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Abstract

We show for k ≥ 3 that if q ≥ 3, n ≥ 2k + 1 or q = 2, n ≥ 2k + 3,
then any intersecting family F of k-subspaces of an n-dimensional
vector space over GF (q) with

⋂
F∈F F = 0 has size at most

[
n−1
k−1

]
−

qk(k−1)
[
n−k−1

k−1

]
+qk. This bound is sharp as is shown by Hilton-Milner

type families. As an application of this result, we determine the chro-
matic number of the corresponding q-Kneser graphs.

1 Introduction

In 1961, Erdős, Ko and Rado [4] proved that if F is a k-uniform intersecting
family of subsets of an n-element set X, then |F| ≤

(
n−1
k−1

)
when 2k ≤ n.

Furthermore they proved that if 2k + 1 ≤ n, then equality holds if and only
if F is the family of all subsets containing a fixed element x ∈ X.

For any family F of sets the covering number τ(F) is the minimum size
of a set that meets all F ∈ F . The result of Erdős, Ko and Rado states
that to obtain an intersecting family of maximum size, one has to consider a
family with τ(F) = 1 when 2k + 1 ≤ n.

Hilton and Milner [13] determined the maximum size of an intersecting
family with τ(F) ≥ 2.
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Theorem 1.1 (Hilton & Milner [13]) Let F ⊂
(

X
k

)
be an intersecting family

with k ≥ 3, n ≥ 2k + 1 and τ(F) ≥ 2. Then |F| ≤
(

n−1
k−1

)
−
(

n−k−1
k−1

)
+ 1.

The families achieving that size are
(i) for any k-subset F and x ∈ X \ F the family

FHM = {F} ∪ {G ∈
(

X
k

)
: x ∈ G, F ∩G 6= ∅},

(ii) if k = 3, then for any 3-subset S the family

F3 = {F ∈
(

X
3

)
: |F ∩ S| ≥ 2}.

In this paper we will be interested in the q-analogue of Theorem 1.1.
If q is a prime power, then a family F of k-subspaces of an n-dimensional
vector space V over GF (q) (in notation F ⊆

[
V
k

]
) is t-intersecting if for any

F1, F2 ∈ F we have dim(F1 ∩F2) ≥ t. Intersecting means 1-intersecting. We
will say that two subspaces U1, U2 of V are disjoint if U1 ∩ U2 = 0.

In 1975, Hsieh [14] proved the q-analogue of the theorem of Erdős, Ko
and Rado for 2k + 1 ≤ n. Greene and Kleitman [12] found an elegant proof
for the case where k |n, hence proving the missing n = 2k case. In 1986,
Frankl and Wilson [9] proved the following result giving the maximum size
of a t-intersecting family of k-spaces for 2k − t ≤ n.

Theorem 1.2 (Frankl & Wilson [9]) Let V be a vector space over GF (q) of
dimension n. For any t-intersecting family F ⊆

[
V
k

]
we have

|F| ≤
[
n−t
k−t

]
if 2k ≤ n,

and

|F| ≤
[
2k−t

k

]
if 2k − t ≤ n ≤ 2k.

These bounds are best possible.

Let the covering number τ(F) of a family F of subspaces of V be defined
as the minimal dimension of a subspace of V meeting all elements of F
nontrivially.

Already Hsieh’s proof showed that if t = 1 and n ≥ 2k + 1 then only
point-pencils, that is, families F with τ(F) = 1, can achieve the bound in
Theorem 1.2. We will prove a q-analogue of Theorem 1.1 for intersecting
families of subspaces with τ(F) ≥ 2.

Let us first remark that for a fixed 1-subspace E 6 V and a k-subspace U
with E 66 U the family FE,U = {U}∪{W ∈

[
V
k

]
: E 6 W, dim(W ∩U) ≥ 1}
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is not maximal as we can add all subspaces in
[
E+U

k

]
. We will say that F is

an HM-type family if

F =
{
W ∈

[
V
k

]
: E 6 W, dim(W ∩ U) ≥ 1

}
∪
[
E+U

k

]
for some fixed E ∈

[
V
1

]
and U ∈

[
V
k

]
with E 66 U . Note that the size of an

HM-type family is
[
n−1
k−1

]
− qk(k−1)

[
n−k−1

k−1

]
+ qk.

The main result of the paper is the following theorem.

Theorem 1.3 Let V be an n-dimensional vector space over GF (q), where
q ≥ 3 and n ≥ 2k+ 1, k ≥ 3. Then for any intersecting family F ⊆

[
V
k

]
with

τ(F) ≥ 2 we have

|F| ≤
[
n− 1

k − 1

]
− qk(k−1)

[
n− k − 1

k − 1

]
+ qk.

When equality holds, either F is an HM-type family, or k = 3 and F = F3 =
{F ∈

[
V
k

]
: dim(S ∩ F ) ≥ 2} for some S ∈

[
V
3

]
.

Furthermore, if k ≥ 4, then there exists an ε > 0 (independent of n, q, k)
such that if |F| ≥ (1−ε)

([
n−1
k−1

]
− qk(k−1)

[
n−k−1

k−1

]
+ qk

)
, then F is a subfamily

of an HM-type family.

