A Hilton-Milner theorem for vector spaces

A. Blokhuis¹, A. E. Brouwer¹, A. Chowdhury², P. Frankl³, T. Mussche¹, B. Patkós⁴, and T. Szőnyi^{5,6}

 $^1Dept.$ of Mathematics, Technological University Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.

²Dept. of Mathematics, University of California San Diego, La Jolla, CA 92093, USA.

³ShibuYa-Ku, Higashi, 1-10-3-301 Tokyo, 150, Japan.

⁴Department of Computer Science, University of Memphis, TN 38152-3240, USA.

⁵Institute of Mathematics, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/C, Hungary.

⁶Computer and Automation Research Institute, Hungarian Academy of Sciences, H-1111 Budapest, Lágymányosi ú. 11, Hungary.

aartb@win.tue.nl, aeb@cwi.nl, anchowdh@math.ucsd.edu,
 peter.frankl@gmail.com, bpatkos@memphis.edu,
 tmussche@gmail.com, szonyi@cs.elte.hu

2009-10-01

Abstract

We show for $k \geq 2$ that if $q \geq 3$, $n \geq 2k+1$ or q=2, $n \geq 2k+2$, then any intersecting family $\mathcal F$ of k-subspaces of an n-dimensional vector space over GF(q) with $\bigcap_{F \in \mathcal F} F = 0$ has size at most ${n-1 \brack k-1} - q^{k(k-1)} {n-k-1 \brack k-1} + q^k$. This bound is sharp as is shown by Hilton-Milner type families. As an application of this result, we determine the chromatic number of the corresponding q-Kneser graphs.

1 Introduction

1.1 Sets

In 1961, Erdős, Ko and Rado [4] proved that if \mathcal{F} is a k-uniform intersecting family of subsets of an n-element set X, then $|\mathcal{F}| \leq \binom{n-1}{k-1}$ when $2k \leq n$. Furthermore they proved that if $2k+1 \leq n$, then equality holds if and only if \mathcal{F} is the family of all subsets containing a fixed element $x \in X$.

For any family \mathcal{F} of sets the covering number $\tau(\mathcal{F})$ is the minimum size of a set that meets all $F \in \mathcal{F}$. The result of Erdős, Ko and Rado states that to obtain an intersecting family of maximum size, one has to consider a family with $\tau(\mathcal{F}) = 1$ when $2k + 1 \leq n$.

Hilton and Milner [13] determined the maximum size of an intersecting family with $\tau(\mathcal{F}) > 2$.

Theorem 1.1 (Hilton & Milner [13]) Let $\mathcal{F} \subset {X \choose k}$ be an intersecting family with $k \geq 2$, $n \geq 2k+1$ and $\tau(\mathcal{F}) \geq 2$. Then $|\mathcal{F}| \leq {n-1 \choose k-1} - {n-k-1 \choose k-1} + 1$. The families achieving that size are

(i) for any k-subset F and $x \in X \setminus F$ the family

$$\{F\} \cup \{G \in {X \choose k} : x \in G, \ F \cap G \neq \emptyset\},\$$

(ii) if k = 3, then for any 3-subset S the family

$${F \in {X \choose 3} : |F \cap S| \ge 2}.$$

In this paper we will be interested in the q-analogue of Theorem 1.1.

1.2 Vector spaces

The q-analogue of questions about sets and subsets are questions about vector spaces and subspaces. For a prime power q, and an n-dimensional vector space V over GF(q), let $\begin{bmatrix} V \\ k \end{bmatrix}$ denote the family of k-subspaces of V.

In 1975, Hsieh [14] proved the q-analogue of the theorem of Erdős, Ko and Rado for $2k + 1 \le n$. Greene and Kleitman [12] found an elegant proof for the case where $k \mid n$, settling the missing n = 2k case.

A family \mathcal{F} of k-subspaces of V is called t-intersecting if $\dim(F_1 \cap F_2) \geq t$ for any $F_1, F_2 \in \mathcal{F}$. In 1986, Frankl and Wilson [9] proved the following result giving the maximum size of a t-intersecting family of k-spaces for $2k - t \leq n$.

Theorem 1.2 (Frankl & Wilson [9]) Let V be a vector space over GF(q) of dimension n. For any t-intersecting family $\mathcal{F} \subseteq {V \brack k}$ we have

$$|\mathcal{F}| \le {n-t \brack k-t}$$
 if $2k \le n$,

and

$$|\mathcal{F}| \le {2k-t \brack k}$$
 if $2k-t \le n \le 2k$.

These bounds are best possible.

Let the covering number $\tau(\mathcal{F})$ of a family \mathcal{F} of subspaces of V be defined as the minimal dimension of a subspace of V meeting all elements of \mathcal{F} nontrivially.

Already Hsieh's proof showed that if t = 1 and $n \ge 2k + 1$ then only point-pencils, that is, families \mathcal{F} with $\tau(\mathcal{F}) = 1$, can achieve the bound in Theorem 1.2. We will prove a q-analogue of Theorem 1.1 for intersecting families of subspaces with $\tau(\mathcal{F}) \ge 2$.

Let us first remark that for a fixed 1-subspace $E \leq V$ and a k-subspace U with $E \not\leq U$ the family $\mathcal{F}_{E,U} = \{U\} \cup \{W \in {V \brack k} : E \leq W, \dim(W \cap U) \geq 1\}$ is not maximal as we can add all subspaces in ${E+U \brack k}$. We will say that \mathcal{F} is an HM-type family if

$$\mathcal{F} = \left\{ W \in {V \brack k} : E \leqslant W, \ \dim(W \cap U) \ge 1 \right\} \cup {E+U \brack k}$$

for some fixed $E\in {V\brack 1}$ and $U\in {V\brack k}$ with $E\not\leqslant U.$ Note that the size of an HM-type family is

$$|\mathcal{F}| = f(n, k, q) := {n-1 \brack k-1} - q^{k(k-1)} {n-k-1 \brack k-1} + q^k.$$
 (1.1)

The main result of the paper is the following theorem.

