```
UNIQUENESS OF A ZARA GRAPH ON 126 POINTS AND NON-EXISTENCE OF A COMPLETELY REGULAR TWO-GRAPE ON 288 POINTS
```

by
A. Blokhuis and A.E. Brouwer

Dedicated to J.J. Seidel on the occasion of his retirement.

Abstract. There is a unique graph on 126 points satisfying the following three conditions:
(i) every maximal clique has six points:
(ii) for every maximal clique c and every point p not in $C_{\text {, }}$ chere are eractIy two neighbours of p in C;
(iii) no point is adjacent to all others.

Using this we show that there exists no completely regular two-graph on 288 points, cif. [4], and no (287, 7,3)-Zara graph, cf. [1].

1. INTRODUCTION

A Zara groph with clique size k and nexus e is a graph satistying:
(i) every maximal clique has size K :
(ii) every maximal clique has nexus e (i.e. any point not in the clique is afjacent to exactly e points in the clique).

For a list of examples, due to Zara, we refer to [1] and [6]. In this note we prove that there is only one zara graph on 126 points with clique size 6
and nexus 2, which also has the property that no point is adjacent to all others. This graph. Z^{*}, is defined as follows:

Let W be a 6 -dimensional vector space over $G F(3)$, together with the bilinear form $\langle x \mid y\rangle=x_{1} y_{1}+\ldots+x_{6} y_{6}$. Points of z^{*} are the one-dimensional subspaces of W generated by a point x of norm 1 , i.e., $\langle x \mid x\rangle=1$. Two such subspaces are adjacent if they are orthogonal: $\langle x\rangle \sim\langle y\rangle$ iff $\langle x \mid y\rangle=0$. In the following section Z will denote any Zara graph on 126 points with $K=6$ and $e=2$

2. BASIC PROPERTIES OF ZARA GRAPHS

A singular subset of a Zara graph is a set of points which is the intersection of a collection of maximal cliques. Let S denote the collection of singular subsets. From [1] we quote the main theorem for Zara graphs (a graph is called coconnected if its completement is connected):

THEOREM 1. Let G be a coconnected Zara graph. There exists a rank function $\rho: S \rightarrow \mathbb{N}$ such that
(i) $\rho(\emptyset)=0$
(ii) If $\rho(x)=i$ and C is a maximal clique containing x while $p \in C \backslash x$ then FY $\in S$ with $\rho(y)=i+1$ and $x u\{p\} \subset y \subset C$.
(iii) $\exists r: \rho(c)=r$ for all maximal cliques C.
(iv) $\exists R_{0}, R_{1}, \ldots, R_{I}: \rho(x)=i \Rightarrow x$ is in R_{i} maximal cliques.
(v) $\exists K_{0}, K_{1}, \ldots, K_{r}: \rho(x)=i \Rightarrow|x|=K_{i}$.
(vi) The graph defined on the rank 1 sets by $x \sim y$ iff $\xi \sim \eta$ for all $\xi \in x$ and $\eta \in Y$ is strongly regular.

The number r is called the rank of the Zara graph. A coconnected rank 2 zara graph with $e=1$ is essentially a generalized quadrangle. In this case singular subsets are the empty set (rank 0) the points (rank 1) and the maximal ciiques (rank 2). This graph is also denoted by $G Q\left(K-1, R_{1}-1\right)$. As an example we mention $G Q(4,2)$. This is a graph on 45 points, maximal cliques have size 5, and each point is in three maximal cliques. This graph is unique [5] and has the following description:

