not containing α. The complement of H consists
of the points A with α ∈ A, and two points A,A′ with A ∩ Ω = {α, β} and
A′ ∩Ω = {α, β′} are adjacent when β 6= β′. Given a cycle without diagonals
... ∼ w ∼ x ∼ y ∼ z ∼ ... we have β, γ ∈ Ω with w∩Ω = y ∩Ω = {α, β} and
x ∩ Ω = z ∩ Ω = {α, γ}. Now the point p = {α, δ} for some δ distinct from
α, β, γ lies outside H and is adjacent to each of w, x, y, z. As in the previous
case, this proves that C can be triangulated.

Next suppose |Ω| = 3. Now the collinearity graph of the partial linear
space is complete tripartite. Let H be the hyperplane of points not contain-
ing α′ ∈ Ω′. Given a cycle without diagonals ... ∼ w ∼ x ∼ y ∼ z ∼ ... the
points w, x, y, z must lie in two of the three parts of the tripartition, and we
can pick a point p adjacent to w, x, y, z in the third part.

In case (b), Sp(V,B), two points x, y are joined by an edge whenB(x, y) =
1. Put R := Rad(B). Then dimV/R is even. If dimV/R = 2 or 4, we are
in case T(Ω,Ω′) with |Ω| = 3 or 6, which was treated already. So assume
dimV/R ≥ 6. Pick a point a and put H = a⊥. Since a is in an even num-
ber of lines of C, we can add even 4-sets to C in order to remove all lines
that pass through a. Given a cycle ... ∼ w ∼ x ∼ y ∼ z ∼ ... in C, we
can find a point p in the complement of H adjacent to each of w, x, y, z
when a does not lie in the span of w, x, y, z. Suppose a lies in the span of
w, x, y, z. If a = w + x + y + z then B(x, a) = 0, which yields a contra-
diction. Hence a = w + z and B(w, z) = 1. Since we had removed all lines
on a from C, the edge wz is a diagonal in the cycle. This shows that if
x0 ∼ x1 ∼ ... ∼ xg−1 ∼ x0 is a shortest cycle in C, then we can make C
smaller by adding triangles, unless g = 6 and a = x0+x3 = x1+x4 = x2+x5.
But now modulo even sets of size 4 the sum of the lines on the edges of this
6-cycle is zero.

In case (c), O(V,Q), we have the subspace of the previous example in-
duced by the points x with Q(x) = 1. In low dimensions this space is one
of the examples seen already. (Let Q be the set of projective points x with
Q(x) = 0, and put S = R ∩Q so that Q induces a nondegenerate quadratic
form on V/S. We may assume that Q is nonempty. If dimV/S = 2, then
Q is hyperbolic and we have PG(n, 2) − PG(−1, 2). If dimV/S = 3, then
we have T (4,Ω′). If dimV/S = 4, then either Q is hyperbolic, and we have
a disconnected space (two copies of T (3,Ω′)), or Q is elliptic, and we have
T (5,Ω′). If dimV/S = 5, then we have T (6,Ω′). If dimV/S = 6 and Q is
hyperbolic, then we have T (8,Ω′).)

So assume dimV/S ≥ 6. Again remove all lines through some point a
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(with Q(a) = 1), and take H = a⊥. Consider a cycle ... ∼ w ∼ x ∼ y ∼
z ∼ ... in C. If it has length 6 and opposite vertices sum to a, then as before
modulo even sets of size 4 the sum of the lines on the edges of this 6-cycle
is zero. Otherwise, for suitable choice of w, we have a 6= w + z, and then
a is independent from w, x, y, z. If w, x, y, z are dependent, then they lie in
a plane, and the three edges wx, xy, yz can be replaced by the single edge
wz. So we may assume that a,w, x, y, z are independent. Desired: a point p
with Q(p) = 1 and B(p, a) = B(p, w) = B(p, x) = B(p, y) = B(p, z) = 1.
If dimV/S ≥ 7 then we can restrict attention to a nondegenerate subspace
of dimension 7 and satisfy the conditions on B(p, .) there, and then satisfy
Q(p) = 1 by adding the nucleus to p, if necessary. So we may assume that
dimV/S = 6 and Q is elliptic. Now there is a unique point p that satisfies
the conditions, as one sees by explicit inspection. 2

Corollary 5.2 Up to flipping, the Lie orientation of the partial linear space
Π is unique.

Proof. From the classification in Theorem 1.1 we see that each Lie orientable
partial linear space is the union of an increasing sequence of finite subspaces,
and hence we may assume that the partial linear space Π is finite.

We may also assume that Π is connected. If Π consists of a single plane
then the statement is true, as one verifies directly.

