UNIQUENESS OF A ZARA GRAPH ON 126 POINTS AND NON-EXISTENCE OF A COMPLETELY REGULAR TWO-GRAPH ON 288 POINTS

by

A. Blokhuis and A.E. Brouwer

Dedicated to J.J. Seidel on the occasion of his retirement.

Abstract. There is a unique graph on 126 points satisfying the following three conditions:

- (i) every maximal clique has six points;
- (ii) for every maximal clique C and every point p not in C, there are exactly two neighbours of p in C;
- (iii) no point is adjacent to all others.

Using this we show that there exists no completely regular two-graph on 288 points, cf. [4], and no (287,7,3)-Zara graph, cf. [1].

1. INTRODUCTION

- A Zara graph with clique size K and nexus e is a graph satisfying:
 - (i) every maximal clique has size K;
- (ii) every maximal clique has nexus e (i.e., any point not in the clique is adjacent to exactly e points in the clique).

For a list of examples, due to Zara, we refer to [1] and [6]. In this note we prove that there is only one Zara graph on 126 points with clique size 6

and nexus 2, which also has the property that no point is adjacent to all others. This graph, Z^* , is defined as follows:

Let W be a 6-dimensional vector space over GF(3), together with the bilinear form $\langle x | y \rangle = x_1 y_1 + \ldots + x_6 y_6$. Points of Z^* are the one-dimensional subspaces of W generated by a point x of norm 1, i.e., $\langle x | x \rangle = 1$. Two such subspaces are adjacent if they are orthogonal: $\langle x \rangle \sim \langle y \rangle$ iff $\langle x | y \rangle = 0$. In the following section Z will denote any Zara graph on 126 points with K = 6 and e = 2.

2. BASIC PROPERTIES OF ZARA GRAPHS

A *singular subset* of a Zara graph is a set of points which is the intersection of a collection of maximal cliques. Let *S* denote the collection of singular subsets. From [1] we quote the main theorem for Zara graphs (a graph is called *coconnected* if its completement is connected):

THEOREM 1. Let G be a coconnected Zara graph. There exists a rank function $\rho \ : \ S \not \to \mathbb{N} \ \text{such that}$

- (i) $\rho(\emptyset) = 0$
- (ii) If $\rho(x) = i$ and C is a maximal clique containing x while $p \in C \setminus x$, then $\exists y \in S \text{ with } \rho(y) = i+1 \text{ and } x \cup \{p\} \subset y \subset C.$

(iii) $\exists r : \rho(c) = r$ for all maximal cliques C.

(iv) $\exists R_0, R_1, \dots, R_n : \rho(x) = i \Rightarrow x \text{ is in } R_i \text{ maximal cliques.}$

- (v) $\exists K_0, K_1, \dots, K_r : \rho(x) = i \Rightarrow |x| = K_i$.
 - (vi) The graph defined on the rank 1 sets by $x \sim y$ iff $\xi \sim \eta$ for all $\xi \in x$ and $\eta \in y$ is strongly regular.

- 7 -

The number r is called the *rank* of the Zara graph. A coconnected rank 2 Zara graph with e = 1 is essentially a *generalized quadrangle*. In this case singular subsets are the empty set (rank 0) the points (rank 1) and the maximal cliques (rank 2). This graph is also denoted by $GQ(K-1,R_1-1)$. As an example we mention GQ(4,2). This is a graph on 45 points, maximal cliques have size 5, and each point is in three maximal cliques. This graph is unique [5] and has the following description:

Let W be a 4-dimensional vector space over GF(4) with hermitian form $\langle x | y \rangle = x_1 \overline{y}_1 + \ldots x_4 \overline{y}_4$, where $\overline{y}_1 = y_1^2$. Points are the one-dimensional subspaces $\langle x \rangle$ with $\langle x | x \rangle = 0$ and $\langle x \rangle \sim \langle y \rangle$ if $\langle x | y \rangle = 0$ (and $\langle x \rangle \neq \langle y \rangle$). Another description of this graph is the following: Let W' be a 5-dimensional vector space over GF(3) with bilinear form $\langle x | y \rangle = x_1 y_1 + \ldots + x_5 y_5$. Points are the one-dimensional subspaces $\langle x \rangle$ with $\langle x | x \rangle = 1$ and $\langle x \rangle \sim \langle y \rangle$ if $\langle x | y \rangle = 0$.