We have the same result for q = 2, n ≥ 2k + 3 (see Proposition 3.4).

If n ≥ 3k, and F is large enough (see Proposition 3.2), then we can de-
scribe the essential part of the intersecting system, see Proposition 2.6. This
is a more general stability theorem than the one indicated in Theorem 1.3
and our remarks on the stability of relatively large systems will be given in
Section 3.

After proving the above theorem in Section 2, we apply this result to
determine the chromatic number of q-Kneser graphs. The vertex set of the
q-Kneser graph qKn:k is

[
V
k

]
, where V is an n-dimensional vector space over

GF (q). Two vertices of qKn:k are adjacent if and only if the corresponding k-
subspaces are disjoint. Section 4 contains the proof of the following theorem.

Theorem 1.4 If q ≥ 3, n ≥ 2k + 1, k ≥ 3 or q = 2, n ≥ 2k + 3, k ≥ 3,
then for the chromatic number of the q-Kneser graph we have χ(qKn:k) =[
n−k+1

1

]
. Moreover, each color class of a minimum coloring is a point-pencil

and the points determining a color are the points of an (n−k+1)-dimensional
subspace.
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In Section 5 we prove the non-uniform version of the Erdős-Ko-Rado
theorem.

Theorem 1.5 Let F be an intersecting family of subspaces of a vector space
V of dimension n. Then

(i) if n is odd, then

|F| ≤
∑

i>n/2

[
n

i

]
,

(ii) if n is even, then

|F| ≤
[
n− 1

n/2− 1

]
+
∑

i>n/2

[
n

i

]
.

For odd n equality holds only if F =
[

V
>n/2

]
. For even n equality holds only if

F =
[

V
>n/2

]
∪ {F ∈

[
V

n/2

]
: E 6 F} for some E ∈

[
V
1

]
, or if F =

[
V

>n/2

]
∪
[

U
n/2

]
for some U ∈

[
V

n−1

]
.

Note that Theorem 1.5 follows from the profile polytope of intersecting
families which was determined implicitly by Bey [1] and explicitly by Gerbner
and Patkós [10], but the proof we present in Section 4 is direct and very
simple.

2 Proof of Theorem 1.3

For any A 6 V and F ⊆
[
V
k

]
let FA = {F ∈ F : A 6 F}.

Before starting with the proof let us state an easy technical lemma for
q-binomial coefficients that will simplify our computations.

Lemma 2.1 Let a ≥ 0 and n ≥ k ≥ a+ 1 and q ≥ 2. Then[
k

1

][
n− a− 1

k − a− 1

]
<

1

(q − 1)qn−2k

[
n− a
k − a

]
.

Proof. The inequality to be proved simplifies to

(qk−a − 1)(qk − 1)qn−2k < qn−a − 1. �
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Lemma 2.2 Let E ∈
[
V
1

]
. If E 66 L ≤ V , where L is an l-subspace, then

the number of k-subspaces of V containing E and intersecting L is at least[
l
1

][
n−2
k−2

]
− q
[

l
2

][
n−3
k−3

]
(with equality for l = 2), and at most

[
l
1

][
n−2
k−2

]
.

Proof. The k-spaces containing E and intersecting L in a 1-dimensional space
are counted exactly once in the first term. Those subspaces that intersect L
in a 2-dimensional space are counted

[
2
1

]
= q + 1 times in the first term and

−q times in the second term, thus once overall. If a subspace intersects L in
a subspace of dimension i ≥ 3, then it is counted

[
i
1

]
times in the first term

and −q
[

i
2

]
times in the second term, thus a negative number of times overall.

�

Our next lemma gives bounds on the size of a HM-type family that are
easier to work with than the precise formula mentioned in the introduction.

Lemma 2.3 Let n ≥ 2k + 1, k ≥ 3 and q ≥ 2. If F is a HM-type family,
then (1− 1

q3−q
)
[
k
1

][
n−2
k−2

]
<
[
k
1

][
n−2
k−2

]
− q
[
k
2

][
n−3
k−3

]
≤ |F| ≤

[
k
1

][
n−2
k−2

]
.

Proof. The first inequality follows immediately from Lemma 2.1 by noting
that q

[
k
2

]
=
[
k
1

]
(
[
k
1

]
− 1)/(q + 1) and n ≥ 2k + 1. �

Lemma 2.4 If a subspace S does not intersect each element of F , then there
is a subspace T > S with dimT = dimS + 1 and |FT | ≥ |FS|/

[
k
1

]
.

Proof. There is an F ∈ F such that S ∩ F = 0. Average over all T = S +E
where E is a 1-subspace of F . �

Lemma 2.5 If an s-dimensional subspace S does not intersect each element
of F , then |FS| ≤

[
k
1

][
n−s−1
k−s−1

]
.

Proof. There is an (s+ 1)-space T with
[
n−s−1
k−s−1

]
≥ |FT | ≥ |FS|/

[
k
1

]
. �

Before proving the q-analogue of the theorem of Hilton-Milner we describe
the essential part of maximal intersecting families with τ(F) = 2. Let us
define T to be the family of 2-spaces of V that intersect all subspaces in F .