Let N be the point-line incidence matrix of Π. Consider two Lie orien-
tations of Π. Let x be the binary row vector indexed by L with x` = 1 when
the two orientations differ on `. We have to show that x is in the row span
of N , given that the restriction of x to the set of lines in any plane is in the
row span of N restricted to that same set of lines.

To this end, it suffices to show that if y is a binary row vector orthogonal
to the row space of N , then y is the sum of such vectors that are zero outside
the set of lines in a plane. In other words, if we have an even collection of
lines, then that collection is the sum of even collections contained in a plane.

In the dual affine plane there is only one nonempty such collection, the
set of all four lines. In the Fano plane any such collection is the set of four
lines missing a some point. 2

The above corollary finishes the proof of Theorem 1.1.

6 The structure of the Kaplansky algebras

In this section, we will determine the structure and isomorphism types of
the Kaplansky Lie algebras that we have constructed earlier.

Let Π = (P,L, σ) be a Lie oriented partial linear space. For p, q ∈ P
we write p ≡ q if and only if p⊥ = q⊥. The partial linear space Π is called
reduced if and only if all ≡-equivalence classes are trivial, i.e. consist of a
single point.

12



Lemma 6.1 Suppose that Π is connected and reduced. Let F be a field such
that the Kaplansky algebra LF (Π) is a Lie algebra. Then LF (Π) is simple.

Proof. Let I be a nontrivial ideal of LF (Π). If I contains a point p ∈ P , then
by connectedness of Π it contains all points of P and thus is equal to LF (Π).
Thus assume that P∩I = ∅ and pick p1, . . . , pn ∈ P with n > 1 minimal such
that 0 6= x = α1p1 + · · ·+ αnpn ∈ I for some α1, . . . , αn ∈ F . Since p1 6≡ pn,
we can assume, up to permuting 1 and n, that there is a p ∈ P collinear with
p1 but not with pn. But then [p, x] = α1[p, p1] + α2[p, p2] + · · ·+ αn[p, pn] =
α2[p, p2]+ · · ·+αn[p, pn] ∈ I. Since [p, pi] is either 0, +q or −q for some point
q ∈ P , we find a contradiction with the minimality of n. Hence, if I 6= 0,
then it equals LF (Π), proving simplicity of LF (Π). 2

Now suppose Π is connected but reduced. By the classification result
Theorem 1.1 it follows that we can find a subspace Π0 = (P0, L0, σ0) of Π
meeting each ≡-class in just one point.

The orientation σ0, the restriction of σ to L0, can be extended to an
orientation σ̂ on the whole of Π in the following way. If l = {x, y, z} is a line
in L, then there exists unique line l′ = {x′, y′, z′} in Π0 such that x′ ≡ x,
y′ ≡ y and z′ ≡ z. Now let σ′(l) = (x, y, z) if and only if σ(l′) = (x′, y′, z′). By
4.2 it is straightforward to check that this orientation σ̂ is a Lie orientation.
As all Lie orientations are flipping equivalent, and we can, to analyze the
structure of the corresponding Kaplansky algebra, assume that σ̂ = σ. But
then the two subspaces

I− = 〈p− p′ | p ≡ p′ ∈ P 〉

and
I+ = 〈p+ p′ | p ≡ p′ ∈ P 〉

are clearly ideals of LF (Π).
In particular we have proved

Proposition 6.2 Suppose Π is a Lie oriented partial linear space, F a field
and LF (Π) the Kaplansky Lie algebra of Π over F .

Then LF (Π) is simple if and only if Π is reduced.

We investigate the structure of LF (Π) somewhat further.
Clearly, if F is of characteristic 2, then I− = I+ is Abelian. From now on

we assume that the characteristic of F is not 2. Let Π1 be a subspace of Π
meeting each ≡-class in all but one point. Such subspaces exist. Indeed, we
can obtain Π1 = (P1, L1) by intersecting P with an appropriate hyperplane
of the projective space in which Π naturally embeds. As above, we can easily
check that

J− = 〈p− p′ | p ≡ p′, p ∈ P1, p
′ 6∈ P1〉
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and
J+ = 〈p+ p′ | p ≡ p′, p ∈ P1, p

′ 6∈ P1〉

are ideals of LF (Π). Moreover, if we extend F with
√

2, then over this
extension J−, J+ and LF (Π1) are isomorphic. Indeed, the map

P1 → J±;

p 7→ 1
2

√
2(p± p′),

induces an isomorphism from LF (Π1) to J±. Repeating this process we ob-
tain the following.

Proposition 6.3 Suppose Π is a Lie oriented partial linear space, F a field
and LF (Π) the Kaplansky Lie algebra of Π over F .

