Cocliques in the Kneser graph on the point-hyperplane flags of a projective space

A. Blokhuis, A. E. Brouwer, Ç. Güven

November 9, 2010

Dedicated to the memory of András Gács

Abstract

We prove an Erdős-Ko-Rado-type theorem for the Kneser graph on the point-hyperplane flags in a finite projective space.

1 Introduction

Let V be a vector space of finite dimension $n>0$ over \mathbf{F}_{q}, and consider in the associated projective space $P V$ the flags (P, H) consisting of an incident point-hyperplane pair (that is, with $P \subseteq H$), and call two such flags (P, H) and $\left(P^{\prime}, H^{\prime}\right)$ adjacent when $P \nsubseteq H^{\prime}$ and $P^{\prime} \nsubseteq H$. This defines the Kneser graph $\Gamma(V)$. We study maximal cocliques in this graph.
Let $F=\left(X_{1}, \ldots, X_{n-1}\right)$ be a maximal flag (chamber) in $P V$, that is, X_{i} is a subspace of V of vector space dimension i for all i, and $X_{i} \subseteq X_{j}$ for $i<j$. Using F we define the coclique $C_{F}=\left\{(P, H) \mid \exists i: P \subseteq X_{i} \subseteq H\right\}$. This coclique is maximal, of size $\left|C_{F}\right|=1+2 q+3 q^{2}+\ldots+(n-1) q^{n-2}$.

For a coclique C in $\Gamma(V)$, define $Z(C)=\{P \mid(P, H) \in C$ for some $H\}$ (the points involved in C) and $Z^{D}(C)=\{H \mid(P, H) \in C$ for some $P\}$.

Theorem 1 Let C be a coclique in $\Gamma(V)$ and let $Z=Z(C)$. Let $f(n):=$ $1+2 q+3 q^{2}+\ldots+(n-1) q^{n-2}$ and $g(n):=1+q+q^{2}+\ldots+q^{n-2}$. Then
(i) $|C| \leq f(n)$, and equality holds iff $C=C_{F}$ for some chamber F, and
(ii) $|Z| \leq g(n)$, and for $q>2$ equality holds iff Z is a hyperplane.

Note that $g(n)$ is the number of points in a hyperplane, and $f(n)=$ $q f(n-1)+g(n)$. Part (i) was conjectured, and partial results were obtained, in Mussche [2]. Both inequalities are sharp, and the theorem characterises equality in (i). What about equality in (ii)? In examples of type C_{F} the set Z is a hyperplane $\left(Z=X_{n-1}\right)$, and equality holds. When $q=2$ there are further examples of equality $\left(|Z|=g(n)=2^{n-1}-1\right)$, described below.
Example 1. $(n=3)$ In the plane, take non collinear points $P_{i}(i=1,2,3)$. Let C consist of the flags $\left(P_{i}, P_{i}+P_{i+1}\right)($ indices $\bmod 3)$. Then C is a coclique, and $|Z|=3=2^{3-1}-1$.
(This example also arises from the trivial one point coclique for $n=2$ by the construction in Example 3.)
Example 2. $(n=4)$ Consider a plane π and a point ∞ outside π. For each point P in π, let P^{\prime} be the third point of the line $P+\infty$. Label the points of π with the integers mod 7 , so that the lines become $\{i+1, i+2, i+4\}$ $(\bmod 7)$. The seven flags $\left(i^{\prime},\left\langle i^{\prime}, i+1, i+2, i+4\right\rangle\right)$ form a coclique C, and $|Z|=7=2^{4-1}-1$.
(This is an honest sporadic example.)
Example 3. Let H be a hyperplane in V, and let D be a coclique in $\Gamma(H)$ with $|Z(D)|=2^{n-2}-1$. Let G be a hyperplane of H, such that G is disjoint from $Z(D)$. Let Q be a point outside H. Let C consist of the flags (P, H) with $P \subseteq G$, the flags $(P, N+Q)$ with $(P, N) \in D$, and $(Q, G+Q)$. Then C is a coclique, and $Z(C)=Z(D) \cup G \cup\{Q\}$, so that $|Z|=2^{n-1}-1$.
(We'll see later that this only gives something for $n \leq 5$.)
Example 4. Let T be a t-space in $V, 0<t<n$. Let D be a coclique in $\Gamma(T)$. Let E be a coclique in $\Gamma(V / T)$ such that $Z(E)$ has maximal size $2^{n-1-t}-1$. Construct a coclique C in $\Gamma(V)$ by taking (i) all flags (P, H) with $P \subseteq T \subseteq H$, (ii) the flags (P, K) where $(P, K \cap T) \in D$, and (iii) the flags (Q, H) where $(Q+T, H) \in E$. Then $|Z(C)|=\left(2^{t}-1\right)+2^{t}\left(2^{n-1-t}-1\right)=2^{n-1}-1$. The case that Z is a hyperplane corresponds to $t=n-1$.