From the main theorem on Zara graphs one can prove:

THEOREM 2. Z is a strongly regular graph, with $(v,k,\lambda,\mu) = (126,45,12,18)$. Each point is in 27 maximal cliques, each pair of adjacent points in 3. The induced graph on the neighbours of a given point is (isomorphic to) GQ(4,2).

3. A FEW REMARKS ON GQ(4,2), Z AND FISCHER SPACES

The following facts can be checked directly from the description of GQ(4,2)and Z^{*} and the definition of Z. If x and y are points at distance two in the graph G then $\mu_{G}(x,y)$ (or just $\mu(x,y)$) denotes the induced graph on the set of common neighbours of x and y in G. Fact 1. If $x \neq y$ in Z then $\mu(x,y)$ is a subgraph of GQ(4,2) on 18 points, regular with valency 3. If $x \neq y$ in Z^* then $\mu(x,y) \simeq 3 \times K_{3-3}$.

Fact 2. GQ(4,2) contains 40 subgraphs isomorphic to $3 \times K_{3,3}^{-}$. Through each 2-claw (i.e. $K_{1,2}^{-}$) in GQ(4,2) there is a unique $3 \times K_{3,3}^{-}$ subgraph, even a unique $K_{3,3}^{-}$.

Let $x \in \mathbb{Z}^*$. Let $\Gamma(x)$ denote the induced graph on the neighbours of x, $\Delta(x)$ the induced graph on the non-neighbours, different from x. $\Gamma(x) \simeq GQ(4,2)$ and each point $y \in \Delta(x)$ determines the subgraph $K_y \simeq 3 \times K_{3,3}$ in $\Gamma(x)$, where $K_y = \mu(x,y)$

Fact 3. To each subgraph $K^{*} \simeq 3 \times K_{3,3}^{*}$, of $\Gamma(x)$ there correspond exactly two points $y, y^{*} \in \Delta(x)$, such that $K_{y} = K_{y}^{*} = K^{*}$. Note that $y \not \sim y^{*}$.

This property can be used to show that z^* is a *Fischer space*.

DEFINITION. A Fischer space is a linear space (E,L) such that

(i) All lines have size 2 or 3;

(ii) For any point x, the map $\sigma_x : E \rightarrow E$, fixing x and all lines through x, and interchanging the two points distinct from x on the lines of size 3 through x, is an automorphism.

THEOREM 3. There is a unique Fischer space on 126 points with 45 two-lines on each point.

The proof of this fact can be found in [2] p. 14.

- 9 -

4. THE UNIQUENESS PROOF, PART I

Using a few lemmas, it will be shown that Z carries the structure of a Fischer space. By Theorem 3 then $Z \simeq Z^*$.

Notation: For a subset S of Z, we denote by S^{\perp} the induced subgraph on the set of points adjacent to all of S.

LEMMA 1. Let {a,b,c} be a two-claw in Z: $a \sim b$, $a \sim c$, $b \neq c$. Then {a,b,c}^{\perp} $\simeq \bar{K}_3$ and there is a unique point $d \sim a$ such that {a,b,c,d}^{\perp} = {a,b,c}^{\perp}. Moreover, $d \neq b$, $d \neq c$.

Proof. Apply fact 2 to $\Gamma(a) \simeq GQ(4,2)$.

LEMMA 2. Let a $\not\sim$ b in Z. Then $\mu(a,b) \simeq 3 \times K_{3,3}^{}$. This is the *main lemma*; the proof will be the subject of the next section.

LEMMA 3. Let a \neq b in Z. There is a unique point $c \in Z$ such that $\{a,b\}^{\perp} = \{a,b,c\}^{\perp}$. Moreover, $c \neq a$, $c \neq b$.

Proof. Consider a 2-claw {x,y,z} in $\mu(a,b)$. By Lemma 1 there is a point c in $\{x,y,z\}^{\perp}$ and c $\neq a$, c $\neq b$. By Lemma 2 $\mu(a,b) \simeq 3K_{3,3}$ and by fact 2 this subgraph of $\Gamma(a)$ is unique, hence $\mu(a,b) = \mu(a,c)$.

