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UNIQUENESS OF A ZARA GRAPH ON 126 POINTS AND NON-EXISTENCE 

OF A COMPLETELY REGULAR TWO-GRAPH ON 288 POINTS 

by 

A. Blokhuis and A.E. Brouwer 

VecUc.a.:ted :to J.J. SeA-de.£. on :the oeC£L6-ton 015 11M ftet.ULemen:t. 

Abstract. There is a unique graph on 126 points satisfying the following 

L~ree conditions: 

(i) every maximal clique has six points; 

(ii) for every maximal clique C and every point p not in C, there are exact-

ly two neighbours of p in C; 

(iii) no point is adjacent to all others. 

Using this we show that there exists no completely regular two-graph on 288 

points, cf. [4J, and no (287,7,3)-Zara graph, cf. [lJ. 

1. INTRODUCTION 

A Zara graph with clique size K and nexus e is a graph satisfying' 

(l} every maximal clique has size K; 

(ii) every maximal clique has nexus e (i.e., any point not in the clique 

is adjacent to exactly e points in the clique) . 

For a list of exa~ples, due to Zara, we refer to [lJ and [6J~ In this note 

we prove that there is only one Zara graph on 126 points with clique size 6 
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and nexus 2, which also has the property that no point is adjacent to all 

* others. This graph, Z , is defined as follows: 

Let W be a 6-dimensional vector space over GF(3), together with the bilinear 

form <xIY> = x
1Yl + ... + x6y

6
. Points of Z* are -the one-dimensional sub

spaces of W generated by a point x of norm 1, i.e., <xix> = 1. Two such sub-

spaces are adjacent if they are orthogonal: <x> ~ <y> iff <xIY> = O. 

In the following section Z will denote any Zara graph on 126 points with 

K = 6 and e = 2. 

2. BASIC PROPERTIES OF ZARA GRAPHS 

A singular subset of a Zara graph is a set of points which is the intersec-

tion of a collection of maximal cliques. Let S denote the collection of singu-

lar subsets. From [lJ we quote the main theorem for Zara graphs (a graph is 

called aoaonneated if its completement is connected) : 

THEOREM 1. Let G be a coconnected Zara graph. There exists a rank function 

p , S ->- IN such that 

(i) p (!il) = 0 

(ii) If p(x) = i and C is a maximal clique containing x while p E C\x, then 

:ly E S with p (y) = i + 1 and x u {p} eye C. 

(iii) 3r p (c) = r for all maximal cliques C. 

(iv) 3RO,R1,··· ,Rr p (x) i,. x is in R. maximal cliques. 
~ 

(v) 3KO,K1,···,Kr 
p (x) i .. Ixl = K_ • 

~ 

(vi) The graph defined on the rank sets by x ~ Y i-ff i; ~ II for all i; E X 

and II E Y is strongly regular. o 
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The number r is called the rank of the Zara graph. A coconnected rank 2 Zara 

graph with e = 1 is essentially a generalized quadrangle. In this case singu-

lar subsets are the empty set (rank 0) the points (rank 1) and the maximal 

cliques (rank 2).This graph is also denoted by GQ(K-1,R1-1). As an example 

we mention GQ(4,2). This is a graph on 45 points, maximal cliques have size 

5, and each point is in three maximal cliques. This graph is unique [5J and 

has the following description: 

Let W be a 4-dimensional vector space over GF(4) with hermitian form <xIY> = 

2 
x 1Y1 + .•. x4Y4' where Yi = Y

i
• Points are the one-dimensional subspaces<x> 

with <xix> o and <x> - <y> if <xIY> = 0 (and <x> F <y». Another descrip-

tion of this graph is the following: Let W· be a 5-dimensional vector space 

over GF(3) with bilinear form <xIY> = x 1Y1 + + x5y 5 . Points are the one-

dimensional subspaces <x> with <xix> = 1 and <x> <y> if <xIY> = O. 

From the main theorem on Zara graphs one can prove: 

THEOREM 2. Z is a strongly regular graph, with (v,k,A,~) = (126,45,12,18). 