If the characteristic of F is not 2, then, possibly after extending F by√
2, the Kaplansky Lie algebra LF (Π) is a direct sum of pairwise commuting

simple Kaplansky Lie algebras all isomorphic to LF (Π0).

For the remainder of this section we will consider the case where Π is
reduced and the Kaplansky Lie algebra is simple and identify the Lie algebras
with some classical Lie algebras. We start with the following result:

Theorem 6.4 Let F be a field of characteristic different from 2 and Π =
(P,L, σ) a finite reduced Lie oriented partial linear space with associated Ka-
plansky Lie algebra L = LF (Π). Then L is a classical Lie algebra isomorphic
to

(a) sl(2n, F ) if (P,L) is isomorphic to Sp(V, f) for some nondegenerate
binary symplectic space (V, f) of dimension 2n.

(b) so(2n, F ) if (P,L) is isomorphic to O(V, f) for some nondegenerate
binary orthogonal space (V, f) of dimension 2n and maximal Witt in-
dex.

(c) sp(2n−1, F ) if (P,L) is isomorphic to O(V, f) for some nondegenerate
binary orthogonal space (V, f) of dimension 2n and Witt index n− 1.

Proof. First consider the case that (P,L) is isomorphic to O(V,Q), where
(V,Q) is a nondegenerate binary quadratic space of dimension 2n and max-
imal Witt index. The E2-group E = E(V,Q) is then isomorphic to the
subgroup E(n) ≤ GL2n(F ) defined as

E(n) = E(1)⊗n = E(1)⊗ · · · ⊗ E(1),

where

E(1) = 〈
(

0 1
1 0

)
,

(
1 0
0 −1

)
〉.
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Denote by LF (E) the Plesken Lie algebra over F of E. Let ψ : E → E(n)
be an isomorphism and ψ : LF (E) → gl(2n, F ) the linear map defined by
ψ(ê) = ψ(e)− ψ(e−1) for all e ∈ E. Then ψ is a Lie algebra morphism and
the Plesken algebra and hence also the Kaplansky Lie algebra defined by E
is isomorphic to the image of ψ. Notice that the elements of order 4 in E(n)
are represented by skew-symmetric matrices. So, by construction ψ maps all
elements of E into elements of so(2n, F ). Moreover, as LF (E) and so(2n, F )
have the same dimension, we find these Lie algebras to be isomorphic. This
proves statement (b).

Now consider the element

Jn :=
(

0n−1 In−1

−In−1 0n−1

)
of E(n) where 0m and Im represent the 2m × 2m zero and identity matrix,
respectively, and let e be its preimage in E, Then centralizer of e in LF (E)
contains the Plesken algebra corresponding to a subspace ∆ of Π isomorphic
to Sp(W, f) for some binary 2(n−1)-dimensional nondegenerate symplectic
space (W, f).

The centralizer of Jn in so(2n, F ) consists of all matrices of the form(
A B
−B A

)
with A = −A> and B = B>. The latter centralizer is isomorphic

to gl(2n−1, F ) and hence modulo its center to sl(2n−1, F ). (Indeed, mapping(
A B
−B A

)
to A+B yields an isomorphism.) As LF (∆) and sl(2n−1, F ) have

the same dimension, they are isomorphic, proving (a).
Next consider the element(

0n−1 Jn−1

Jn−1 0n−1

)
in so(2n, F ) and its preimage f in E. The centralizer of e and f in the
Plesken algebra contains the Plesken algebra corresponding to a subspace of
Π isomorphic to O(W,Q′) for some nondegenerate binary quadratic space
(W,Q′) of dimension 2n− 2 and of Witt index n− 2. This space is mapped
by ψ into the subalgebra of so(2n, F ) consisting of all matrices of the form(
A B
−B A

)
with A = −A> and B = B>, and (A+B)Jn−1 = Jn−1(A+B)>.

As the latter is isomorphic with sp(2n−1, F ) and the dimensions fit, we have
proved (c). 2

It remains to identify the Lie algebras arising form the Fano plane and
from cotriangular of the form T ({1, . . . , n}, ∅)). We first identify some Car-
tan subalgebras.
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Lemma 6.5 Any subspace of LF (P,L, σ) spanned by an inclusion wise max-
imal set of basis elements corresponding to noncollinear points is a Cartan
subalgebra.

Proof. Let H be such a subspace. Since the multiplication restricted to
H is zero, H is certainly an Abelian subalgebra. Denote the set of points
corresponding to the generators of H by U , and write p̃ for the Lie algebra
element corresponding to the point p.

Let u ∈ U and suppose [
∑
αiṽi, ũ] ∈ H. Suppose vi 6∈ U and vi ∼ u.