Proposition 2.6 Let F be a maximal intersecting family with τ(F) = 2.
Then F contains all k-spaces containing an element of T and we have one of
the following three possibilities:

(i) |T | = 1 and
[
n−2
k−2

]
< |F| <

[
n−2
k−2

]
+ (q + 1)

([
k
1

]
− 1
) [

k
1

][
n−3
k−3

]
;
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(ii) |T | > 1, τ(T ) = 1, and there is an (l + 1)-space W (with 2 ≤ l ≤ k)
and a 1-space E 6 W so that T = {M : E 6 M 6 W, dimM = 2}.
In this case[

l
1

][
n−2
k−2

]
− q
[

l
2

][
n−3
k−3

]
≤ |F| ≤

[
l
1

][
n−2
k−2

]
+
[
k
1

]
(
[
k
1

]
−
[

l
1

]
)
[
n−3
k−3

]
+ ql

[
n−l
k−l

]
.

For l = 2 the upper bound here can be strengthened to

|F| ≤ (q + 1)
[
n−2
k−2

]
− q
[
n−3
k−3

]
+
[
k
1

]
(
[
k
1

]
−
[
2
1

]
)
[
n−3
k−3

]
+ q2

[
k
1

][
n−3
k−3

]
;

(iii) T =
[
A
2

]
for some 3-subspace A and F = {U ∈

[
V
k

]
: dim(U ∩ A) ≥ 2}

and |F| = (q2 + q + 1)(
[
n−2
k−2

]
−
[
n−3
k−3

]
) +

[
n−3
k−3

]
.

In case (ii) there is a 1-space E and an l-space L such that F contains the
set FE,L of all k-spaces containing E and intersecting L. The last two terms
of the upper bound for |F| in (ii) give an upper bound on |F \ FE,L|.

Proof. Let F be a maximal intersecting family with τ(F) = 2. Since F is
maximal, it contains all k-spaces containing a T ∈ T . Since n ≥ 2k and
k ≥ 2 two disjoint elements of T would be contained in disjoint elements of
F , which is impossible. So T is intersecting.

The following observation is immediate: if A,B ∈ T and A ∩ B < C <
A+B, then C ∈ T . As an intersecting family of 2-spaces is either a family of
2-spaces containing some fixed 1-space E or a set of 2-subspaces of a 3-space,
we get the following:

(∗): T is either a family of all 2-subspaces in a given (l+1)-space contain-
ing some fixed 1-space E (and k ≥ l ≥ 1), or T is the set of all 2-subspaces
of a 3-space.

(i) : If |T | = 1, then let S denote the only 2-space in T and let E 6 S be
any 1-space. Since τ(F) > 1 there exists an F ∈ F with E 66 F , for which
we must have dim(F ∩ S) = 1. Since S is the only element of T , for any
1-subspace E ′ of F different from F ∩ S, FE+E′ ≤

[
k
1

][
n−3
k−3

]
by Lemma 2.5,

hence the number of subspaces containing E but not containing S is at most
(
[
k
1

]
− 1)

[
k
1

][
n−3
k−3

]
. This gives the upper bound.

(ii) : Assume that τ(T ) = 1 and |T | > 1. By (∗), T is the set of 2-spaces
in an (l + 1)-space W (with l ≥ 2) containing some fixed 1-space E. Every
F ∈ F \ FE intersects W in a hyperplane. Let L be a hyperplane in W
not on E. Then F contains all k-spaces on E that intersect L. Hence the
lower bound and the first term in the upper bound come from Lemma 2.2.
The second term comes from counting the k-spaces of F that contain E and
intersect a given F ∈ F (not containing E) in a point of F \W . Here Lemma
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2.5 is used. If l ≥ 3, then there are ql hyperplanes in W not containing E
and there are

[
n−l
k−l

]
k-spaces through such a hyperplane. For l = 2 there are

q2 hyperplanes in W and they cannot be in T . Using Lemma 2.5 gives the
bound.

(iii) is immediate. �

Corollary 2.7 Let F be a maximal intersecting family with τ(F) = 2. If
F is at least as large as an HM-type family, and either q ≥ 3, n ≥ 2k + 1,
k ≥ 3 or q = 2, n ≥ 2k + 3, k ≥ 3, then F is an HM-type family, or, in case
k = 3, an F3-type family.

There exists an ε > 0 (independent of n, q, k) such that if k ≥ 4 and
either q ≥ 3, n ≥ 2k + 1 or q = 2, n ≥ 2k + 3, and |F| is at least (1 − ε)
times the size of an HM-type family, then F is an HM-type family.

Proof. Apply Proposition 2.6. Note that the Hilton-Milner families are
precisely those from case (ii) with k = l. Now we can easily prove that for
τ(F) = 2 the size of F cannot exceed the size of an HM-type family, and if
k ≥ 4, then we will prove an inequality of the form

|F| ≤ C(q)

[
k

1

][
n− 2

k − 2

]
,

such that the inequality C(q) < (1− ε)(1− 1
q3−q

) will trivially hold for some
ε > 0 that does not depend on n, k, q and thus we will be done by Lemma 2.3.

