Exercise

aeb

2013 - 10 - 12

1 Exercise

Let G be a finite abelian group of size g. Consider submultisets of G with zero sum. Claim: the number of such submultisets of size $\langle g \rangle$ equals the number of such submultisets of size g.

For example: let $G = \{0, a, b, c\}$ be elementary abelian. Zero sum multisets are \emptyset , 0, 00, *aa*, *bb*, *cc*, 000, 0*aa*, 0*bb*, 0*cc*, *abc*: 11 of size less than 4, and 0000, 00*aa*, 00*bb*, 00*cc*, 0*abc*, *aaaa*, *bbbb*, *cccc*, *aabb*, *aacc*, *bbcc*, also 11 of size 4.

Or $G = \{0, 1, 2, 3\}$ cyclic. Now zero sum multisets are \emptyset , 0, 00, 13, 22, 000, 013, 022, 112, 233: 10 of size less than 4, and 0000, 0013, 0022, 0112, 0233, 1111, 1133, 1223, 2222, 3333, also 10 of size 4.

Question 1: Proof?

Question 2: Bijective proof?

2 A bijection

For the case of a cyclic group G, Rob Eggermont provided a bijection:

Let G be cyclic of order g, written additively, say with generator 1. Write a multiset s as a vector (x_0, \ldots, x_{g-1}) , where x_i is the number of occurrences of i in s. Then the size of s is $\sum x_i$, and s is zero-sum when $\sum i x_i \equiv 0 \pmod{g}$.

Map a zero-sum set s of size less than g to the zero-sum set t of size g via

 $(x_0, \ldots, x_{g-1}) \mapsto [x_0, x_0 + x_1, \ldots, x_0 + x_1 + \ldots + x_{g-1}],$

where [...] denotes a multiset. The size of this multiset is clearly g. The sum of its elements is $gx_0+(g-1)x_1+(g-2)x_2+\ldots+x_{g-1}=-x_1-2x_2-\ldots-(g-1)x_{g-1}\equiv 0 \pmod{g}$, as desired.

Conversely, given the zero-sum multiset $t = [y_0, \ldots, y_{g-1}]$ of size g, we can view the y_i as elements of $\{0, 1, \ldots, g-1\}$ and assume $y_0 \leq y_1 \leq \ldots \leq y_{g-1}$. Now map t to s via

$$[y_0,\ldots,y_{g-1}]\mapsto (y_0,y_1-y_0,y_2-y_1,\ldots,y_{g-1}-y_{g-2}).$$

Then s has size $y_{g-1} < g$, and sum $(y_1 - y_0) + 2(y_2 - y_1) + \ldots + (g-1)(y_{g-1} - y_{g-2}) = -y_0 - y_1 - y_2 - \ldots - y_{g-2} + (g-1)y_{g-1} = -y_0 - y_1 - y_2 - \ldots - y_{g-1} \equiv 0 \pmod{g}.$

Both maps are each other's inverses, and we constructed the desired bijection in the case of a cyclic group.

3 Invariants

Let G be a finite group acting (say, via a representation ρ) on a vector space V of finite dimension n. This action induces an action on the algebra k[V] of polynomials on V. Let $k[V]^G$ denote the subalgebra of G-invariant polynomials.

Since k[V] is graded by polynomial degree, we have a Poincaré series $P(t) = \sum a_i t^i$, where a_i is the dimension of the *i*-homogeneous part of $k[V]^G$.

Molien gave the following explicit formula:

$$P(t) = \frac{1}{|G|} \sum_{g} \frac{1}{\det(I - t\rho(g))}$$

Now let V be the right regular representation of G. Then Molien's formula simplifies to

$$P(t) = \frac{1}{|G|} \sum_{d} \frac{N_d}{(1 - t^d)^{|G|/d}}$$

where N_d is the number of elements of G of order d.

4 Invariants of abelian groups

Let G be abelian, and let V be the regular representation. Now G permutes the coordinate functions x_g , but is diagonalized on the basis of V^* consisting of the $x_{\chi} = \sum \chi(g)x_g$. Indeed, if h sends x_g to x_{gh} , then h sends x_{χ} to $\sum \chi(g)x_{gh} = \chi(h)^{-1}x_{\chi}$. Thus, all monomials in this new basis are invariant up to a constant, and the invariant polynomials have as basis the set of monomials for which this constant factor is 1. Thus, the invariant monomials are the $x_{\chi_1} \dots x_{\chi_m}$ for which $\chi_1 \dots \chi_m$ is identically 1. Since the character group of G is isomorphic to G, such monomials correspond to zero-sum submultisets of G. We proved: the number of zero-sum submultisets of size m of G equals a_m , the dimension of the m-homogeneous part of $k[V]^G$.

5 Lemma

Let $d \mid g$. In the power series $\sum c_i t^i = (1 - t^d)^{-g/d}$ one has $c_g = \sum_{0 \le i \le g-1} c_i$.

Indeed, since $(1-t)^{-n} = \sum {\binom{-n}{i}} (-t)^i$, this claims that $\sum_{i=0}^{n-1} {\binom{n+i-1}{i}} = {\binom{2n-1}{n}}$, and that is clear, since the left hand sum telescopes.

Applying this to Molien's formula, we see that $a_g = \sum_{0 \le i \le g-1} a_i$, proving our starting claim. It remains to find a bijective proof in the non-cyclic case.