Parameters of an association scheme

A. E. Brouwer

Dec 2013

In BCN [1], Theorem 12.1.1 the existence of a certain association scheme is claimed, and details are given for $n=3$. As Frédéric Vanhove [2] observed, things are slightly different for odd $n \geq 5$. Let us redo his computations.

Let q be a power of 2 , and $n \geq 3$. Let V be an n-dimensional vector space over \mathbb{F}_{q} provided with a nondegenerate quadratic form Q. Let B be the associated symmetric bilinear form, given by $B(x, y)=Q(x+y)-Q(x)-Q(y)$. If n is odd, there will be a nucleus $N=V^{\perp}$.

We construct an association scheme with point set X, where X is the set of projective points not on the quadric Q and (for odd n) distinct from N. For $n=3$ and for even n, the relations will be $R_{0}, R_{1}, R_{2}, R_{3}$ where

$$
\begin{aligned}
& R_{0}=\{(x, x) \mid x \in X\}, \text { the identity relation; } \\
& R_{1}=\{(x, y) \mid x+y \text { is a hyperbolic line (secant) }\} ; \\
& R_{2}=\{(x, y) \mid x+y \text { is an elliptic line (exterior line) }\} ; \\
& R_{3}=\{(x, y) \mid x+y \text { is a tangent }\} .
\end{aligned}
$$

For odd $n, n \geq 5$, it is necessary to distinguish $R_{3 a}$ and $R_{3 n}$, defined by

$$
\begin{aligned}
& R_{3 a}=\{(x, y) \mid x+y \text { is a tangent not on } N\} ; \\
& R_{3 n}=\{(x, y) \mid x+y \text { is a tangent on } N\} .
\end{aligned}
$$

Note that every line on N is a tangent, and that for $n=3$ there are no other tangents, so that $R_{3 a}$ is empty. For $q=2$ a hyperbolic line contains only one nonisotropic point, so that R_{1} is empty.

1 Quadric size

The number of N isotropic projective points on a nonisotropic quadric in V, where V has vector space dimension n equals

$$
N= \begin{cases}\left(q^{2 m}-1\right) /(q-1) & \text { if } n=2 m+1 \\ \left(q^{m}-\varepsilon\right)\left(q^{m-1}+\varepsilon\right) /(q-1) & \text { if } n=2 m .\end{cases}
$$

Equivalently,

$$
N=\left(q^{n-1}-1\right) /(q-1)+\varepsilon q^{n / 2-1}
$$

with $\varepsilon= \pm 1$ if n is even, and $\varepsilon=0$ if n is odd.

$2 n=3$

Suppose first that $n=3$. The parameters $\left(p_{j k}^{i}\right)$ were given in BCN p. 375. Let us call them $\left(a_{j k}^{i}\right)$ here in the special case $n=3$.

$$
\begin{gathered}
\left(a_{0 j}^{i}\right)_{i j}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),\left(a_{1 j}^{i}\right)_{i j}=\left(\begin{array}{cccc}
0 & \frac{1}{2} q(q-2) & 0 & 0 \\
1 & \frac{1}{4}(q-2)^{2} & \frac{1}{4} q(q-2) & \frac{1}{2} q-2 \\
0 & \frac{1}{4}(q-2)^{2} & \frac{1}{4} q(q-2) & \frac{1}{2} q-1 \\
0 & \frac{1}{4} q(q-4) & \frac{1}{4} q^{2} & 0
\end{array}\right), \\
\left(a_{2 j}^{i}\right)_{i j}=\left(\begin{array}{cccc}
0 & 0 & \frac{1}{2} q^{2} & 0 \\
0 & \frac{1}{4} q(q-2) & \frac{1}{4} q^{2} & \frac{1}{2} q \\
1 & \frac{1}{4} q(q-2) & \frac{1}{4} q^{2} & \frac{1}{2} q-1 \\
0 & \frac{1}{4} q^{2} & \frac{1}{4} q^{2} & 0
\end{array}\right),\left(a_{3 j}^{i}\right)_{i j}=\left(\begin{array}{cccc}
0 & 0 & 0 & q-2 \\
0 & \frac{1}{2} q-2 & \frac{1}{2} q & 0 \\
0 & \frac{1}{2} q-1 & \frac{1}{2} q-1 & 0 \\
1 & 0 & 0 & q-3
\end{array}\right) .
\end{gathered}
$$

