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In BCN [1], Theorem 12.1.1 the existence of a certain association scheme
is claimed, and details are given for n = 3. As Frédéric Vanhove [2] observed,
things are slightly different for odd n ≥ 5. Let us redo his computations.

Let q be a power of 2, and n ≥ 3. Let V be an n-dimensional vector
space over Fq provided with a nondegenerate quadratic form Q. Let B be the
associated symmetric bilinear form, given by B(x, y) = Q(x+y)−Q(x)−Q(y).
If n is odd, there will be a nucleus N = V ⊥.

We construct an association scheme with point set X, where X is the set of
projective points not on the quadric Q and (for odd n) distinct from N . For
n = 3 and for even n, the relations will be R0, R1, R2, R3 where

R0 = {(x, x) | x ∈ X}, the identity relation;

R1 = {(x, y) | x+ y is a hyperbolic line (secant)};
R2 = {(x, y) | x+ y is an elliptic line (exterior line)};
R3 = {(x, y) | x+ y is a tangent}.

For odd n, n ≥ 5, it is necessary to distinguish R3a and R3n, defined by

R3a = {(x, y) | x+ y is a tangent not on N};
R3n = {(x, y) | x+ y is a tangent on N}.

Note that every line on N is a tangent, and that for n = 3 there are no other
tangents, so that R3a is empty. For q = 2 a hyperbolic line contains only one
nonisotropic point, so that R1 is empty.

1 Quadric size

The number of N isotropic projective points on a nonisotropic quadric in V ,
where V has vector space dimension n equals

N =

{
(q2m − 1)/(q − 1) if n = 2m+ 1
(qm − ε)(qm−1 + ε)/(q − 1) if n = 2m.

Equivalently,

N = (qn−1 − 1)/(q − 1) + εqn/2−1

with ε = ±1 if n is even, and ε = 0 if n is odd.
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2 n = 3

Suppose first that n = 3. The parameters (pijk) were given in BCN p. 375. Let

us call them (aijk) here in the special case n = 3.

(ai0j)ij =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (ai1j)ij =


0 1

2
q(q − 2) 0 0

1 1
4
(q − 2)2 1

4
q(q − 2) 1

2
q − 2

0 1
4
(q − 2)2 1

4
q(q − 2) 1

2
q − 1

0 1
4
q(q − 4) 1

4
q2 0

 ,

(ai2j)ij =


0 0 1

2
q2 0

0 1
4
q(q − 2) 1

4
q2 1

2
q

1 1
4
q(q − 2) 1

4
q2 1

2
q − 1

0 1
4
q2 1

4
q2 0

 , (ai3j)ij =


0 0 0 q − 2

0 1
2
q − 2 1

2
q 0

0 1
2
q − 1 1

2
q − 1 0

1 0 0 q − 3

 .

The P matrix has in column h the eigenvalues of (pihj)ij . The rows corre-
spond to eigenspaces. We find

P =


1 q(q − 2)/2 q2/2 q − 2
1 q/2 −q/2 −1
1 −q/2 + 1 −q/2 q − 2
1 −q/2 q/2 −1

 .

We see that R3 is an equivalence relation (and the equivalence classes are
the tangent lines, that is, the lines on N). We also see that R2 has only three
distinct eigenvalues, and hence defines a strongly regular graph.

Now suppose that dimV = 3 but the quadratic form Q on V is degenerate in
such a way that N := V ⊥ is a (single) isotropic point. Then the space is a cone
over a hyperbolic or elliptic line. We have v = |X| = q2 − εq and the valencies
are k0 = 1, k3 = q − 1 and k1 = q2 − 2q, k2 = 0 if ε = 1, k1 = 0, k2 = q2 if
ε = −1. Call the corresponding parameters (hijk) and (eijk), respectively. Then

(hi
1j)ij =


0 q2 − 2q 0 0

1 q2 − 3q 0 q − 1

∗ ∗ ∗ ∗
0 q2 − 2q 0 0

 , (hi
3j)ij =


0 0 0 q − 1

0 q − 1 0 0

∗ ∗ ∗ ∗
1 0 0 q − 2

 ,

(ei2j)ij =


0 0 q2 0

∗ ∗ ∗ ∗
1 0 q2 − q q − 1

0 0 q2 0

 , (ei3j)ij =


0 0 0 q − 1

∗ ∗ ∗ ∗
0 0 q − 1 0

1 0 0 q − 2

 .

