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Abstract

We show that a unital in PG(2, q2) is Hermitian if and only if it is in
the code generated by the lines of PG(2, q2). This implies the truth of a
conjecture made by Assmus and Key.

1 Introduction

In this paper, a unital in a projective plane of order m2 will be a subset of
size m3 + 1 of the point set with the property that each line meets it in either
m + 1 or 1 point(s). In the Desarguesian plane the set of isotropic points of a
nondegenerate Hermitian form is the classical example of a unital. Such a unital
is called a Hermitian unital. In [1] it is shown that a particular class of unitals
in the Desarguesian plane PG(2, q2) (the so-called Buekenhout-Metz unitals)
always intersect a Hermitian unital in 1 mod p points (where p is prime and
q = pe), and the authors mention a conjecture by Assmus and Key that every
unital has this property w.r.t. the Hermitian unital. Since the (characteristic
vector of the) complement of any unital on m3+1 points in any plane of order m2

is in the orthogonal complement of the Fp-code spanned by the (characteristic
vectors of the) lines of the plane if p | m, it clearly suffices to show that the
Hermitian unital is in the code of the Desarguesian plane to prove the conjecture.

Theorem. Let q = pe with p prime and e ∈ N. A unital in PG(2, q2) is
Hermitian if and only if it is in the Fp-code spanned by the lines of PG(2, q2).

The proof of this theorem will be given in Section 3. In the preparatory
Section 2 we recall some basic facts about Abelian difference sets in planes of
square order (cf. [5] and also [2] for the cyclic case), and prove a new result
(Lemma 2) that will be helpful in the proof of the theorem.

2 Abelian difference sets in planes of square order

Consider an abelian group G (written multiplicatively) of order n2+n+1 with a
planar difference set D chosen in such a way that D is fixed by every multiplier.
If n = m2, then µ = m3 is a multiplier of order 2. We shall assume that µ is a
multiplier of order 2 and show that n = m2 and µ = m3. We shall then describe
the geometrical implications of µ. Define subgroups A and B of G by

A = {x ∈ G | xµ = x−l}, B = {x ∈ G | xµ = x},
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and define homomorphisms α : G→ A and β : G→ B by

gα := (gg−µ)
1
2 , gβ := (ggµ)

1
2 (g ∈ G).

Notice that A ∩ B = 1 and that g = gαgβ for every g ∈ G, i.e., G is the direct
product of A and B, G = A×B.

Since µ is a collineation of order two, it is either an elation (with n + 1
fixed points), a homology (with n+ 2 fixed points), or a Baer involution (with
n +
√
n + 1 fixed points). Since the number of fixed points |B| divides |G| it

follows that µ is a Baer involution and that n is a perfect square, say n = m2.
It follows that |A| = m2 −m+ 1, |B| = m2 +m+ 1 and B is a Baer subplane.
To show that µ = m3, observe that the orders of A and B are coprime so G has
unique subgroups of order m2 −m + 1 and m2 + m + 1. Since m3 is also an
involutory multiplier, m3 and µ have identical actions on A and B so µ = m3.
Notice that D ∩ B is a difference set in B (D is fixed by µ and is therefore a
Baer line).

Lemma 1 For all d1, d2 ∈ D we have dβ1 = dβ2 ⇔ d1 = d2 or d1 = dµ2 .

Proof. If dβ1 = dβ2 , then d1d
−1
2 = dµ2 (dµ1 )−1, so since D is a planar difference

set, d1 = d2 or d1 = dµ2 . The converse is obvious. 2

This lemma can be used to show that A is an arc (i.e., no three points of
A are collinear): If d1g, d2g ∈ Dg ∩ A, then (d1g)β = 1 = (d2g)β so d1 = d2,
or d1 = dµ2 . (The same proof as in [2] can be used to show that A is in fact a
maximal arc if m > 2.)

Let R be a commutative ring with identity and consider the group ring R[G].
We shall use the following notational conventions. We shall identify a subset
X = {x1, x2, . . . , xs} ⊆ G with the element X = x1 + x2 + · · · + xs in R[G].
Also, for a homomorphism γ of G, we define the R-homomorphism [γ] of R[G]
by ∑

g∈G
ξgg

[γ]

:=
∑
g∈G

ξgg
γ .

Using these conventions our next lemma can be formulated as follows.

Lemma 2 D[β] + (D ∩B)[
1
2 ]2 = 2B in Z[G].