Each point is in 27 maximal cliques, each pair of adjacent points in 3. The 

induced graph on the neighbours of a given point is (isomorphic to) GQ(4,2). 0 

* 3. A FEW RE~UUIKS ON GQ(4,2), Z AND FISCHER SPACES 

The following facts can be checked directly from the description of GQ(4,2) 

and Z* and the definition of Z. If x and yare points at distance two in the 

graph G then ~G(x,y) (or just ~(x,y» denotes the induced graph on the set 

of common neighbours of x and y in G. 
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Fact 1, If x f y in Z then ~(x,y) is a subgraph of GQ(4,2) on 18 points, 

regular with valency 3. If x f y in z* then ~(x,y) <><3 x K
3

,3 

Fact 2. GQ(4,2) contains 40 subgraphs isomorphic to 3xK3 ,3' Through each 

2-claw (Le. K
1

,2) in GQ(4,2) there is a unique 3 XK3,3 subgraph, even a 

unique K3,3' 

* Let x E Z . Let f(xl denote the induced graph on the neighbours of x, ~(x) 

the induced graph on the non-neighbours, different from x. f(x) "" GQ(4,2l 

and each point y E ~ (x) determines the subgraph Ky "" 3 x K3 , 3 in r (x), where 

Ky ~ jJ(x,y) 

Fact 3. To each subgraph K' "" 3 x K
3
,3' of r (x) there correspond exactly two 

points y,y' E ~(x). such that Ky K
y

' ; K'. Note that y -f y' . 

This property can be used to sho\'l that z* is a Fischer space .. 

DEFINITION. A Fischer space is a linear space (B,Ll such that 

(il All lines have size 2 or 31 

(iil For any point x, the map ax : B + E, fixing x and all lines through x, 

and interchanging the two points distinct from x on the lines of size 3 

through x, is an automorphism. 

THEOREM 3. There is a unique Fischer space on 126 points with 45 two-lines 

on each point 0 

The proof of this fact can be found in [2] p. 14. o 
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40 THE UNIQUENESS PROOF, PART I 

Using a few lemmas, it ~lill be shown that Z carries the structure of a Fischer 

* space. By Theorem 3 then Z ~ Z • 

Notation:. For a subset S of Z, we denote by S 1. the induced subgraph on 

the set of points adjacent to all of S. 

LEMMA 1. Let {a,b,c} be a two-claw in Z: a - b, a - c, b f c. Then 

{a,b,c}1. "" K3 and there is a unique point d - a such that {a,b,c,d}.L ~ {a,b,c}.L. 

Moreover, d f b, d f c. 

Proof. Apply fact 2 to rea} "" GQ(4,2}. o 

LEMMA 2. Let a f b in Z. Then ]l(a,b} "" 3 x K
3

,3 • 

This is the main lemma; the proof will be the subject of the next section. 0 

LEMMA 3. Let a f b in Z. There is a unique point c E Z such that {a,b}1. 

{a,b,c}.L. Moreover, c f a, c f b. 

Proof. Consider a 2-claw {x,y,z} in ]l(a,b}. By Lemma 1 there is a point c in 

{x,y,z}.L and c f a, c f b. By Lemma 2 ]l(a,b} "" 3K3 ,3 and by fact 2 this sub-

graph of rea} is unique, hence ]l(a,b} = ]l(a,c} 0 

THEOREM 4. Z carries the structure of a Fischer space with 126 points and 

45 two-lines on each point. 
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Proof. Let the two-lines correspond to the edges of Z, the 3-lines to the 

triples {a,b,c} as in Lemma 3. This turns Z into a linear space with 45 

two-lines on each point. It remains to be shown that crx is an automorphism 

for all x E Z. Since cr
2 

= 1 it suffices to show that y - z implies x 

crx(y) - crx(z). The only non-trivial case is when y,z E b(x). Let y= r(y)nb(x) , 

Y' = f(crx(Y» n b(x). Then Y n Y' = ~ and jyj = jy' j 27. 

Since j{y,U,x}ij = 6 for all u E Y (there are three maximal cliques passing 

through y, and x has two neighbours on each of them), and since ~(y,x) 

= \l(crx(y),x), we also have j{y·,u.,xrLj = 6 for u E Yand similarly 

j{y,u',x}ij = 6 for u' E Y·. 

Counting edges between \l(x,y) and b(~) it follows that the average of 

j{y,U,x}ij, with u E U = b(~)\(Y U Y' u {y} u {crx(Y)}) is 9. Consider an 

edge in ~(x,y) = \l(x,y'). There are three maximal cliques passing through 

that edge, containing x,y,y' respectively. Hence {y,u,x'} is a coclique for 

u E U, whence j{y,u,x}ij S 9. Combining this yields j{y,u,z}ij 

U E U. 