(with undefined * since relation R2 (resp. R1) does not occur).
Finally, suppose that dimV = 3 and the quadratic form Q on V is a double

line (that is, B vanishes identically, Q is the square of a linear form). Now
k0 = 1, k1 = k2 = 0, k3 = q2 − 1. Call the corresponding parameters (zijk).
Then

(zi3j)ij =


0 0 0 q2 − 1
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
1 0 0 q2 − 2

 .
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3 n even

Now let n be even, say n = 2m, where m ≥ 2. Let the form have type ε, with
ε = 1 for a hyperbolic and ε = −1 for an elliptic quadric.

The number of points of the scheme equals v = |X| = q2m−1 − εqm−1.
For the valencies ki of the relations Ri we find

k0 = 1

k1 = (q − 2)qm−1(qm−1 + ε)/2

k2 = qm(qm−1 − ε)/2
k3 = q2m−2 − 1

If n = 2, m = 1, then only one type of lines occurs (since all of V is just a

line), and P =

(
1 q − 2
1 −1

)
if ε = 1, and P =

(
1 q
1 −1

)
if ε = −1.

Let n ≥ 4,m ≥ 2. If (x, y) ∈ Rh for a certain h ∈ {1, 2, 3} then for each
plane on the line x + y we find the same relation, and a contribution as just
computed for the case n = 3. In the plane we did not count the nucleus, but
here that nucleus contributes 1 to ph33 for h 6= 3. If h = 3 then x or y might
itself be the nucleus of a nondegenerate plane on x+ y. The details follow.

Let L be a hyperbolic line, and consider the (qn−2− 1)/(q− 1) planes on L.
A degenerate plane must be the span L+ z of L and a point z in L⊥. Now L⊥

has the same type ε as V and dimension n − 2, so has a := (q2m−3 − 1)/(q −
1) + εqm−2 isotropic points. Hence L is on a degenerate planes L + z, and on
(qn−2−1)/(q−1)−a = qn−3−εqm−2 nondegenerate planes. All parameters p1jk
follow by summing such parameters of these two types of planes: If (x, y) ∈ R1,
then L = x + y is a hyperbolic line that contributes q − 3 to p111 and nothing
to p1jk for {j, k} 6⊆ {0, 1}. A degenerate plane on L is a cone over a hyperbolic

line, and contributes h1jk. Thus

p111 = q − 3 + (qn−3 − εqm−2)(a111 − q + 3) + a(h111 − q + 3)

and
p133 = (qn−3 − εqm−2)(a133 + 1) + ah133

and
p1jk = (qn−3 − εqm−2)a1jk + ah1jk

for nonzero j, k not both 1 or both 3.
Let L be an elliptic line, and consider planes on L. This time L⊥ has the

opposite type, so has b := (q2m−3 − 1)/(q − 1)− εqm−2 isotropic points, and L
is on (qn−2 − 1)/(q − 1)− b = qn−3 + εqm−2 nondegenerate planes. We find

p222 = q − 1 + (qn−3 + εqm−2)(a222 − q + 1) + b(e222 − q + 1)

and
p233 = (qn−3 + εqm−2)(a233 + 1) + be233

and
p2jk = (qn−3 + εqm−2)a2jk + be2jk

for nonzero j, k not both 2 or both 3.
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Let L be a tangent, with isotropic point z. Then L⊥ is an (n − 2)-space
containing L. The line L is on qn−3 nondegenerate planes (where Q is a conic,
L a tangent to the conic, and the nucleus of the plane is a nonisotropic point of
L), namely those not contained in z⊥. The line L is on (qn−4−1)/(q−1) planes
contained in L⊥ (on which the symplectic form vanishes identically, and the
quadratic form is a double line). The line L is on qn−4 degenerate planes with
radical z (contained in z⊥ but not in L⊥). The space z⊥/z is a nondegenerate
(n−2)-space of the same type ε in which L is a nonisotropic point. The quadric
in that space has size (qn−3−1)/(q−1)+εqm−2, and through the point L there
are (qn−4 − 1)/(q − 1) tangents, and (qn−4 + εqm−2)/2 hyperbolic lines, and
(qn−4 − εqm−2)/2 elliptic lines. Consequently, of the qn−4 degenerate planes π
on L with radical z, for (qn−4 + εqm−2)/2 the quotient π/z is hyperbolic, and
for (qn−4 − εqm−2)/2 elliptic. Each of the q nonisotropic points of L is nucleus
of qn−4 nondegenerate planes. For the computation of p33k starting with two
points x, y where L = x + y is a tangent, the qn−4 nondegenerate planes in
which x is nucleus each contribute 1

2q(q−2) for k = 1 and 1
2q

2 for k = 2. There
are qn−4(q − 2) such planes where none of x, y is nucleus. Altogether, we find

p3jk = qn−4(q − 2)a3jk + 1
2 (qn−4 + εqm−2)h3jk + 1

2 (qn−4 − εqm−2)e3jk

for j, k 6= 0, 3, and

p331 = 1
2q

n−3(q − 2),

p332 = 1
2q

n−2,

p333 = q − 2 +
qn−4 − 1

q − 1
(z333 − q + 2).