Theorem 1.3 Let V be an n-dimensional vector space over GF(q), and let $k \geq 3$. If $q \geq 3$ and $n \geq 2k+1$ or q=2 and $n \geq 2k+2$, then for any intersecting family $\mathcal{F} \subseteq {V \brack k}$ with $\tau(\mathcal{F}) \geq 2$ we have $|\mathcal{F}| \leq f(n,k,q)$ (with f(n,k,q) as in (1.1)). When equality holds, either \mathcal{F} is an HM-type family, or k=3 and

$$\mathcal{F} = \mathcal{F}_3 = \{ F \in {V \brack k} : \dim(S \cap F) \ge 2 \}$$

for some $S \in \begin{bmatrix} V \\ 3 \end{bmatrix}$.

Furthermore, if $k \geq 4$, then there exists an $\epsilon > 0$ (independent of n, k, q) such that if $|\mathcal{F}| \geq (1 - \epsilon) f(n, k, q)$, then \mathcal{F} is a subfamily of an HM-type family.

If k = 2, then a maximal intersecting family \mathcal{F} of k-spaces with $\tau(\mathcal{F}) > 1$ is the family of all lines in a plane, and the conclusion of the theorem holds.

After proving the above theorem in Section 2, we apply this result to determine the chromatic number of q-Kneser graphs. The vertex set of the q-Kneser graph $qK_{n:k}$ is $\begin{bmatrix} V \\ k \end{bmatrix}$, where V is an n-dimensional vector space over GF(q). Two vertices of $qK_{n:k}$ are adjacent if and only if the corresponding k-subspaces are disjoint (i.e., meet in 0). Section 4 contains the proof of the following theorem.

Theorem 1.4 If $k \geq 3$ and $q \geq 3$, $n \geq 2k+1$ or q=2, $n \geq 2k+2$, then for the chromatic number of the q-Kneser graph we have $\chi(qK_{n:k}) = {n-k+1 \brack 1}$. Moreover, each color class of a minimum coloring is a point-pencil and the points determining a color are the points of an (n-k+1)-dimensional subspace.

In Section 5 we prove the non-uniform version of the Erdős-Ko-Rado theorem.

Theorem 1.5 Let \mathcal{F} be an intersecting family of subspaces of a vector space V of dimension n. Then

(i) if n is odd, then

$$|\mathcal{F}| \le \sum_{i > n/2} \begin{bmatrix} n \\ i \end{bmatrix},$$

(ii) if n is even, then

$$|\mathcal{F}| \le {n-1 \brack n/2-1} + \sum_{i>n/2} {n \brack i}.$$

For odd n equality holds only if $\mathcal{F} = \begin{bmatrix} V \\ > n/2 \end{bmatrix}$. For even n equality holds only if $\mathcal{F} = \begin{bmatrix} V \\ > n/2 \end{bmatrix} \cup \{F \in \begin{bmatrix} V \\ n/2 \end{bmatrix} : E \leqslant F\}$ for some $E \in \begin{bmatrix} V \\ 1 \end{bmatrix}$, or if $\mathcal{F} = \begin{bmatrix} V \\ > n/2 \end{bmatrix} \cup \begin{bmatrix} U \\ n/2 \end{bmatrix}$ for some $U \in \begin{bmatrix} V \\ n-1 \end{bmatrix}$.

Note that Theorem 1.5 follows from the profile polytope of intersecting families which was determined implicitly by Bey [1] and explicitly by Gerbner and Patkós [10], but the proof we present in Section 5 is direct and very simple.

2 Proof of Theorem 1.3

This section contains the proof of Theorem 1.3 which we divide into two cases.

2.1 The case $\tau(\mathcal{F}) = 2$

For any $A \leq V$ and $\mathcal{F} \subseteq {V \brack k}$ let $\mathcal{F}_A = \{F \in \mathcal{F} : A \leq F\}$.

Before starting with the proof let us state some easy technical lemmas.

Lemma 2.1 Let $a \ge 0$ and $n \ge k \ge a+1$ and $q \ge 2$. Then

$$\begin{bmatrix} k \\ 1 \end{bmatrix} \begin{bmatrix} n-a-1 \\ k-a-1 \end{bmatrix} < \frac{1}{(q-1)q^{n-2k}} \begin{bmatrix} n-a \\ k-a \end{bmatrix}.$$

Proof. The inequality to be proved simplifies to

$$(q^{k-a}-1)(q^k-1)q^{n-2k} < q^{n-a}-1.$$

Lemma 2.2 Let $E \in {V \brack 1}$. If $E \nleq L \leq V$, where L is an l-subspace, then the number of k-subspaces of V containing E and intersecting L is at least ${l \brack 1}{n-2 \brack k-2} - q{l \brack 2}{n-3 \brack k-3}$ (with equality for l=2), and at most ${l \brack 1}{n-2 \brack k-2}$.