The P matrix has in column h the eigenvalues of $\left(p_{h j}^{i}\right)_{i j}$. The rows correspond to eigenspaces. We find

$$
P=\left(\begin{array}{cccc}
1 & q(q-2) / 2 & q^{2} / 2 & q-2 \\
1 & q / 2 & -q / 2 & -1 \\
1 & -q / 2+1 & -q / 2 & q-2 \\
1 & -q / 2 & q / 2 & -1
\end{array}\right)
$$

We see that R_{3} is an equivalence relation (and the equivalence classes are the tangent lines, that is, the lines on N). We also see that R_{2} has only three distinct eigenvalues, and hence defines a strongly regular graph.

Now suppose that $\operatorname{dim} V=3$ but the quadratic form Q on V is degenerate in such a way that $N:=V^{\perp}$ is a (single) isotropic point. Then the space is a cone over a hyperbolic or elliptic line. We have $v=|X|=q^{2}-\varepsilon q$ and the valencies are $k_{0}=1, k_{3}=q-1$ and $k_{1}=q^{2}-2 q, k_{2}=0$ if $\varepsilon=1, k_{1}=0, k_{2}=q^{2}$ if $\varepsilon=-1$. Call the corresponding parameters $\left(h_{j k}^{i}\right)$ and $\left(e_{j k}^{i}\right)$, respectively. Then

$$
\left.\begin{array}{c}
\left(h_{1 j}^{i}\right)_{i j}=\left(\begin{array}{cccc}
0 & q^{2}-2 q & 0 & 0 \\
1 & q^{2}-3 q & 0 & q-1 \\
* & * & * & * \\
0 & q^{2}-2 q & 0 & 0
\end{array}\right),\left(h_{3 j}^{i}\right)_{i j}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & q-1 \\
* & * & * \\
1 & 0 & 0
\end{array}\right) q-2
\end{array}\right),
$$

(with undefined ${ }^{*}$ since relation R_{2} (resp. R_{1}) does not occur).
Finally, suppose that $\operatorname{dim} V=3$ and the quadratic form Q on V is a double line (that is, B vanishes identically, Q is the square of a linear form). Now $k_{0}=1, k_{1}=k_{2}=0, k_{3}=q^{2}-1$. Call the corresponding parameters $\left(z_{j k}^{i}\right)$. Then

$$
\left(z_{3 j}^{i}\right)_{i j}=\left(\begin{array}{cccc}
0 & 0 & 0 & q^{2}-1 \\
* & * & * & * \\
* & * & * & * \\
1 & 0 & 0 & q^{2}-2
\end{array}\right)
$$

3 n even

Now let n be even, say $n=2 m$, where $m \geq 2$. Let the form have type ε, with $\varepsilon=1$ for a hyperbolic and $\varepsilon=-1$ for an elliptic quadric.

The number of points of the scheme equals $v=|X|=q^{2 m-1}-\varepsilon q^{m-1}$.
For the valencies k_{i} of the relations R_{i} we find

$$
\begin{aligned}
& k_{0}=1 \\
& k_{1}=(q-2) q^{m-1}\left(q^{m-1}+\varepsilon\right) / 2 \\
& k_{2}=q^{m}\left(q^{m-1}-\varepsilon\right) / 2 \\
& k_{3}=q^{2 m-2}-1
\end{aligned}
$$

If $n=2, m=1$, then only one type of lines occurs (since all of V is just a line), and $P=\left(\begin{array}{cc}1 & q-2 \\ 1 & -1\end{array}\right)$ if $\varepsilon=1$, and $P=\left(\begin{array}{cc}1 & q \\ 1 & -1\end{array}\right)$ if $\varepsilon=-1$.