Note that the cocliques C_{F} are of this form (for every T in F).
The examples above describe all cases of equality:
Proposition 2 Let V be an n-dimensional vector space over \mathbf{F}_{2}, and let C be a coclique in the graph $\Gamma(V)$. Then $|Z(C)| \leq g(n)=2^{n-1}-1$ with equality if and only if C arises by the construction of Example 2, 3, or 4.

1.1 Rank 1 matrices

The graph $\Gamma(V)$ can also be described in terms of rank 1 matrices. Represent points by column vectors p and hyperplanes by row vectors h, then a pointhyperplane pair can be represented by the rank 1 matrix $p h$. If the point is contained in the hyperplane then $h p=0$, that is $\operatorname{tr} p h=0$. Rank 1 matrices that differ by a constant factor represent the same point-hyperplane pair.

Two incident point-hyperplane pairs $x=p h$ and $x^{\prime}=p^{\prime} h^{\prime}$ are nonadjacent when $\left(h p^{\prime}\right)\left(h^{\prime} p\right)=0$, i.e., when $\operatorname{tr} x x^{\prime}=0$. Thus, finding the maximal cocliques in $\Gamma(V)$ is equivalent to finding the intersections of the maximal totally isotropic subspaces for the symmetric bilinear form $(x, y)=\operatorname{tr} x y$ on the space $M_{n}\left(\mathbf{F}_{q}\right)$ (of matrices of order n over \mathbf{F}_{q}) with the space of trace 0 rank-1 matrices. The extremal example C_{F} is conjugate to the example of all rank-1 strictly upper-triangular matrices.

1.2 The thin case

There is a thin analog ($q=1$ version) of our problem. Consider for an n-set V the pairs (P, H), where $|P|=1,|H|=n-1$, and $P \subseteq H \subseteq V$. Call (P, H) and $\left(P^{\prime}, H^{\prime}\right)$ adjacent when $P \nsubseteq H^{\prime}$ and $P^{\prime} \nsubseteq H$, that is, when $\left(P^{\prime}, H^{\prime}\right)=(V \backslash H, V \backslash P)$. Here the graph is the union of $\binom{n}{2}$ components K_{2}. A maximal coclique is obtained by taking a single vertex from each K_{2}, so that $|C| \leq\binom{ n}{2}=f(n)$ and $|Z| \leq n$. Here $g(n)=n-1$, and $|Z| \leq g(n)$ only holds for $n=1,2$.

2 Maximum-size cocliques

Proof of Theorem 1. The problem is self-dual, so all that is proved for points and hyperplanes, also holds for hyperplanes and points. In particular, $g(n)$ will also be an upper bound for the number $\left|Z^{D}(C)\right|$ of hyperplanes involved in C.

We may assume that C is maximal. It follows that C has a certain linear structure:

Lemma 3 Let C be a maximal coclique in $\Gamma(V)$, and let $H \in Z^{D}(C)$. Then H has a subspace $S(H)$ such that $(P, H) \in C$ if and only if $P \subseteq S(H)$. If $H, K \in Z^{D}(C)$ then $S(H) \subseteq K$ or $S(K) \subseteq H$ (or both).

Proof. If $(P, H),(Q, H) \in C$ and R is a point on the line $P+Q$, then (R, H) is non adjacent to every (O, K) in the coclique: if $O \in H$ then this is clear, if $O \notin H$ then $P, Q \in K$, but then also R. So also $(R, H) \in C$ since C is maximal. If P is in $S(H)$ but not in K, and Q is in $S(K)$ but not in H, then (P, H) and (Q, K) are adjacent in $\Gamma(V)$, impossible.