Let W be a 4-dimensional vector space over $G F(4)$ with hermitian form $\langle x| y>=$ $x_{1} \bar{y}_{1}+\ldots x_{4} \bar{y}_{4}$, where $\bar{y}_{i}=y_{i}^{2}$. points are the one-dimensional subspaces $\langle x\rangle$ with $\langle x \mid x\rangle=0$ and $\langle x\rangle \sim\langle y\rangle$ if $\langle x \mid y\rangle=0$ (and $\langle x\rangle \neq\langle y\rangle$). Another description of this graph is the following: Let W ' be a 5 -dimensional vector space over $G F(3)$ with bilinear form $\langle x \mid y\rangle=x_{1} y_{1}+\ldots+x_{5} y_{5}$. Points are the onedimensional subspaces $\langle x\rangle$ with $\langle x \mid x\rangle=1$ and $\langle x\rangle \sim\langle y\rangle$ if $\langle x \mid y\rangle=0$.

From the main theorem on Zara graphs one can prove:

THEOREM 2. z is a strongly regular graph, with $(\mathrm{v}, \mathrm{k}, \lambda, \mu)=(126,45,12,18)$. Each point is in 27 maximal cliques, each pair of adjacent points in 3. The induced graph on the neighbours of a given point is (isomorphic to) $G Q(4,2)$.
3. A FEW REMARKS ON GQ $(4,2), z^{*}$ AND FISCHER SPACES

The following facts can be checked directly from the description of $G Q(4,2)$ and z^{*} and the definition of z. If x and y are points at distance two in the graph G then $\mu_{G}(x, y)$ (or just $\mu(x, y)$) denotes the induced graph on the set of common neighbours of x and y in G.

Fact 1. If $x \neq y$ in Z then $\mu(x, y)$ is a subgraph of $G Q(4,2)$ on 18 points, regular with valency 3 . If $x \neq y$ in z^{*} then $\mu(x, y) \simeq 3 \times K_{3,3}$.

Fact 2. $G Q(4,2)$ contains 40 subgraphs isomorphic to $3 \times K_{3,3}$. Through each 2-claw (i.e. $K_{1,2}$) in $G Q(4,2)$ there is a unique $3 \times K_{3,3}$ subgraph, even a unique $K_{3,3}$

Let $x \in \mathbb{Z}^{*}$. Let $\Gamma(x)$ denote the induced graph on the neighbours of $x_{r} \Delta(x)$ the induced graph on the non-neighbours, different from $x, \Gamma(x) \simeq G Q(4,2)$ and each point $y \in \Delta(x)$ determines the subgraph $K_{y} \simeq 3 \times K_{3,3}$ in $\Gamma(x)$, where $K_{Y}=\mu\left(x_{i} y\right)$

Fact 3. To each subgraph $\mathrm{K}^{\prime} \simeq 3 \times \mathrm{K}_{3,}$, of $\Gamma(\mathrm{x})$ there correspond exactly two points $Y_{i} Y^{\prime} \in \Delta(x)$, such that $K_{Y}=K_{Y^{\prime}}=K^{\prime}$. Note that $Y \not \chi^{\prime} y^{\prime}$. This property can be used to show that z^{*} is a Fischer space.

DEFIMITION. A Fischer space is a linear space (E, L) such that
(i) All lines have size 2 or 3 ;
(ii) For any point x, the map $\sigma_{x}: E \rightarrow E$, Fixing x and all lines through x, and interchanging the two points distinct from x on the lines of size 3 through x. is an automorphism.

THEOREM 3. There is a unique Fischer space on 126 points with 45 two-lines on each point.

The proof of this fact can be found in [2] p. 14.

4. THE UNIQUENESS PROOF, PART I

Using a few lemmas, it will be shown that z carries the structure of a fischer space. By Theorem 3 then $z \simeq z^{*}$.
Notation: For a subset S of Z, we denote by S^{\perp} the induced subgraph on the set of points adjacent to all of s.

LEMMA 1. Let $\{a, b, c\}$ be a two-claw in $z: a \sim b, a \sim c, b \neq c$. Then $\{a, b, c\}^{\perp} \simeq \bar{K}_{3}$ and there is a unique point $d \sim$ a such that $\{a, b, c, d\}^{\perp}=\{a, b, c\}^{\perp}$. Moreover, $d \notin b, d \notin c$.

