
(0,2)-graphs and root systems

Andries E. Brouwer & Leonard Chastkofsky

2011-08-03

Abstract

We construct (0,2)-graphs from root systems with simply laced dia-
gram and study their properties.

1 Introduction

In the study of the mod p cohomology of the Lie algebra of the unipotent
radical U of groups of Lie type with simply laced diagram, it was found that
the connected components of the Hasse diagram of the Koszul complex are (0,2)-
graphs. This note is the result of an attempt to understand these (0,2)-graphs.

2 (0,2)-graphs

A (0,2)-graph is a connected graph with the property that any two vertices
have either 0 or 2 common neighbours. The first thing one shows (cf. [10]) is
that two adjacent vertices have the same number of neighbours, so that a (0,2)-
graph is regular of some valency k (finite or infinite). For a classification of the
(0,2)-graphs of valency at most 8, see [2, 5].

A (0,2)-graph without triangles is known as a rectagraph. Rectagraphs play
a role in diagram geometry, cf., e.g., [11].

A semibiplane is a connected incidence structure with points and blocks,
where any two points are together in 0 or 2 blocks, and any two blocks meet
in 0 or 2 points. Thus, the incidence graph of a semibiplane is a bipartite
(0,2)-graph, and conversely any bipartite (0,2)-graph defines a semibiplane, up
to duality (that is, up to the choice which part of the bipartition is the set of
points and which part is the set of blocks). Semibiplanes were first introduced
in order to study projective planes with involution, see [8].

Given a non-bipartite (0,2)-graph, its bipartite double (the unique bipartite
2-cover, cf. [4]) is a bipartite (0,2)-graph.

A (0,2)-graph of finite valency k has at most 2k vertices, and the k-cube is
the unique (0,2)-graph for which equality holds (see [11]).

A (0,2)-graph is called signable if it is possible to label its edges with ±1 in
such a way that the product of the signs of the four edges of a quadrangle is
always −1. Clearly, a (0,2)-graph with more than one edge is signable if and
only if it has a 2-cover without quadrangles. It is known ([7]) that hypercubes
are signable, and ([4], p. 372) that the Gewirtz graph is not.
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3 (0,2)-graphs from root systems

Let Φ be a finite root system with simply laced diagram, and let Φ+ be the col-
lection of positive roots (for some choice of fundamental roots). For any vector u
(the target vector) in the span of Φ we define the graph Γ = Γ(u) = Γ(Φ, u) as fol-
lows: The vertices of Γ are the subsets A of Φ+ such that

∑
A(=

∑
a∈A a) = u.

Two vertices A and B are adjacent when their symmetric difference A∆B has
size 3. (Smaller is impossible: if the symmetric difference has size 0, then A = B;
it cannot have size 1 since

∑
A =

∑
B = u; it cannot have size 2 since A,B

are sets of positive roots.)

Theorem 3.1 If Γ(u) has a nonempty vertex set, it is a bipartite (0,2)-graph.

Proof: That Γ is bipartite follows since adjacent vertices are sets of roots of
which the sizes have different parity.

We show that Γ is connected. Since Φ has simply laced diagram (so that all
connected components of the diagram are of type An, Dn or Em, m = 6, 7, 8),
we may assume that all roots have the same length

√
2. Now the roots are

precisely the vectors of squared norm 2 in the (integral) lattice spanned by Φ
and for r, s ∈ Φ we have r+s ∈ Φ when (r, s) = −1 and r−s ∈ Φ when (r, s) = 1.
Let A and B be two vertices of Γ. We want to join them by a path. Use induction
on the size of the symmetric difference. Let v =