We may of course extend the definition of $S(H)$ to all hyperplanes by putting $S(H)=\{\mathbf{0}\}$ for hyperplanes not in $Z^{D}(C)$

In the proof we will use induction on $n=\operatorname{dim} V$. If T is a subspace of V, then $C_{T}:=\{(P, H \cap T) \mid(P, H) \in C, P \subseteq T, T \nsubseteq H\}$ is a coclique in the graph $\Gamma(T)$. Also $C^{T}:=\{(P+T, H) \mid(P, H) \in C, P \nsubseteq T, T \subseteq H\}$ is a coclique in the graph $\Gamma(V / T)$ (we have already met these cocliques in the description of Example 4).

Let the maximal dimension of $S(H)$ (over all H) be s, and let H be a hyperplane with $\operatorname{dim} S(H)=s$. We have $1 \leq s \leq n-1$.

Lemma 4 If $s=n-1$, then $|C| \leq q f(n-1)+g(n)=f(n)$ and $|Z|=g(n)$, and $Z=H$.

Proof. If $s=n-1$ then $S(H)=H$, so that $S(H) \nsubseteq K$ for $K \neq H$ and therefore $S(K) \subseteq H$ for all K, i.e., $Z=H$ and $|Z|=g(n)$. The coclique C consists of the $g(n)$ flags (P, H) together with at most $q f(n-1)$ flags (P, K) with $P \subseteq H, K \neq H$, so that $|C| \leq q f(n-1)+g(n)=f(n)$, as desired.

Lemma 5 If $s<n-1$, then $|C|<q f(n-1)+g(n)=f(n)$.
Proof. Count the three types of elements in the coclique: a: flags involving H, b: flags (P, M) with $P \subseteq H \neq M$, c: flags (Q, K) with $Q \nsubseteq H$ (and hence $S(H) \subseteq K)$.
a: $\frac{\bar{q}^{s}-1}{q-1} ; \quad$ b: at most $q f(n-1) ; \quad$ c: at most $g(n-s) q^{s-1}$.
a: This is because $\operatorname{dim} S(H)=s$. b: By induction C_{H} has at most size $f(n-1)$, and each hyperplane intersection $M \cap H$ occurs for at most q hyperplanes M. c: For a flag $(Q, K) \in C$ with $Q \nsubseteq H$, the hyperplane K contains $S(H)$; the flags $(Q+S(H), K)$ form the coclique $C^{S(H)}$ in $\Gamma(V / S(H))$, so by induction there are at most $g(n-s)$ such hyperplanes K. For each K there are at most q^{s-1} points Q outside H with $(Q, K) \in C$.

It follows that $|C| \leq q f(n-1)+2 \cdot \frac{q^{n-2}-1}{q-1}<f(n)$, as desired.

Since there is strict inequality here, equality $|C|=f(n)$ only occurs for $s=n-1$, where there is a hyperplane H such that $(P, H) \in C$ for all points $P \subseteq H$, and all other elements of C restrict to a coclique with equality in $\Gamma(H)$. By induction it follows that equality implies that $C=C_{F}$ for some flag F.

Lemma 6 Let $q>2$ and $s<n-1$. Then $|Z|<g(n)$.
Proof. We estimate $|Z|$ using the same three types of flags as above, and doing essentially the same counting.
a: This gives the $\left(q^{s}-1\right) /(q-1)$ points of $S(H)$.
b: These flags give the points involved in the coclique C_{H}, so by induction at most $g(n-1)$.
c: Here again we use the bound for the number of hyperplanes involved in $C^{S(H)}$ to estimate the number of points (outside H) involved: $g(n-s) q^{s-1}$. Adding all up gives

$$
|Z| \leq \frac{q^{s}-1}{q-1}+g(n-1)+g(n-s) \cdot q^{s-1}<g(n)
$$

For $q=2$ and $s>1$ more work is required, because now the above estimate of $|Z|$ is $2^{s-1}-1$ larger than the desired upper bound $g(n)$. For $q=2$ and $s=1$ we do get $|Z| \leq g(n)$, but we cannot conclude that Z is a hyperplane.