Proof. The k-spaces containing E and intersecting L in a 1-dimensional space are counted exactly once in the first term. Those subspaces that intersect L in a 2-dimensional space are counted $\begin{bmatrix} 2 \\ 1 \end{bmatrix} = q+1$ times in the first term and -q times in the second term, thus once overall. If a subspace intersects L in a subspace of dimension $i \geq 3$, then it is counted $\begin{bmatrix} i \\ 1 \end{bmatrix}$ times in the first term and $-q \begin{bmatrix} i \\ 2 \end{bmatrix}$ times in the second term, thus a negative number of times overall. \Box

Our next lemma gives bounds on the size of an HM-type family that are easier to work with than the precise formula mentioned in the introduction.

Lemma 2.3 Let $n \ge 2k+1$, $k \ge 3$ and $q \ge 2$. If \mathcal{F} is an HM-type family, then $(1-\frac{1}{q^3-q}){k \brack 1}{n-2 \brack k-2} < {k \brack 1}{n-2 \brack k-2} - q{k \brack 2}{n-3 \brack k-3} \le f(n,k,q) = |\mathcal{F}| \le {k \brack 1}{n-2 \brack k-2}$.

Proof. The first inequality follows immediately from Lemma 2.1 by noting that $q^{k}_{2} = {k \brack 1}({k \brack 1}-1)/(q+1)$ and $n \ge 2k+1$.

Lemma 2.4 If a subspace S does not intersect each element of \mathcal{F} , then there is a subspace T > S with dim $T = \dim S + 1$ and $|\mathcal{F}_T| \ge |\mathcal{F}_S|/{k \brack 1}$.

Proof. There is an $F \in \mathcal{F}$ such that $S \cap F = 0$. Average over all T = S + E where E is a 1-subspace of F.

Lemma 2.5 If an s-dimensional subspace S does not intersect each element of \mathcal{F} , then $|\mathcal{F}_S| \leq {k \brack 1} {n-s-1 \brack k-s-1}$.

Proof. There is an (s+1)-space T with $\binom{n-s-1}{k-s-1} \geq |\mathcal{F}_T| \geq |\mathcal{F}_S|/\binom{k}{1}$.

Corollary 2.6 Let $\mathcal{F} \subseteq {V \brack k}$ be an intersecting family with $\tau(\mathcal{F}) \ge s$. Then for any *i*-space $L \le V$ with $i \le s$ we have $|\mathcal{F}_L| \le {k \brack 1}^{s-i} {n-s \brack k-s}$.

Proof. By $\tau(\mathcal{F}) \geq s$ we know that for any j-space A, j < s, there exists an $F \in \mathcal{F}$ disjoint from A. Now apply Lemma 2.4 s-i times.

Before proving the q-analogue of the theorem of Hilton-Milner we describe the essential part of maximal intersecting families with $\tau(\mathcal{F}) = 2$. Let us define \mathcal{T} to be the family of 2-spaces of V that intersect all subspaces in \mathcal{F} .

Proposition 2.7 Let \mathcal{F} be a maximal intersecting family with $\tau(\mathcal{F}) = 2$. Then \mathcal{F} contains all k-spaces containing an element of \mathcal{T} and we have one of the following three possibilities:

- (i) $|\mathcal{T}| = 1$ and $\begin{bmatrix} n-2 \\ k-2 \end{bmatrix} < |\mathcal{F}| < \begin{bmatrix} n-2 \\ k-2 \end{bmatrix} + (q+1) \left(\begin{bmatrix} k \\ 1 \end{bmatrix} 1 \right) \begin{bmatrix} k \\ 1 \end{bmatrix} \begin{bmatrix} n-3 \\ k-3 \end{bmatrix}$;
- (ii) $|\mathcal{T}| > 1$, $\tau(\mathcal{T}) = 1$, and there is an (l+1)-space W (with $2 \le l \le k$) and a 1-space $E \le W$ so that $\mathcal{T} = \{M : E \le M \le W, \dim M = 2\}$. In this case

$$\begin{bmatrix} l \\ 1 \end{bmatrix} \begin{bmatrix} n-2 \\ k-2 \end{bmatrix} - q \begin{bmatrix} l \\ 2 \end{bmatrix} \begin{bmatrix} n-3 \\ k-3 \end{bmatrix} \le |\mathcal{F}| \le \begin{bmatrix} l \\ 1 \end{bmatrix} \begin{bmatrix} n-2 \\ k-2 \end{bmatrix} + \begin{bmatrix} k \\ 1 \end{bmatrix} (\begin{bmatrix} k \\ 1 \end{bmatrix} - \begin{bmatrix} l \\ 1 \end{bmatrix}) \begin{bmatrix} n-3 \\ k-3 \end{bmatrix} + q^l \begin{bmatrix} n-l \\ k-l \end{bmatrix}.$$
For $l = 2$ the upper bound here can be strengthened to
$$|\mathcal{F}| \le (q+1) \begin{bmatrix} n-2 \\ k-2 \end{bmatrix} - q \begin{bmatrix} n-3 \\ k-3 \end{bmatrix} + \begin{bmatrix} k \\ 1 \end{bmatrix} (\begin{bmatrix} k \\ 1 \end{bmatrix} - \begin{bmatrix} 2 \\ 1 \end{bmatrix}) \begin{bmatrix} n-3 \\ k-3 \end{bmatrix} + q^2 \begin{bmatrix} k \\ 1 \end{bmatrix} \begin{bmatrix} n-3 \\ k-3 \end{bmatrix};$$

(iii)
$$\mathcal{T} = \begin{bmatrix} A \\ 2 \end{bmatrix}$$
 for some 3-subspace A and $\mathcal{F} = \{U \in \begin{bmatrix} V \\ k \end{bmatrix} : \dim(U \cap A) \ge 2\}$ and $|\mathcal{F}| = (q^2 + q + 1)(\begin{bmatrix} n-2 \\ k-2 \end{bmatrix} - \begin{bmatrix} n-3 \\ k-3 \end{bmatrix}) + \begin{bmatrix} n-3 \\ k-3 \end{bmatrix}$.