THEOREM 4. Z carries the structure of a Fischer space with 126 points and 45 two-lines on each point.

П

Proof. Let the two-lines correspond to the edges of Z, the 3-lines to the triples $\{a,b,c\}$ as in Lemma 3. This turns Z into a linear space with 45

two-lines on each point. It remains to be shown that $\sigma_{\mathbf{X}}$ is an automorphism

for all $x \in Z$. Since $\sigma_x^2 = 1$ it suffices to show that $y \sim z$ implies

 $\sigma_{\mathbf{X}}(\mathbf{y}) \sim \sigma_{\mathbf{X}}(\mathbf{z})$. The only non-trivial case is when $\mathbf{y}, \mathbf{z} \in \Delta(\mathbf{x})$. Let $\mathbf{Y} = \Gamma(\mathbf{y}) \cap \Delta(\mathbf{x})$, $\mathbf{Y}' = \Gamma(\sigma_{\mathbf{x}}(\mathbf{y})) \cap \Delta(\mathbf{x})$. Then $\mathbf{Y} \cap \mathbf{Y}' = \emptyset$ and $|\mathbf{Y}| = |\mathbf{Y}'| = 27$.

Since $|\{y,u,x\}^{\perp}| = 6$ for all $u \in Y$ (there are three maximal cliques passing through y, and x has two neighbours on each of them), and since $\mu(y,x) = = \mu(\sigma_x(y),x)$, we also have $|\{y^i,u,x\}^{\perp}| = 6$ for $u \in Y$ and similarly $|\{y,u^i,x\}^{\perp}| = 6$ for $u^i \in Y^i$.

Counting edges between $\mu(\mathbf{x}, \mathbf{y})$ and $\Delta(\infty)$ it follows that the average of $|\{\mathbf{y}, \mathbf{u}, \mathbf{x}\}^{\perp}|$, with $\mathbf{u} \in \mathbf{U} = \Delta(\infty) \setminus \{\mathbf{y} \cup \mathbf{y}^{*} \cup \{\mathbf{y}\} \cup \{\sigma_{\mathbf{x}}^{*}(\mathbf{y})\})$ is 9. Consider an edge in $\mu(\mathbf{x}, \mathbf{y}) = \mu(\mathbf{x}, \mathbf{y}^{*})$. There are three maximal cliques passing through that edge, containing $\mathbf{x}, \mathbf{y}, \mathbf{y}^{*}$ respectively. Hence $\{\mathbf{y}, \mathbf{u}, \mathbf{x}^{*}\}$ is a coclique for $\mathbf{u} \in \mathbf{U}$, whence $|\{\mathbf{y}, \mathbf{u}, \mathbf{x}\}^{\perp}| \leq 9$. Combining this yields $|\{\mathbf{y}, \mathbf{u}, \mathbf{z}\}^{\perp}| = 9$ for all $\mathbf{u} \in \mathbf{U}$.

Next, consider a point z in Y. Since $\mu(x,z) = \mu(x,\sigma_x(z))$, we must have $\sigma_x(z) \in Y$ or $\sigma_x(z) \in Y'$. If $\sigma_x(z) \in Y$, then $y \sim z$ and $y \sim \sigma_x(z)$ but $y \sim x$, contradiction. Hence, $z \in Y'$, i.e., $\sigma_x(y) \sim \sigma_x(z)$.

Π

This finishes the uniqueness. It remains to prove Lemma 2.

5. THE UNIQUENESS PROOF, PART II: PROOF OF THE MAIN LEMMA

Main lemma. Let $\infty \not\sim \infty'$ in Z. Then $\mu(\infty,\infty') \simeq 3K_{3,3}$. The proof will be split into a number of lemmas. LEMMA 4. Let $S = \{a,b,c,d\}$ be a square in Z, i.e., $a \sim b \sim c \sim d \sim a$ and $a \not\sim c, b \not\sim d$. Then $|S^{\perp}| \in \{0,1,3\}$.

Proof. Clearly S^{\perp} has at most three points, so it suffices to show that two points is impossible.