As observed, there are at most $g(n-s)$ hyperplanes K involved in flags $(P, K) \in C$ with $P \nsubseteq S(H)$ (and hence $S(H) \subseteq K$). If the number of such K is strictly smaller than this, or if $S(K) \subseteq H$ for one of them, then the upper bound on $|Z|$ improves by 2^{s-1}, and $|Z|<g(n)$. If for at least two of them $\operatorname{dim} S(K)<s$, then the same holds. We may therefore assume that there are precisely $g(n-s)$ such hyperplanes K, for none of them $S(K) \subseteq H$, and for all of them with at most one exception $\operatorname{dim} S(K)=s$.

Let $E(H)$ be the set of points P in $S(H)$ that occur in a single flag only, namely in (P, H). Let $e(H)=|E(H)|$. The (first) term $2^{s}-1$ in the bound can in fact be replaced by $e(H)$, because the points of $S(H) \backslash E(H)$ are also points in flags of type b, that are counted by the term $g(n-1)$. If $e(H) \leq 2^{s-1}$ then $|Z| \leq g(n)$ as desired. So, we may assume that $e(H) \geq 2^{s-1}+1$.

First consider the case $s=n-2$. We have $g(n-s)=g(2)=1$, and $S(H)$ is a hyperplane in the unique K. Now if $S(K)$ has dimension $t(\leq s)$,
then $S(H)$ and $S(K)$ have $2^{t-1}-1$ points in common, $S(K)$ contributes at most 2^{t-1} points outside H to $|Z|$ and $e(H) \leq 2^{s}-2^{t-1}$, proving the bound. So, we may assume $2 \leq s \leq n-3$.

Let \mathcal{H} be the collection of all hyperplanes H such that $\operatorname{dim} S(H)=s$. All we have said about H above holds for all $H \in \mathcal{H}$. Make a directed graph Δ with vertex set \mathcal{H} and arrows $H \rightarrow K$ when $S(H) \subseteq K$. (As we have seen, this now implies $K \nrightarrow H$, so that Δ is a tournament.)

The outdegree of Δ is $g(n-s)$ or $g(n-s)-1$ at each vertex. It follows that the indegree at some vertex is at least $g(n-s)-1$.

First suppose that the indegree of H is at least $g(n-s)$. The number of points P involved in flags (P, M) where $M \rightarrow H$ is bounded above by $g(n-1)$. On the other hand it is bounded from below by $(g(n-s)-1)\left(2^{s-1}+1\right)+\left(2^{s}-\right.$ $1)>g(n-1)$ since $e(M) \geq 2^{s-1}+1$ for each such M. This is a contradiction. It follows that all outdegrees and all indegrees of Δ are precisely $g(n-s)-1$.

Our estimate now becomes $|Z| \leq e(H)+g(n-1)+(g(n-s)-1) 2^{s-1}+2^{s-2}$ and $|Z| \leq g(n)$ will follow if $e(H) \leq 3 \cdot 2^{s-2}$. So, we may assume that $e(H) \geq$ $3 \cdot 2^{s-2}+1$ for all $H \in \mathcal{H}$. Again we bound the number of points P from below. We find the contradiction $(g(n-s)-2)\left(3 \cdot 2^{s-2}+1\right)+\left(2^{s}-1\right)>g(n-1)$ if $s \leq n-4$. So, we may assume that $s=n-3$.

Now $S(H)$ has codimension 2 in each K, so codimension at most 2 in each $S(K)$, so that $\operatorname{dim}(S(H) \cap S(K)) \geq s-2$. It follows that $e(H) \leq 3 \cdot 2^{s-2}$, as desired.

This finally proves part (ii) of the theorem.

3 Maximum number of points

Proof of Proposition 2. The inequality $|Z| \leq 2^{n-1}-1$ was shown already, so assume we have equality. We recall the counting in the above proof. Given a hyperplane H, consider the three types of flags: (a) flags (P, H), (b) flags (P, M) with $P \subseteq H$ and $M \neq H$, (c) flags (Q, K) with $Q \nsubseteq H$, Correspondingly we get three contributions to $|Z|$: the points P from flags of type (b), the points Q from flags of type (c), and the points P from flags (P, H) that were not counted in (b), i.e., that occur in flags (P, H) only: the set $E(H)$ of size $e(H) \leq 2^{s}-1$.

