A Hilton-Milner theorem for vector spaces

\author{
A. Blokhuis ${ }^{1}$, A. E. Brouwer ${ }^{1}$, A. Chowdhury ${ }^{2}$, P. Frankl ${ }^{3}$, T. Mussche ${ }^{1}$, B. Patkós ${ }^{4}$, and T. Szőnyi ${ }^{5}, 6$
 ${ }^{1}$ Dept. of Mathematics, Technological University Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
 ${ }^{2}$ Dept. of Mathematics, University of California San Diego, La Jolla, CA 92093, USA.
 ${ }^{3}$ ShibuYa-Ku, Higashi, 1-10-3-301 Tokyo, 150, Japan.
 ${ }^{4}$ Department of Computer Science, University of Memphis, TN 38152-3240, USA.
 ${ }^{5}$ Institute of Mathematics, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/C, Hungary.
 ${ }^{6}$ Computer and Automation Research Institute, Hungarian Academy of Sciences, H-1111 Budapest, Lágymányosi ú. 11, Hungary.
 ```
aartb@win.tue.nl, aeb@cwi.nl, anchowdh@math.ucsd.edu,
 peter.frankl@gmail.com, bpatkos@memphis.edu,
 tmussche@gmail.com, szonyi@cs.elte.hu

```
}

\begin{abstract}
We show for \(k \geq 2\) that if \(q \geq 3, n \geq 2 k+1\) or \(q=2, n \geq 2 k+2\), then any intersecting family \(\mathcal{F}\) of \(k\)-subspaces of an \(n\)-dimensional vector space over \(G F(q)\) with \(\bigcap_{F \in \mathcal{F}} F=0\) has size at most \(\left[\begin{array}{c}n-1 \\ k-1\end{array}\right]-\) \(q^{k(k-1)}\left[\begin{array}{c}n-k-1 \\ k-1\end{array}\right]+q^{k}\). This bound is sharp as is shown by Hilton-Milner type families. As an application of this result, we determine the chromatic number of the corresponding \(q\)-Kneser graphs.
\end{abstract}

\section*{1 Introduction}

\subsection*{1.1 Sets}

In 1961, Erdős, Ko and Rado [4] proved that if \(\mathcal{F}\) is a \(k\)-uniform intersecting family of subsets of an \(n\)-element set \(X\), then \(|\mathcal{F}| \leq\binom{ n-1}{k-1}\) when \(2 k \leq n\). Furthermore they proved that if \(2 k+1 \leq n\), then equality holds if and only if \(\mathcal{F}\) is the family of all subsets containing a fixed element \(x \in X\).

For any family \(\mathcal{F}\) of sets the covering number \(\tau(\mathcal{F})\) is the minimum size of a set that meets all \(F \in \mathcal{F}\). The result of Erdős, Ko and Rado states that to obtain an intersecting family of maximum size, one has to consider a family with \(\tau(\mathcal{F})=1\) when \(2 k+1 \leq n\).

Hilton and Milner [13] determined the maximum size of an intersecting family with \(\tau(\mathcal{F}) \geq 2\).

Theorem 1.1 (Hilton \& Milner [13]) Let \(\mathcal{F} \subset\binom{X}{k}\) be an intersecting family with \(k \geq 2, n \geq 2 k+1\) and \(\tau(\mathcal{F}) \geq 2\). Then \(|\mathcal{F}| \leq\binom{ n-1}{k-1}-\binom{n-k-1}{k-1}+1\). The families achieving that size are
(i) for any \(k\)-subset \(F\) and \(x \in X \backslash F\) the family
\[
\{F\} \cup\left\{G \in\binom{X}{k}: x \in G, F \cap G \neq \emptyset\right\},
\]
(ii) if \(k=3\), then for any 3 -subset \(S\) the family
\[
\left\{F \in\binom{X}{3}:|F \cap S| \geq 2\right\} .
\]

In this paper we will be interested in the \(q\)-analogue of Theorem 1.1.

\subsection*{1.2 Vector spaces}

The \(q\)-analogue of questions about sets and subsets are questions about vector spaces and subspaces. For a prime power \(q\), and an \(n\)-dimensional vector space \(V\) over \(G F(q)\), let \(\left[\begin{array}{c}V \\ k\end{array}\right]\) denote the family of \(k\)-subspaces of \(V\).

In 1975, Hsieh [14] proved the \(q\)-analogue of the theorem of Erdős, Ko and Rado for \(2 k+1 \leq n\). Greene and Kleitman [12] found an elegant proof for the case where \(k \mid n\), settling the missing \(n=2 k\) case.

A family \(\mathcal{F}\) of \(k\)-subspaces of \(V\) is called \(t\)-intersecting if \(\operatorname{dim}\left(F_{1} \cap F_{2}\right) \geq t\) for any \(F_{1}, F_{2} \in \mathcal{F}\). In 1986, Frankl and Wilson [9] proved the following result giving the maximum size of a \(t\)-intersecting family of \(k\)-spaces for \(2 k-t \leq n\).

Theorem 1.2 (Frankl \& Wilson [9]) Let \(V\) be a vector space over \(G F(q)\) of dimension \(n\). For any \(t\)-intersecting family \(\mathcal{F} \subseteq\left[\begin{array}{l}V \\ k\end{array}\right]\) we have
\[
|\mathcal{F}| \leq\left[\begin{array}{c}
n-t \\
k-t
\end{array}\right] \quad \text { if } 2 k \leq n,
\]
and
\[
|\mathcal{F}| \leq\left[\begin{array}{c}
2 k-t \\
k
\end{array}\right] \quad \text { if } 2 k-t \leq n \leq 2 k .
\]

These bounds are best possible.
Let the covering number \(\tau(\mathcal{F})\) of a family \(\mathcal{F}\) of subspaces of \(V\) be defined as the minimal dimension of a subspace of \(V\) meeting all elements of \(\mathcal{F}\) nontrivially.

Already Hsieh's proof showed that if \(t=1\) and \(n \geq 2 k+1\) then only point-pencils, that is, families \(\mathcal{F}\) with \(\tau(\mathcal{F})=1\), can achieve the bound in Theorem 1.2. We will prove a \(q\)-analogue of Theorem 1.1 for intersecting families of subspaces with \(\tau(\mathcal{F}) \geq 2\).