Proof. Apply fact 2 to $\Gamma(a) \simeq G Q(4,2)$.

LEMMA 2. Let $\mathrm{a} \not 7^{\prime} \mathrm{b}$ in z . Then $\mu(\mathrm{a}, \mathrm{b}) \simeq 3 \times \mathrm{K}_{3,3}$.
This is the main lemma; the proof will be the subject of the next section. \square

LEMMA 3. Let $a \nsim b$ in z. There is a unique point $c \in z$ such that $\{a, b\}^{\perp}=$ $\{a, b, c\}^{\perp}$. Moreover, $c \neq a, c \neq b$.

Proof. Consider a $2-\mathrm{claw}\{x, y, z\}$ in $\mu(a, b)$. By Lemma 1 there is a point c in $\{x, y, z\}^{\perp}$ and $c \neq a, c \neq b$. By Lemma $2 \mu(a, b) \simeq 3 K_{3,3}$ and by fact 2 this subgraph of $\Gamma(a)$ is unique, hence $\mu(a, b)=\mu(a, c)$.

THEOREM 4. z carries the structure of a Fischer space with 126 points and 45 two-lines on each point.

Proof. Let the two-lines correspond to the edges of Z, the 3 -lines to the triples $\{a, b, c\}$ as in Lemma 3. This turns z into a linear space with 45 two-lines on each point. It remains to be shown that σ_{x} is an automorphism for all $x \in Z$. Since $\sigma_{x}^{2}=1$ it suffices to show that $y \sim z$ implies $\sigma_{x}(y) \sim \sigma_{x}(z)$. The only non-trivial case is when $y, z \in \Delta(x)$. Let $Y=\Gamma(y) \cap \Delta(x)$, $Y^{\prime}=\Gamma\left(\sigma_{X}\left(Y^{\prime}\right)\right) \cap \Delta(X)$. Then $Y \cap Y^{\prime}=\emptyset$ and $|Y|=\left|Y^{\prime}\right|=27$. Since $\left|\{y, u, x\}^{\perp}\right|=6$ for all $u \in Y$ (there are three maximal cliques passing through y, and x has two neighbours on each of them), and since $\mu(y, x)=$ $=\mu\left(\sigma_{x}(y), x\right)$, we also have $\left|\left\{y^{i}, u, x\right\}^{\perp}\right|=6$ for $u \in Y$ and similarly $\left|\left\{y, u^{*}, x\right\}^{\perp}\right|=6$ for $u^{\prime} \in Y^{*}$.

Counting edges between $\mu(x, y)$ and $\Delta(\infty)$ it follows that the average of $\left|\{y, u, x\}^{\perp}\right|$, with $u \in U=\Delta(\infty) \backslash\left(Y \cup Y^{\prime} \cup\{y\} \cup\left\{\sigma_{x}(y)\right\}\right)$ is 9. Consider an edge in $\mu\left(x_{,} y\right)=\mu\left(x_{g} y^{0}\right)$. There are three maximal cliques passing through that edge, containing x, y, y^{\prime} respectively. Hence $\left\{y, u, x^{\prime}\right\}$ is a coclique for $u \in U$, whence $\left|\{y, u, x\}^{\perp}\right| \leq 9$. Combining this yields $\left|\{y, u, z\}^{\perp}\right|=9$ for all $u \in U$.

Next, consider a point z in Y. Since $\mu(x, z)=\mu\left(x, \sigma_{x}(z)\right)$, we must have $\sigma_{X}(z) \in Y$ or $\sigma_{X}(z) \in Y^{\prime}$. If $\sigma_{X}(z) \in Y$, then $Y \sim z$ and $y \sim \sigma_{X}(z)$ but $y \sim x$, contradiction. Hence, $z \in Y^{\prime}$, i.e., $\sigma_{X}(y) \sim \sigma_{X}(z)$.