Let H be a hyperplane with $\operatorname{dim} S(H)=s$ maximal. We find $|Z| \leq$ $e(H)+g(n-1)+g(n-s) 2^{s-1} \leq 2^{n-1}+2^{s-1}-2$. This estimate is precisely
$2^{s-1}-1$ too large, so it cannot be improved by 2^{s-1}. It follows that there are precisely $g(n-s)$ hyperplanes $(H \neq) K \in Z^{D}(C)$ on $S(H)$, and all except at most one have $\operatorname{dim} S(K)=s$. None of these K satisfies $S(K) \subseteq H$. It also follows that $e(H) \geq 2^{s-1}$. By Lemma 4 we may suppose that $1 \leq s \leq n-2$.

Lemma 7 If $s=1$, then $n \leq 4$.
Proof. For $s=1$ the counting $g(n)=|Z| \leq 2^{s}-1+g(n-1)+g(n-s) 2^{s-1}$ holds with equality. This means that not only P is the only point in H, for $(P, H) \in C$ (since $s=1$), but also that H is the only such hyperplane on P, because the counting is exact. Hence C involves equally many points as hyperplanes, $g(n)$. Above we saw that if $S(H) \subseteq K$, then $S(K) \nsubseteq H$, which in this case means that for two flags (P, H) and (Q, K) exactly one of $P \subseteq K$ and $Q \subseteq H$ holds. Consider the point-hyperplane nonincidence matrix A of $P G(n-1,2)$. The 2-rank of this matrix is n, because for a suitable labeling of points and hyperplanes we have $A=B B^{T}$, where B is the $\left(2^{n}-1\right) \times n$ matrix whose rows are the nonzero vectors in V. The submatrix M (of rank at most n of course) corresponding to the points and hyperplanes in C, again suitably labeled, has the property that $M+M^{T}=J-I$ of (almost full) 2 -rank $2^{n-1}-2$. It follows that $2^{n-1}-2 \leq 2 n$, so $n \leq 4$.

As before let Δ be the directed graph on the set \mathcal{H} of hyperplanes H with $\operatorname{dim} S(H)=s$, defined by $H \rightarrow K$ if $S(H) \subseteq K$.

Lemma 8 The digraph Δ is a tournament, and we have one of three cases, where $k=g(n-s)=2^{n-s-1}-1$ and $v=|\mathcal{H}|$ is the number of vertices:
a) All indegrees and all outdegrees are equal to k and $v=2 k+1$,
b) All indegrees and all outdegrees are equal to $k-1$ and $v=2 k-1$,
c) All indegrees are $k-1$ or k (and both occur) and all outdegrees are $k-1$ or k (and both occur) and $v=2 k$.

Proof. We have seen already that Δ is a tournament, and that each vertex has outdegree k or $k-1$, where $k=g(n-s)$. If Δ has v vertices, then at each vertex the indegree equals $v-1-k$ or $v-k$, since Δ is a tournament. Since the average indegree equals the average outdegree, we have one of the stated cases.

Lemma 9 If H has outdegree $k-1$, so that (exactly) one hyperplane K on $S(H)$ has $\operatorname{dim} S(K)=t<s$, then $e(H) \geq 2^{s}-2^{t-1} \geq 3.2^{s-2}$.

Proof. The contribution to $|Z|$ from hyperplanes K is now at most $a:=$ $(g(n-s)-1) 2^{s-1}+2^{t-1}$, so $e(H) \geq|Z|-g(n-1)-a=2^{s}-2^{t-1}$.

Lemma 10 If $k=1$, and H is a vertex of Δ with indegree 1 , then $e(H)=$ 2^{s-1}, and H also has outdegree 1.

Proof. If H has indegree 1 , say $M \rightarrow H$, then $S(M)$ is a hyperplane in H (since $s=n-2$) and covers at least $2^{s-1}-1$ of the points of $S(H)$. It follows that $e(H)=2^{s-1}$, and H also has outdegree 1 by Lemma 9 .

Lemma 11 If H is a vertex of Δ with indegree k, then each of its inneighbours has outdegree k. If $k>1$ then $e(M)=2^{s-1}$ for each inneighbour M, and all inneighbours have the same $2^{s-1}-1$ nonunique points.

Proof. Look at the coclique D in $\Gamma(H)$ consisting of the flags $(P, M \cap H)$ for $M \rightarrow H$. We have $|Z(D)| \leq g(n-1)$. Each M has $e(M) \geq 2^{s-1}$ unique points, and contributes $2^{s}-1$ points altogether to $Z(D)$, so we find at least $k .2^{s-1}+\left(2^{s-1}-1\right)=2^{n-2}-1=g(n-1)$ points in $Z(D)$. Equality must hold, so if $k>1$ all inneighbours M have $e(M)=2^{s-1}$. By Lemma 9 they all have outdegree k. Obviously, if $k=1$, an inneighbour cannot have outdegree $k-1$.