Let us first remark that for a fixed 1-subspace \(E \leqslant V\) and a \(k\)-subspace \(U\) with \(E \nless U\) the family \(\mathcal{F}_{E, U}=\{U\} \cup\left\{W \in\left[\begin{array}{l}V \\ k\end{array}\right]: E \leqslant W, \operatorname{dim}(W \cap U) \geq 1\right\}\) is not maximal as we can add all subspaces in \(\left[\begin{array}{c}E+U \\ k\end{array}\right]\). We will say that \(\mathcal{F}\) is an HM-type family if
\[
\mathcal{F}=\left\{W \in\left[\begin{array}{c}
V \\
k
\end{array}\right]: E \leqslant W, \operatorname{dim}(W \cap U) \geq 1\right\} \cup\left[\begin{array}{c}
E+U \\
k
\end{array}\right]
\]
for some fixed \(E \in\left[\begin{array}{c}V \\ 1\end{array}\right]\) and \(U \in\left[\begin{array}{l}V \\ k\end{array}\right]\) with \(E \nless U\). Note that the size of an HM-type family is
\[
|\mathcal{F}|=f(n, k, q):=\left[\begin{array}{l}
n-1  \tag{1.1}\\
k-1
\end{array}\right]-q^{k(k-1)}\left[\begin{array}{c}
n-k-1 \\
k-1
\end{array}\right]+q^{k} .
\]

The main result of the paper is the following theorem.
Theorem 1.3 Let \(V\) be an \(n\)-dimensional vector space over \(G F(q)\), and let \(k \geq 3\). If \(q \geq 3\) and \(n \geq 2 k+1\) or \(q=2\) and \(n \geq 2 k+2\), then for any intersecting family \(\mathcal{F} \subseteq\left[\begin{array}{c}V \\ k\end{array}\right]\) with \(\tau(\mathcal{F}) \geq 2\) we have \(|\mathcal{F}| \leq f(n, k, q)\) (with \(f(n, k, q)\) as in (1.1)). When equality holds, either \(\mathcal{F}\) is an HM-type family, or \(k=3\) and
\[
\mathcal{F}=\mathcal{F}_{3}=\left\{F \in\left[\begin{array}{l}
V \\
k
\end{array}\right]: \operatorname{dim}(S \cap F) \geq 2\right\}
\]
for some \(S \in\left[\begin{array}{c}V \\ 3\end{array}\right]\).
Furthermore, if \(k \geq 4\), then there exists an \(\epsilon>0\) (independent of \(n, k, q\) ) such that if \(|\mathcal{F}| \geq(1-\epsilon) f(n, k, q)\), then \(\mathcal{F}\) is a subfamily of an HM-type family.

If \(k=2\), then a maximal intersecting family \(\mathcal{F}\) of \(k\)-spaces with \(\tau(\mathcal{F})>1\) is the family of all lines in a plane, and the conclusion of the theorem holds.

After proving the above theorem in Section 2, we apply this result to determine the chromatic number of \(q\)-Kneser graphs. The vertex set of the \(q\)-Kneser graph \(q K_{n: k}\) is \(\left[\begin{array}{l}V \\ k\end{array}\right]\), where \(V\) is an \(n\)-dimensional vector space over \(G F(q)\). Two vertices of \(q K_{n: k}\) are adjacent if and only if the corresponding \(k\)-subspaces are disjoint (i.e., meet in 0 ). Section 4 contains the proof of the following theorem.

Theorem 1.4 If \(k \geq 3\) and \(q \geq 3, n \geq 2 k+1\) or \(q=2\), \(n \geq 2 k+2\), then for the chromatic number of the \(q\)-Kneser graph we have \(\chi\left(q K_{n: k}\right)=\) \(\left[\begin{array}{c}n-k+1 \\ 1\end{array}\right]\). Moreover, each color class of a minimum coloring is a point-pencil and the points determining a color are the points of an \((n-k+1)\)-dimensional subspace.

In Section 5 we prove the non-uniform version of the Erdős-Ko-Rado theorem.

Theorem 1.5 Let \(\mathcal{F}\) be an intersecting family of subspaces of a vector space \(V\) of dimension \(n\). Then
(i) if \(n\) is odd, then
\[
|\mathcal{F}| \leq \sum_{i>n / 2}\left[\begin{array}{c}
n \\
i
\end{array}\right]
\]
(ii) if \(n\) is even, then
\[
|\mathcal{F}| \leq\left[\begin{array}{c}
n-1 \\
n / 2-1
\end{array}\right]+\sum_{i>n / 2}\left[\begin{array}{c}
n \\
i
\end{array}\right] .
\]

For odd \(n\) equality holds only if \(\mathcal{F}=\left[\begin{array}{c}V \\ >n / 2\end{array}\right]\). For even \(n\) equality holds only if \(\mathcal{F}=\left[\begin{array}{c}V \\ >n / 2\end{array}\right] \cup\left\{F \in\left[\begin{array}{c}V \\ n / 2\end{array}\right]: E \leqslant F\right\}\) for some \(E \in\left[\begin{array}{c}V \\ 1\end{array}\right]\), or if \(\mathcal{F}=\left[\begin{array}{c}V \\ >n / 2\end{array}\right] \cup\left[\begin{array}{c}U \\ n / 2\end{array}\right]\) for some \(U \in\left[\begin{array}{c}V \\ n-1\end{array}\right]\).

Note that Theorem 1.5 follows from the profile polytope of intersecting families which was determined implicitly by Bey [1] and explicitly by Gerbner and Patkós [10], but the proof we present in Section 5 is direct and very simple.

\section*{2 Proof of Theorem 1.3}

This section contains the proof of Theorem 1.3 which we divide into two cases.

\subsection*{2.1 The case \(\tau(\mathcal{F})=2\)}

For any \(A \leqslant V\) and \(\mathcal{F} \subseteq\left[\begin{array}{c}V \\ k\end{array}\right]\) let \(\mathcal{F}_{A}=\{F \in \mathcal{F}: A \leqslant F\}\).
Before starting with the proof let us state some easy technical lemmas.
Lemma 2.1 Let \(a \geq 0\) and \(n \geq k \geq a+1\) and \(q \geq 2\). Then
\[
\left[\begin{array}{l}
k \\
1
\end{array}\right]\left[\begin{array}{l}
n-a-1 \\
k-a-1
\end{array}\right]<\frac{1}{(q-1) q^{n-2 k}}\left[\begin{array}{l}
n-a \\
k-a
\end{array}\right] .
\]

Proof. The inequality to be proved simplifies to
\[
\left(q^{k-a}-1\right)\left(q^{k}-1\right) q^{n-2 k}<q^{n-a}-1 .
\]

Lemma 2.2 Let \(E \in\left[\begin{array}{c}V \\ 1\end{array}\right]\). If \(E \nless L \leq V\), where \(L\) is an \(l\)-subspace, then the number of \(k\)-subspaces of \(V\) containing \(E\) and intersecting \(L\) is at least \(\left[\begin{array}{l}l \\ 1\end{array}\right]\left[\begin{array}{c}n-2 \\ k-2\end{array}\right]-q^{l}\left[\begin{array}{c}l \\ 2\end{array}\right]\left[\begin{array}{c}n-3 \\ k-3\end{array}\right]\) (with equality for \(l=2\) ), and at most \(\left[\begin{array}{l}l \\ 1\end{array}\right]\left[\begin{array}{c}n-2 \\ k-2\end{array}\right]\).
Proof. The \(k\)-spaces containing \(E\) and intersecting \(L\) in a 1 -dimensional space are counted exactly once in the first term. Those subspaces that intersect \(L\) in a 2 -dimensional space are counted \(\left[\begin{array}{l}2 \\ 1\end{array}\right]=q+1\) times in the first term and \(-q\) times in the second term, thus once overall. If a subspace intersects \(L\) in a subspace of dimension \(i \geq 3\), then it is counted \(\left[\begin{array}{l}i \\ 1\end{array}\right]\) times in the first term and \(-q\left[\begin{array}{l}i \\ 2\end{array}\right]\) times in the second term, thus a negative number of times overall.

Our next lemma gives bounds on the size of an HM-type family that are easier to work with than the precise formula mentioned in the introduction.