This finishes the uniqueness. It remains to prove Lemma 2.
5. THE UNIQUENESS PROOF, PART II: PROOF OF THE MAIN LEMMA

Main lemma. Let $\infty \nsim \infty$ in z. Then $\mu(\infty, \infty) \simeq 3 K_{3,3}$.
The proof will be split into a number of lemmas.

LEMMA 4. Let $s=\{a, b, c, d\}$ be a square in z, i.e., $a \sim b \sim c \sim d \sim a$ and a $\neq \mathrm{c}, \mathrm{b} \neq \mathrm{d}$. Then $\left|\mathrm{S}^{\perp}\right| \in\{0,1,3\}$.

Proof. Clearly S^{\perp} has at most three points, so it suffices to show that two points is impossible.

Let $\infty, \infty^{\prime \prime} \in S^{\perp}$. By Lemma 1 there is a point a^{\prime} such that $\{a, a, b\}^{1}=\left\{a^{\prime}, \infty, \infty{ }^{\prime}\right\}$. Similarly there are points $b^{\prime}, c^{\prime}, d^{\prime}$. If two of the points $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$ coincide, then we have found a third point adjacent to all of S. Hence, assume they are all different. There are three maximal cliques containing ab. One contains ∞, another ∞^{\prime}, whence the third one contains a^{\prime} and b^{\prime}. Hence $a^{\prime} \sim b^{\prime} \sim c^{\prime} \sim d^{\prime} \sim a^{\prime}$. Considering again the clique $\left\{a, b, a^{\prime}, b^{\prime}\right\}$, notice that $c^{\prime} \nsim a, c^{\prime} \sim b$ and $c^{\prime} \sim b^{\prime}$. It follows that $c^{\prime} \not \not \not a^{\prime}$ and similarly $b^{\prime} \nsim d^{\prime}$. The situation is summarized in figure 1 where $A=\left\{a, a^{1}\right\}$.

Figure 1

figure 2

Using the Zara graph property it follows that the picture can be completed to figure 2:
where $E=\left\{e, e^{\prime}\right\}$ etc.: Indeed, the clique $\left\{a, a^{\prime}, b, b^{\prime}\right\}$ can be completed with points e.e'. Similarly DC can be completed and $\left\{e_{,} e^{\prime}\right\} \cap\left\{f, f^{\prime}\right\}=\not \subset$. Having found $E_{r} F, G, H$, complete the clique $\left\{e, e^{\prime}, f, f{ }^{\prime}\right\}$ using $\left\{i\right.$, i' $\left.^{\prime}\right\}$. Since i and i^{\prime} have no neighbours in A, B, C, D, they must be adjacent to G and H. Now ∞ and ∞ have one neighbour in each of A, B, C,D. It follows that both are adjacent to i,i'. However, there are three maximal
cliques through I, two of them already visible, whence ∞ and ∞ must be in the third clique. This is a contradiction since $\infty \nsim \infty$. The conclusion is that $a^{\prime}=b^{\prime}=c^{\prime}=d^{\prime}$ is the third point in S^{\perp}.

LEMMA 5. If $\infty \nsim \infty^{\prime}$ in Z and $\mu\left(\infty, \infty^{\prime}\right)$ contains a square, then $\mu\left(\infty, \infty^{\prime}\right) \simeq 3 K_{3,}$, and there is a unique point $\infty^{\prime \prime}$ such that $\left\{\infty, \infty^{\prime}, \infty^{\prime \prime}\right\}^{\perp}=\mu(\infty, \infty$ ').