First assume q ≥ 3. In case (i) of Proposition 2.6 we have |F|/
[
n−2
k−2

]
<

1 + q+1
q2−q

[
k
1

]
by Lemma 2.1. In case (ii) we find for l < k that |F|/

[
n−2
k−2

]
<

(1
q

+ 1
q2−q

)
[
k
1

]
+ q2

q2−q
. In both cases, for q ≥ 3, k ≥ 3, this is less than (1− ε)

times the lower bound on the size of an HM-type family given in Lemma 2.3.
In case (iii) |F3| =

[
3
2

][
n−2
k−2

]
− q3−q

q−1

[
n−3
k−3

]
. For k ≥ 4, this is much smaller

than the size of the HM-type families. For k = 3, the two families have the
same size.

Next suppose q = 2. Since we are assuming n ≥ 2k + 3, the factor
qn−2k in the estimate of Lemma 2.1 now gives an extra factor q2. In case
(i) we have |F|/

[
n−2
k−2

]
< 1 + q+1

(q−1)q3

[
k
1

]
. In case (ii) we find for l < k that

|F|/
[
n−2
k−2

]
< (1

q
+ 1

(q−1)q3 )
[
k
1

]
+ q2

(q−1)q3 . In both cases, for k ≥ 3, this is less

than (1 − ε) times the lower bound on the size of an HM-type family given
in Lemma 2.3. In case (iii) the conclusion is as before. �
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Proof of Theorem 1.3. Let F be a maximal intersecting family with
τ(F) ≥ 2. If τ(F) = 2 then we are done by the above corollary. This leaves
the case τ(F) > 2. First we consider the case k = 3 separately.
In this case the size of the HM-type family is

N := (q2 + q + 1)
([

n−2
1

]
− 1
)

+ 1.

Let A be an i-space, 0 ≤ i ≤ 3. Then |FA| ≤
[
3
1

]3−i
. Indeed, if i < τ(F)

there exists an F ∈ F with A ∩ F = 0 so that for some (i + 1)-space B on
A we have |FB| ≥ |FA|/

[
3
1

]
. And if dimC = 3 then |FC | ≤ 1. Assume that

|F| ≥ N . Then N ≤ |F| = |F0| ≤
[
3
1

]3
implies n = 7 (since n ≥ 2k + 1).

Pick a 1-space E such that |FE| ≥ |F|/
[
3
1

]
and a 2-space S on E such

that |FS| ≥ |FE|/
[
3
1

]
. Then |FS| > q + 1 since |F| >

[
2
1

][
3
1

]2
. Pick F ′ ∈ F

disjoint from S. Put H = S + F ′. Then all F ∈ FS are contained in the
5-space H. But |F| >

[
5
3

]
so there is an F0 ∈ F not contained in H. If

F0 ∩ S = 0, then each F ∈ FS is contained in S + (H ∩ F0), so |FS| ≤ q + 1,
contradiction. Thus, all elements of F disjoint from S are in H.

Now F0 must meet F ′ and S, so F0 meets H in a 2-space S0. Since
|FS| > q + 1, we can find two elements F1, F2 of FS with the property that
S0 is not contained in the 4-space F1 + F2. Since any F ∈ F disjoint from S
is contained in H and meets F0, it must meet S0 and also F1 and F2. Hence

the number of such F ’s is at most q5. Altogether |F| ≤ q5 +
[
2
1

][
3
1

]2
(counting

F disjoint from S or on a given E < S), contradiction.

Now let k ≥ 4 (and τ(F) > 2).

Lemma 2.8 Let F ⊆
[
V
k

]
be an intersecting family with τ(F) ≥ s. Suppose

that for some z-space Z we know that for any s-space S containing Z we

have |FS| ≤ f(s), then we have |FZ | ≤
[
k
1

]s−z
f(s).

Proof. By τ(F) ≥ s we know that for any (s− i)-space A, 1 ≤ i ≤ z, there
exists an F ∈ F disjoint from A. Now apply Lemma 2.4 s− z times. �

Corollary 2.9 Let F ⊆
[
V
k

]
be an intersecting family with τ(F) ≥ s. Then

for any 1-space E 6 V we have |FE| ≤
[
k
1

]s−1[n−s
k−s

]
. �

For any integer s with 3 ≤ s ≤ k let A(s,F) denote the statement that for any
(s−1)-subspace S of V there exist F S

1 , F
S
2 ∈ F such that dim(F S

1 ∩F S
2 ) ≤ s−1

and S ∩ (F S
1 + F S

2 ) = 0.
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Lemma 2.10 Let F be an intersecting family such that A(s,F) holds. Then
for any 1-subspace E of V we have

|FE| ≤
[
k
1

]s−2
(
[
s−1
1

][
n−s
k−s

]
+
[
k
1

]2[n−s−1
k−s−1

]
).

Proof. For any (s − 1)-space S we have |FS| ≤
[
s−1
1

][
n−s
k−s

]
+
[
k
1

]2[n−s−1
k−s−1

]
as

any F ∈ FS must intersect F S
1 , F

S
2 . By Lemma 2.8 we get the statement of

the lemma. �

Lemma 2.11 Let F be an intersecting family such that τ(F) = s > 2 and
A(s,F) holds. Then we have |F| ≤ (1− ε1)(1− 1

q3−q
)
[
k
1

][
n−2
k−2

]
.