Lemma 2.3 Let \(n \geq 2 k+1, k \geq 3\) and \(q \geq 2\). If \(\mathcal{F}\) is an HM-type family, then \(\left(1-\frac{1}{q^{3}-q}\right)\left[\begin{array}{c}k \\ 1\end{array}\right]\left[\begin{array}{c}n-2 \\ k-2\end{array}\right]<\left[\begin{array}{c}k \\ 1\end{array}\right]\left[\begin{array}{c}n-2 \\ k-2\end{array}\right]-q\left[\begin{array}{c}k \\ 2\end{array}\right]\left[\begin{array}{c}n-3 \\ k-3\end{array}\right] \leq f(n, k, q)=|\mathcal{F}| \leq\left[\begin{array}{c}k \\ 1\end{array}\right]\left[\begin{array}{c}n-2 \\ k-2\end{array}\right]\).
Proof. The first inequality follows immediately from Lemma 2.1 by noting that \(q\left[\begin{array}{l}k \\ 2\end{array}\right]=\left[\begin{array}{l}k \\ 1\end{array}\right]\left(\left[\begin{array}{c}k \\ 1\end{array}\right]-1\right) /(q+1)\) and \(n \geq 2 k+1\).

Lemma 2.4 If a subspace \(S\) does not intersect each element of \(\mathcal{F}\), then there is a subspace \(T>S\) with \(\operatorname{dim} T=\operatorname{dim} S+1\) and \(\left|\mathcal{F}_{T}\right| \geq\left|\mathcal{F}_{S}\right| /\left[\begin{array}{c}k \\ 1\end{array}\right]\).

Proof. There is an \(F \in \mathcal{F}\) such that \(S \cap F=0\). Average over all \(T=S+E\) where \(E\) is a 1 -subspace of \(F\).

Lemma 2.5 If an s-dimensional subspace \(S\) does not intersect each element of \(\mathcal{F}\), then \(\left|\mathcal{F}_{S}\right| \leq\left[\begin{array}{c}k \\ 1\end{array}\right]\left[\begin{array}{c}n-s-1 \\ k-s-1\end{array}\right]\).
Proof. There is an \((s+1)\)-space \(T\) with \(\left[\begin{array}{c}n-s-1 \\ k-s-1\end{array}\right] \geq\left|\mathcal{F}_{T}\right| \geq\left|\mathcal{F}_{S}\right| /\left[\begin{array}{l}k \\ 1\end{array}\right]\).
Corollary 2.6 Let \(\mathcal{F} \subseteq\left[\begin{array}{l}V \\ k\end{array}\right]\) be an intersecting family with \(\tau(\mathcal{F}) \geq s\). Then for any \(i\)-space \(L \leqslant V\) with \(i \leq s\) we have \(\left|\mathcal{F}_{L}\right| \leq\left[\begin{array}{c}k \\ 1\end{array}\right]^{s-i}\left[\begin{array}{c}n-s \\ k-s\end{array}\right]\).

Proof. By \(\tau(\mathcal{F}) \geq s\) we know that for any \(j\)-space \(A, j<s\), there exists an \(F \in \mathcal{F}\) disjoint from \(A\). Now apply Lemma \(2.4 s-i\) times.

Before proving the \(q\)-analogue of the theorem of Hilton-Milner we describe the essential part of maximal intersecting families with \(\tau(\mathcal{F})=2\). Let us define \(\mathcal{T}\) to be the family of 2 -spaces of \(V\) that intersect all subspaces in \(\mathcal{F}\).

Proposition 2.7 Let \(\mathcal{F}\) be a maximal intersecting family with \(\tau(\mathcal{F})=2\). Then \(\mathcal{F}\) contains all \(k\)-spaces containing an element of \(\mathcal{T}\) and we have one of the following three possibilities:
(i) \(|\mathcal{T}|=1\) and \(\left[\begin{array}{c}n-2 \\ k-2\end{array}\right]<|\mathcal{F}|<\left[\begin{array}{c}n-2 \\ k-2\end{array}\right]+(q+1)\left(\left[\begin{array}{c}k \\ 1\end{array}\right]-1\right)\left[\begin{array}{c}k \\ 1\end{array}\right]\left[\begin{array}{c}n-3 \\ k-3\end{array}\right]\);
(ii) \(|\mathcal{T}|>1, \tau(\mathcal{T})=1\), and there is an \((l+1)\)-space \(W\) (with \(2 \leq l \leq k\) ) and a 1 -space \(E \leqslant W\) so that \(\mathcal{T}=\{M: E \leqslant M \leqslant W, \operatorname{dim} M=2\}\). In this case
\[
\left[\begin{array}{c}
l \\
1
\end{array}\right]\left[\begin{array}{c}
n-2 \\
k-2
\end{array}\right]-q\left[\begin{array}{c}
l \\
2
\end{array}\right]\left[\begin{array}{c}
n-3 \\
k-3
\end{array}\right] \leq|\mathcal{F}| \leq\left[\begin{array}{l}
l \\
1
\end{array}\right]\left[\begin{array}{c}
n-2 \\
k-2
\end{array}\right]+\left[\begin{array}{c}
k \\
1
\end{array}\right]\left(\left[\begin{array}{c}
k \\
1
\end{array}\right]-\left[\begin{array}{l}
l \\
1
\end{array}\right]\right)\left[\begin{array}{c}
n-3 \\
k-3
\end{array}\right]+q^{l}\left[\begin{array}{c}
n-l \\
k-l
\end{array}\right] .
\]

For \(l=2\) the upper bound here can be strengthened to
\[
|\mathcal{F}| \leq(q+1)\left[\begin{array}{c}
n-2 \\
k-2
\end{array}\right]-q\left[\begin{array}{c}
n-3 \\
k-3
\end{array}\right]+\left[\begin{array}{c}
k \\
1
\end{array}\right]\left(\left[\begin{array}{c}
k \\
1
\end{array}\right]-\left[\begin{array}{c}
2 \\
1
\end{array}\right]\right)\left[\begin{array}{c}
n-3 \\
k-3
\end{array}\right]+q^{2}\left[\begin{array}{c}
k \\
1
\end{array}\right]\left[\begin{array}{c}
n-3 \\
k-3
\end{array}\right] ;
\]
(iii) \(\mathcal{T}=\left[\begin{array}{l}A \\ 2\end{array}\right]\) for some 3-subspace \(A\) and \(\mathcal{F}=\left\{U \in\left[\begin{array}{l}V \\ k\end{array}\right]: \operatorname{dim}(U \cap A) \geq 2\right\}\) and \(|\mathcal{F}|=\left(q^{2}+q+1\right)\left(\left[\begin{array}{c}n-2 \\ k-2\end{array}\right]-\left[\begin{array}{c}n-3 \\ k-3\end{array}\right]\right)+\left[\begin{array}{c}n-3 \\ k-3\end{array}\right]\).

In case (ii) there is a 1 -space \(E\) and an \(l\)-space \(L\) such that \(\mathcal{F}\) contains the set \(\mathcal{F}_{E, L}\) of all \(k\)-spaces containing \(E\) and intersecting \(L\). The last two terms of the upper bound for \(|\mathcal{F}|\) in (ii) give an upper bound on \(\left|\mathcal{F} \backslash \mathcal{F}_{E, L}\right|\).