∑
A \B =

∑
B \ A. Suppose

r ∈ A \B and s ∈ B \A with (r, s) = 1. Now r− s is a root, and either r− s or
s−r is positive. Say t = r−s ∈ Φ+. If t /∈ A, then C = A\{r}∪{s, t} is a vertex
adjacent to A and we are done by induction. If t ∈ B, then D = B \ {s, t}∪{r}
is a vertex adjacent to B and we are done by induction. This means that in
the remaining case whenever r ∈ A \ B and s ∈ B \ A with (r, s) = 1 we have
either r − s ∈ A \ B or s− r ∈ B \ A. Since (r − s, s) = −1 or (r, s− r) = −1,
and the pair r, s can be retrieved from the pair r − s, s or r, s − r, there is a
contribution of −1 for each contribution of 1 in the expanded inner product
(v, v) = (

∑
A \ B,

∑
B \ A), so that (v, v) ≤ 0 and hence (v, v) = 0, so that

A = B. This proves connectedness.
We show that Γ is a (0,2)-graph. Let A,B be two vertices with at least one

common neighbour, and put Z = A∩B. Since neighbours have sizes that differ
by 1, the sizes of A and B differ by 0 or 2. Suppose first that |A| = |B|+ 2. If
A = Z ∪ {a, b, c, d} and B = Z ∪ {a+ b, c+ d} then the common neighbours are
Z ∪{a+ b, c, d} and Z ∪{a, b, c+d}. If A = Z ∪{a, b, c} and B = Z ∪{a+ b+ c}
and (a, b) = (b, c) = −1, then the common neighbours are (i) Z ∪ {a + b, c} if
a + b /∈ Z and Z \ {a + b} ∪ {a, b, a + b + c} otherwise, and (ii) Z ∪ {a, b + c}
if b + c /∈ Z and Z \ {b + c} ∪ {b, c, a + b + c} otherwise. Note that since
a+ b+ c ∈ Φ, so that (a+ b+ c, a+ b+ c) = (a, a) = (b, b) = (c, c) = 2, precisely
two of the inner products (a, b), (a, c), (b, c) are −1 (and the third is 0). Now
suppose that |A| = |B|. If the symmetric difference of A and B has size 6, so
that A = Z∪{a, b, c+d} and B = Z∪{a+b, c, d}, then the common neighbours
are Z ∪{a, b, c, d} and Z ∪{a+ b, c+d}. If their symmetric difference has size 4,
then A = Z∪{a, b} and B = Z∪{c, d}, where a+b = c+d. If a+b ∈ Φ+ then one
common neighbour is Z∪{a+b} if a+b /∈ Z and Z\{a+b}∪{a, b, c, d} otherwise.
If ±(c− a) ∈ Φ, say c− a ∈ Φ+, then one common neighbour is Z ∪{a, c− a, d}
if c− a /∈ Z and Z \ {c− a} ∪ {b, c} otherwise. In this way we find one common
neighbour for each of c− a = b− d and c− b = a− d that is in Φ, i.e., for each
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inproduct (a, c), (a, d) that equals 1. Now (a, c) + (a, d) = (a, a+ b) = 2 + (a, b),
and (a, b), (a, c), (a, d) ∈ {−1, 0, 1}. If (a, b) = −1, then a+b ∈ Φ+ and precisely
one of (a, c), (a, d) is 1, and we find two common neighbours. If (a, b) = 0, then
(a, c) + (a, d) = 2 so that (a, c) = (a, d) = 1, again two common neighbours.
Finally if (a, b) = 1, then (a, c) + (a, d) = 3, impossible. 2

4 Isomorphisms

Different choices for u may yield isomorphic graphs Γ(u).
The map A 7→ Φ+ \ A sending each set of positive roots to its complement

induces an isomorphism from the graph Γ(u) onto the graph Γ(2ρ − u), where
2ρ is the sum of the positive roots.

Let W be the Weyl group (generated by the reflections in the elements of Φ),
let w ∈W , and let N = Φ+ \w−1Φ+ be the set of positive roots made negative
by w. The graph Γ(u) is mapped isomorphically onto the graph Γ(w(u − n)),
where n =

∑
N , by the map A 7→ w(A \ N) ∪ −w(N \ A) that sends A to

the union of w(A) and w(−N) with pairs of opposite elements removed. If we
parametrize the graphs Γ(u) using µ = ρ−u instead of u, this means that Γµ is
mapped isomorphically onto Γwµ. (Indeed, wρ = ρ+wn, so ρ−w(u−n) = wµ.)
It follows that we may choose u = ρ− µ where µ is a dominant weight.