Let $\infty, \infty' \in S^{\perp}$. By Lemma 1 there is a point a' such that $\{d, a, b\}^{\perp} = \{a', \infty, \infty'\}$. Similarly there are points b',c',d'. If two of the points a',b',c',d' coincide, then we have found a third point adjacent to all of S. Hence, assume they are all different. There are three maximal cliques containing ab. One contains ∞ , another ∞' , whence the third one contains a' and b'. Hence a' \sim b' \sim c' \sim d' \sim a'. Considering again the clique $\{a, b, a', b'\}$, notice that c' $\not = a$, c' \sim b and c' \sim b'. It follows that c' $\not = a'$ and similarly b' $\not = d'$. The situation is summarized in figure 1 where $A = \{a, a'\}$.

Using the Zara graph property it follows that the picture can be completed to figure 2:

where $E = \{e,e'\}$ etc.: Indeed, the clique {a,a',b,b'} can be completed with points e,e'. Similarly DC can be completed and {e,e'} \cap {f,f'} = Ø. Having found E,F,G,H, complete the clique {e,e',f,f'} using {i,i'}. Since i and i' have no neighbours in A,B,C,D, they must be adjacent to G and H. Now ∞ and ∞ ' have one neighbour in each of A,B,C,D. It follows that both are adjacent to i,i'. However, there are three maximal

- 12 -

cliques through I, two of them already visible, whence ∞ and ∞ ' must be in the third clique. This is a contradiction since $\infty \not\sim \infty$ '. The conclusion is that a' = b' = c' = d' is the third point in S¹.

LEMMA 5. If $\infty \not\sim \infty'$ in Z and $\mu(\infty,\infty')$ contains a square, then $\mu(\infty,\infty') \simeq 3K_{3,3}$, and there is a unique point ∞ " such that $\{\infty,\infty',\infty''\}^{\perp} = \mu(\infty,\infty')$.

Proof. Let $S = \{a,b,c,d\}$ be a square in $\mu(\infty,\infty^{*})$. From the previous lemma it follows that there is a third point, e, adjacent to the square $\{\infty,a,\infty^{*},c\}$. Similarly there is a point f adjacent to $\{\infty,b,\infty^{*},d\}$, and $\{a,b,c,d,e,f\}$ is a $K_{3,3}$ in $\mu(\infty,\infty^{*})$. Now $\mu(\infty,\infty^{*})$ is a subgraph of $\Gamma(\infty) \simeq GQ(4,2)$ with 18 points and valency 3, containing a $K_{3,3}^{*}$. This is enough to guarantee that $\mu(\infty,\infty^{*}) \simeq$ $\simeq 3K_{3,3}^{*}$. Let ∞^{*} be the third point adjacent to S. Since S is in a unique $K_{3,3}^{*}$ in $\Gamma(\infty)$ it follows that $\mu(\infty,\infty^{*}) = \mu(\infty,\infty^{*})$.

LEMMA 6. Let a,b,c \in Z with $|\{a,b,c\}^{\perp}| = 18$. Then $\{a,b,c\}^{\perp} \simeq 3K_{3,3}^{-}$. *Proof.* First note that $\{a,b,c\}$ is a coclique. Let $M = \{a,b,c\}^{\perp}$ and $A = \Gamma(a) \setminus M$; B and C are defined similarly. Finally $R = Z \setminus (A \cup B \cup C \cup M \cup \{a\} \cup \{b\} \cup \{c\})$.

|A| = |B| = |C| = 27|R| = 24, |M| = 18.

Two adjacent points in M have twelve common neighbours, three in A,B and C and none in R. It follows that the neighbours of a point r ϵ R in M form a coclique. A point m ϵ M has three neighbours in M, nine in A,B and C (since Z is strongly regular with $\lambda = 12$). Hence m has twelve neighbours in R. Since the neighbours of $r \in R$ in M form a coclique, r has at most nine neighbours in M. But $9 \times 24 = 12 \times 18$, so it is exactly nine. If M is connected, there are at most two nine cocliques in M, whence at least twelve points of R are adjacent to the same 9-coclique. If there is an edge between two of the twelve we have a contradiction, if not also Hence M is disconnected. In this case however, one easily sees that M contains a square and hence M $\simeq 3K_{3,3}$.