Let $n \geq 4, m \geq 2$. If $(x, y) \in R_{h}$ for a certain $h \in\{1,2,3\}$ then for each plane on the line $x+y$ we find the same relation, and a contribution as just computed for the case $n=3$. In the plane we did not count the nucleus, but here that nucleus contributes 1 to p_{33}^{h} for $h \neq 3$. If $h=3$ then x or y might itself be the nucleus of a nondegenerate plane on $x+y$. The details follow.

Let L be a hyperbolic line, and consider the $\left(q^{n-2}-1\right) /(q-1)$ planes on L. A degenerate plane must be the span $L+z$ of L and a point z in L^{\perp}. Now L^{\perp} has the same type ε as V and dimension $n-2$, so has $a:=\left(q^{2 m-3}-1\right) /(q-$ 1) $+\varepsilon q^{m-2}$ isotropic points. Hence L is on a degenerate planes $L+z$, and on $\left(q^{n-2}-1\right) /(q-1)-a=q^{n-3}-\varepsilon q^{m-2}$ nondegenerate planes. All parameters $p_{j k}^{1}$ follow by summing such parameters of these two types of planes: If $(x, y) \in R_{1}$, then $L=x+y$ is a hyperbolic line that contributes $q-3$ to p_{11}^{1} and nothing to $p_{j k}^{1}$ for $\{j, k\} \nsubseteq\{0,1\}$. A degenerate plane on L is a cone over a hyperbolic line, and contributes $h_{j k}^{1}$. Thus

$$
p_{11}^{1}=q-3+\left(q^{n-3}-\varepsilon q^{m-2}\right)\left(a_{11}^{1}-q+3\right)+a\left(h_{11}^{1}-q+3\right)
$$

and

$$
p_{33}^{1}=\left(q^{n-3}-\varepsilon q^{m-2}\right)\left(a_{33}^{1}+1\right)+a h_{33}^{1}
$$

and

$$
p_{j k}^{1}=\left(q^{n-3}-\varepsilon q^{m-2}\right) a_{j k}^{1}+a h_{j k}^{1}
$$

for nonzero j, k not both 1 or both 3 .
Let L be an elliptic line, and consider planes on L. This time L^{\perp} has the opposite type, so has $b:=\left(q^{2 m-3}-1\right) /(q-1)-\varepsilon q^{m-2}$ isotropic points, and L is on $\left(q^{n-2}-1\right) /(q-1)-b=q^{n-3}+\varepsilon q^{m-2}$ nondegenerate planes. We find

$$
p_{22}^{2}=q-1+\left(q^{n-3}+\varepsilon q^{m-2}\right)\left(a_{22}^{2}-q+1\right)+b\left(e_{22}^{2}-q+1\right)
$$

and

$$
p_{33}^{2}=\left(q^{n-3}+\varepsilon q^{m-2}\right)\left(a_{33}^{2}+1\right)+b e_{33}^{2}
$$

and

$$
p_{j k}^{2}=\left(q^{n-3}+\varepsilon q^{m-2}\right) a_{j k}^{2}+b e_{j k}^{2}
$$

for nonzero j, k not both 2 or both 3 .