Next, consider a point z in Y. Since ~(x,z) 

contradiction. Hence, Z E Y', i.e., crx(Y) - crx(z). 

This finishes the uniqueness. It remains to prove Lemma 2. 

5. THE UNIQUENESS PROOF, PART II: PROOF OF THE MAIN LEMMA 

Main lerrona. Let ~ r~' in Z. Then ~ (00,00') '" 3K3 ,3' 

The proof will be split into a number of lemmas. 

9 for all 

o 
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LEMMA 4. Let S = {a,b,c,d}.be a square in Z, i.e., a - b - c - d - a and 

a,; c, b f d. Then Is.1l E {O,1,3}. 

Proof. Clearly s.1 has at most three points, so it suffices to show that 

two points is impossible • 

Let 00,00' E 
.1 .1 

S . By Lemma 1 there is a point a' such that {d,a,b} = {a' ,00,00' }. 

Similarly there are points b ' ,e' ,d'. If two of the points al,bl,e',d' coincide, 

then we have found a third point adjacent to all of S. Hence, assume they 

are all different. There are three maximal cliques containing abo One con-

tains co, an~ther 00', whence the third one contains at and b l 
0 Hence 

a' b l ,...., c~ d' - a'. Considering again the clique {a,b,a' ,b'}, notice that 

c' fa, c' - band c' - b'. It follows that c' f a' and similarly b' f d'. 

The situation is summarized in figure 1 where A = {a,a'}. 

Using the Zara graph property it follows 

that the picture can be completed to figure 2: 

;,here E = {e,e'} etc.: Indeed, the clique 

{a,a',b,b'} can be completed with points 

figure 1 
e,e'. Similarly DC can be completed and 

{e,e'} n {f,f'} = 0. Having found E,F,G,H, 

complete the clique {e,e' ,f,f'} using {i,i'}. 

Since i and -i' have no neighbours in A,B,C,D, 

they must be adjacent to G and H. 

Now 00 and =' have one neighbour in each of 

A,B,C,D. It follows that both are adjacent 

to i,i ' . However, there are three maximal 

figure 2 
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cliques through I, two of them already visible, whence 00 and 00' must be in 

the third clique. This is a contradiction since 00 ~ 00'. The conclusion is 

that a' b' c' d' is the third point in Sl. o 

LEMMA 5. If 00 l' 00' in Z and \1(00,00') contains a square, then \1(00,00') "" 3K
3

,3' 

and there is a unique point COli such that{oo,ool ,coll}l. 

Proof. Let S = {a,b,c,d} be a square in \1(00,00'). From the previous lemma it 

follows that there is a third point, e, adjacent to the square {oo,a,oo' ,c}. 

Similarly there is a point f adjacent to {oo,b,oo' ,d}, and {a,b,c,d,e,f} is a 

K
3

,3 in 11(00,00'). Now p(oo,oo') is a subgraph of r(oo) "" GQ(4,2) with 18 points 

and valency 3, containing a K3,3' This is enough to guarantee that 11(00,00') "" 

"" 3K3,3' Let 00" be the third pcint adjacent to S. Since S is in a unique K3 ,3 

in r(oo) it follows that \1(00,00") = 11(00,00'). 0 

. I{ }ll {l LE~ 6. Let a,b,c E Z w~th a,b,c = 18. Then a,b,c} "" 3K3 ,3' 

Proof. First note that {a,b,c} is a coclique. Let M = {a,b,c}l and A= r(a)\M; 

B and C are defined similarly. Finally R = Z\ (A u B u CuM u {a} u {b} u {c}) . 

o 

IBI = lei = 27 

24, IMI = 18 . 

Two adjacent points in M have twelve common 

neighbours, three in A,B and e and none in 

R. It follows that the neighbours of a 

point r ERin M form a coclique. A point 

m E M has three neighbours in M, nine in 
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A,B and C (since Z is strongly regular with A 12). Hence m has twelve neigh-

bours in R. Since the neighbours of r ERin M form a coclique, r has at 

most nine neighbours in M. But 9 x 24 = 12 x 18, so it is exactly nine. If M 

is connected, there are at most two nine cocliques in M, whence at least 

twelve points of R are adjacent to the same 9-coclique. If there is an edge 

between two of the twelve we have a contradiction, if not also Hence M 

is disconnected. In this case however, one easily sees that M contains a 

square and hence M ~ 3K
3

,3 o 

From now on we will identify r(oo) ~ GQ(4,2) with the set of isotropic points 

in PG(3,4) w.r.t. a unitary form. 