In case (ii) there is a 1-space E and an l-space L such that \mathcal{F} contains the set $\mathcal{F}_{E,L}$ of all k-spaces containing E and intersecting L. The last two terms of the upper bound for $|\mathcal{F}|$ in (ii) give an upper bound on $|\mathcal{F} \setminus \mathcal{F}_{E,L}|$.

Proof. Let \mathcal{F} be a maximal intersecting family with $\tau(\mathcal{F}) = 2$. Since \mathcal{F} is maximal, it contains all k-spaces containing a $T \in \mathcal{T}$. Since $n \geq 2k$ and $k \geq 2$ two disjoint elements of \mathcal{T} would be contained in disjoint elements of \mathcal{F} , which is impossible. So \mathcal{T} is intersecting.

The following observation is immediate: if $A, B \in \mathcal{T}$ and $A \cap B < C < A+B$, then $C \in \mathcal{T}$. As an intersecting family of 2-spaces is either a family of 2-spaces containing some fixed 1-space E or a set of 2-subspaces of a 3-space, we get the following:

- (*): \mathcal{T} is either a family of all 2-subspaces in a given (l+1)-space containing some fixed 1-space E (and $k \geq l \geq 1$), or \mathcal{T} is the set of all 2-subspaces of a 3-space.
- (i): If $|\mathcal{T}| = 1$, then let S denote the only 2-space in \mathcal{T} and let $E \leq S$ be any 1-space. Since $\tau(\mathcal{F}) > 1$ there exists an $F \in \mathcal{F}$ with $E \not\leq F$, for which we must have $\dim(F \cap S) = 1$. Since S is the only element of \mathcal{T} , for any 1-subspace E' of F different from $F \cap S$, $\mathcal{F}_{E+E'} \leq {k \brack 1}{n-3 \brack k-3}$ by Lemma 2.5, hence the number of subspaces containing E but not containing S is at most ${k \brack 1} 1 {k \brack 1}{n-3 \brack k-3}$. This gives the upper bound.
- (ii): Assume that $\tau(T) = 1$ and |T| > 1. By (*), \mathcal{T} is the set of 2-spaces in an (l+1)-space W (with $l \geq 2$) containing some fixed 1-space E. Every $F \in \mathcal{F} \setminus \mathcal{F}_E$ intersects W in a hyperplane. Let L be a hyperplane in W not on E. Then \mathcal{F} contains all k-spaces on E that intersect L. Hence the lower bound and the first term in the upper bound come from Lemma 2.2. The second term comes from counting the k-spaces of \mathcal{F} that contain E and intersect a given $F \in \mathcal{F}$ (not containing E) in a point of $F \setminus W$. Here Lemma 2.5 is used. If $l \geq 3$, then there are q^l hyperplanes in W not containing E and there are $\binom{n-l}{k-l}$ k-spaces through such a hyperplane. For l=2 there are q^2 hyperplanes in W and they cannot be in T. Using Lemma 2.5 gives the bound.

(iii) is immediate. \Box

Corollary 2.8 Let \mathcal{F} be a maximal intersecting family with $\tau(\mathcal{F}) = 2$. If \mathcal{F} is at least as large as an HM-type family, and either $q \geq 3$, $n \geq 2k + 1$, $k \geq 3$ or q = 2, $n \geq 2k + 2$, $k \geq 3$, then \mathcal{F} is an HM-type family, or, in case k = 3, an \mathcal{F}_3 -type family.

There exists an $\epsilon > 0$ (independent of n, k, q) such that if $k \geq 4$ and either $q \geq 3$, $n \geq 2k+1$ or q=2, $n \geq 2k+2$, and $|\mathcal{F}|$ is at least $(1-\epsilon)$ times the size of an HM-type family, then \mathcal{F} is a subfamily of an HM-type family.

Proof. Apply Proposition 2.7. Note that the Hilton-Milner families are precisely those from case (ii) with k = l.

Let $n \geq 2k + a$ where $a \geq 1$. In case (i) of Proposition 2.7 we have $|\mathcal{F}|/{n-2 \choose k-2}| < 1 + \frac{q+1}{(q-1)q^a} {k \brack 1}$ by Lemma 2.1. In case (ii) we find for l < k that $|\mathcal{F}|/{n-2 \brack k-2}| < (\frac{1}{q} + \frac{1}{(q-1)q^a}) {k \brack 1} + \frac{q^2}{(q-1)q^a}$. In both cases, for $q \geq 3$, $k \geq 3$, or q = 2, $k \geq 4$, $a \geq 2$, this is less than $(1 - \epsilon)$ times the lower bound on the size of an HM-type family given in Lemma 2.3. Using the stronger estimate in Lemma 2.3 we find the same conclusion for q = 2, k = 3, $k \geq 2$.

in Lemma 2.3 we find the same conclusion for $q=2, k=3, a\geq 2$. In case (iii) $|\mathcal{F}_3|={3\brack 2}{n-2\brack k-2}-\frac{q^3-q}{q-1}{n-3\brack k-3}$. For $k\geq 4$, this is much smaller than the size of the HM-type families. For k=3, the two families have the same size.