Let L be a tangent, with isotropic point z. Then L^{\perp} is an $(n-2)$-space containing L. The line L is on q^{n-3} nondegenerate planes (where Q is a conic, L a tangent to the conic, and the nucleus of the plane is a nonisotropic point of L), namely those not contained in z^{\perp}. The line L is on $\left(q^{n-4}-1\right) /(q-1)$ planes contained in L^{\perp} (on which the symplectic form vanishes identically, and the quadratic form is a double line). The line L is on q^{n-4} degenerate planes with radical z (contained in z^{\perp} but not in L^{\perp}). The space z^{\perp} / z is a nondegenerate $(n-2)$-space of the same type ε in which L is a nonisotropic point. The quadric in that space has size $\left(q^{n-3}-1\right) /(q-1)+\varepsilon q^{m-2}$, and through the point L there are $\left(q^{n-4}-1\right) /(q-1)$ tangents, and $\left(q^{n-4}+\varepsilon q^{m-2}\right) / 2$ hyperbolic lines, and $\left(q^{n-4}-\varepsilon q^{m-2}\right) / 2$ elliptic lines. Consequently, of the q^{n-4} degenerate planes π on L with radical z, for $\left(q^{n-4}+\varepsilon q^{m-2}\right) / 2$ the quotient π / z is hyperbolic, and for $\left(q^{n-4}-\varepsilon q^{m-2}\right) / 2$ elliptic. Each of the q nonisotropic points of L is nucleus of q^{n-4} nondegenerate planes. For the computation of $p_{3 k}^{3}$ starting with two points x, y where $L=x+y$ is a tangent, the q^{n-4} nondegenerate planes in which x is nucleus each contribute $\frac{1}{2} q(q-2)$ for $k=1$ and $\frac{1}{2} q^{2}$ for $k=2$. There are $q^{n-4}(q-2)$ such planes where none of x, y is nucleus. Altogether, we find

$$
p_{j k}^{3}=q^{n-4}(q-2) a_{j k}^{3}+\frac{1}{2}\left(q^{n-4}+\varepsilon q^{m-2}\right) h_{j k}^{3}+\frac{1}{2}\left(q^{n-4}-\varepsilon q^{m-2}\right) e_{j k}^{3}
$$

for $j, k \neq 0,3$, and

$$
\begin{aligned}
& p_{31}^{3}=\frac{1}{2} q^{n-3}(q-2) \\
& p_{32}^{3}=\frac{1}{2} q^{n-2} \\
& p_{33}^{3}=q-2+\frac{q^{n-4}-1}{q-1}\left(z_{33}^{3}-q+2\right) .
\end{aligned}
$$

Since we could compute all $p_{j k}^{i}$, this proves that we have an association scheme. Let us substitute the values of $a_{j k}^{i}, h_{j k}^{i}, e_{j k}^{i}$ and $z_{j k}^{i}$ and compute the eigenmatrix P of the scheme. In order to save space, we abbreviate $r:=q-2$.

For $\left(p_{1 j}^{i}\right)_{i j}$ one finds

$$
\left(\begin{array}{cccc}
0 & \frac{1}{2} q^{m-1}\left(q^{m-1}+\varepsilon\right) r & 0 & 0 \\
1 & \frac{1}{4} q^{n-3} r^{2}+\varepsilon q^{m-2}\left(\frac{3}{4} q^{2}-2 q-1\right) & \frac{1}{4} q^{m-1}\left(q^{m-1}-\varepsilon\right) r & \frac{1}{2}\left(q^{m-1}-\varepsilon\right)\left(q^{m-2} r+2 \varepsilon\right) \\
0 & \frac{1}{4} q^{m-2}\left(q^{m-1}+\varepsilon\right) r^{2} & \frac{1}{4} q^{m-1}\left(q^{m-1}+\varepsilon\right) r & \frac{1}{2} q^{m-2}\left(q^{m-1}+\varepsilon\right) r \\
0 & \frac{1}{4} q^{m-1}\left(q^{m-2} r+2 \varepsilon\right) r & \frac{1}{4} q^{n-2} r & \frac{1}{2} q^{n-3} r
\end{array}\right)
$$

with eigenvalues $\frac{1}{2} q^{m-1}\left(q^{m-1}+\varepsilon\right)(q-2), \frac{1}{2} \varepsilon q^{m-2}(q+1)(q-2),-\varepsilon q^{m-1}, 0$.
For $\left(p_{2 j}^{i}\right)_{i j}$ one finds