Proof. Let \(\mathcal{F}\) be a maximal intersecting family with \(\tau(\mathcal{F})=2\). Since \(\mathcal{F}\) is maximal, it contains all \(k\)-spaces containing a \(T \in \mathcal{T}\). Since \(n \geq 2 k\) and \(k \geq 2\) two disjoint elements of \(\mathcal{T}\) would be contained in disjoint elements of \(\mathcal{F}\), which is impossible. So \(\mathcal{T}\) is intersecting.

The following observation is immediate: if \(A, B \in \mathcal{T}\) and \(A \cap B<C<\) \(A+B\), then \(C \in \mathcal{T}\). As an intersecting family of 2 -spaces is either a family of 2 -spaces containing some fixed 1 -space \(E\) or a set of 2 -subspaces of a 3 -space, we get the following:
\((*): \mathcal{T}\) is either a family of all 2 -subspaces in a given \((l+1)\)-space containing some fixed 1 -space \(E\) (and \(k \geq l \geq 1\) ), or \(\mathcal{T}\) is the set of all 2 -subspaces of a 3 -space.
( \(i\) ) : If \(|\mathcal{T}|=1\), then let \(S\) denote the only 2 -space in \(\mathcal{T}\) and let \(E \leqslant S\) be any 1 -space. Since \(\tau(\mathcal{F})>1\) there exists an \(F \in \mathcal{F}\) with \(E \nless F\), for which we must have \(\operatorname{dim}(F \cap S)=1\). Since \(S\) is the only element of \(\mathcal{T}\), for any 1-subspace \(E^{\prime}\) of \(F\) different from \(F \cap S, \mathcal{F}_{E+E^{\prime}} \leq\left[\begin{array}{c}k \\ 1\end{array}\right]\left[\begin{array}{c}n-3 \\ k-3\end{array}\right]\) by Lemma 2.5, hence the number of subspaces containing \(E\) but not containing \(S\) is at most \(\left(\left[\begin{array}{c}k \\ 1\end{array}\right]-1\right)\left[\begin{array}{l}k \\ 1\end{array}\right]\left[\begin{array}{c}n-3 \\ k-3\end{array}\right]\). This gives the upper bound.
(ii) : Assume that \(\tau(\mathcal{T})=1\) and \(|\mathcal{T}|>1\). By \((*), \mathcal{T}\) is the set of 2 -spaces in an \((l+1)\)-space \(W\) (with \(l \geq 2\) ) containing some fixed 1 -space \(E\). Every \(F \in \mathcal{F} \backslash \mathcal{F}_{E}\) intersects \(W\) in a hyperplane. Let \(L\) be a hyperplane in \(W\) not on \(E\). Then \(\mathcal{F}\) contains all \(k\)-spaces on \(E\) that intersect \(L\). Hence the lower bound and the first term in the upper bound come from Lemma 2.2. The second term comes from counting the \(k\)-spaces of \(\mathcal{F}\) that contain \(E\) and intersect a given \(F \in \mathcal{F}\) (not containing \(E\) ) in a point of \(F \backslash W\). Here Lemma 2.5 is used. If \(l \geq 3\), then there are \(q^{l}\) hyperplanes in \(W\) not containing \(E\) and there are \(\left[\begin{array}{c}n-l \\ k-l\end{array}\right] k\)-spaces through such a hyperplane. For \(l=2\) there are \(q^{2}\) hyperplanes in \(W\) and they cannot be in \(\mathcal{T}\). Using Lemma 2.5 gives the bound.
(iii) is immediate.

Corollary 2.8 Let \(\mathcal{F}\) be a maximal intersecting family with \(\tau(\mathcal{F})=2\). If \(\mathcal{F}\) is at least as large as an HM-type family, and either \(q \geq 3, n \geq 2 k+1\), \(k \geq 3\) or \(q=2, n \geq 2 k+2, k \geq 3\), then \(\mathcal{F}\) is an HM-type family, or, in case \(k=3\), an \(\mathcal{F}_{3}\)-type family.

There exists an \(\epsilon>0\) (independent of \(n, k, q\) ) such that if \(k \geq 4\) and either \(q \geq 3, n \geq 2 k+1\) or \(q=2, n \geq 2 k+2\), and \(|\mathcal{F}|\) is at least \((1-\epsilon)\) times the size of an HM-type family, then \(\mathcal{F}\) is a subfamily of an HM-type family.

Proof. Apply Proposition 2.7. Note that the Hilton-Milner families are precisely those from case (ii) with \(k=l\).

Let \(n \geq 2 k+a\) where \(a \geq 1\). In case (i) of Proposition 2.7 we have \(|\mathcal{F}| /\left[\begin{array}{c}n-2 \\ k-2\end{array}\right]<1+\frac{q+1}{(q-1) q^{a}}\left[\begin{array}{c}k \\ 1\end{array}\right]\) by Lemma 2.1. In case (ii) we find for \(l<k\) that \(|\mathcal{F}| /\left[\begin{array}{c}n-2 \\ k-2\end{array}\right]<\left(\frac{1}{q}+\frac{1}{(q-1) q^{a}}\right)\left[\begin{array}{l}k \\ 1\end{array}\right]+\frac{q^{2}}{(q-1) q^{a}}\). In both cases, for \(q \geq 3, k \geq 3\), or \(q=2, k \geq 4, a \geq 2\), this is less than \((1-\epsilon)\) times the lower bound on the size of an HM-type family given in Lemma 2.3. Using the stronger estimate in Lemma 2.3 we find the same conclusion for \(q=2, k=3, a \geq 2\).

In case (iii) \(\left|\mathcal{F}_{3}\right|=\left[\begin{array}{c}3 \\ 2\end{array}\right]\left[\begin{array}{c}n-2 \\ k-2\end{array}\right]-\frac{q^{3}-q}{q-1}\left[\begin{array}{c}n-3 \\ k-3\end{array}\right]\). For \(k \geq 4\), this is much smaller than the size of the HM-type families. For \(k=3\), the two families have the same size.

Proposition 2.9 Suppose that \(k \geq 3\) and \(n \geq 2 k\). Let \(\mathcal{F} \subseteq\left[\begin{array}{l}V \\ k\end{array}\right]\) be an intersecting family with \(\tau(\mathcal{F}) \geq 2\). Let \(3 \leq l \leq k\). If \(\mathcal{F}\) has an intersecting \(l\)-space, and
\[
|\mathcal{F}|>\left[\begin{array}{l}
l  \tag{2.2}\\
1
\end{array}\right]\left[\begin{array}{c}
k \\
1
\end{array}\right]^{l-1}\left[\begin{array}{c}
n-l \\
k-l
\end{array}\right]
\]
then \(\mathcal{F}\) has an intersecting \((l-1)\)-space.
Proof. By averaging there is a 1 -space \(P\) with \(\left|\mathcal{F}_{P}\right| \geq|\mathcal{F}| /\left[\begin{array}{l}l \\ 1\end{array}\right]\). If \(\tau(\mathcal{F})=l\), then by Corollary \(2.6|\mathcal{F}| \leq\left[\begin{array}{l}l \\ 1\end{array}\right]\left[\begin{array}{c}k \\ 1\end{array}\right]^{l-1}\left[\begin{array}{c}n-l \\ k-l\end{array}\right]\), contradicting the hypothesis.
Corollary 2.10 Let \(k \geq 3\) and \(n \geq 2 k+1\) and \(n \geq 2 k+2\) if \(q=2\). If \(|\mathcal{F}|>\left[\begin{array}{l}3 \\ 1\end{array}\right]\left[\begin{array}{l}k \\ 1\end{array}\right]^{2}\left[\begin{array}{c}n-3 \\ k-3\end{array}\right]\), then \(\tau(\mathcal{F})=2\), that is, \(\mathcal{F}\) is contained in one of the systems described in Proposition 2.7 satisfying the bound on \(|\mathcal{F}|\).
Proof. Since the right hand side of (2.2) is decreasing in \(l\) for \(3 \leq l \leq k\) (this uses \(n \geq 2 k+1\) and \(n \geq 2 k+2\) for \(q=2\) ), we can find a hitting 2 -space if the condition (2.2) holds for \(l=3\), and it does by the assumption on \(|\mathcal{F}|\).