From now on we will identify $\Gamma(\infty) \simeq GQ(4,2)$ with the set of isotropic points in PG(3,4) w.r.t. a unitary form,

For $a \in \Delta(\infty)$ let $M_a = \mu(a, \infty)$. The graph M_a has 18 vertices and is regular of valency 3. By Lemma 5, if M_a contains a square, then $M_a \simeq 3K_{3,3}$. A computer search for all 18-point subgraphs of valency 3 and girth ≥ 5 of GQ(4,2) reveals that such a graph is necessarily (connected and) bipartite, i.e., a union of two ovoids. Now GQ(4,2) contains precisely two kinds of ovoids, plane ovoids and tripod ovoids (cf. [3]).

Let $x \in PG(3,4) \setminus U$, where U is the set of isotropic points.

A plane ovoid is a set of the form $x^{\perp} \cap U$. A tripod ovoid (on x) is a set of the form

where $\{x, z_1, z_2, z_3\}$ is an orthonormal basis. On each non-isotropic point there are four tripod ovoids. Since two plane ovoids always meet, we find that each set M_a is one of the following (where T_x denotes some tripod ovoid on x):

- 14 -

I. $(x^{\perp} \cup T_x) \cap U$ (M_a $\simeq 3K_{3,3}$ in this case).

II. $(x^{\perp} \cup T_z) \cap U$ where $z \in x^{\perp}$ and $x \notin T_z$.

III. $(T_{\tau} \cup T_{\tau}^{*}) \cap U$, the union of two tripod ovoids on the same point.

(Note that $(T_x \cup T_z) \cap U$ for $z \in x^{\perp}$ and xz in T_z but not in T_x does contain squares, in fact $K_{2,3}$'s.)

If $a \sim b$, $a, b \in \Delta(\infty)$, then ∞ has two neighbours on each of the three 6-cliques on the edge ab, so that $M_a \cap M_b \simeq 3K_2$.

By studying the intersections between sets of the three types, I,II,III we shall see that necessarily all sets M_a are of type I. Let us prepare this study by looking at the intersections of two ovoids in GQ(4,2).

A.
$$|x^{\perp} \cap y^{\perp} \cap U| = \begin{cases} 9 \text{ if } x = y ; \\ 3 \text{ if } x \perp y ; \\ 1 \text{ otherwise.} \end{cases}$$

B. $|\mathbf{x}^{\perp} \cap \mathbf{T}_{\mathbf{z}} \cap \mathbf{U}| = \begin{cases} 0 \text{ if } \mathbf{x} = \mathbf{z} \text{ or } (\mathbf{z} \in \mathbf{x}^{\perp} \text{ and } \mathbf{x} \notin \mathbf{T}_{\mathbf{z}}) ; \\ 6 \text{ if } \mathbf{z} \in \mathbf{x}^{\perp} \text{ and } \mathbf{x} \in \mathbf{T}_{\mathbf{z}} ; \\ 2 \text{ otherwise.} \end{cases}$

C. $|T_{x} \cap T_{z} \cap U| = \begin{cases} 9 \text{ if } T_{x} = T_{z}; \\ 3 \text{ if } z \in x^{\perp} \text{ and } xz \text{ occurs in both or none of } T_{x}, T_{z}; \\ 0 \text{ if } (x = z \text{ and } T_{x} \neq T_{z}) \text{ or } (z \in x^{\perp} \text{ and } xz \text{ in one of } T_{x}, T_{z}); \\ 4 \text{ if } z \neq x \text{ and } z \notin x^{\perp} \text{ and } (xz)^{\perp} \text{ meets } T_{x} \cap T_{z}; \\ 1 \text{ otherwise.} \end{cases}$

Next let us determine which intersections of the sets of types I,II,III are of the form $3K_{\gamma}$.