$$
\left(\begin{array}{cccc}
0 & 0 & \frac{1}{2} q^{m}\left(q^{m-1}-\varepsilon\right) & 0 \\
0 & \frac{1}{4} q^{m-1}\left(q^{m-1}-\varepsilon\right) r & \frac{1}{4} q^{m}\left(q^{m-1}-\varepsilon\right) & \frac{1}{2} q^{m-1}\left(q^{m-1}-\varepsilon\right) \\
1 & \frac{1}{4} q^{m-1}\left(q^{m-1}+\varepsilon\right) r & \frac{1}{4} q^{n-1}-\varepsilon q^{m-1}\left(\frac{3}{4} q-1\right) & \frac{1}{2}\left(q^{m-1}+\varepsilon\right)\left(q^{m-1}-2 \varepsilon\right) \\
0 & \frac{1}{4} q^{n-2} r & \frac{1}{4} q^{m}\left(q^{m-1}-2 \varepsilon\right) & \frac{1}{2} q^{n-2}
\end{array}\right)
$$

with eigenvalues $\frac{1}{2} q^{m}\left(q^{m-1}-\varepsilon\right), \varepsilon q^{m-1},-\frac{1}{2} \varepsilon q^{m-1}(q-1), 0$.
For $\left(p_{3 j}^{i}\right)_{i j}$ one finds

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & q^{n-2}-1 \\
0 & \frac{1}{2}\left(q^{m-1}-\varepsilon\right)\left(q^{m-2} r+2 \varepsilon\right) & \frac{1}{2} q^{m-1}\left(q^{m-1}-\varepsilon\right) & q^{m-2}\left(q^{m-1}-\varepsilon\right) \\
0 & \frac{1}{2} q^{m-2}\left(q^{m-1}+\varepsilon\right) r & \frac{1}{2}\left(q^{m-1}+\varepsilon\right)\left(q^{m-1}-2 \varepsilon\right) & q^{m-2}\left(q^{m-1}+\varepsilon\right) \\
1 & \frac{1}{2} q^{n-3} r & \frac{1}{2} q^{n-2} & q^{n-3}-2
\end{array}\right)
$$

with eigenvalues $q^{n-2}-1, q^{m-1}-1,-q^{m-1}-1, \varepsilon q^{m-2}-1$.
The P-matrix is

$$
P=\left(\begin{array}{cccc}
1 & \frac{1}{2} q^{m-1}\left(q^{m-1}+\varepsilon\right)(q-2) & \frac{1}{2} q^{m}\left(q^{m-1}-\varepsilon\right) & q^{2 m-2}-1 \\
1 & \frac{1}{2} \varepsilon q^{m-2}(q+1)(q-2) & -\frac{1}{2} \varepsilon q^{m-1}(q-1) & \varepsilon q^{m-2}-1 \\
1 & 0 & \varepsilon q^{m-1} & -\varepsilon q^{m-1}-1 \\
1 & -\varepsilon q^{m-1} & 0 & \varepsilon q^{m-1}-1
\end{array}\right) .
$$

The multiplicities (in the order of the rows of P) are $1, q^{2}\left(q^{n-2}-1\right) /\left(q^{2}-1\right)$, $\frac{1}{2} q\left(q^{m-1}-\varepsilon\right)\left(q^{m}-\varepsilon\right) /(q+1), \frac{1}{2}(q-2)\left(q^{m-1}+\varepsilon\right)\left(q^{m}-\varepsilon\right) /(q-1)$.

$4 \quad n$ odd

Now let n be even, say $n=2 m+1$, where $m \geq 2$. Let Q be a nondegenerate quadric, and let N be its nucleus. We compute the $p_{j k}^{i}$ as before, this time splitting relation R_{3} (being joined by a tangent) into the two relations $R_{3 a}$ and $R_{3 n}$, depending on whether the tangent does not or does pass through N.