Remark 2.11 For \(n \geq 3 k\) all the systems described in Proposition 2.7 occur.

\subsection*{2.2 The case \(\tau(\mathcal{F})>2\)}

Suppose that \(\mathcal{F}\) is an intersecting family and \(\tau(\mathcal{F})=l>2\). We shall derive a contradiction from \(|\mathcal{F}| \geq f(n, k, q)\), and even from \(|\mathcal{F}| \geq(1-\epsilon) f(n, k, q)\) for some \(\epsilon>0\) (independent of \(n, k, q\) ).

For each point \(P\) we have \(\left|\mathcal{F}_{P}\right| \leq\left[\begin{array}{c}k \\ 1\end{array}\right]^{l-1}\left[\begin{array}{c}n-l \\ k-l\end{array}\right]\), and for each line \(L\) we have \(\left|\mathcal{F}_{L}\right| \leq\left[\begin{array}{c}k \\ 1\end{array}\right]^{l-2}\left[\begin{array}{c}n-l \\ k-l\end{array}\right]\), by Corollary 2.6.

If there are two \(l\)-spaces that meet all \(F \in \mathcal{F}\), and these meet in an \(m\)-space, where \(0 \leq m \leq l-1\), then
\[
|\mathcal{F}| \leq\left[\begin{array}{c}
m  \tag{2.3}\\
1
\end{array}\right]\left[\begin{array}{c}
k \\
1
\end{array}\right]^{l-1}\left[\begin{array}{c}
n-l \\
k-l
\end{array}\right]+\left(\left[\begin{array}{c}
l \\
1
\end{array}\right]-\left[\begin{array}{c}
m \\
1
\end{array}\right]\right)^{2}\left[\begin{array}{c}
k \\
1
\end{array}\right]^{l-2}\left[\begin{array}{c}
n-l \\
k-l
\end{array}\right] .
\]

\subsection*{2.2.1 The case \(k=l\)}

First consider the case \(k=l\). Then \(|\mathcal{F}| \leq\left[\begin{array}{l}k \\ 1\end{array}\right]^{k}\). On the other hand, \(|\mathcal{F}| \geq\) \(\left(1-\frac{1}{q^{3}-q}\right)\left[\begin{array}{c}k \\ 1\end{array}\right]\left[\begin{array}{c}n-2 \\ k-2\end{array}\right]>\left(1-\frac{1}{q^{3}-q}\right)\left[\begin{array}{l}k \\ 1\end{array}\right]^{k-1}\left((q-1) q^{n-2 k}\right)^{k-2}\) by Lemma 2.3 and Lemma 2.1. If either \(q>2, n \geq 2 k+1\) or \(q=2, n \geq 2 k+2\), then either \(k \leq 3\) or \((n, k, q)=(9,4,3)\) or \((n, k, q)=(10,4,2)\). But if \((n, k, q)=(10,4,2)\), then \(f(n, k, q)=153171\), and \(15^{4}=50625\), contradiction. And if \((n, k, q)=\) \((9,4,3)\) then \(f(n, k, q)=3837721\), and \(40^{4}=2560000\), contradiction. So \(k=3\). Now \(|\mathcal{F}| \geq\left(1-\frac{1}{q^{3}-q}\right)\left[\begin{array}{c}k \\ 1\end{array}\right]\left[\begin{array}{c}n-2 \\ k-2\end{array}\right]\) gives a contradiction for \(n \geq 8\), so \(n=7\). So, if we assume that \(n \geq 2 k+1\) and either \(q>2,(n, k) \neq(7,3)\) or \(q=2, n \geq 2 k+2\) then we are not in the case \(k=l\).

It remains to settle the case \(n=7, k=l=3\).
Pick a 1 -space \(E\) such that \(\left|\mathcal{F}_{E}\right| \geq|\mathcal{F}| /\left[\begin{array}{l}3 \\ 1\end{array}\right]\) and a 2 -space \(S\) on \(E\) such that \(\left|\mathcal{F}_{S}\right| \geq\left|\mathcal{F}_{E}\right| /\left[\begin{array}{l}3 \\ 1\end{array}\right]\). Then \(\left|\mathcal{F}_{S}\right|>q+1\) since \(|\mathcal{F}|>\left[\begin{array}{l}2 \\ 1\end{array}\right]\left[\begin{array}{l}3 \\ 1\end{array}\right]^{2}\). Pick \(F^{\prime} \in \mathcal{F}\) disjoint from \(S\). Put \(H=S+F^{\prime}\). Then all \(F \in \mathcal{F}_{S}\) are contained in the 5-space \(H\). But \(|\mathcal{F}|>\left[\begin{array}{l}5 \\ 3\end{array}\right]\) so there is an \(F_{0} \in \mathcal{F}\) not contained in \(H\). If \(F_{0} \cap S=0\), then each \(F \in \mathcal{F}_{S}\) is contained in \(S+\left(H \cap F_{0}\right)\), so \(\left|\mathcal{F}_{S}\right| \leq q+1\), contradiction. Thus, all elements of \(\mathcal{F}\) disjoint from \(S\) are in \(H\).

Now \(F_{0}\) must meet \(F^{\prime}\) and \(S\), so \(F_{0}\) meets \(H\) in a 2-space \(S_{0}\). Since \(\left|\mathcal{F}_{S}\right|>q+1\), we can find two elements \(F_{1}, F_{2}\) of \(\mathcal{F}_{S}\) with the property that \(S_{0}\) is not contained in the 4 -space \(F_{1}+F_{2}\). Since any \(F \in \mathcal{F}\) disjoint from \(S\) is contained in \(H\) and meets \(F_{0}\), it must meet \(S_{0}\) and also \(F_{1}\) and \(F_{2}\). Hence the number of such \(F\) 's is at most \(q^{5}\). Altogether \(|\mathcal{F}| \leq q^{5}+\left[\begin{array}{l}2 \\ 1\end{array}\right]\left[\begin{array}{l}3 \\ 1\end{array}\right]^{2}\) (counting \(F\) disjoint from \(S\) or on a given \(E<S)\) which contradicts \(|\mathcal{F}| \geq\left(1-\frac{1}{q^{3}-q}\right)\left[\begin{array}{l}3 \\ 1\end{array}\right]\left[\begin{array}{l}5 \\ 1\end{array}\right]\).