Proof. Notice that on the left hand side of this identity all terms certainly
belong to B and are of the form (d1d2)

1
2 with d1 and d2 in D. There are

(m2 + 1) + (m + 1)2 = 2(m2 + m + 1) terms on the left hand side. Since

(d1d2)
1
2 = (d3d4)

1
2 implies that {d1, d2} = {d3, d4} and since the terms with

d1 = d2 appear twice, once in D[β] and once in (D∩B)[
1
2 ]2, the identity follows.
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It is well known (and easy to check) that the correspondence

g ↔ Dg−1, g ∈ G

defines a polarity. The set of absolute points is D[ 12 ]. (Thus, (D ∩ B)[
1
2 ] is an

oval in B if n is odd and a line of B if n is even.) It is equally easy to check
that the correspondence

g ↔ Dg−µ, g ∈ G

2



also defines a polarity. Clearly, g is absolute w.r.t. this polarity if and only if
g2β ∈ D. Since A = ker(β) the following result is now clear.

Lemma 3 The polarity g ↔ Dg−µ has m3+1 absolute points namely the points
of U = A(D ∩B)[

1
2 ].

It is well known that U is a unital (see e.g. [3, p. 246] or [5]). To end this
section, we shall now discuss how all of this applies to the Hermitian unital.
The standard method to see the cyclic difference set for PG(2, q2) is to start
with Fq6 as the underlying 3-dimensional vector space over Fq2 and to identify
the points of PG(2, q2) with the elements of

G = F∗q6/F
∗
q2 ,

a cyclic group of order q4 + q2 + 1. Let x→ 〈x〉 be the homomorphism F∗q6 → G
and let Tr : Fq6 → Fq2 , be the usual trace function. Now

D = {〈x〉 | x ∈ Fq6 , Tr(x) = 0}

is a line of the plane and therefore serves as a difference set in G.
Notice that D is invariant under the multiplier 〈x〉 7→ 〈xp〉. Since U is the

set of g ∈ G such that gµ+1 = gq
3+1 ∈ D, it follows that

U = {〈x〉 | x ∈ F∗q6 , Tr(xq
3+1) = 0}.

Hence, U is just the set of isotropic points of the nondegenerate Hermitian form
H(x, y) on Fq6 defined by

H(x, y) = Tr(xyq
3

) ,

i.e., U is a Hermitian unital.

3 Proof of the theorem

We shall now prove that U is in the F-code spanned by the lines for every field
F in which m2 + 1 6= 0 6= |G| (clearly this implies the ‘only if’ part of the
theorem). We shall work in the group algebra F[G] and show that U is in the
ideal generated by D. For this we have to show that

χ(D) = 0⇒ χ(U) = 0

for every absolutely irreducible F-character χ of G. So assume χ(D) = 0. Since

χ(U) = χ(A)χ((D ∩ B)[
1
2 ]) by Lemma 3, we may assume that χ(A) 6= 0. Now

χ(g) = φ(gα)ψ(gβ), g ∈ G, where φ is a character of A and ψ is a character of
B. Hence, φ(A) = χ(A) 6= 0 implies that φ = 1A and so χ(g) = ψ(gβ) for all
g ∈ G. In particular

χ(D) = ψ(D[β]) and χ((D ∩B)[
1
2 ]) = ψ((D ∩B)[

1
2 ]) .

Since 1B(D[β]) = m2 + 1 6= 0, it follows that ψ 6= 1B and so, by Lemma 2,

ψ((D ∩B)[
1
2 ])2 = ψ((D ∩B)[

1
2 ]2) = ψ(2B)− ψ(D[β]) = 0− 0 = 0,
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completing the proof that U is in the code.
For the converse, assume that U is a unital in the Desarguesian projective

plane PG(2, q2), q = pe, p prime, e ∈ N, which is in the code spanned by the
lines of the plane.

Proposition. Let X be a subset of PG(2, q) which is in the F-code of the plane
and let P be a point not in X. Then the points Q for which the line PQ is
tangent to X (i.e., PQ ∩X = {Q}) are all collinear.

Proof. If q = 2 this is easy to check so assume q > 2. Let Qi, i = 1, 2, 3, be
three distinct points of X for which PQi is a tangent line. Coordinatize the
plane in such a way that P = (1, 0, 0) and Qi = (xi, yi, 1), i = 1, 2, 3 (here we
use q > 2). Notice that yi 6= yj if i 6= j since P , Qi, Qj are not collinear. Thus,
there exist nonzero w1, w2, w3 ∈ Fq, such that

w1 + w2 + w3 = 0, w1y1 + w2y2 + w3y3 = 0.