The number of points of the scheme equals $v=|X|=q^{n-1}-1$.
For the valencies k_{i} of the relations R_{i} we find

$$
\begin{aligned}
k_{0} & =1 \\
k_{1} & =\frac{1}{2} q^{n-2}(q-2) \\
k_{2} & =\frac{1}{2} q^{n-1} \\
k_{3 a} & =q^{n-2}-q \\
k_{3 n} & =q-2
\end{aligned}
$$

The number of planes on a line L is $\left(q^{n-2}-1\right) /(q-1)$. If L is hyperbolic or elliptic, then a degenerate plane must be the span $L+z$ of L and an isotropic point z in L^{\perp}. Now L^{\perp} is a nondegenerate $(n-2)$-space, and has $\left(q^{n-3}-1\right) /(q-$ 1) isotropic points, so there are q^{n-3} nondegenerate planes, and $\left(q^{n-3}-1\right) /(q-1)$ degenerate planes on L. We find for $i=1,2$ that

$$
p_{j k}^{i}=q^{n-3}\left(a_{j k}^{i}-c\right)+\frac{q^{n-3}-1}{q-1}\left(\mathrm{x}_{j k}^{i}-c\right)+c
$$

with $\mathrm{x}=h$ for $i=1$ and $\mathrm{x}=e$ for $i=2$, and $c=q-3$ if $i=j=k=1$, $c=q-1$ if $i=j=k=2$ and $c=0$ otherwise.

If L is a tangent on N, with isotropic point z, then the q^{n-3} nondegenerate planes on L are the planes not in z^{\perp}. The remaining $\left(q^{n-3}-1\right) /(q-1)$ planes on L are contained in L^{\perp}, and the form induces a double line on these. Hence

$$
p_{j k}^{i}=q^{n-3} a_{j k}^{3}
$$

for $i=3 n$ when not $\{j, k\} \subseteq\{0,3 a, 3 n\}$.
If L is a tangent not on N, with isotropic point z, then the q^{n-3} nondegenerate planes on L are the planes not in z^{\perp}. Each nonisotropic point of L is the nucleus of q^{n-4} of these planes. There are $\left(q^{n-4}-1\right) /(q-1)$ planes on L contained in L^{\perp}, where the form induces a double line. The remaining planes are degenerate, cones over a hyperbolic or elliptic line, $\frac{1}{2} q^{n-4}$ of each.

Relation $R_{3 n}$ is an equivalence relation with equivalence classes of size $q-1$. If L does not pass through N, then it is on a unique plane $L+N$ on N, and the points that have relation $R_{4 n}$ with x or y live in that plane. We find $p_{1,3 n}^{1}=\frac{1}{2} q-2, p_{2,3 n}^{1}=\frac{1}{2} q, p_{1,3 n}^{2}=p_{2,3 n}^{2}=\frac{1}{2} q-1$.

For $\left(p_{1 j}^{i}\right)$ one finds

$$
\left(\begin{array}{ccccc}
0 & \frac{1}{2} q^{n-2}(q-2) & 0 & 0 & 0 \\
1 & \frac{1}{4} q^{n-3}(q-2)^{2} & \frac{1}{4} q^{n-2}(q-2) & \frac{1}{2}\left(q^{n-3}-1\right)(q-2) & \frac{1}{2} q-2 \\
0 & \frac{1}{4} q^{n-3}(q-2)^{2} & \frac{1}{4} q^{n-2}(q-2) & \frac{1}{2}\left(q^{n-3}-1\right)(q-2) & \frac{1}{2} q-1 \\
0 & \frac{1}{4} q^{n-3}(q-2)^{2} & \frac{1}{4} q^{n-2}(q-2) & \frac{1}{2} q^{n-3}(q-2) & 0 \\
0 & \frac{1}{4} q^{n-2}(q-4) & \frac{1}{4} q^{n-1} & 0 & 0
\end{array}\right)
$$

with eigenvalues $\frac{1}{2} q^{2 m-1}(q-2), \pm \frac{1}{2} q^{m-1}(q-2), \pm \frac{1}{2} q^{m}$.
For $\left(p_{2 j}^{i}\right)$ one finds