\subsection*{2.2.2 \(l\) is small}

The upper bound (2.3) is a quadratic in \(x=\left[\begin{array}{c}m \\ 1\end{array}\right]\) and is largest at one of the extreme values \(x=0\) and \(x=\left[\begin{array}{c}l-1 \\ 1\end{array}\right]\). The maximum is taken at \(x=0\) only when \(\left[\begin{array}{l}l \\ 1\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}k \\ 1\end{array}\right]>\frac{1}{2}\left[\begin{array}{c}l-1 \\ 1\end{array}\right]\), that is, when \(k=l\). Since we just considered that
case, we can assume that \(l<k\) and then the upper bound in (2.3) is largest for \(m=l-1\). We find
\[
|\mathcal{F}| \leq\left[\begin{array}{c}
l-1 \\
1
\end{array}\right]\left[\begin{array}{c}
k \\
1
\end{array}\right]^{l-1}\left[\begin{array}{c}
n-l \\
k-l
\end{array}\right]+\left(\left[\begin{array}{c}
l \\
1
\end{array}\right]-\left[\begin{array}{c}
l-1 \\
1
\end{array}\right]\right)^{2}\left[\begin{array}{c}
k \\
1
\end{array}\right]^{l-2}\left[\begin{array}{c}
n-l \\
k-l
\end{array}\right] .
\]

On the other hand,
\[
|\mathcal{F}| \geq\left(1-\frac{1}{q^{3}-q}\right)\left[\begin{array}{l}
k \\
1
\end{array}\right]\left[\begin{array}{c}
n-2 \\
k-2
\end{array}\right]>\left(1-\frac{1}{q^{3}-q}\right)\left[\begin{array}{l}
k \\
1
\end{array}\right]^{l-1}\left[\begin{array}{c}
n-l \\
k-l
\end{array}\right]\left((q-1) q^{n-2 k}\right)^{l-2} .
\]

Comparing these, and using \(k>l, n \geq 2 k+1\), and \(n \geq 2 k+2\) if \(q=\) 2 , we find either \((n, k, l, q)=(9,4,3,3)\) or \(q=2, n=2 k+2, l=3\), \(k \leq 5\). But if \((n, k, l, q)=(9,4,3,3)\) then \(f(n, k, q)=3837721\), while the upper bound is 3508960 , contradiction. And if \((n, k, l, q)=(12,5,3,2)\) then \(f(n, k, q)=183628563\), while the upper bound is 146766865 , contradiction. And if \((n, k, l, q)=(10,4,3,2)\) then \(f(n, k, q)=153171\), while the upper bound is 116205 , contradiction. So, under our assumptions the case \(2<l<k\) does not occur.

\subsection*{2.2.3 A unique \(l\)-space}

The discussion so far assumed that there are two distinct \(l\)-spaces that meet all \(F \in \mathcal{F}\). The alternative is that there is a unique \(l\)-space \(T\) that meets all \(F \in \mathcal{F}\). We can pick a 1 -space \(E<T\) such that \(\left|\mathcal{F}_{E}\right| \geq|\mathcal{F}| /\left[\begin{array}{l}l \\ 1\end{array}\right]\). Now there is some \(F^{\prime} \in \mathcal{F}\) not on \(E\), so \(E\) is in \(\left[\begin{array}{l}k \\ 1\end{array}\right]\) lines such that each \(F \in \mathcal{F}_{E}\) contains at least one of these lines. If \(L\) is one of these lines and \(L\) does not lie in \(T\), then we can enlarge \(L\) to an \(l\)-space that still does not meet all elements of \(\mathcal{F}\), so \(\left|\mathcal{F}_{L}\right| \leq\left[\begin{array}{c}k \\ 1\end{array}\right]^{l-1}\left[\begin{array}{c}n-l-1 \\ k-l-1\end{array}\right]\). Otherwise we have \(\left|\mathcal{F}_{L}\right| \leq\left[\begin{array}{c}k \\ 1\end{array}\right]^{l-2}\left[\begin{array}{c}n-l \\ k-l\end{array}\right]\). Altogether \(\left|\mathcal{F}_{E}\right| \leq\left[\begin{array}{c}l-1 \\ 1\end{array}\right]\left(\left[\begin{array}{c}k \\ 1\end{array}\right]^{l-2}\left[\begin{array}{c}n-l \\ k-l\end{array}\right]\right)+\left(\left[\begin{array}{c}k \\ 1\end{array}\right]-\left[\begin{array}{c}l-1 \\ 1\end{array}\right]\right)\left(\left[\begin{array}{c}k \\ 1\end{array}\right]^{l-1}\left[\begin{array}{c}n-l-1 \\ k-l-1\end{array}\right]\right)\). On the other hand, \(|\mathcal{F}|>\left(1-\frac{1}{q^{3}-q}\right)\left((q-1) q^{n-2 k}\right)^{l-2}\left[\begin{array}{c}k \\ 1\end{array}\right]^{l-1}\left[\begin{array}{c}n-l \\ k-l\end{array}\right]\), so that
\[
\left(1-\frac{1}{q^{3}-q}\right)\left((q-1) q^{n-2 k}\right)^{l-2}\left[\begin{array}{c}
k \\
1
\end{array}\right]<\left[\begin{array}{c}
l \\
1
\end{array}\right]\left(\left[\begin{array}{c}
l-1 \\
1
\end{array}\right]+\left(\left[\begin{array}{c}
k \\
1
\end{array}\right]-\left[\begin{array}{c}
l-1 \\
1
\end{array}\right]\right)\left[\begin{array}{c}
k \\
1
\end{array}\right]\left[\begin{array}{c}
n-l-1 \\
k-l-1
\end{array}\right] /\left[\begin{array}{c}
n-l \\
k-l
\end{array}\right]\right) .
\]

Under our standard assumptions \(n \geq 2 k+1\) and \(n \geq 2 k+2\) if \(q=2\), this implies \(q=2, n=2 k+2, l=3\), and also that last case gives a contradiction. We showed: If \(n \geq 2 k+1\) and \(n \geq 2 k+2\) if \(q=2\), then \(\tau(\mathcal{F}) \leq 2\). Together with Corollary 2.8 this proves Theorem 1.3.

\section*{3 Critical families}

A subspace will be called a hitting subspace (and we shall say that the subspace intersects \(\mathcal{F}\) ), it it intersects each element of \(\mathcal{F}\).

The previous results just used the parameter \(\tau\), so only the hitting subspaces of smallest dimension were taken into account. A more precise description is possible if we make the intersecting system of subspaces critical.

Definition 3.1 An intersecting family \(\mathcal{F}\) of subspaces of \(V\) is critical if for any two distinct \(F, F^{\prime} \in \mathcal{F}\) we have \(F \not \subset F^{\prime}\), and moreover for any hitting subspace \(G\) there is a \(F \in \mathcal{F}\) with \(F \subset G\).

Lemma 3.2 For every non-extendable intersecting family \(\mathcal{F}\) of \(k\)-spaces there exists some critical family \(\mathcal{G}\) such that
\[
\mathcal{F}=\left\{F \in\left[\begin{array}{l}
V \\
k
\end{array}\right]: \exists G \in \mathcal{G}, G \subseteq F\right\}
\]

Proof. Extend \(\mathcal{F}\) to a maximal intersecting family \(\mathcal{H}\) of subspaces of \(V\), and take for \(\mathcal{G}\) the minimal elements of \(\mathcal{H}\).