Proposition 2.9 Suppose that $k \geq 3$ and $n \geq 2k$. Let $\mathcal{F} \subseteq {V \brack k}$ be an intersecting family with $\tau(\mathcal{F}) \geq 2$. Let $3 \leq l \leq k$. If \mathcal{F} has an intersecting l-space, and

$$|\mathcal{F}| > {l \brack 1} {k \brack 1}^{l-1} {n-l \brack k-l}$$
(2.2)

then \mathcal{F} has an intersecting (l-1)-space.

Proof. By averaging there is a 1-space P with $|\mathcal{F}_P| \geq |\mathcal{F}|/{l \brack 1}$. If $\tau(\mathcal{F}) = l$, then by Corollary 2.6 $|\mathcal{F}| \leq {l \brack 1} {k \brack 1}^{l-1} {n-l \brack k-l}$, contradicting the hypothesis. \square

Corollary 2.10 Let $k \geq 3$ and $n \geq 2k + 1$ and $n \geq 2k + 2$ if q = 2. If $|\mathcal{F}| > {3 \brack 1}{k \brack 1}^2 {n-3 \brack k-3}$, then $\tau(\mathcal{F}) = 2$, that is, \mathcal{F} is contained in one of the systems described in Proposition 2.7 satisfying the bound on $|\mathcal{F}|$.

Proof. Since the right hand side of (2.2) is decreasing in l for $3 \le l \le k$ (this uses $n \ge 2k + 1$ and $n \ge 2k + 2$ for q = 2), we can find a hitting 2-space if the condition (2.2) holds for l = 3, and it does by the assumption on $|\mathcal{F}|$. \square

Remark 2.11 For $n \geq 3k$ all the systems described in Proposition 2.7 occur.

2.2 The case $\tau(\mathcal{F}) > 2$

Suppose that \mathcal{F} is an intersecting family and $\tau(\mathcal{F}) = l > 2$. We shall derive a contradiction from $|\mathcal{F}| \geq f(n, k, q)$, and even from $|\mathcal{F}| \geq (1 - \epsilon)f(n, k, q)$ for some $\epsilon > 0$ (independent of n, k, q).

For each point P we have $|\mathcal{F}_P| \leq {k \brack 1}^{l-1} {n-l \brack k-l}$, and for each line L we have $|\mathcal{F}_L| \leq {k \brack 1}^{l-2} {n-l \brack k-l}$, by Corollary 2.6.

If there are two l-spaces that meet all $F \in \mathcal{F}$, and these meet in an m-space, where $0 \le m \le l-1$, then

$$|\mathcal{F}| \le {m \brack 1} {k \brack 1}^{l-1} {n-l \brack k-l} + {\binom{l}{1}} - {m \brack 1}^2 {k \brack 1}^{l-2} {n-l \brack k-l}. \tag{2.3}$$

2.2.1 The case k = l

First consider the case k=l. Then $|\mathcal{F}| \leq {k \brack 1}^k$. On the other hand, $|\mathcal{F}| \geq (1-\frac{1}{q^3-q}){k \brack 1}{n-2 \brack k-2} > (1-\frac{1}{q^3-q}){k \brack 1}^{k-1}((q-1)q^{n-2k})^{k-2}$ by Lemma 2.3 and Lemma 2.1. If either $q>2, n\geq 2k+1$ or $q=2, n\geq 2k+2$, then either $k\leq 3$ or (n,k,q)=(9,4,3) or (n,k,q)=(10,4,2). But if (n,k,q)=(10,4,2), then f(n,k,q)=153171, and $15^4=50625$, contradiction. And if (n,k,q)=(9,4,3) then f(n,k,q)=3837721, and $40^4=2560000$, contradiction. So k=3. Now $|\mathcal{F}|\geq (1-\frac{1}{q^3-q}){k \brack 1}{n-2 \brack k-2}$ gives a contradiction for $n\geq 8$, so n=7. So, if we assume that $n\geq 2k+1$ and either $q>2, (n,k)\neq (7,3)$ or $q=2, n\geq 2k+2$ then we are not in the case k=l.

It remains to settle the case n = 7, k = l = 3.

Pick a 1-space E such that $|\mathcal{F}_E| \geq |\mathcal{F}|/{3 \brack 1}$ and a 2-space S on E such that $|\mathcal{F}_S| \geq |\mathcal{F}_E|/{3 \brack 1}$. Then $|\mathcal{F}_S| > q+1$ since $|\mathcal{F}| > {2 \brack 1} {3 \brack 1}^2$. Pick $F' \in \mathcal{F}$ disjoint from S. Put H = S + F'. Then all $F \in \mathcal{F}_S$ are contained in the 5-space H. But $|\mathcal{F}| > {5 \brack 3}$ so there is an $F_0 \in \mathcal{F}$ not contained in H. If $F_0 \cap S = 0$, then each $F \in \mathcal{F}_S$ is contained in $S + (H \cap F_0)$, so $|\mathcal{F}_S| \leq q+1$, contradiction. Thus, all elements of \mathcal{F} disjoint from S are in H.

Now F_0 must meet F' and S, so F_0 meets H in a 2-space S_0 . Since $|\mathcal{F}_S| > q+1$, we can find two elements F_1, F_2 of \mathcal{F}_S with the property that S_0 is not contained in the 4-space $F_1 + F_2$. Since any $F \in \mathcal{F}$ disjoint from S is contained in H and meets F_0 , it must meet S_0 and also F_1 and F_2 . Hence the number of such F's is at most q^5 . Altogether $|\mathcal{F}| \leq q^5 + {1 \brack 1} {3 \brack 1}^2$ (counting F disjoint from S or on a given E < S) which contradicts $|\mathcal{F}| \geq (1 - \frac{1}{q^3 - q}) {5 \brack 1} {5 \brack 1}$.