- a) $(x^{\perp} \cup T_{x}) \cap (y^{\perp} \cup T_{y}) \cap U \simeq 3K_{2}$ iff $y \in x^{\perp}$, $x \notin T_{y}$ and $y \notin T_{x}$. b) $(x^{\perp} \cup T_{x}) \cap (y^{\perp} \cup T_{z}) \cap U \simeq 3K_{2}$ iff either $(x \in \{y, z\}^{\perp} \text{ and } y \notin T_{x})$ or $(x \notin y^{\perp} \cup z^{\perp} \text{ and } T_{y} \ni w \text{ where } w \in \{y, z\}^{\perp})$.
- c) $(\mathbf{x}^{\perp} \cup \mathbf{T}_{\mathbf{x}}) \cap (\mathbf{T}_{\mathbf{z}} \cup \mathbf{T}_{\mathbf{z}}') \cap \mathbf{U} \neq 3\mathbf{K}_{2}$.
- d) $(x^{\perp} \cup T_y) \cap (z^{\perp} \cup T_w) \cap U \simeq 3K_2$ iff either (x = w and y = z) or (x = wand $y \in z^{\perp})$ or $(w \in x^{\perp} \text{ and } y = z)$.
- e) $(\mathbf{x}^{\perp} \cup \mathbf{T}_{\mathbf{y}}) \cap (\mathbf{T}_{\mathbf{z}} \cup \mathbf{T}_{\mathbf{z}}') \cap \mathbf{U} \not\simeq \mathbf{3}\mathbf{K}_{2}$.
- f) $(\mathbf{T}_{\mathbf{x}} \cup \mathbf{T}_{\mathbf{x}}^{\mathsf{I}}) \cap (\mathbf{T}_{\mathbf{z}} \cup \mathbf{T}_{\mathbf{z}}^{\mathsf{I}}) \cap \mathbf{U} \neq 3K_{2}$.

It follows immediately that no set M_a can be of type III, since no type is available for M_b when b ~ a. Each edge of $\Delta(\infty)$ is in three 6-cliques and these have two points each in $\Gamma(\infty)$, so that we find 4-cliques in $\Delta(\infty)$.

If some 4-clique {a, b, c, d} has $M_a = (x^{\perp} \cup T_y) \cap U$ and $M_b = (y^{\perp} \cup T_z) \cap U$ (with $z \in x^{\perp}$), then M_c and M_d cannot both be of type I (for let {x,y,z,w} be an orthonormal basis; if $M_c = (v^{\perp} \cap T_v) \cap U$ where $v \neq w$ then $v \in w^{\perp}$ and $w \in T_v$; now M_d cannot be $(w^{\perp} \cup T_w) \cap U$ so $M_d = (u^{\perp} \cup T_u) \cap U$ where $u \in \{v,w\}^{\perp}$ and $w \in T_u$, $v \notin T_u$, impossible by the definition of a tripod); so w.l.o.g. $M_c = (z^{\perp} \cup T_v) \cap U$.

Consequently the three 4-cliques on the edge ab each contain a point c with $M_c = (z^{\perp} \cup T_x) \cap U$, and by Lemma 6 these three sets are distinct, so we see that the three possibilities for $T_v (z \notin T_v)$ all occur. Now fixing a and c and repeating the argument we find three points b with $M_{\dot{D}} = (y^{\perp} \cup T_{z}) \cap U$ and similarly three points a with $M_{a} = (x^{\perp} \cup T_{y}) \cap U$ and thus a subgraph $\simeq K_{3,3,3}$ in $\Delta(\infty)$. But that is impossible:

LEMMA 7. Let K be a subgraph of Γ with $K\simeq K_{3,3,3}$. Then any point x outside K is adjacent to precisely three points of K.

Proof. Standard counting arguments.

Next: no 4-clique {a,b,c,d} has M_a of type II and M_b , M_c , M_d all of type I: Let $M_a = (x^{\perp} \cup T_y) \cap U$ and {x,y,z,w} be an orthonormal basis; let the three sets M_b , M_c and M_d be $(v_i^{\perp} \cup T_{v_i}) \cap U$ (i = 1,2,3), then the points v_1, v_2, v_3 are pairwise orthogonal and each is in {w,z} $\cup w^{\perp} \cup z^{\perp}$; if $v_1 = w$, $v_2 = z$ then $v_3 \in \{x,y\}$, impossible; if $v_1 = w$, $v_2, v_3 \in w^{\perp} \setminus \{z\}$ then T_{v_2} must contain w and must not contain w, impossible; if $v_1, v_2, v_3 \in (w^{\perp} \cup z^{\perp}) \setminus \{w,z\}$ then we may suppose $v_2, v_3 \in w^{\perp} \setminus \{z\}$ and the same contradiction arises.