5 The number of vertices

Let ρ = 1
2

∑
Φ+ be half the sum of the positive roots.

Proposition 5.1 The number of vertices of the graph Γ(u), where u = ρ − µ
and µ is a dominant weight, equals the multiplicity of the weight µ in the Verma
module Vρ.

Proof: This is Lemma 5.9 in [9]. Or, from Weyl’s character formula: the
formal character of Vρ equals A2ρ/Aρ = e(−ρ)

∏
a∈Φ+(e(a) + 1), so that the

multiplicity of µ equals the number of ways to write ρ + µ as sum of positive
roots. 2

Now Freudenthal’s formula gives a straightforward way to compute the num-
ber of vertices for any given u.

6 The valency

Let Π = {α1, . . . , αn} be the set of fundamental roots.

Proposition 6.1 The graph Γ(u) has valency k = (u, 2ρ − u)/2. For u =∑
uiαi this becomes k =

∑
i ui −

∑
i u

2
i +

∑
e uiuj, where the last sum is over

all edges e = ij in the Coxeter diagram.

Proof: Let A be a vertex, and B = Φ+ \ A its complement. Compute
(
∑
A,

∑
B) (which equals (u, 2ρ − u)). If r, s are distinct positive roots with

(r, s) 6= 0, then r and s determine a root system of type A2 with a unique third
positive root t, and w.l.o.g. t = r + s, so that (r, t) = (s, t) = 1, (r, s) = −1.
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The pairs taken from {r, s, t} only contribute to (
∑
A,

∑
B) when r, s ∈ A,

t ∈ B or r, s ∈ B, t ∈ A (and then the contribution is 2). This means that
we find a nonzero contribution (of 2) for each neighbour A \ {r, s} ∪ {t} or
A \ {t} ∪ {r, s} of A. This proves the formula for the valency k. On the basis
Π of fundamental roots, inner products are given by the Cartan matrix, and
(u, u)/2 =

∑
u2
i −

∑
e uiuj , and (u, ρ) =

∑
ui. 2

Lemma 6.2 Let u =
∑
uiαi = ρ− µ where µ is a dominant weight. Then the

graph Γ(u) has valency k ≥ 1
2

∑
ui.

Proof: Let C be the Cartan matrix. A vector is converted from root coordi-
nates to weight coordinates by multiplication by C. In weight coordinates ρ = 1
and µ ≥ 0, so that Cu ≤ 1, and k =

∑
ui − 1

2u
>Cu ≥ 1

2

∑
ui. 2

7 Direct products

Let us write things like Γ(E6, 112321) for the graph Γ(Φ, u) where Φ is a root
system of type E6 and u = (ui)i = (1, 1, 2, 3, 2, 1) on the root basis, where
fundamental roots are numbered as in Bourbaki [1].

If the Coxeter diagram is disconnected (or the support of u is), then clearly
the corresponding graph is the direct product of the graphs for the components.
For example, Γ(D8, 11102322) is the direct product Γ(A3, 111)× Γ(D4, 2322).

If the target vector u contains a 1 on a nonterminal position i, then the
graph is the direct product of the two or three graphs that arise by splitting
the Coxeter diagram (and target vector) into components at i, preserving a
copy of i in each component. For example, Γ(A7, 1221221) is the direct product
Γ(A4, 1221)×Γ(A4, 1221). And Γ(D5, 12111) is the direct product Γ(A3, 121)×
Γ(A2, 11) × Γ(A2, 11). (Proof: Since ui = 1 each vertex A contains a unique
root r involving αi. Let the projection πA on one of the components consist of
the roots in A with support in that component, together with the projection of
r on that component. This establishes an isomorphism.)

In particular, Γ(An+1, 11...1) is the n-cube.