2.2.2 l is small

The upper bound (2.3) is a quadratic in $x = {m \brack 1}$ and is largest at one of the extreme values x = 0 and $x = {l-1 \brack 1}$. The maximum is taken at x = 0 only when ${l \brack 1} - \frac{1}{2} {k \brack 1} > \frac{1}{2} {l-1 \brack 1}$, that is, when k = l. Since we just considered that

case, we can assume that l < k and then the upper bound in (2.3) is largest for m = l - 1. We find

$$|\mathcal{F}| \leq {l-1 \brack 1} {k \brack 1}^{l-1} {n-l \brack k-l} + {l \brack 1} - {l-1 \brack 1}^{l-1} {l-2 \brack k-l}^{l-2}.$$

On the other hand,

$$|\mathcal{F}| \ge (1 - \frac{1}{a^3 - a}) {k \brack 1} {n-2 \brack k-2} > (1 - \frac{1}{a^3 - a}) {k \brack 1}^{l-1} {n-l \brack k-l} ((q-1)q^{n-2k})^{l-2}.$$

Comparing these, and using k > l, $n \ge 2k + 1$, and $n \ge 2k + 2$ if q = 2, we find either (n, k, l, q) = (9, 4, 3, 3) or q = 2, n = 2k + 2, l = 3, $k \le 5$. But if (n, k, l, q) = (9, 4, 3, 3) then f(n, k, q) = 3837721, while the upper bound is 3508960, contradiction. And if (n, k, l, q) = (12, 5, 3, 2) then f(n, k, q) = 183628563, while the upper bound is 146766865, contradiction. And if (n, k, l, q) = (10, 4, 3, 2) then f(n, k, q) = 153171, while the upper bound is 116205, contradiction. So, under our assumptions the case 2 < l < k does not occur.

2.2.3 A unique *l*-space

The discussion so far assumed that there are two distinct l-spaces that meet all $F \in \mathcal{F}$. The alternative is that there is a unique l-space T that meets all $F \in \mathcal{F}$. We can pick a 1-space E < T such that $|\mathcal{F}_E| \ge |\mathcal{F}|/{n \brack 1}$. Now there is some $F' \in \mathcal{F}$ not on E, so E is in $n \brack 1$ lines such that each $F \in \mathcal{F}_E$ contains at least one of these lines. If E is one of these lines and E does not lie in E, then we can enlarge E to an E-space that still does not meet all elements of E, so $|\mathcal{F}_E| \le {k \brack 1}^{l-1} {n-l-1 \brack k-l-1}$. Otherwise we have $|\mathcal{F}_E| \le {k \brack 1}^{l-2} {n-l \brack k-l}$. Altogether $|\mathcal{F}_E| \le {l-1 \brack 1} ({k \brack 1}^{l-2} {n-l \brack k-l}) + ({k \brack 1} - {l-1 \brack 1}) ({k \brack 1}^{l-1} {n-l-1 \brack k-l-1})$. On the other hand, $|\mathcal{F}| > (1 - \frac{1}{q^3-q})((q-1)q^{n-2k})^{l-2} {k \brack 1}^{l-1} {n-l \brack k-l}$, so that

$$(1 - \frac{1}{q^3 - q})((q - 1)q^{n - 2k})^{l - 2} {k \brack 1} < {l \brack 1} ({l - 1 \brack 1} + ({k \brack 1} - {l - 1 \brack 1}) {k \brack 1} {n - l - 1 \brack k - l - 1} / {n - l \brack k - l}).$$

Under our standard assumptions $n \geq 2k+1$ and $n \geq 2k+2$ if q=2, this implies q=2, n=2k+2, l=3, and also that last case gives a contradiction. We showed: If $n \geq 2k+1$ and $n \geq 2k+2$ if q=2, then $\tau(\mathcal{F}) \leq 2$. Together with Corollary 2.8 this proves Theorem 1.3.

3 Critical families

A subspace will be called a *hitting subspace* (and we shall say that the subspace intersects \mathcal{F}), it it intersects each element of \mathcal{F} .

The previous results just used the parameter τ , so only the hitting subspaces of smallest dimension were taken into account. A more precise description is possible if we make the intersecting system of subspaces critical.

Definition 3.1 An intersecting family \mathcal{F} of subspaces of V is *critical* if for any two distinct $F, F' \in \mathcal{F}$ we have $F \not\subset F'$, and moreover for any hitting subspace G there is a $F \in \mathcal{F}$ with $F \subset G$.

Lemma 3.2 For every non-extendable intersecting family \mathcal{F} of k-spaces there exists some critical family \mathcal{G} such that

$$\mathcal{F} = \{ F \in \begin{bmatrix} V \\ k \end{bmatrix} : \exists G \in \mathcal{G}, \ G \subseteq F \}.$$

Proof. Extend \mathcal{F} to a maximal intersecting family \mathcal{H} of subspaces of V, and take for \mathcal{G} the minimal elements of \mathcal{H} .

The following construction and result are an adaptation of the corresponding results from Erdős and Lovász [5]:

Construction 3.3 Let A_1, \ldots, A_k be subspaces of V such that $\dim A_i = i$ and $\dim(A_1 + \cdots + A_k) = \binom{k+1}{2}$. Define

$$\mathcal{F}_i = \{ F \in \begin{bmatrix} V \\ k \end{bmatrix} : A_i \subseteq F, \ \dim A_j \cap F = 1 \ for \ j > i \}.$$

Then $\mathcal{F} = \mathcal{F}_1 \cup \ldots \cup \mathcal{F}_k$ is a critical, non-extendable, intersecting family of k-spaces, and $|\mathcal{F}_i| = {i+1 \brack 1} {i+2 \brack 1} \cdots {k \brack 1}$ for $1 \le i \le k$.