Denote the third point on the line connecting vi and u by w. Note that w 6∈
U , since u is already an element of U . Then [ṽi, ũ] = ±w̃ 6∈ H. Furthermore,
different basis vectors ṽj cannot “compensate” this element outside H, since
for i 6= j, the product [ṽj , ũ] is a multiple of a different standard basis vector.
So αi = 0. Since every vi 6∈ U is collinear to some point in U (otherwise U
would not be maximal),

∑
αiṽi ∈ H. Hence H is self-normalizing. Thus it

is a Cartan subalgebra. 2

Theorem 6.6 LF (T ({1, . . . , n}, ∅)) is of Chevalley type Bk if n = 2k + 1
and of type Dk if n = 2k.

Proof. Take the subalgebra H spanned by the elements h` := ˜{2`− 1, 2`}
where ` ≤ k, and where, like in the proof of Lemma 6.5, the tilde turns a
point into the corresponding algebra element. This spanning set satisfies the
requirements of Lemma 6.5, so H is a Cartan subalgebra. For ` < m ≤ k
and for α, β ∈ {±1}, let us define

rα,β`,m = ˜{2`− 1, 2m− 1}+α
√
−1 ˜{2`− 1, 2m}+β

√
−1 ˜{2`, 2m− 1}−αβ ˜{2`, 2m}.

Furthermore, if n is odd, then for ` ≤ k and α ∈ {±1}, we additionally
define

rα` = ˜{2`− 1, n}+ α
√
−1{̃2`, n}.

Now

[h`, r
α,β
`,m] = −β

√
−1rα,β`,m, [hm, r

α,β
`,m] = −α

√
−1rα,β`,m, [h`, rα` ] = −α

√
−1rα` ,

and all other products between elements of the form h∗ on the one hand,
and elements of the form r∗ on the other hand, are zero. Thus we define
{e`} to be the ordered basis of H∗ dual to the basis of H consisting of the
elements

√
−1h`; then the projective point containing rα,β`,m acts as βe`+αem

and rα` , if present, acts as αe`. These root systems are of type Dk and Bk if
n is even or odd, respectively. 2

Theorem 6.7 Suppose Π = (P,L, σ) is the Fano plane equipped wit a Lie
orientation σ and F a field of characteristic 3. Then, after possibly adding√
−1 to F , the Kaplansky algebra LF (Π) is isomorphic to A2(F )′, the com-

mutator subalgebra of the Lie algebra of type A2 over F .
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Proof. Take any point p ∈ P as a generator for a Cartan subalgebra; if
{p, q, r} ∈ L and pσ(`) = q, then q+

√
−1r and q−

√
−1r span eigenspaces of

p. These eigenspaces form the images of a set of root spaces under modding
out the centre. This finishes the proof. 2

References

[1] John C. Baez, The octonions, Bull. Amer. Math. Soc. (N.S.) 39 (2002),
no. 2, 145–205 (electronic).

[2] Arjeh M. Cohen and Donald Taylor, On a certain Lie algebra defined
by a finite group, preprint February 2005, to appear in Amer. Math.
Monthly.

[3] Hans Cuypers, On delta spaces satisfying Pasch’s axiom, J. Geom. 53
(1995), no. 1-2, 67–75.

[4] Hans Cuypers, Lie algebras and cotriangular spaces, Bull. Belg. Math.
Soc. Simon Stevin 12 (2005), no. 2, 209–221.

[5] Mark P. Hale, Jr., Finite geometries which contain dual affine planes,
J. Combinatorial Theory Ser. A 22 (1977), no. 1, 83–91.

[6] Jonathan I. Hall, The number of trace-valued forms and extraspecial
groups, J. London Math. Soc. (2) 37 (1988), no. 1, 1–13.

[7] Jonathan I. Hall, Graphs, geometry, 3-transpositions, and symplectic
F2-transvection groups, Proc. London Math. Soc. (3) 58 (1989), no. 1,
89–111.

[8] Irving Kaplansky, Some simple Lie algebras of characteristic 2, Lie al-
gebras and related topics (New Brunswick, N.J., 1981), Lecture Notes
in Math., vol. 933, Springer, Berlin, 1982, pp. 127–129.

[9] Erik Postma, From Lie Algebras to Geometry and Back, Ph. D. Thesis,
TUE, Eindhoven, 2007.

[10] Joseph J. Rotman, Projective planes, graphs, and simple algebras, J.
Algebra 155 (1993), no. 2, 267–289.

[11] J. J. Rotman and P. M. Weichsel, Simple Lie algebras and graphs, J.
Algebra 169 (1994), no. 3, 775–790.

17