Since we could compute all pijk, this proves that we have an association

scheme. Let us substitute the values of aijk, hijk, eijk and zijk and compute the
eigenmatrix P of the scheme. In order to save space, we abbreviate r := q − 2.

For (pi1j)ij one finds
0 1

2
qm−1(qm−1 + ε)r 0 0

1 1
4
qn−3r2 + εqm−2( 3

4
q2 − 2q − 1) 1

4
qm−1(qm−1 − ε)r 1

2
(qm−1 − ε)(qm−2r + 2ε)

0 1
4
qm−2(qm−1 + ε)r2 1

4
qm−1(qm−1 + ε)r 1

2
qm−2(qm−1 + ε)r

0 1
4
qm−1(qm−2r + 2ε)r 1

4
qn−2r 1

2
qn−3r


with eigenvalues 1

2q
m−1(qm−1 + ε)(q − 2), 1

2εq
m−2(q + 1)(q − 2), −εqm−1, 0.

For (pi2j)ij one finds
0 0 1

2
qm(qm−1 − ε) 0

0 1
4
qm−1(qm−1 − ε)r 1

4
qm(qm−1 − ε) 1

2
qm−1(qm−1 − ε)

1 1
4
qm−1(qm−1 + ε)r 1

4
qn−1 − εqm−1( 3

4
q − 1) 1

2
(qm−1 + ε)(qm−1 − 2ε)

0 1
4
qn−2r 1

4
qm(qm−1 − 2ε) 1

2
qn−2


with eigenvalues 1

2q
m(qm−1 − ε), εqm−1, − 1

2εq
m−1(q − 1), 0.

For (pi3j)ij one finds
0 0 0 qn−2 − 1

0 1
2
(qm−1 − ε)(qm−2r + 2ε) 1

2
qm−1(qm−1 − ε) qm−2(qm−1 − ε)

0 1
2
qm−2(qm−1 + ε)r 1

2
(qm−1 + ε)(qm−1 − 2ε) qm−2(qm−1 + ε)

1 1
2
qn−3r 1

2
qn−2 qn−3 − 2
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with eigenvalues qn−2 − 1, qm−1 − 1, −qm−1 − 1, εqm−2 − 1.

The P -matrix is

P =


1 1

2q
m−1(qm−1 + ε)(q − 2) 1

2q
m(qm−1 − ε) q2m−2 − 1

1 1
2εq

m−2(q + 1)(q − 2) − 1
2εq

m−1(q − 1) εqm−2 − 1
1 0 εqm−1 −εqm−1 − 1
1 −εqm−1 0 εqm−1 − 1

 .

The multiplicities (in the order of the rows of P ) are 1, q2(qn−2−1)/(q2−1),
1
2q(q

m−1 − ε)(qm − ε)/(q + 1), 1
2 (q − 2)(qm−1 + ε)(qm − ε)/(q − 1).

4 n odd

Now let n be even, say n = 2m + 1, where m ≥ 2. Let Q be a nondegenerate
quadric, and let N be its nucleus. We compute the pijk as before, this time
splitting relation R3 (being joined by a tangent) into the two relations R3a and
R3n, depending on whether the tangent does not or does pass through N .

The number of points of the scheme equals v = |X| = qn−1 − 1.
For the valencies ki of the relations Ri we find

k0 = 1

k1 = 1
2q

n−2(q − 2)

k2 = 1
2q

n−1

k3a = qn−2 − q
k3n = q − 2

The number of planes on a line L is (qn−2− 1)/(q− 1). If L is hyperbolic or
elliptic, then a degenerate plane must be the span L + z of L and an isotropic
point z in L⊥. Now L⊥ is a nondegenerate (n−2)-space, and has (qn−3−1)/(q−
1) isotropic points, so there are qn−3 nondegenerate planes, and (qn−3−1)/(q−1)
degenerate planes on L. We find for i = 1, 2 that

pijk = qn−3(aijk − c) +
qn−3 − 1

q − 1
(xi

jk − c) + c

with x = h for i = 1 and x = e for i = 2, and c = q − 3 if i = j = k = 1,
c = q − 1 if i = j = k = 2 and c = 0 otherwise.