Lemma 12 If all indegrees and all outdegrees are k, then there is a subspace T of V of dimension $s-1$ such that for each $H \in \mathcal{H}$ we have $S(H) \backslash E(H)=$ T.

Proof. The counting of the previous lemma shows for $k>1$ that each inneighbour M of H has the same set $S(M) \backslash E(M)$ of size $2^{s-1}-1$. Since this covers $S(H) \backslash E(H)$ which has the same size, we conclude that $S(M) \backslash E(M)=$ $S(H) \backslash E(H)$ when there is an arrow $M \rightarrow H$. If $k=1$, the same conclusion follows from Lemma 10.

This set of size $2^{s-1}-1$ is the intersection of all $S(H), H \in \mathcal{H}$, so it is a subspace.

Lemma 13 If all indegrees and all outdegrees are k, and $s>1$, then C arises by the construction of Example 4 with T of dimension $t=s-1$.

Proof. We have $|\mathcal{H}|=v=2 k+1=2^{n-s}-1$. Each $H \in \mathcal{H}$ contributes $e(H)=2^{s-1}$ unique points to Z, and all vertices contribute the same set of $|T|=2^{s-1}-1$ common points, $2^{n-1}-1=|Z|$ points altogether. Now consider another flag $(P, H) \in C$ (with $\operatorname{dim} S(H)<s$). The point P cannot be one of the unique points, so $P \subseteq T$. This shows that C arises as in Example 4.

Lemma 14 If $s=n-2$ then C arises as in Example 1, 3 or 4.
Proof. If $s=n-2$, then $k=1$. Now Δ has at most 3 vertices. If $v=3$, then it is a directed 3 -cycle. By Lemma 13 , either C arises by the construction of Example 4, or $s=1, n=3$, in which case we have Example 1.

By Lemma 10, if $v \neq 3$, then $v=1$. Let K be the unique hyperplane in $Z^{D}(C)$ with $S(H) \subseteq K$, and suppose $\operatorname{dim} S(K)=t$. Then $1 \leq t<s$. If $t=1$, then we have Example 3 (with $G=S(H)$ and $Q=S(K)$). Let $t>1$.

The subspace $S(H)$ is a hyperplane in both H and K, so $S(H)=H \cap K$, and the $2^{t-1}-1$ points in $H \cap S(K)$ are not unique in H. By Lemma 9 we have $e(H)=2^{n-2}-2^{t-1}$. The situation is tight again, so the flags (P, M) contribute precisely $2^{n-2}-1$ points. Put $T:=S(K) \cap S(H)$, so that $\operatorname{dim} T=t-1$. Since $t>1, T \neq 0$. Compare (P, M) and (Q, K). If $S(K) \nsubseteq M$, then $S(M) \subseteq K \cap H=S(H)$. Since $E(H)=S(H) \backslash T$, this means that $T \subseteq M$ or $S(M) \subseteq T$. This is Example 4 (applied to a coclique from Example 3).

Now assume $1 \leq s \leq n-3$, so that $k \geq 3$.
Lemma 15 Case c) of Lemma 8 does not occur.
Proof. In case c), suppose that we have $v=2 k$ vertices, b of which have outdegree $k-1$ (and indegree k) and $v-b$ of which have outdegree k (and indegree $k-1$). The total number of arrows is $v k-b=v k-(v-b)$, so that $b=v / 2=k$. Let A be the set of vertices with outdegree k, B that with outdegree $k-1$. By Lemma 11 we have all arrows from A to B, and this fills up all outarrows in A. Then there are no arrows inside A, contradiction. So case c) does not occur.

Lemma 16 Case b) of Lemma 8 does not occur.