Proof. By Lemma 2.10 and τ(F) = s we have

|F| ≤
[
s
1

][
k
1

]s−2
(
[
s−1
1

][
n−s
k−s

]
+
[
k
1

]2[n−s−1
k−s−1

]
).

Now observe that the following inequalities hold:[
s
1

][
k
1

]s[n−s−1
k−s−1

]
/
[
k
1

][
n−2
k−2

]
<
[
s
1

][
k
1

]s−1 1
q(s−1)(k+1) <

q
(q−1)s ,[

s
1

][
k
1

]s−2[s−1
1

][
n−s
k−s

]
/
[
k
1

][
n−2
k−2

]
<
[
s−1
1

][
s
1

][
k
1

]s−3 1
q(s−2)(k+1) <

qs+1−k

(q−1)s−1 .

Since q ≥ 3 and 3 ≤ s ≤ k, k 6= 3, we have q+qs+1−k(q−1)
(q−1)s < 1− 1

q3−q
. �

Lemma 2.12 Let F be an intersecting family with τ(F) ≥ 3. Then either
we have |F| < (1− ε2)(1− 1

q3−q
)
[
k
1

][
n−2
k−2

]
or A(3,F) holds.

Proof. Suppose that A(3,F) does not hold and let S be a 2-space witnessing
this, i.e for any (n−2)-space U with S∩U = 0 the family FU = {F ∈ F : F 6
U} is 3-intersecting. By Theorem 1.2 we have |FU | ≤ max{

[
2k−3
k−3

]
,
[
n−5
k−3

]
} ≤[

n−4
k−3

]
where we used n ≥ 2k+1. There are q2(n−2) such U ’s and every F ∈ F

with F ∩ S = 0 is contained in q2(n−k−2) such (n− 2)-spaces. Therefore the
number of subspaces in F disjoint from S is at most q2k

[
n−4
k−3

]
.

By Corollary 2.9 τ(F) ≥ 3 implies |FE| ≤
[
k
1

]2[n−3
k−3

]
for any 1-space E.

Summing over all 1-spaces in S and adding the number of subspaces in F
disjoint from S we obtain

|F| ≤
[
2

1

][
k

1

]2[
n− 3

k − 3

]
+ q2k

[
n− 4

k − 3

]
.

Observe [
2

1

][
k

1

]2[
n− 3

k − 3

]
<

2

q

[
k

1

][
n− 2

k − 2

]
9



since q ≥ 3, and

q2k
[
n−4
k−3

]
= q2k (qk−2−1)(qn−k−1)

(qn−2−1)(qn−3−1)

[
n−2
k−2

]
< q2k(q−1)

(qk−1)(qn−3−1)

[
k
1

][
n−2
k−2

]
< 6561

29120

[
k
1

][
n−2
k−2

]
since q ≥ 3, k ≥ 4, n ≥ 2k + 1. The proof of the lemma is complete, as
2
q

+ 6561
29120

< 1− 1
q3−q

for q ≥ 3. �

Lemma 2.13 Let F be an intersecting family such that τ(F) ≥ s + 1 and
A(s,F) holds for some s ≥ 3. Then either we have |F| < (1 − ε3)(1 −

1
q3−q

)
[
k
1

][
n−2
k−2

]
or A(s+ 1,F) holds.

Proof. Suppose A(s + 1,F) does not hold and let S be an s-space wit-
nessing this, i.e for any (n − s)-space U disjoint from S the family FU =
{F ∈ F : F 6 U} is (s + 1)-intersecting. By Theorem 1.2 we have
|FU | ≤ max{

[
n−2s−1
k−s−1

]
,
[
2k−s−1
k−s−1

]
} ≤

[
n−s−2
k−s−1

]
. There are qs(n−s) such U ’s and ev-

ery F ∈ F disjoint from S is contained in qs(n−k−s) such (n−s)-spaces. There-
fore the number of elements of F disjoint from S is at most as = qks

[
n−s−2
k−s−1

]
.

Since as+1/as < 1 this number is largest when s = 3 and

a3 = q3k

[
n− 5

k − 4

]
<

1

q

[
k

1

][
n− 2

k − 2

]
using k ≥ 4. Since A(s,F) holds, by Lemma 2.10 we find that the number
of elements of F meeting S is at most[

s

1

][
k

1

]s−2
([

s− 1

1

][
n− s
k − s

]
+

[
k

1

]2[
n− s− 1

k − s− 1

])
,

which by the calculation in Lemma 2.11 is not more than

q + qs+1−k(q − 1)

(q − 1)s

[
k

1

][
n− 2

k − 2

]
.

Altogether this yields

|F|/
[
k

1

][
n− 2

k − 2

]
≤ 1

q
+
q + qs+1−k(q − 1)

(q − 1)s
≤ 1− 1

q3 − q

since q ≥ 3 and 3 ≤ s ≤ k − 1. This is almost good enough, but we want
an additional factor (1 − ε), while as it is, equality holds for q = 3, s = 3,
k = 4. However, the term q/(q − 1)s arose estimating

[
s
1

]
< qs/(q − 1), but

for q = s = 3 one wins a factor 26/27 here, and we are done. �
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By Lemma 2.12 and Lemma 2.13 we obtain that either F is smaller than
the HM-type family, or A(k,F) holds. But since for any intersecting family
we have τ(F) ≤ k, we are done by Lemma 2.11. This completes the proof of
Theorem 1.3. �

3 Stability

In this section we prove that if k is fixed, and n and |F|, the size of an
intersecting family F of k-spaces, are large enough, then τ(F) = 2, and the
examples are described in Proposition 2.6.