For a E ~(oo) let Ma = ~(a,oo). The graph Ma has 18 vertices and is regular 

of valency 3. By Lemma 5, if Ma contains a square, then Ma ~ 3K
3
,3' A computer 

search for all 18-point subgraphs of valency 3 and girth 2: 5 of GQ(4,2) 

reveals that such a graph is necessarily (connected and) bipartite, i.e., 

a union of two ovoids. Now GQ{4,2) contains precisely two kinds of ovoids, 

plane ovoids and tripod ovoids (cf. [3J). 

Let x E PG(3,4)\U, where U is the set of isotropic points. 

A plane ovoid is a set of the form x.L n u. 

A tripodcovoid (on x) is a ,set of the form 

3 
U xZ

i 
n U , 

i=l 

where {x'Zl'Z2'Z3} is an orthonormal basis. On each non-isotropic point there 

are four tripod ovoids. Since two plane ovoids always meet, we find that 

each set M is one of the following (,.,here Tx denotes some tripod ovoid on x) : 
a 



(x 
.L 

~. U 

(x 
.L 

II. V 

III. (T V 
z 

T ) n 
x 

T ) n 
z 

T') n 
z 

U 

U 

U, 
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{Ma ~ 3K
3

,3 in this case} ~ 

where Z E x.L and x t T 
z 

the union of two tri90d ovoids on the same point. 

(Note that (T 
x 

.L 
V T ) n U for z E x and xz 

z 
in T but not in T does contain z x 

squares, in fact K
Z
,3's.) 

If a - b, a,b E lI(OO), then has two neighbours on each of the three 6-cliques 

on the edge ab, so that Ma n Mb ~ 3K
2

• 

By studying the intersections between sets of the three types, 1,11,111 we 

shall see that necessarily all sets Ma are of type I. Let us prepare this 

study by looking at the intersections of two ovoids in GQ(4,2) . 

Ix 
.L .L 

n ul 

j 
9 if A. n y x y 

3 if x .L y 

otherwise. 

Ix 
.L 

n ul 

j 
0 (z E 

.L 
and x t T ) B. n T if x Z or x 

z z 

6 if 
.L 

and T z E X X E 
Z 

2 otherwise. 

C. IT n T n ul 9 if T = T 
x z x z 

3 if Z E x 
1. 

and xz occurs in both or none of T X/TZ ; 

0 if (x = Z and T <F T ) or (z E xl. and xz in one of Tx,Tzl ; x z 

4 if z <F x and z I- x 
1. 

and (xz)l. meets TnT; 
x z 

otherwise. 
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Next let us determine which intersections of the sets of types I,Il,1II are 

of the form 3K
2 

• 

a) 
.L 

T ) (y.L (x u n U T ) n u 
x y 

3K2 
.L 

x i y t iff y E x , T and T 
Y x 

b) (x 
.L 

U T ) 
x 

n (y.L U T ) 
z n U "" 3K2 iff either (x E {y,z}.L and yiT) or 

x 

(x ,. .L .L 
:3 where {y,z}.L) . y U z and T w w E 

X 

c) (x 
.L 

U T ) n x 
(T 

z 
T') 

z 
n uri< 3K2 

.L (z.L z) (x d) (x U T ) n U T ) n U"" 3K2 iff either (x wand y or w 
y w 

and Y E z.L) or (w E x 
.L 

and y = z) . 

It follows immediately that no set Ma can be of type III, since no type is 

available for ~ when b ~ a. Each edge of ~(oo) is in three 6-cliques and these 

have two points each in f(OO) , so that we find 4-cliques in ~(oo). 

If some 4-clique {a, b,c,d} has Ma = (x.L U Ty) n U and ~ = (y.L U T
z

) n U 

(with Z E x.L), then Mc and Md cannot both be of type I (for let {x,y,z,w} be 

an orthonormal basis; if M 
c 

(v.L n T ) n U where v ~ w then v E w.L and 
v 

and W E Tu' v ,. Tu' impossible by the definition of a tripod); so w.l.o.g. 