Proof. Let. $S=\{a, b, c, \alpha\}$ be a square in $\mu(\infty, \infty$). From the previous lema it follows that there is a third point, e, adjacent to the square $\{\infty, a, \infty, c\}$. Similarly there is a point $£$ adjacent to $\{\infty, b, \infty$, $d\}$, and $\{a, b, c, a, e, f\}$ is a $K_{3,3}$ in $\mu\left(\infty, \infty^{\prime}\right)$. Now $\mu(\infty, \infty)$ is a subgraph of $\Gamma(\infty) \simeq G Q(4,2)$ with 18 points and valency 3 , containing a $K_{3,3}$. This is enough to guarantee that $\mu(\infty, \infty) \simeq$ $\simeq 3 K_{3,3}$. Let ∞ 的 be the third point adjacent to S. Since S is in a unique $K_{3,3}$ in $\Gamma(\infty)$ it follows that $\mu\left(\infty, \infty^{\prime \prime}\right)=\mu\left(\infty, \infty^{\prime}\right)$.

LEMMA 6. Let $a, b, c \in z$ with $\left|\{a, b, c\}^{\perp}\right|=18$. Then $\{a, b, c\}^{\perp} \simeq 3 \mathrm{~K}_{3,3}$. Proof. First note that $\{a, b, c\}$ is a coclique. Let $M=\{a, b, c\}^{\perp}$ and $A=\Gamma(a) \backslash M$; B and C are defined similarly. Finally $R=Z \backslash(A \cup B \cup C \cup M \cup\{a\} \cup\{b\} \cup\{c\})$.

$|A|=|B|=|C|=27$
$|R|=24, \quad|M|=18$.

Two adjacent points in M have twelve common
(R) neighbours, three in A, B and C and none in R. It follows that the neighbours of a point $r \in R$ in M form a coclique. A point $\mathrm{m} \in \mathrm{M}$ has three neighbours in M , nine in
A, B and C (since Z is strongly regular with $\lambda=12$). Hence m has twelve neighbours in R. Since the neighbours of $r \in R$ in M form a coclique, x has at most nine neighbours in M. But $9 \times 24=12 \times 18$, so it is exactly nine. If M is connected, there are at most two nine cocliques in M, whence at least twelve points of R are adjacent to the same 9 -coclique. If there is an edge between two of the twelve we have a contradiction, if not also Hence M is disconnected. In this case however, one easily sees that M contains a square and hence $\mathrm{M} \simeq 3 \mathrm{~K}_{3,3}$.

From now on we will identify $\Gamma(\infty) \simeq G Q(4,2)$ with the set of isotropic points in $P G(3,4)$ w.r.t. a unitary form.

For $a \in \Delta(\infty)$ let $M_{a}=\mu(a, \infty)$. The graph M_{a} has 18 vertices and is regular of valency 3. By Lemma 5, if M_{a} contains a square, then $M_{a} \simeq 3 K_{3,3}$. A computer search for all 18-point subgraphs of valency 3 and girth ≥ 5 of $G Q(4,2)$ reveals that such a graph is necessarily (connected and) bipartite, i.e.. a union of two ovoids. Now $G Q(4,2)$ contains precisely two kinds of ovoids, plane ovoids and tripod ovoids (cf. [3]). Let $x \in P G(3,4) \backslash U$, where U is the set of isotropic points. A plane ovoid is a set of the form $x^{\perp} \cap U$. A tripod ovoid (on x) is a set of the form

$$
\bigcup_{i=1}^{3} x z_{i} \cap U
$$

where $\left\{x, z_{1}, z_{2}, z_{3}\right\}$ is an orthonormal basis. on each non-isotropic point there are four tripod ovoids. Since two plane ovoids always meet, we find that each set M_{a} is one of the following (where T_{x} denotes some tripod ovoid on x):

ㅍ. ($\left.\mathrm{X}^{\perp} \cup \mathrm{T}_{\mathrm{X}}\right)$ ก $\cup \quad\left(\mathbb{M}_{a} \simeq 3 \mathrm{~K}_{3,3}\right.$ in this case).
II. $\left(x^{\perp} \cup T_{z}\right) \cap U \quad$ where $z \in X^{\perp}$ and $x \notin \mathrm{~T}_{z}$.
III. ($\left.T_{z} \cup T_{z}^{r}\right) \cap U$, the union of two tripod ovoids on the same point.
(Note that ($\mathrm{T}_{\mathrm{X}} \cup \mathrm{T}_{\mathrm{z}}$) \cap U for $\mathrm{z} \in \mathrm{X}^{1}$ and Xz in T_{z} but not in T_{x} does contain squares, in fact $K_{2,3}{ }^{\prime}$ s.)