A subspace will be called a hitting subspace (and we shall say that the
subspace intersects F), it it intersects each element of F .

When n gets larger than 2k + 1 (or rather when it is at least 3k) we
can prove more than just the q-analogue of the theorem of Hilton-Milner,
particularly when q is also large. For the sake of simplicity, we will impose a
bound on |F| which is weaker than the Hilton-Milner bound if n is close to
2k+ 1 (and q is very small). If q is large then for n = 2k+ 1 it has the same
order of magnitude as the size of the Hilton-Milner family, for n > 2k + 1 it
has a smaller order of magnitude. Our first proposition shows that with our
bound only the τ = 2 case of the proof has to be considered.

Proposition 3.1 Suppose that k ≥ 3 and n ≥ 2k. Let F ⊆
[
V
k

]
be an

intersecting family with τ(F) ≥ 2. Let 3 ≤ l ≤ k. If F has an intersecting
l-space, and

|F| > (ql − 1)(qk − 1)

(q − 1)lq(n−2k)(l−2)

[
n− 2

k − 2

]
(3.1)

then F has an intersecting (l − 1)-space.

Proof. Assume τ(F) = l. By averaging there is a 1-space P with |FP | ≥
|F|/

[
l
1

]
. By Corollary 2.9 we have |F| ≤

[
l
1

][
k
1

]l−1[n−l
k−l

]
. Applying Lemma 2.1

l − 2 times we see that[
n− 2

k − 2

]
>

[
n− l
n− l

]([
k

1

]
(q − 1)qn−2k

)l−2

,

so that the lower bound on |F| contradicts the upper bound. �
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Corollary 3.2 Let k ≥ 3 and n ≥ 2k + 1 and n ≥ 2k + 2 if q = 2. If
|F| ≥ q2+q+1

(q−1)qn−2k

[
k
1

][
n−2
k−2

]
, then τ(F) = 2, that is, F is contained in one of the

systems described in Proposition 2.6 satisfying the bound on |F|.

Proof. Since the right hand side of (3.1) is decreasing in l for 3 ≤ l ≤ k (this
uses n ≥ 2k + 1 and n ≥ 2k + 2 for q = 2), we can find a hitting 2-space if
the condition (3.1) holds for l = 3, and it does by the assumption on |F|. �

Remark 3.3 For n ≥ 3k all the systems described in Proposition 2.6 occur.

Proposition 3.4 The q-analogue of Hilton-Milner theorem (Theorem 1.3)
is also true if q = 2 and n ≥ 2k + 3 and k ≥ 3.

Proof. The bound in Corollary 3.2 is smaller than the size of an HM-type
family. (The weaker bound in Lemma 2.3 suffices to see this for n ≥ 2k + 4,
the stronger bound also for n = 2k+3.) Now Corollary 2.7 yields the required
conclusion. �

Proposition 3.1 can also be used to bound τ(F) if a lower bound on |F|,
for example the Hilton-Milner bound, is given.

Corollary 3.5 If |F| ≥
[
k
1

][
n−2
k−2

]
(1− 1

q3−q
), then τ(F) ≤ 2 if n ≥ 2k+ 2 and

q ≥ 3, and τ(F) ≤ 3 if n = 2k + 1 and q ≥ 4.

Proof. We have to check (3.1) for l = 3 or 4, respectively. We need

q2(q − 1)2

q3 − 1

(
1− 1

q3 − q

)
> 1

for n ≥ 2k + 2, which is true for q ≥ 3. For n = 2k + 1, l = 4 we need

q2(q − 1)3

q4 − 1

(
1− 1

q3 − q

)
> 1,

which is true for q ≥ 4. �

Using the existence of 3-spaces intersecting F we can actually prove that
τ(F) ≤ 2 even for n = 2k+ 1 (and q ≥ 4), so this gives a second proof of the
q-Hilton-Milner theorem for k, q ≥ 4.

Assume |F| ≥
[
k
1

][
n−2
k−2

]
(1− 1

q3−q
). We shall repeat the proof of Proposition

3.1. If there is a hitting 3-space and no hitting 2-space then there is a 1-space

12



P with |FP | ≥ |F|/
[
3
1

]
, a 2-space L > P with |FL| ≥ |FP |/

[
k
1

]
≥ |F|/

[
3
1

][
k
1

]
,

and finally a 3-space W > L with |FW | ≥ |F|/
[
3
1

][
k
1

]2
. This W intersects F ,

since |F|/
[
3
1

][
k
1

]3
>
[
n−4
k−4

]
. Indeed, for n = 2k+1 and q ≥ 3 we find (applying

Lemma 2.1 twice)[
k
1

][
n−2
k−2

] (
1− 1

q3−q

)
[
n−4
k−4

][
3
1

][
k
1

]3 >
q2(q − 1)3

q3 − 1

(
1− 1

q3 − q

)
> 1.

