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Abstract

We call a loop universally noncommutative if it does not have a loop isotope
in which two non-identity elements commute. Finite universally noncommutative
loops are equivalent to latin squares that avoid the configuration:

a 3
a - (1)
B

By computer enumeration we find that there are only two species of universally
noncommutative loops of order < 11. Both have order 8.

We assume familiarity with the basic terminology of latin squares and loops, such as
can be found in [2].

The aim of this note is to answer a question asked by Nick Cavenagh at the British
Combinatorial Conference in 2007 and by Aart Blokhuis at Oisterwijk in 2008. Both
researchers asked whether there are any latin squares that avoid the configuration (1).
This means that no 3 x 3 submatrix should be equivalent to (1) up to permutation of the
rows and columns. Here «, (3, stand for any three distinct symbols and - denotes a cell
whose contents are arbitrary. The property of avoiding (1) is invariant across a species
(also known as main class).

There are several well studied problems that hinge on avoiding configurations in latin
squares. For example, the problem of avoiding intercalates (2 x 2 latin subsquares) was
solved in the 1970s (see [4] for details). There has also been work on avoiding short
cycles in latin squares (see, for example, [1, 5, 6]). Problems of avoiding configurations
are also well known in the study of steiner triple systems (STS). A notable example is the
solution [3] of Erdés’ anti-pasch conjecture, which took considerable effort and indicates
that such problems can be hard. The problem we consider here is analogous to avoiding
the “window” or “grid” configuration in a STS.

Any latin square L = [L;;] can be interpreted as the Cayley table for a loop by
choosing one row r and one column ¢ of the square and defining a binary operation x by
Li.* L,; = L;;. Changing our choice of  and/or ¢ produces loop isotopes of the loop we
first defined. It is easy to see that L contains a copy of (1) if and only if some loop isotope
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contains two non-identity elements that commute. When r and ¢ are chosen to be the
first row and column of (1) we find that ax 5 = v = [ x a. Note that in this situation
a and [ are not the identity element, which would appear in the cell marked - in the top
left hand corner of (1).

Independent computer enumerations by the two authors show that there are only
two species of universally noncommutative loops of order < 11. Both have order 8.
Equivalently, up to order 11 there are only two species of latin squares avoiding (1).
Representatives of these two species are

123456738 12345678
21436587 21436587
3618 2 7 45 36 81 2 7 5 4
A 6 3817 2 5 4 B 6 31 8 7 2 45
745 28 3 61 7425 3 8 61
4 725 3 816 4 75 2 8 316
5 8 76 1 4 3 2 5 87 6 41 2 3
8 56 741 2 3 8 56 71 4 3 2

It is striking that these two squares possess similar structure. Both are composed of
16 disjoint intercalates (although A has 32 additional intercalates). To convert between
A and B it suffices to replace each of the six shaded intercalates by the other possible
intercalate on the same symbols.

Both A and B have autotopism groups acting transitively on their 64 (row, column,
symbol) triples. The autotopism groups are of respective orders 64 and 192. Both A and
B have paratopism groups of order 384. So A is isotopic to all 6 of its conjugates, whereas
B is isotopic to its transpose via the symbol permutation (46)(57).

One last feature is worth noting: the loops corresponding to A and B are so called
G-loops (group-like loops), meaning that they are isomorphic to all of their loop isotopes.
With that knowledge, it is easy to check that they are universally noncommutative.

We leave open the existence of universally noncommutative loops of order > 12.
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