If $a \sim b, a, b \in \Delta(\infty)$, then ∞ has two neighbours on each of the three 6-cliques on the edge $a b$, so that $M_{a} \cap M_{b} \simeq 3 K_{2}$.
By studying the intersections between sets of the three types, I, II, III we shall see that necessarily all sets M_{a} are of type I. Let us prepare this study by looking at the intersections of two ovoids in $G Q(4,2)$.
A. $\left|x^{\perp} \cap y^{\perp} \cap U\right|=\left\{\begin{array}{l}9 \text { if } x=y ; \\ 3 \text { if } x \perp y ; \\ 1 \text { otherwise. }\end{array}\right.$
B. $\left|x^{\perp} \cap T_{z} \cap U\right|=\left\{\begin{array}{l}0 \text { if } x=z \text { or }\left(z \in x^{\perp} \text { and } x \notin T_{z}\right) ; \\ 6 \text { if } z \in x^{\perp} \text { and } x \in T_{z} ; \\ 2 \text { otherwise. }\end{array}\right.$
c. $\left|T_{X} \cap T_{z} \cap U\right|=\left\{\begin{array}{l}9 \text { if } T_{x}=T_{z} ; \\ 3 \text { if } z \epsilon x^{\perp} \text { and } x z \text { occurs in both or none of } T_{X}, T_{z} ; \\ 0 \text { if }\left(x=z \text { and } T_{x} \neq T_{z}\right) \text { or }\left(z \in X^{\perp} \text { and } x z \text { in one of } T_{x}, T_{z}\right) ; \\ 4 \text { if } z \neq x \text { and } z \neq x^{\perp} \text { and }(x z)^{\perp} \text { meets } T_{x} \cap T_{z} ; \\ 1 \text { otherwise. }\end{array}\right.$

Next let us determine which intersections of the sets of types I,II,III are of the form $3 \mathrm{~K}_{2}$.
a) ($\left.x^{\perp} \cup T_{x}\right) \cap\left(y^{\perp} \cup T_{y}\right) \cap U \simeq 3 K_{2}$ iff $y \in x^{\perp}, x \notin T_{y}$ and $y \notin T_{x}$.
b) $\left(x^{\perp} \cup T_{x}\right) \cap\left(y^{\perp} \cup T_{z}\right) \cap U \simeq 3 K_{2}$ iff either $\left(x \in\{y, z\}^{\perp}\right.$ and $\left.y \notin T_{x}\right)$ or $\left(x \notin y^{\perp} \cup z^{\perp}\right.$ and $T_{x} \ni w$ where $w \in\{y, z\}^{\perp}$).
c) $\left(x^{\perp} \cup T_{x}\right) \cap\left(T_{z} \cup T_{z}^{\prime}\right) \cap U \neq 3 K_{2}$.
d) ($x^{\perp} \cup T_{Y}$) $\cap\left(z^{\perp} \cup T_{W}\right) \cap U \simeq 3 K_{2}$ iff either ($x=w$ and $y=z$) or ($x=w$ and $y \in z^{\perp}$) or ($w \in x^{\perp}$ and $y=z$).
e) $\left(x^{\perp} \cup T_{y}\right) \cap\left(T_{z} \cup T_{z}^{\prime}\right) \cap \cup \not x 3 K_{2}$.
f) $\left(T_{x} \cup T_{x}^{\prime}\right) \cap\left(T_{z} \cup T_{z}^{\prime}\right) \cap \cup \notin 3 K_{2}$.