If F∗ = F \ FW , then for the previous P and L we have |F∗L| ≥ |FL| −[
n−3
k−3

]
≥ |F|/

[
3
1

][
k
1

]
−
[
n−3
k−3

]
and we find a W ∗ 6= W for which |F∗W ∗ | ≥ |F∗L|/

[
k
1

]
.

The previous computation shows that W ∗ is also a hitting 3-space.
The k-spaces F ∈ F not meeting L meet each of W and W ∗ in a single

point, hence there are at most q4
[
k
1

][
n−3
k−3

]
such elements of F , by Lemma

2.5. Since
[
n−2
k−2

]
/
[
n−3
k−3

]
> q5 for n = 2k + 1, k ≥ 4, this means that at least[

k
1

][
n−2
k−2

]
(1− 1

q
− 1

q3−q
) elements of F intersect L. Hence in the beginning of the

proof we can choose the 1-space P with |FP | ≥
[
k
1

][
n−2
k−2

]
(1− 1

q
− 1

q3−q
)/(q+1)

and find a 2-space L with |FL| ≥
[
n−2
k−2

]
(1 − 1

q
− 1

q3−q
)/(q + 1). This L is

a hitting 2-space since
[
n−2
k−2

]
(1 − 1

q
− 1

q3−q
)/(q + 1) >

[
k
1

][
n−3
k−3

]
. Indeed, by

Lemma 2.1 it suffices to check q(q−1)
q+1

(1 − 1
q
− 1

q3−q
) > 1, which is true for

q ≥ 4. �

The previous results just used the parameter τ , so only the hitting sub-
spaces of smallest dimension were taken into account. A more precise de-
scription is possible if we make the intersecting system of subspaces critical.

Definition 3.6 An intersecting family F of subspaces of V is critical if for
any two distinct F, F ′ ∈ F we have F 6⊂ F ′, and moreover for any hitting
subspace G there is a F ∈ F with F ⊂ G.

Lemma 3.7 For every non-extendable intersecting family F of k-spaces
there exists some critical family G such that

F = {F ∈
[
V

k

]
: ∃G ∈ G, G ⊆ F}.

Proof. Extend F to a maximal intersecting family H of subspaces of V , and
take for G the minimal elements of H. �

13



The following construction and result are an adaptation of the corre-
sponding results from Erdős and Lovász [5]:

Construction 3.8 Let A1, . . . , Ak be subspaces of V such that dimAi = i
and dim(A1 + · · ·+ Ak) =

(
k+1
2

)
. Define

Fi = {F ∈
[
V

k

]
: Ai ⊆ F, dimAj ∩ F = 1 for j > i}.

Then F = F1 ∪ . . . ∪ Fk is a critical, non-extendable, intersecting family of
k-spaces, and |Fi| =

[
i+1
1

][
i+2
1

]
· · ·
[
k
1

]
for 1 ≤ i ≤ k.

For subsets Erdős and Lovász proved that a critical, non-extendable, in-
tersecting family of k-sets cannot have more than kk members. They conjec-
tured that the above construction is best possible but this was disproved by
Frankl, Ota and Tokushige [8]. Here we prove the following analogous result.

Theorem 3.9 Let F be a critical, intersecting family of subspaces of V of

dimension at most k. Then |F| ≤
[
k
1

]k
.

Proof. Suppose that |F| >
[
k
1

]k
. By induction on i, 0 ≤ i ≤ k, we find an

i-dimensional subspace Ai of V such that |FAi
| >

[
k
1

]k−i
. Indeed, since by

induction |FAi
| > 1 and F is critical, the subspace Ai is not hitting, and

there is an F ∈ F disjoint from Ai. Now all elements of FAi
meet F , and we

find Ai+1 > Ai with |FAi+1
| > |FAi

|/
[
k
1

]
. For i = k this is a contradiction. �

Remark 3.10 For l ≤ k this argument shows that there are not more than[
l
1

][
k
1

]l−1
l-spaces in F .

If l = 3 and τ > 2 then for the size of F the previous remark essentially

gives (q2 + q + 1)
[
k
1

]2[n−3
k−3

]
, which is basically the bound in Proposition 3.2.

Modifying the Erdős-Lovász construction (see Frankl [6]), one can get
intersecting families with many l-spaces in the corresponding critical family.

Construction 3.11 Let A1, . . . , Al be subspaces with dimA1 = 1, dimAi =
k+i−l for i ≥ 2. Define Fi = {F ∈

[
V
k

]
: Ai ≤ F, dim(F∩Aj) ≥ 1 for j > i}.

Then F1 ∪ . . . ∪ Fl is intersecting and the corresponding critical family has
at least

[
k−l+2

1

]
· · ·
[
k
1

]
l-spaces.
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For n large enough the Erdős-Ko-Rado theorem for vector spaces follows
from the obvious fact that no critical, intersecting family can contain more
than one 1-dimensional member. The Hilton-Milner theorem and the stabil-
ity of the systems follow from (∗) which was used to describe the intersecting
systems with τ = 2. As remarked above, the fact that the critical family has
to contain only spaces of dimension 3 or more limits its size to O(

[
n

k−3

]
), if k

is fixed and n is large enough. Stronger and more general stability theorems
can be found in Frankl [7] for the subset case.