For subsets Erdős and Lovász proved that a critical, non-extendable, intersecting family of k-sets cannot have more than k^k members. They conjectured that the above construction is best possible but this was disproved by Frankl, Ota and Tokushige [8]. Here we prove the following analogous result.

Theorem 3.4 Let \mathcal{F} be a critical, intersecting family of subspaces of V of dimension at most k. Then $|\mathcal{F}| \leq {k \brack 1}^k$.

Proof. Suppose that $|\mathcal{F}| > {k \brack 1}^k$. By induction on $i, 0 \le i \le k$, we find an i-dimensional subspace A_i of V such that $|\mathcal{F}_{A_i}| > {k \brack 1}^{k-i}$. Indeed, since by induction $|\mathcal{F}_{A_i}| > 1$ and \mathcal{F} is critical, the subspace A_i is not hitting, and there is an $F \in \mathcal{F}$ disjoint from A_i . Now all elements of \mathcal{F}_{A_i} meet F, and we find $A_{i+1} > A_i$ with $|\mathcal{F}_{A_{i+1}}| > |\mathcal{F}_{A_i}|/{k \brack 1}$. For i = k this is a contradiction. \square

Remark 3.5 For $l \leq k$ this argument shows that there are not more than $\begin{bmatrix} l \\ 1 \end{bmatrix} \begin{bmatrix} k \\ 1 \end{bmatrix}^{l-1} l$ -spaces in \mathcal{F} .

If l=3 and $\tau>2$ then for the size of \mathcal{F} the previous remark essentially gives $\begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} k \\ 1 \end{bmatrix}^2 \begin{bmatrix} n-3 \\ k-3 \end{bmatrix}$, which is the bound in Corollary 2.10.

Modifying the Erdős-Lovász construction (see Frankl [6]), one can get intersecting families with many l-spaces in the corresponding critical family.

Construction 3.6 Let A_1, \ldots, A_l be subspaces with dim $A_1 = 1$, dim $A_i = k+i-l$ for $i \geq 2$. Define $\mathcal{F}_i = \{F \in {V \brack k} : A_i \leq F, \dim(F \cap A_j) \geq 1 \text{ for } j > i\}$. Then $\mathcal{F}_1 \cup \ldots \cup \mathcal{F}_l$ is intersecting and the corresponding critical family has at least ${k-l+2 \brack 1} \cdots {k \brack 1}$ l-spaces.

For n large enough the Erdős-Ko-Rado theorem for vector spaces follows from the obvious fact that no critical, intersecting family can contain more than one 1-dimensional member. The Hilton-Milner theorem and the stability of the systems follow from (*) which was used to describe the intersecting systems with $\tau=2$. As remarked above, the fact that the critical family has to contain only spaces of dimension 3 or more limits its size to $O({n \brack k-3})$, if k is fixed and n is large enough. Stronger and more general stability theorems can be found in Frankl [7] for the subset case.

4 Coloring q-Kneser graphs

In this section, we prove Theorem 1.4, that is, we show that $\chi(qK_{n:k}) = {n-k+1 \brack 1}$. The case k=2 was proven in [3] and the general case for $q > q_k$ in [16]. We will need the following result of Bose and Burton and its extension by Metsch [15].

Theorem 4.1 (Bose & Burton [2]) If V is an n-dimensional vector space over GF(q) and \mathcal{E} is a family of 1-subspaces of V such that any k-subspace

of V contains at least one element of \mathcal{E} , then $|\mathcal{E}| \geq {n-k+1 \brack 1}$. Furthermore, equality holds if and only if $\mathcal{E} = {H \brack 1}$ for some (n-k+1)-subspace H of V.

Proposition 4.2 (Metsch [15]) If V is an n-dimensional vector space over GF(q) and \mathcal{E} is a family of $\binom{n-k+1}{1} - \varepsilon$ 1-subspaces of V, then the number of k-subspaces of V that are disjoint from all $E \in \mathcal{E}$ is at least $\varepsilon q^{(k-1)(n-k)}$.

Proof. For the proof (which uses an unpublished result by Szőnyi and Weiner), see [15]. A slightly weaker result, enough for most applications, has a very simple proof that we give here. We show that the number of k-subspaces of V that are disjoint from all $E \in \mathcal{E}$ is at least $\varepsilon q^{(k-1)(n-k+1)}/{k \brack 1}$. Induction on k. For k=1 there is nothing to prove. Next, let k>1 and count incident pairs (1-space, k-space), where the k-space is disjoint from all $E \in \mathcal{E}$:

$$N \begin{bmatrix} k \\ 1 \end{bmatrix} \geq \left(\begin{bmatrix} n \\ 1 \end{bmatrix} - \begin{bmatrix} n-k+1 \\ 1 \end{bmatrix} + \varepsilon \right) \varepsilon q^{(k-2)(n-k+1)} / \begin{bmatrix} k-1 \\ 1 \end{bmatrix} \geq \varepsilon q^{(k-1)(n-k+1)}.$$

Proof of Theorem 1.4. Suppose that we have a coloring with at most $\binom{n-k+1}{1}$ colors. Let G (the good colors) be the set of colors that are point-pencils and let B (the bad colors) be the remaining set of colors. Then $|G|+|B|\leq \binom{n-k+1}{1}$. Suppose $|B|=\varepsilon>0$. By Proposition 4.2, the number of k-spaces with a color in B is at least $\varepsilon q^{(k-1)(n-k)}$, so that the average size of a bad color class is at least $q^{(k-1)(n-k)}$. This must be smaller than the size of a HM-type family. Thus, by Lemma 2.3,

$$q^{(k-1)(n-k)} \le \begin{bmatrix} k \\ 1 \end{bmatrix} \begin{bmatrix} n-2 \\ k-2 \end{bmatrix}.$$

For $k \ge 3$ and $q \ge 3$, $n \ge 2k+1$ or q=2, $n \ge 2k+2$, this is a contradiction. (The weaker form of Proposition 4.2 suffices unless q=2, n=2k+2.)