It follows immediately that no set M_{a} can be of type III, since no type is available for M_{b} when $b \sim a$. Each edge of $\Delta(\infty)$ is in three 6 -cliques and these have two points each in $\Gamma(\infty)$, so that we find 4 -cliques in $\Delta(\infty)$.

If some 4 -clique $\{a, b, c, d\}$ has $M_{a}=\left(x^{\perp} \cup T_{y}\right) \cap U$ and $M_{b}=\left(y^{\perp} \cup T_{z}\right) \cap U$ (with $z \in x^{\perp}$), then M_{c} and M_{d} cannot both be of type I (for let $\{x, y, z, w\}$ be an orthonormal basis; if $M_{C}=\left(v^{\perp} \cap T_{v}\right) \cap U$ where $v \neq w$ then $v \in w^{\perp}$ and $w \in T_{v}$; now M_{d} cannot be $\left(w^{\perp} \cup T_{w}\right) \cap U$ so $M_{d}=\left(u^{\perp} \cup T_{u}\right) \cap U$ where $u \in\{v, w\}^{\perp}$ and $w \in T_{u}, v \notin T_{u}$, impossible by the definition of a tripod); so w.l.o.g. $M_{c}=\left(z^{\perp} \cup T_{X}\right) \cap U$.

Consequently the three 4 -cliques on the edge $a b$ each contain a point c with $M_{c}=\left(z^{1} U T_{X}\right) \cap U$, and by Lemma 6 these three sets are distinct, so we see that the three possibilities for $T_{x}\left(z \notin T_{x}\right)$ all occur. Now fixing a and c
and repeating the argument we find three points b with $M_{b}=\left(y^{1} \cup T_{z}\right) \cap U$ and similarly three points a with $M_{a}=\left(x^{1} \cup T_{Y}\right) \cap U$ and thus a subgraph $\simeq K_{3,3,3}$ in $\Delta(\infty)$. But that is impossible:

LEMMA 7. Let K be a subgraph of F with $\mathrm{K} \simeq \mathrm{K}_{3,3,3}$. Then any point x outside K is adjacent to precisely three points of K .

Proof. Standard counting arguments.

Next: no 4-clique $\{a, b, c, a\}$ has M_{a} of type II and M_{b}, M_{c}, M_{d} all of type I: Let $M_{a}=\left(x^{\perp} \cup T_{y}\right) \cap U$ and $\{x, y, z, w\}$ be an orthonormal basis; let the three sets M_{b}, M_{c} and M_{d} be $\left(v_{i}^{\perp} \cup T_{v_{i}}\right) n U \quad(i=1,2,3)$, then the points v_{1}, v_{2}, v_{3} are pairwise orthogonal and each is in $\{w, z\} u w^{\perp} u z^{\perp}$; if $v_{1}=w, v_{2}=z$ then $v_{3} \in\{x, y\}$, impossible; if $v_{1}=w, v_{2}, v_{3} \in w^{\perp} \backslash\{z\}$ then v_{2} must contain w and must not contain w, impossible; i.f $v_{1}, v_{2}, v_{3} \in\left(w^{\perp} \cup z^{1}\right) \backslash\{w, z\}$ then we may suppose $v_{2}, v_{3} \in w^{\perp} \backslash\{z\}$ and the same contradiction arises.

It follows that if a 4-clique $\{a, b, c, d\}$ has M_{a} of type II, then there is precisely one other set of type II among $M_{b}, M_{c}, M_{d}-i f M_{a}=\left(x^{1} U T_{y}\right) \cap U$ then $M_{b}=\left(y^{\perp} \cup T_{x}\right) \cap U$; but a is on 27 four-cliques and for each of the three possible b the edge $a b$ is on only 3 four-cliques, a contradiction. This shows that sets of type II do not occur at all: the main lemma is proved.