The following construction and result are an adaptation of the corresponding results from Erdős and Lovász [5]:

Construction 3.3 Let \(A_{1}, \ldots, A_{k}\) be subspaces of \(V\) such that \(\operatorname{dim} A_{i}=i\) and \(\operatorname{dim}\left(A_{1}+\cdots+A_{k}\right)=\binom{k+1}{2}\). Define
\[
\mathcal{F}_{i}=\left\{F \in\left[\begin{array}{l}
V \\
k
\end{array}\right]: A_{i} \subseteq F, \quad \operatorname{dim} A_{j} \cap F=1 \text { for } j>i\right\} .
\]

Then \(\mathcal{F}=\mathcal{F}_{1} \cup \ldots \cup \mathcal{F}_{k}\) is a critical, non-extendable, intersecting family of \(k\)-spaces, and \(\left|\mathcal{F}_{i}\right|=\left[\begin{array}{c}i+1 \\ 1\end{array}\right]\left[\begin{array}{c}i+2 \\ 1\end{array}\right] \cdots\left[\begin{array}{l}k \\ 1\end{array}\right]\) for \(1 \leq i \leq k\).

For subsets Erdős and Lovász proved that a critical, non-extendable, intersecting family of \(k\)-sets cannot have more than \(k^{k}\) members. They conjectured that the above construction is best possible but this was disproved by Frankl, Ota and Tokushige [8]. Here we prove the following analogous result.

Theorem 3.4 Let \(\mathcal{F}\) be a critical, intersecting family of subspaces of \(V\) of dimension at most \(k\). Then \(|\mathcal{F}| \leq\left[\begin{array}{l}k \\ 1\end{array}\right]^{k}\).

Proof. Suppose that \(|\mathcal{F}|>\left[\begin{array}{c}k \\ 1\end{array}\right]^{k}\). By induction on \(i, 0 \leq i \leq k\), we find an \(i\)-dimensional subspace \(A_{i}\) of \(V\) such that \(\left|\mathcal{F}_{A_{i}}\right|>\left[\begin{array}{l}k \\ 1\end{array}\right]^{k-i}\). Indeed, since by induction \(\left|\mathcal{F}_{A_{i}}\right|>1\) and \(\mathcal{F}\) is critical, the subspace \(A_{i}\) is not hitting, and there is an \(F \in \mathcal{F}\) disjoint from \(A_{i}\). Now all elements of \(\mathcal{F}_{A_{i}}\) meet \(F\), and we find \(A_{i+1}>A_{i}\) with \(\left|\mathcal{F}_{A_{i+1}}\right|>\left|\mathcal{F}_{A_{i}}\right| /\left[\begin{array}{l}k \\ 1\end{array}\right]\). For \(i=k\) this is a contradiction.

Remark 3.5 For \(l \leq k\) this argument shows that there are not more than \(\left[\begin{array}{l}l \\ 1\end{array}\right]\left[\begin{array}{l}k \\ 1\end{array}\right]^{l-1} l\)-spaces in \(\mathcal{F}\).

If \(l=3\) and \(\tau>2\) then for the size of \(\mathcal{F}\) the previous remark essentially gives \(\left[\begin{array}{l}3 \\ 1\end{array}\right]\left[\begin{array}{c}k \\ 1\end{array}\right]^{2}\left[\begin{array}{c}n-3 \\ k-3\end{array}\right]\), which is the bound in Corollary 2.10.

Modifying the Erdős-Lovász construction (see Frankl [6]), one can get intersecting families with many \(l\)-spaces in the corresponding critical family.

Construction 3.6 Let \(A_{1}, \ldots, A_{l}\) be subspaces with \(\operatorname{dim} A_{1}=1, \operatorname{dim} A_{i}=\) \(k+i-l\) for \(i \geq 2\). Define \(\mathcal{F}_{i}=\left\{F \in\left[\begin{array}{c}V \\ k\end{array}\right]: A_{i} \leq F, \operatorname{dim}\left(F \cap A_{j}\right) \geq 1\right.\) for \(\left.j>i\right\}\). Then \(\mathcal{F}_{1} \cup \ldots \cup \mathcal{F}_{l}\) is intersecting and the corresponding critical family has at least \(\left[\begin{array}{c}k-l+2 \\ 1\end{array}\right] \cdots\left[\begin{array}{l}k \\ 1\end{array}\right]\) l-spaces.

For \(n\) large enough the Erdős-Ko-Rado theorem for vector spaces follows from the obvious fact that no critical, intersecting family can contain more than one 1-dimensional member. The Hilton-Milner theorem and the stability of the systems follow from \((*)\) which was used to describe the intersecting systems with \(\tau=2\). As remarked above, the fact that the critical family has to contain only spaces of dimension 3 or more limits its size to \(O\left(\left[\begin{array}{c}n \\ k-3\end{array}\right]\right)\), if \(k\) is fixed and \(n\) is large enough. Stronger and more general stability theorems can be found in Frankl [7] for the subset case.

\section*{4 Coloring \(q\)-Kneser graphs}

In this section, we prove Theorem 1.4, that is, we show that \(\chi\left(q K_{n: k}\right)=\) \(\left[\begin{array}{c}n-k+1 \\ 1\end{array}\right]\). The case \(k=2\) was proven in [3] and the general case for \(q>q_{k}\) in [16]. We will need the following result of Bose and Burton and its extension by Metsch [15].

Theorem 4.1 (Bose \& Burton [2]) If \(V\) is an \(n\)-dimensional vector space over \(G F(q)\) and \(\mathcal{E}\) is a family of 1 -subspaces of \(V\) such that any \(k\)-subspace
of \(V\) contains at least one element of \(\mathcal{E}\), then \(|\mathcal{E}| \geq\left[\begin{array}{c}n-k+1 \\ 1\end{array}\right]\). Furthermore, equality holds if and only if \(\mathcal{E}=\left[\begin{array}{c}H \\ 1\end{array}\right]\) for some \((n-k+1)\)-subspace \(H\) of \(V\).

Proposition 4.2 (Metsch [15]) If \(V\) is an \(n\)-dimensional vector space over \(G F(q)\) and \(\mathcal{E}\) is a family of \(\left[\begin{array}{c}n-k+1 \\ 1\end{array}\right]-\varepsilon 1\)-subspaces of \(V\), then the number of \(k\)-subspaces of \(V\) that are disjoint from all \(E \in \mathcal{E}\) is at least \(\varepsilon q^{(k-1)(n-k)}\).
Proof. For the proof (which uses an unpublished result by Szőnyi and Weiner), see [15]. A slightly weaker result, enough for most applications, has a very simple proof that we give here. We show that the number of \(k\) subspaces of \(V\) that are disjoint from all \(E \in \mathcal{E}\) is at least \(\varepsilon q^{(k-1)(n-k+1)} /\left[\begin{array}{c}k \\ 1\end{array}\right]\). Induction on \(k\). For \(k=1\) there is nothing to prove. Next, let \(k>1\) and count incident pairs (1-space, \(k\)-space), where the \(k\)-space is disjoint from all \(E \in \mathcal{E}\) :
\[
N\left[\begin{array}{l}
k \\
1
\end{array}\right] \geq\left(\left[\begin{array}{c}
n \\
1
\end{array}\right]-\left[\begin{array}{c}
n-k+1 \\
1
\end{array}\right]+\varepsilon\right) \varepsilon q^{(k-2)(n-k+1)} /\left[\begin{array}{c}
k-1 \\
1
\end{array}\right] \geq \varepsilon q^{(k-1)(n-k+1)}
\]