$$
\left(\begin{array}{ccccc}
0 & 0 & \frac{1}{2} q^{n-1} & 0 & 0 \\
0 & \frac{1}{4} q^{n-2}(q-2) & \frac{1}{4} q^{n-1} & \frac{1}{2} q\left(q^{n-3}-1\right) & \frac{1}{2} q \\
1 & \frac{1}{4} q^{n-2}(q-2) & \frac{1}{4} q^{n-1} & \frac{1}{2} q\left(q^{n-3}-1\right) & \frac{1}{2} q-1 \\
0 & \frac{1}{4} q^{n-2}(q-2) & \frac{1}{4} q^{n-1} & \frac{1}{2} q^{n-2} & 0 \\
0 & \frac{1}{4} q^{n-1} & \frac{1}{4} q^{n-1} & 0 & 0
\end{array}\right)
$$

with eigenvalues $\frac{1}{2} q^{2 m}, \pm \frac{1}{2} q^{m}$ (each twice).
For $\left(p_{3 a, j}^{i}\right)$ one finds

$$
\left(\begin{array}{ccccc}
0 & 0 & 0 & q\left(q^{n-3}-1\right) & 0 \\
0 & \frac{1}{2}\left(q^{n-3}-1\right)(q-2) & \frac{1}{2} q\left(q^{n-3}-1\right) & q^{n-3}-1 & 0 \\
0 & \frac{1}{2}\left(q^{n-3}-1\right)(q-2) & \frac{1}{2} q\left(q^{n-3}-1\right) & q^{n-3}-1 & 0 \\
1 & \frac{1}{2} q^{n-3}(q-2) & \frac{1}{2} q^{n-2} & q^{n-3}-2 q+1 & q-2 \\
0 & 0 & 0 & q\left(q^{n-3}-1\right) & 0
\end{array}\right)
$$

with eigenvalues $q\left(q^{2 m-2}-1\right),\left(q^{m-1}-1\right)(q-1),-\left(q^{m-1}+1\right)(q-1), 0$ (twice).
For $\left(p_{3 n, j}^{i}\right)$ one finds

$$
\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & q-2 \\
0 & \frac{1}{2} q-2 & \frac{1}{2} q & 0 & 0 \\
0 & \frac{1}{2} q-1 & \frac{1}{2} q-1 & 0 & 0 \\
0 & 0 & 0 & q-2 & 0 \\
1 & 0 & 0 & 0 & q-3
\end{array}\right)
$$

with eigenvalues $q-2$ (three times) and -1 (twice).
Since we could compute all $p_{j k}^{i}$, this is indeed an association scheme.
The P-matrix is

$$
P=\left(\begin{array}{ccccc}
1 & \frac{1}{2} q^{2 m-1}(q-2) & \frac{1}{2} q^{2 m} & q\left(q^{2 m-2}-1\right) & q-2 \\
1 & \frac{1}{2} q^{m-1}(q-2) & \frac{1}{2} q^{m} & -\left(q^{m-1}+1\right)(q-1) & q-2 \\
1 & -\frac{1}{2} q^{m-1}(q-2) & -\frac{1}{2} q^{m} & \left(q^{m-1}-1\right)(q-1) & q-2 \\
1 & \frac{1}{2} q^{m} & -\frac{1}{2} q^{m} & 0 & -1 \\
1 & -\frac{1}{2} q^{m} & \frac{1}{2} q^{m} & 0 & -1
\end{array}\right)
$$

The multiplicities (in the order of the rows of P) are $1, \frac{1}{2} q\left(q^{m}+1\right)\left(q^{m-1}-\right.$ 1) $/(q-1), \frac{1}{2} q\left(q^{m}-1\right)\left(q^{m-1}+1\right) /(q-1), \frac{1}{2}(q-2)\left(q^{2 m}-1\right) /(q-1)$ (twice).

5 Conclusion

Vanhove computed all $p_{j k}^{i}$ and communicated both P matrices. We recomputed the $p_{j k}^{i}$ and the P matrices and find the same results.

References

[1] A. E. Brouwer, A. M. Cohen \& A. Neumaier, Distance-regular graphs Springer, 1989.
[2] F. Vanhove, email, Sept. 2013.