It follows that if a 4-clique {a,b,c,d} has M_a of type II, then there is precisely one other set of type II among M_b , M_c , M_d - if $M_a = (x^{\perp} \cup T_y) \cap U$ then $M_b = (y^{\perp} \cup T_x) \cap U$, but a is on 27 four-cliques and for each of the three possible b the edge ab is on only 3 four-cliques, a contradiction. This shows that sets of type II do not occur at all: the main lemma is proved.

6. APPLICATIONS

THEOREM 4. There does not exist a rank 4 Zara graph G on 287 points with clique size 7 and nexus 3.

Proof. Using the main theorem for Zara graphs it is not difficult to show that G is a strongly regular graph with $(v,k,\lambda,\mu) = (287,126,45,63)$. Moreover, for each point $\infty \in G$, $\Gamma(\infty) \simeq Z^{*}$. To finish the proof we need two lemmas.

LEMMA 8. Let a $\not\sim$ b in G . Then $\mu(a,b)$ is a graph on 63 points, and for each $c \in \mu(a,b)$ we have $\Gamma_{\mu(a,b)}(c) \simeq 3K_{3,3}$. *Proof.* Consider $\Gamma_{G}(c) \simeq z^{*}$. In $\Gamma_{G}(c)$, $\mu(a,b) \simeq 3K_{3,3}$, but this just means that $\Gamma_{\mu(a,b)}(c) \simeq 3K_{3.3}$.

LEMMA 9. z^* does not contain a subgraph T on 63 points which is locally $3K_{3,3}$. *Proof.* Let $\infty \in Z^*$ and suppose $\infty \in T$. Let $K \simeq 3K_{3,3}$ be the subgraph of $\Gamma_{Z}(\infty)$ also in T. Let figure 4 be one of the components of K, and consider $\Gamma_{\rm m}(a)$. We see the points ∞,u,v,w.

Since $\Gamma_{\rm Tr}(a) \simeq 3K_{3,3}$ there are points ∞' and ∞" in T also adjacent to a,u,v,w. But we know these points, they are unique in Z. Hence: $\infty, \infty', \infty''$ have precisely the same neighbours in T. As a consequence the points of T can be divided into 21 groups of 3. Let T' be the graph defined on the 21 triples by $t_1 \sim t_2$ if $\tau_1 \sim \tau_2$ for all $\tau_1 \in t_1$, $\tau_2 \in t_2$. Then T' is a strongly regular graph on 21 points with k = 6, λ = 1 and μ = 1 (this is a direct consequence of the structure of Z^{*}). Now such a graph does not exist, since it violates almost all known existence conditions for strongly regular graphs. This proves the lemma and the theorem.

THEOREM 5. There does not exist a (non-trivial) completely regular two-graph on 288 points.

Proof. (For definitions and results about completely regular two-graphs see [4]).

A completely regular two-graph on 288 points, gives rise to at least one rank 4 Zara graph on 287 points with clique size 7 and nexus 3. But such a graph does not exist by the previous theorem.

ACKNOWLEDGEMENTS.

We are very grateful to Henny Wilbrink for carefully reading the manuscript and pointing out a "few" mistakes.

[1] Blokhuis, A., Few-distance sets, thesis, T.H. Eindhoven (1983).

- [2] Brouwer, A.E., A.M. Cohen, H.A. Wilbrink, Near polygons with lines of size three and Fischer spaces. ZW 191/83 Math. Centre, Amsterdam.
- [3] Brouwer, A.E., H.A. Wilbrink, Ovoids and fans in the generalized quadrangle GQ(4,2), report ZN 102/81 Math. Centre, Amsterdam.
 [4] Neumaier, A., Completely regular two-graphs, Arch.Math. <u>38</u>, (1982) 378-384.
 [5] Seidel, J.J., Strongly regular graphs with (-1,1,0) adjacency matrix having eigenvalue 3, Linear Algebra and Applications <u>1</u> (1968), 281 298.

[6] Zara, F., Graphes liés aux espaces polaires, preprint.