If |B| = 0, then all color classes are point-pencils, and we are done by Theorem 4.1.

5 Proof of Theorem 1.5

Let
$$a + b = n, a < b$$
 and let $\mathcal{F}_a = \mathcal{F} \cap {V \brack a}$ and $\mathcal{F}_b = \mathcal{F} \cap {V \brack b}$. We prove $|\mathcal{F}_a| + |\mathcal{F}_b| \le {n \brack b}$ (5.4)

with equality only if $\mathcal{F}_a = \emptyset$, $\mathcal{F}_b = \begin{bmatrix} V \\ b \end{bmatrix}$.

Adding up (5.4) for $n/2 < b \le n$ gives the bound on $|\mathcal{F}|$ in Theorem 1.5 if n is odd and adding the result of Greene and Kleitman [12] that states $|\mathcal{F}_{n/2}| \le {n-1 \brack n/2-1}$ proves it for n even. For the uniqueness part of Theorem 1.5 we only have to note that if n is even and $|\mathcal{F}_{n/2}| = {n-1 \brack n/2-1}$, then by results of Frankl and Wilson [9] and Godsil and Newman [11] we must have $\mathcal{F}_{n/2} = \{F \in {V \brack n/2} : E \le F\}$ for some $E \in {V \brack n/2}$ for some $U \in {V \brack n-1}$.

 $\{F \in {V \brack n/2} : E \leqslant F\}$ for some $E \in {V \brack 1}$ or $\mathcal{F}_{n/2} = {U \brack n/2}$ for some $U \in {V \brack n-1}$. Now let us prove (5.4). Consider the bipartite graph with vertex set ${V \brack a} \cup {V \brack b}$ and join $A \in {V \brack a}$ and $B \in {V \brack b}$ if and only if $A \cap B = 0$. Clearly this graph is regular (with degree q^{ab}) and therefore any independent set (that corresponds to an intersecting subfamily of ${V \brack a} \cup {V \brack b}$) has size at most ${D \brack b}$. Moreover, independent sets of that size can only be ${V \brack a}$ or ${V \brack b}$ but the former is not an intersecting family. This proves (5.4).

Acknowledgements

Balázs Patkós's research was supported by NSF Grant #: CCF-0728928. Tamás Szőnyi gratefully acknowledges the financial support of NWO, including the support of the DIAMANT and Spinoza projects. He also thanks the Department of Mathematics at TU/e for the warm hospitality. He was partly supported by OTKA Grants T 49662 and NK 67867.

References

- [1] C. Bey, Polynomial LYM inequalities, Combinatorica 25 (2005) 19–38.
- [2] R. C. Bose, R. C. Burton, A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the MacDonald codes, J. Combin. Theory 1 (1966) 96–104.
- [3] A. CHOWDHURY, C. GODSIL, G. ROYLE, Colouring lines in a projective space, J. Combin. Theory Ser. A 113 (2006) 228–236.
- [4] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) 12 (1961) 313–320.
- [5] P. Erdős, L. Lovász, Problems and results on 3-chromatic hypergraphs and some related questions, pp. 609–627 in: Infinite and finite

- sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. II, Colloq. Math. Soc. János Bolyai, **Vol. 10**, North-Holland, Amsterdam, 1975.
- [6] P. Frankl, On families of finite sets no two of which intersect in a singleton. Bull. Austral. Math. Soc. 17 (1977) 125–134.
- [7] P. Frankl, On Intersecting Families of Finite Sets, J. Combin. Theory Ser. A 24 (1978) 146–161.
- [8] P. Frankl, K. Ota, N. Tokushige, Covers in Uniform Intersecting Families and a Conjecture of Lovász, J. Combin. Theory Ser. A 74 (1996) 33–42.
- [9] P. Frankl, R. M. Wilson, *The Erdős-Ko-Rado theorem for vector spaces*, J. Combin. Theory Ser. A **43** (1986) 228–236.
- [10] D. Gerbner, B. Patkós, *Profile vectors in the lattice of subspaces*, Discrete Math. **309** (2009) 2861–2869.
- [11] C. D. Godsil, M. W. Newman, Independent sets in association schemes, Combinatorica **26** (2006) 431–443.
- [12] C. Greene, D. J. Kleitman, Proof techniques in the theory of finite sets, Studies in combinatorics, pp. 22–79 in: MAA Stud. Math., 17, Math. Assoc. America, Washington, D.C., 1978.
- [13] A. J. W. HILTON, E. C. MILNER, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) 18 (1967) 369– 384.
- [14] W. N. HSIEH, Intersection theorems for systems of finite vector spaces, Discrete Math. 12 (1975) 1–16.
- [15] K. Metsch, How many s-subspaces must miss a point set in PG(d,q), J. Geometry 86 (2006) 154–164.
- [16] T. Mussche, Extremal combinatorics in generalized Kneser graphs, Ph.D. Thesis, Technical University Eindhoven, 2009.