Proof. In case b) we have $e(H) \geq 3.2^{s-2}$ for each $H \in \mathcal{H}$, by Lemma 9. The $k-1$ inneighbours of any vertex H contribute at least $3.2^{s-2}(k-1)+2^{s-2}-1=$ $3.2^{n-3}-5.2^{s-2}-1$ points in H, so $3.2^{n-3}-5.2^{s-2}-1 \leq 2^{n-2}-1$, that is, $2^{n-3} \leq 5.2^{s-2}$ and hence $s \geq n-3$. Since we are assuming $s<n-2$ this means $s=n-3$. Now $k=3$ and all vertices have indegree and outdegree 2. The digraph Δ has 5 vertices. They can be labeled $H_{i}, i=0,1,2,3,4$, such that $H_{i} \rightarrow H_{j}$ iff $j=i+1$ or $j=i+2(\bmod 5)$. Now H_{2} contains $S_{H_{1}}$ and $S_{H_{0}}$, both of dimension $s=n-3$. Since H_{1} contributes at least 2^{s-1} points Q, we have $S_{H_{1}} \neq S_{H_{0}}$. So $S_{H_{0}}+S_{H_{1}}$ is an $(n-2)$-space contained in the $(n-2)$-space $H_{1} \cap H_{2}$. Hence $S_{H_{0}}+S_{H_{1}}=H_{1} \cap H_{2}$. Since $S_{H_{1}} \nsubseteq H_{0}$, also $S_{H_{0}}=H_{0} \cap H_{1} \cap H_{2}$. Now $S_{H_{0}}$ and $S_{H_{1}}$ meet in an $(n-4)$-space, so at least $2^{n-4}-1$ points are not unique in H_{0}. The standard counting gives $|Z| \leq\left(2^{n-2}-1\right)+\left(2.2^{s-1}+2^{s-2}\right)+\left(2^{s}-2^{s-1}\right)=2^{n-1}-1-2^{n-5}$, contradiction. So case b) does not occur.

So we always have example 1,3 or 4 , except for the case $s=1, n=4$.
Lemma 17 If $s=1, n=4$, then we have Example 2.
Proof. Let $Z^{D}=Z^{D}(C)$. Here $|Z|=\left|Z^{D}\right|=7$, and Δ is a tournament on seven vertices with all in- and outdegrees equal to 3 . We first show that Z is a cap, that is, no three points in Z are collinear. Indeed, if $(P, H),(Q, K),(R, L) \in C$, and P, Q, R are collinear, and $K \rightarrow H$, then $Q \subseteq H$ but also $P \subseteq H$, hence $R \subseteq H$, that is $L \rightarrow H$. But now there can be no consistent arrow between K and L. So the points form a cap of size 7. The only maximal caps of $P G(3,2)$ are the elliptic quadric (of size 5) and the complement of a plane (of size 8), cf. [1, Theorem 18.2.1], so there is a (hyper)plane π disjoint from Z and a point A not in Z and not in π. If $(P, H),(Q, K) \in C$ and $H \cap K$ is a line in π, then $(P, H),(Q, K)$ are adjacent, impossible. So the seven planes in Z^{D} meet π in seven different lines. The situation is self-dual, so there is a point not on any plane in Z^{D}, necessarily the point A. So, the seven points of Z are the points different from A outside π, and the seven planes of Z^{D} are the planes different from π not on A. One now quickly establishes that we have Example 2.

This finishes the proof of Proposition 2.
Remarks. The construction of Example 4 does not change the value of $n-s$. The hyperplane has $n-s=1$, in Example 3 we have $n-s=2$
and in Example 2 we have $n-s=3$. So, all examples of $|Z|=g(n)$ have $1 \leq n-s \leq 3$.

Example 3 needs as ingredient a coclique D with a hyperplane disjoint from $Z(D)$. It follows that $Z(D)$ cannot contain linear subspaces of dimension larger than 1 , so that the coclique D must have $s=1$. Hence the construction of Example 3 applies only for (i) the hyperplane example for $n=2$, (ii) Example 1, (iii) Example 2. The resulting examples are Example 1 , and two further examples with $n=4, s=2$ and $n=5, s=3$.

4 Acknowledgement

The authors thank Jan Draisma for the rank-1 matrix point of view.

References

[1] J. W. P. Hirschfeld, Finite projective spaces of three dimensions, Oxford Univ. Press, 1985.
[2] T. Mussche, Extremal combinatorics in generalized Kneser graphs, Ph.D. Thesis, Eindhoven University of Technology, 2009.

Address of the authors:
Department of Mathematics,
Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
e-mail: aartb@win.tue.nl, aeb@cwi.nl, cicoguven@gmail.com