Give weight wix to a point (x, yi, 1) on the horizontal line PQi, x ∈ Fq, i =
1, 2, 3, and weight zero to all other points. This defines a word in the dual code
(over Fq) of the plane (e.g., a line X = aY + bZ has inner product

∑
i wi(ayi +

b) = 0, a line Y = yiZ has inner product
∑
x wix = 0.) Since X is in the code,

X has inner product zero with this word, i.e.,

w1x1 + w2x2 + w3x3 = 0

proving that Q1, Q2 and Q3 are collinear. 2

Thus, for the unital U and a point P not in U , the q+ 1 points Qi for which
PQi is a tangent line, are all on one line which we shall denote by p⊥. For a
point P in U we define P⊥ to be the tangent at P . We want to show that this
defines a (Hermitian) polarity. For this it suffices to show that Q ∈ P⊥ implies
that P ∈ Q⊥ and the only difficult case is with P and Q not in U . Assume that
P and Q are points not in U such that Q ∈ P⊥. We can choose coordinates
in such a way that P = (1, 0, 0) and P⊥ is the line X = 0. Let Qi = (0, yi, 1),
i = 1, 2, . . . , q+1 be the points of U on P⊥ and let Q = (0, y0, 1). Then Y = y0Z
is the equation of the line PQ. There exist nonzero wi, i = 0, 1, . . . , q + 1 such
that 

1 1 · · · 1
y0 y1 · · · yq+1

y20 y21 · · · y2q+1
...

...
. . .

...
yq0 yq1 · · · yqq+1




w0

w1

...
wq+1

 =


0
0

...
0

 .

The wi can be taken nonzero since deleting a column from the above matrix
yields a nonsingular (q+1)×(q+1) matrix (Vandermonde). Let k be an integer,
1 ≤ k ≤ q. Give weight wix

k to a point (x, yi, 1), x ∈ Fq2 , i = 0, 1, 2, . . . , q + 1,
and weight zero to all other points. Again this defines a word in the dual code
as one easily verifies. Hence, if the q+1 points of the unital on the line Y = y0Z
are given by Rj = (xj , y0, 1), j = 1, 2, . . . , q + 1, then it follows that

q+1∑
j=1

w0x
k
j = 0 .
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Define the power sums πk, k ≥ 1, by

πk =

q+1∑
j=1

xkj .

The generating functions

π(z) =

∞∑
k=1

πkz
k , and σ(z) =

q+1∏
j=1

(1− xjz) =

∞∑
k=0

σjz
k

satisfy σ(z)π(z) + zσ′(z) = 0. From this one deduces the Newton identities

n−1∑
m=0

πn−mσm + nσn = 0 , n ≥ 1 .

Hence, since πk = 0 for k = 1, . . . , q, it follows that σn = 0 for n ≤ q, n 6= 0
mod p. Using induction it then follows that πk = 0 for k ≥ q + 1, k 6= 1 mod
p. In particular it follows that πq2−2 = 0 if p 6= 3 and πq2−4 = 0 if p = 3, i.e.,

(using xq
2−2 = x−1 and xq

2−4 = x−3 if x ∈ F∗q2)
∑q+1
j=1 x

−1
j = 0 .

Let R0 = (x0, y0, 1) be any point on the line PQ, R0 6= Q,P,Rj , j =
1, . . . , q + 1 and compute the cross ratio (Q,P ;Rj , R0):

(Q,P ;Rj , R0) = (0,∞;xj , x0) =
(0− xj)(∞− x0)

(∞− xj)(0− x0)
=
xj
x0

.

Thus we have shown that
∑q+1
j=1(Q,P ;Rj , R0) = 0. Hence, interchanging

the rôles of P and Q and writing R = (x, y0, 1) for the point of intersection of
Q⊥ and PQ it follows that

0 =

q+1∑
j=1

(R,Q;Rj , R0) =

q+1∑
j=1

(x, 0;xj , x0) =

=
x0

x− x0

q+1∑
j=1

x/xj − 1

 =
−x0
x− x0

.

We conclude that x =∞, i.e., P = R ∈ Q⊥ .

Added in proof. Our theorem was conjectured by Assmus and Key in [6].
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