4 Coloring q-Kneser graphs

In this section, we prove Theorem 1.4, that is, we show that χ(qKn:k) =[
n−k+1

1

]
. The case k = 2 was proven in [3] and the general case for q > qk in

[15]. We will need the following result of Bose and Burton [2].

Theorem 4.1 (Bose & Burton [2]) If V is an n-dimensional vector space
over GF (q) and E is a family of 1-subspaces of V such that any k-subspace
of V contains at least one element of E , then |E| ≥

[
n−k+1

1

]
. Furthermore,

equality holds if and only if E =
[
H
1

]
for some (n− k + 1)-subspace H of V .

Before starting the proof of Theorem 1.4, we first give two natural exten-
sions of the Bose-Burton result, each of which can be used in the proof.

Proposition 4.2 If V is an n-dimensional vector space over GF (q) and E
is a family of

[
n−k+1

1

]
− ε 1-subspaces of V , then the number of k-subspaces

of V that are disjoint from all E ∈ E is at least εq(k−1)(n−k+1)/
[
k
1

]
.

Proof. Induction on k. For k = 1 there is nothing to prove. Next, let k > 1
and count incident pairs (1-space, k-space), where the k-space is disjoint from
all E ∈ E :

N

[
k

1

]
≥
([
n

1

]
−
[
n− k + 1

1

]
+ ε

)
εq(k−2)(n−k+1)/

[
k − 1

1

]
≥ εq(k−1)(n−k+1).

�

Of course the true value is εq(k−1)(n−k), and probably the proof is an
exercise as well, but this is good enough for our purpose.
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Proposition 4.3 If V is an n-dimensional vector space over GF (q) and E is
a family of

[
m
1

]
1-spaces, then the number of l-spaces disjoint from all E ∈ E

is at least N(m, l, n) = qlm
[
n−m

l

]
, the number of l-spaces disjoint from an m-

space, with equality for l = 1 if and only if the elements of E are all different,
and for l > 1 if and only if E is the set of 1-subspaces in an m-space.

Proof. Induction on l. For l = 1 there is nothing to prove. For l > 1 take
a 1-space P /∈ E . By induction, the number of l-spaces on P disjoint from
all E ∈ E is at least N(m, l − 1, n − 1), and varying P we find at least
N(m, l − 1, n− 1)(

[
n
1

]
−
[
m
1

]
)/
[

l
1

]
= N(m, l, n) l-spaces. If we have equality,

then the elements of E are all different in the local space at P , for every
P /∈ E , and we have a subspace (of dimension m). �

Proof of Theorem 1.4. Suppose that we have a coloring with at most[
n−k+1

1

]
colors. Let G (the good colors) be the set of colors that are point-

pencils and let B (the bad colors) be the remaining set of colors. Then
|G| + |B| ≤

[
n−k+1

1

]
. Suppose |B| = ε > 0. By Proposition 4.2, the number

of k-spaces with a color in B is at least εq(k−1)(n−k+1)/
[
k
1

]
, so that the average

size of a bad color class is at least q(k−1)(n−k+1)/
[
k
1

]
. This must be smaller

than the size of a HM-type family. Thus, by Lemma 2.3,

q(k−1)(n−k+1) <

[
k

1

][
n− 2

k − 2

][
k

1

]
.

For k ≥ 3 and q ≥ 3, n ≥ 2k+ 1 or q = 2, n ≥ 2k+ 3, this is a contradiction.
If |B| = 0, then all color classes are point-pencils, and we are done by

Theorem 4.1. �

A similar proof can be based on Proposition 4.3.

5 Proof of Theorem 1.5

Let a+ b = n, a < b and let Fa = F ∩
[
V
a

]
and Fb = F ∩

[
V
b

]
. We prove

|Fa|+ |Fb| ≤
[
n

b

]
(5.2)

with equality only if Fa = ∅, Fb =
[
V
b

]
.

Adding up (5.2) for n/2 < b ≤ n gives the bound on |F| in Theorem 1.5
if n is odd and adding the result of Greene and Kleitman [12] that states
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|Fn/2| ≤
[

n−1
n/2−1

]
proves it for n even. For the uniqueness part of Theorem 1.5

we only have to note that if n is even and |Fn/2| =
[

n−1
n/2−1

]
, then by results

of Frankl and Wilson [9] and Godsil and Newman [11] we must have Fn/2 =

{F ∈
[

V
n/2

]
: E 6 F} for some E ∈

[
V
1

]
or Fn/2 =

[
U

n/2

]
for some U ∈

[
V

n−1

]
.

Now let us prove (5.2). Consider the bipartite graph with vertex set[
V
a

]
∪
[
V
b

]
and join A ∈

[
V
a

]
and B ∈

[
V
b

]
if and only if A∩B = 0. Clearly this

graph is regular (with degree qab) and therefore any independent set (that
corresponds to an intersecting subfamily of

[
V
a

]
∪
[
V
b

]
) has size at most

[
n
b

]
.

Moreover, independent sets of that size can only be
[
V
a

]
or
[
V
b

]
but the former

is not an intersecting family. This proves (5.2). �
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