6. APPLICATIONS

THEOREM 4. There does not exist a rank 4 zara graph G on 287 points with clique size 7 and nexus 3 .

Proof. Using the main theorem for Zaxa graphs it is not difficult to show that G is a strongīy regular graph with $(v, k, \lambda, \mu)=(287,126,45,63)$. Moreover, for each point $\infty \in G, \Gamma(\infty) \simeq Z^{*}$. To finish the proof we need two lemmas.

LEMMA 8. Let $\mathrm{a} \nsim \mathrm{b}$ in G. Then $\mu(\mathrm{a}, \mathrm{b})$ is a graph on 63 points, and for each $c \in \mu(a, b)$ we have $\Gamma_{\mu(a, b)}(c) \simeq 3 K_{3,3}$.

Proof. Consider $\Gamma_{G}(c) \simeq Z^{*} . \operatorname{In} \Gamma_{G}(c), \mu(a, b) \simeq 3 K_{3,3}$, but this just means that $\Gamma_{\mu(a, b)}(c) \simeq 3 \mathrm{~K}_{3,3}$.

LEMMA 9. z^{*} does not contain a subgraph T on 63 points which is locally $3 \mathrm{~K}_{3,3}$. Proof. Let $\infty \in Z^{*}$ and suppose $\infty \in$ T. Let $K \simeq 3 K_{3,3}$ be the subgraph of $\Gamma_{z}(\infty)$ also in T. Let figure 4 be one of the components of K, and consider $\Gamma_{T}(a)$. We see the points ∞, u, v, w.

figure 4

Since $\Gamma_{T}(a) \simeq 3 K_{3,3}$ there are points $\infty 1$ and ∞ " in T also adjacent to a, u, v, w. But we know these points, they are unique in 2 . Hence: $\infty, \infty^{\prime}, \infty$ have precisely the same neighbours in T. As a consequence the points
of T can be divided into 21 groups of 3 . Let T ' be the graph defined on the 21 triples by $t_{1} \sim t_{2}$ if $\tau_{1} \sim \tau_{2}$ for all $\tau_{1} \in t_{1}, \tau_{2} \in t_{2}$. Then T is a strongly regular graph on 21 points with $k=6, \lambda=1$ and $\mu=1$ (this is a direct consequence of the structure of z^{*}). Now such a graph does not exist, since it violates almost all known existence conditions for strongly regular graphs. This proves the lemma and the theorem.

THEOREM 5. There does not exist a (non-trivial) completely regular two-graph on 288 points.

Proof. (For definitions and results about completely regular two-graphs see [4]).

A completely regular two-graph on 288 points, gives rise to at least one rank 4 Zara graph on 287 points with clique size 7 and nexus 3 . But such a graph does not exist by the previous theorem.

ACKNOWLEDGEMENTS.

We are very grateful to Henny Wilbrink for carefully reading the manuscript and pointing out a "few" mistakes.

REFERENCES

[1] Blokhuis, A., Few-distance sets, thesis , T. H. Eindhoven (1983).
[2] Brouwer, A.E., A.M. Cohen, H.A. Wilbrink, Near polygons with lines of size three and Fischer spaces. ZW 191/83 Math. Centre, Amsterdam.
[3] Brouwer, A.E., H.A. Wilbrink, Ovoids and fans in the generalized quadrangle $G Q(4,2)$, report ZN 102/81 Math. Centre, Amsterdam.
[4] Neumaier, A., Completely regular two-graphs, Arch.Math. 38, (1982) 378-384.
[5] Seidel, J.J., Strongly regular graphs with ($-1,1,0$) adjacency matrix having eigenvalue 3, Linear Algebra and Applications 1 (1968), 281-298.
[6] Zara, F., Graphes liés aux espaces polaires, preprint.