Proof of Theorem 1.4. Suppose that we have a coloring with at most \(\left[\begin{array}{c}n-k+1 \\ 1\end{array}\right]\) colors. Let \(G\) (the good colors) be the set of colors that are pointpencils and let \(B\) (the bad colors) be the remaining set of colors. Then \(|G|+|B| \leq\left[\begin{array}{c}n-k+1 \\ 1\end{array}\right]\). Suppose \(|B|=\varepsilon>0\). By Proposition 4.2, the number of \(k\)-spaces with a color in \(B\) is at least \(\varepsilon q^{(k-1)(n-k)}\), so that the average size of a bad color class is at least \(q^{(k-1)(n-k)}\). This must be smaller than the size of a HM-type family. Thus, by Lemma 2.3,
\[
q^{(k-1)(n-k)} \leq\left[\begin{array}{l}
k \\
1
\end{array}\right]\left[\begin{array}{l}
n-2 \\
k-2
\end{array}\right]
\]

For \(k \geq 3\) and \(q \geq 3, n \geq 2 k+1\) or \(q=2, n \geq 2 k+2\), this is a contradiction. (The weaker form of Proposition 4.2 suffices unless \(q=2, n=2 k+2\).)

If \(|B|=0\), then all color classes are point-pencils, and we are done by Theorem 4.1.

\section*{5 Proof of Theorem 1.5}

Let \(a+b=n, a<b\) and let \(\mathcal{F}_{a}=\mathcal{F} \cap\left[\begin{array}{c}V \\ a\end{array}\right]\) and \(\mathcal{F}_{b}=\mathcal{F} \cap\left[\begin{array}{l}V \\ b\end{array}\right]\). We prove
\[
\left|\mathcal{F}_{a}\right|+\left|\mathcal{F}_{b}\right| \leq\left[\begin{array}{l}
n  \tag{5.4}\\
b
\end{array}\right]
\]
with equality only if \(\mathcal{F}_{a}=\emptyset, \mathcal{F}_{b}=\left[\begin{array}{c}V \\ b\end{array}\right]\).
Adding up (5.4) for \(n / 2<b \leq n\) gives the bound on \(|\mathcal{F}|\) in Theorem 1.5 if \(n\) is odd and adding the result of Greene and Kleitman [12] that states \(\left|\mathcal{F}_{n / 2}\right| \leq\left[\begin{array}{c}n-1 \\ n / 2-1\end{array}\right]\) proves it for \(n\) even. For the uniqueness part of Theorem 1.5 we only have to note that if \(n\) is even and \(\left|\mathcal{F}_{n / 2}\right|=\left[\begin{array}{c}n-1 \\ n / 2-1\end{array}\right]\), then by results of Frankl and Wilson [9] and Godsil and Newman [11] we must have \(\mathcal{F}_{n / 2}=\) \(\left\{F \in\left[\begin{array}{c}V \\ n / 2\end{array}\right]: E \leqslant F\right\}\) for some \(E \in\left[\begin{array}{c}V \\ 1\end{array}\right]\) or \(\mathcal{F}_{n / 2}=\left[\begin{array}{c}U \\ n / 2\end{array}\right]\) for some \(U \in\left[\begin{array}{c}V \\ n-1\end{array}\right]\).

Now let us prove (5.4). Consider the bipartite graph with vertex set \(\left[\begin{array}{c}V \\ a\end{array}\right] \cup\left[\begin{array}{l}V \\ b\end{array}\right]\) and join \(A \in\left[\begin{array}{l}V \\ a\end{array}\right]\) and \(B \in\left[\begin{array}{l}V \\ b\end{array}\right]\) if and only if \(A \cap B=0\). Clearly this graph is regular (with degree \(q^{a b}\) ) and therefore any independent set (that corresponds to an intersecting subfamily of \(\left[\begin{array}{c}V \\ a\end{array}\right] \cup\left[\begin{array}{l}V \\ b\end{array}\right]\) ) has size at most \(\left[\begin{array}{c}n \\ b\end{array}\right]\). Moreover, independent sets of that size can only be \(\left[\begin{array}{l}V \\ a\end{array}\right]\) or \(\left[\begin{array}{c}V \\ b\end{array}\right]\) but the former is not an intersecting family. This proves (5.4).

\section*{Acknowledgements}

Balázs Patkós's research was supported by NSF Grant \#: CCF-0728928. Tamás Szőnyi gratefully acknowledges the financial support of NWO, including the support of the DIAMANT and Spinoza projects. He also thanks the Department of Mathematics at TU/e for the warm hospitality. He was partly supported by OTKA Grants T 49662 and NK 67867.

\section*{References}
[1] C. Bey, Polynomial LYM inequalities, Combinatorica 25 (2005) 19-38.
[2] R. C. Bose, R. C. Burton, A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the MacDonald codes, J. Combin. Theory 1 (1966) 96-104.
[3] A. Chowdhury, C. Godsil, G. Royle, Colouring lines in a projective space, J. Combin. Theory Ser. A 113 (2006) 228-236.
[4] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) 12 (1961) 313-320.
[5] P. Erdős, L. Lovász, Problems and results on 3-chromatic hypergraphs and some related questions, pp. 609-627 in: Infinite and finite
sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. II, Colloq. Math. Soc. János Bolyai, Vol. 10, North-Holland, Amsterdam, 1975.
[6] P. Frankl, On families of finite sets no two of which intersect in a singleton. Bull. Austral. Math. Soc. 17 (1977) 125-134.
[7] P. Frankl, On Intersecting Families of Finite Sets, J. Combin. Theory Ser. A 24 (1978) 146-161.
[8] P. Frankl, K. Ota, N. Tokushige, Covers in Uniform Intersecting Families and a Conjecture of Lovász, J. Combin. Theory Ser. A 74 (1996) 33-42.
[9] P. Frankl, R. M. Wilson, The Erdős-Ko-Rado theorem for vector spaces, J. Combin. Theory Ser. A 43 (1986) 228-236.
[10] D. Gerbner, B. Patkós, Profile vectors in the lattice of subspaces, Discrete Math. 309 (2009) 2861-2869.
[11] C. D. Godsil, M. W. Newman, Independent sets in association schemes, Combinatorica 26 (2006) 431-443.
[12] C. Greene, D. J. Kleitman, Proof techniques in the theory of finite sets, Studies in combinatorics, pp. 22-79 in: MAA Stud. Math., 17, Math. Assoc. America, Washington, D.C., 1978.
[13] A. J. W. Hilton, E. C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) 18 (1967) 369384.
[14] W. N. Hsieh, Intersection theorems for systems of finite vector spaces, Discrete Math. 12 (1975) 1-16.
[15] K. Metsch, How many s-subspaces must miss a point set in \(P G(d, q)\), J. Geometry 86 (2006) 154-164.
[16] T. Mussche, Extremal combinatorics in generalized Kneser graphs, Ph.D. Thesis, Technical University Eindhoven, 2009.```