If L is a tangent on N , with isotropic point z, then the qn−3 nondegenerate
planes on L are the planes not in z⊥. The remaining (qn−3 − 1)/(q − 1) planes
on L are contained in L⊥, and the form induces a double line on these. Hence

pijk = qn−3a3jk

for i = 3n when not {j, k} ⊆ {0, 3a, 3n}.
If L is a tangent not on N , with isotropic point z, then the qn−3 nonde-

generate planes on L are the planes not in z⊥. Each nonisotropic point of L is
the nucleus of qn−4 of these planes. There are (qn−4 − 1)/(q − 1) planes on L
contained in L⊥, where the form induces a double line. The remaining planes
are degenerate, cones over a hyperbolic or elliptic line, 1

2q
n−4 of each.
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Relation R3n is an equivalence relation with equivalence classes of size q−1.
If L does not pass through N , then it is on a unique plane L + N on N , and
the points that have relation R4n with x or y live in that plane. We find
p11,3n = 1

2q − 2, p12,3n = 1
2q, p

2
1,3n = p22,3n = 1

2q − 1.

For (pi1j) one finds
0 1

2
qn−2(q − 2) 0 0 0

1 1
4
qn−3(q − 2)2 1

4
qn−2(q − 2) 1

2
(qn−3 − 1)(q − 2) 1

2
q − 2

0 1
4
qn−3(q − 2)2 1

4
qn−2(q − 2) 1

2
(qn−3 − 1)(q − 2) 1

2
q − 1

0 1
4
qn−3(q − 2)2 1

4
qn−2(q − 2) 1

2
qn−3(q − 2) 0

0 1
4
qn−2(q − 4) 1

4
qn−1 0 0


with eigenvalues 1

2q
2m−1(q − 2), ± 1

2q
m−1(q − 2), ± 1

2q
m.

For (pi2j) one finds
0 0 1

2
qn−1 0 0

0 1
4
qn−2(q − 2) 1

4
qn−1 1

2
q(qn−3 − 1) 1

2
q

1 1
4
qn−2(q − 2) 1

4
qn−1 1

2
q(qn−3 − 1) 1

2
q − 1

0 1
4
qn−2(q − 2) 1

4
qn−1 1

2
qn−2 0

0 1
4
qn−1 1

4
qn−1 0 0


with eigenvalues 1

2q
2m, ± 1

2q
m (each twice).

For (pi3a,j) one finds
0 0 0 q(qn−3 − 1) 0

0 1
2
(qn−3 − 1)(q − 2) 1

2
q(qn−3 − 1) qn−3 − 1 0

0 1
2
(qn−3 − 1)(q − 2) 1

2
q(qn−3 − 1) qn−3 − 1 0

1 1
2
qn−3(q − 2) 1

2
qn−2 qn−3 − 2q + 1 q − 2

0 0 0 q(qn−3 − 1) 0


with eigenvalues q(q2m−2−1), (qm−1−1)(q−1), −(qm−1 +1)(q−1), 0 (twice).

For (pi3n,j) one finds
0 0 0 0 q − 2
0 1

2
q − 2 1

2
q 0 0

0 1
2
q − 1 1

2
q − 1 0 0

0 0 0 q − 2 0
1 0 0 0 q − 3


with eigenvalues q − 2 (three times) and −1 (twice).

Since we could compute all pijk, this is indeed an association scheme.

The P -matrix is

P =


1 1

2q
2m−1(q − 2) 1

2q
2m q(q2m−2 − 1) q − 2

1 1
2q

m−1(q − 2) 1
2q

m −(qm−1 + 1)(q − 1) q − 2

1 − 1
2q

m−1(q − 2) − 1
2q

m (qm−1 − 1)(q − 1) q − 2

1 1
2q

m − 1
2q

m 0 −1

1 − 1
2q

m 1
2q

m 0 −1


The multiplicities (in the order of the rows of P ) are 1, 1

2q(q
m + 1)(qm−1 −

1)/(q − 1), 1
2q(q

m − 1)(qm−1 + 1)/(q − 1), 1
2 (q − 2)(q2m − 1)/(q − 1) (twice).
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5 Conclusion

Vanhove computed all pijk and communicated both P matrices. We recomputed

the pijk and the P matrices and find the same results.
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