M = (z.L U T ) n U. 
c x 

Consequently the three 4-cliques on the edge ab each contain a point c with 

M (z.L U T ) n U, and by Lemma 6 these three sets are distinct, so we see 
c x 

that the three possibilities for Tx (z ,. Tx) all occur. Now fixing a and c 
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and repeating the argument we find three points b with ~ = (yi U Tz ) n U 

and similarly three points a with Ma = (xi Ty) n U and thus a subgraph 

~ K
3
,3.3 in ~(oo). But that is impossible: 

LEMMA 7. Let K be a subgraph of r with K ~ K
3

,3,3 . Then any point x outside 

K is adjacent to precisely three points of K. 

Proof. Standard counting arguments. o 

Next: no 4-clique {a,b,c,d} has Ma of type II and ~, Mc' Md all of type I: 

Let M 
a 

(Xi U T ) n U and {x,y,z,w} be an orthonormal basis; let the three 
y 

sets~, Mc and Md be (v~ U Tvo) 
~ 

are pairwise orthogonal and each 

n U (i = 1,2,3), then the points v
1

,v
2

,v
3 

is in {w,z} u wi u i Of z i 1 V
1 

then v3 E {x,y}, impossible; if v
1 

= w, v
2

,v
3 

E wi\{z} then T must contain w 
v

2 
and must not contain w, impossible; if v

1
,v

2
,v

3 
E (wi u zi)\{w,z} then we may 

i 
suppose v

2
,v

3 
E W \{z} and the same contradiction arises. 

It follows that if a 4-clique {a,b,c,d} has Ma of type II, then there is pre-

cisely one other set of type II among ~, Mc' Md - if Ma (Xi U T ) n u 
y 

i 
then ~ = (y u Tx l n U, but a is on 27 four-cliques and for each of the 

three possible b the edge ab is on only 3 four-cliques, a contradiction. This 

shows that sets of type II do not occur at all: the main lemma is proved. 0 

6. APPLICATIONS 

THEOREM 4. There does not exist a rank 4 Zara graph G on 287 points with 

clique size 7 and nexus 3. 
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Proof. Using the main L~eorem for Zara graphs it is not difficult to show 

that G is a strongly regular graph with (v,k,A,~) = (287,126,45,63). More-

* over, for each point ro E G, f(ro) Z • To finish the proof we need two lemmas. 

LEMMA 8. Let a ~ b in G . Then ~(a,b) is a graph on 63 points, and for each 

C E ~(a,b) we have f~(a,b) (c) "" 3K3 ,3. 

Proof. * Consider fG(c) "" Z • In fG(c) , ~(a,b) "" 3K3 ,3' but this just means 

that f~(a,b) (c) "" 3K3,3· o 

LEMMA 9. * Z does not contain a subgraph T on 63 points which is locally 3K3 ,3 

Proof. * Let ro E Z and suppose ro E T. Let K "" 3K3 ,3 be the subgraph of rz(ro) 

also in T. Let figure 4 be one of the components of K, and consider fT(a). 

We see the points oo,u,v,w. 

a b c Since fT(a) "" 3K3,3 there are points 00' 

and coli in T also adjacent to a,u,v,w. But 

we know these points, they are unique in Z. 

u v w Hence: oo,oo l ,co ll have precisely the same 

figure 4 neighbours in T. As a consequence the points 

of T can be divided into 21 groups of 3. Let T' be the graph defined on tre 

21 triples by t1 - t2 if T1 - T2 for all T1 E t 1 , T2 E t 2 · Then T' is a 

strongly regular graph on 21 points with k = 6, A = 1 and ~ = 1 (this is a 

* direct consequence of the structure of Z ). Now such a graph does not exist, 

since it violates almost all known existence conditions for strongly regular 

graphs. This proves the lemma and the theorem. o 
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THEOREM 5. There does not exist a (non-trivial) completely regular two-graph 

on 288 points. 

Proof. (For definitions and results about completely regular two-graphs 

see [4J). 

A completely regular two-graph on 288 points, gives rise to at least one 

rank 4 Zara graph on 287 points with clique size 7 and nexus 3. But such a 

graph does not exist by the previous theorem. 
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