This discussion, together with Lemma 6.2, implies that one can identify all
graphs Γ(Φ, u) with valency at most k0 with a finite amount of work. For the
results up to k0 = 8, see [3].

valency 0 1 2 3 4 5 6 7 8
(0,2)-graphs 1 1 1 2 3 8 24 96 301

bipartite 1 1 1 1 2 4 13 40 104
signable 1 1 1 1 2 3 6 17 50

from rootsystem 1 1 1 1 2 3 5 7 11

8 Signability

Theorem 8.1 The graphs Γ(Φ, u) are signable.

Proof: Let L = H ⊕
⊕

r∈Φ〈er〉 be a semisimple complex Lie algebra with
Cartan subalgebra H and root system Φ, where the structure constants are
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chosen such that [er, es] = ±er+s for r, s, r+ s ∈ Φ. (This is possible because Φ
is simply laced—see, e.g., [6], Theorem 4.2.1.)

Let k be a field, and let V be the k-vectorspace with basis Φ+. Let < be
an arbitrary fixed total order on Φ+ and identify each vertex A = {a1, . . . , am},
where a1 < . . . < am, with the exterior product a1 ∧ . . . ∧ am ∈

∧
V . Give

the edge joining A and B, where B = A \ {r + s} ∪ {r, s}, the sign εη (with
ε, η = ±1) if εA = (r+ s) ∧ a1 ∧ . . . ∧ am and ηB = r ∧ s ∧ a1 ∧ . . . ∧ am, where
[er, es] = er+s. We show that this assignment of signs has the property that
the product of the signs on the four edges of a quadrangle is always −1. Note
that if ABCD is a quadrangle, we may choose the ordering of the roots at these
four vertices independently (since each of these vertices is on two edges of the
quadrangle), and invariant tails in the exterior products can be ignored.

Examine the possible shapes of a 4-gon ABCD, as found in the proof of the
(0,2)-property. Define f(r, s) = ±1 by [er, es] = f(r, s)er+s.

If A = (a+b)∧(c+d), B = (a+b)∧c∧d, C = a∧b∧c∧d, D = a∧b∧(c+d),
then the edges AB,BC,CD,DA have signs −f(c, d), f(a, b), f(c, d) and f(a, b)
with product −1, as desired.

If A = a+ b+ c, B = (a+ b)∧ c, C = a∧ b∧ c, D = a∧ (b+ c) then the signs
are f(a + b, c), f(a, b), −f(b, c), f(a, b + c) with product −1, since the Jacobi
identity [[ea, eb], ec]+ [[eb, ec], ea]+ [[ec, ea], eb] = 0 reduces to f(a, b)f(a+b, c)+
f(b, c)f(b+ c, a) = 0. (Note that a+ c /∈ Φ.)

That covers the case where |A| = |C| ± 2 (or |B| = |D| ± 2). Remains the
case where |A| = |C| and |B| = |D| and, say, |A| = |B| − 1.

IfA = a∧b∧(a+b), B = a∧b∧c∧d, C = c∧d∧(a+b), D = a∧(c−a)∧d∧(a+b),
with a + b = c + d, then the signs are f(c, d), f(a, b), f(a, c − a), f(d, c −
a) with product −1 since the Jacobi identity [[ec−a, ea], ed] + [[ea, ed], ec−a] +
[[ed, ec−a], ea] = 0 reduces to f(c− a, a)f(c, d) + f(d, c− a)f(b, a) = 0.

If A = a ∧ b, B = a ∧ (c − a) ∧ d, C = c ∧ d, D = a ∧ (d − a) ∧ c (or
D = (a−d)∧d∧ b), with a+ b = c+d, then the signs are f(d, b−d), f(a, c−a),
−f(a, d − a) (or −f(a − d, b)), f(c, b − c) (or f(a − d, d)) with product −1 by
the Jacobi identity on ea, ed−a, eb−d (or ed, ea−d, ec−a).

That covers all cases. 2
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