Exercise

aeb

2013-10-12

1 Exercise

Let G be a finite abelian group of size g. Consider submultisets of G with zero sum. Claim: the number of such submultisets of size $<g$ equals the number of such submultisets of size g.

For example: let $G=\{0, a, b, c\}$ be elementary abelian. Zero sum multisets are $\emptyset, 0,00, a a, b b, c c, 000,0 a a, 0 b b, 0 c c, a b c$: 11 of size less than 4 , and 0000 , $00 a a, 00 b b, 00 c c, 0 a b c, a a a a, b b b b, c c c c, a a b b, a a c c, b b c c$, also 11 of size 4.

Or $G=\{0,1,2,3\}$ cyclic. Now zero sum multisets are $\emptyset, 0,00,13,22,000$, $013,022,112,233: 10$ of size less than 4 , and $0000,0013,0022,0112,0233$, $1111,1133,1223,2222,3333$, also 10 of size 4.

Question 1: Proof?
Question 2: Bijective proof?

2 A bijection

For the case of a cyclic group G, Rob Eggermont provided a bijection:
Let G be cyclic of order g, written additively, say with generator 1 . Write a multiset s as a vector $\left(x_{0}, \ldots, x_{g-1}\right)$, where x_{i} is the number of occurrences of i in s. Then the size of s is $\sum x_{i}$, and s is zero-sum when $\sum i x_{i} \equiv 0(\bmod g)$.

Map a zero-sum set s of size less than g to the zero-sum set t of size g via

$$
\left(x_{0}, \ldots, x_{g-1}\right) \mapsto\left[x_{0}, x_{0}+x_{1}, \ldots, x_{0}+x_{1}+\ldots+x_{g-1}\right]
$$

where [...] denotes a multiset. The size of this multiset is clearly g. The sum of its elements is $g x_{0}+(g-1) x_{1}+(g-2) x_{2}+\ldots+x_{g-1}=-x_{1}-2 x_{2}-\ldots-(g-1) x_{g-1} \equiv$ $0(\bmod g)$, as desired.

Conversely, given the zero-sum multiset $t=\left[y_{0}, \ldots, y_{g-1}\right]$ of size g, we can view the y_{i} as elements of $\{0,1, \ldots, g-1\}$ and assume $y_{0} \leq y_{1} \leq \ldots \leq y_{g-1}$. Now map t to s via

$$
\left[y_{0}, \ldots, y_{g-1}\right] \mapsto\left(y_{0}, y_{1}-y_{0}, y_{2}-y_{1}, \ldots, y_{g-1}-y_{g-2}\right)
$$

Then s has size $y_{g-1}<g$, and sum $\left(y_{1}-y_{0}\right)+2\left(y_{2}-y_{1}\right)+\ldots+(g-1)\left(y_{g-1}-\right.$ $\left.y_{g-2}\right)=-y_{0}-y_{1}-y_{2}-\ldots-y_{g-2}+(g-1) y_{g-1}=-y_{0}-y_{1}-y_{2}-\ldots-y_{g-1} \equiv 0$ $(\bmod g)$.

Both maps are each other's inverses, and we constructed the desired bijection in the case of a cyclic group.

3 Invariants

Let G be a finite group acting (say, via a representation ρ) on a vector space V of finite dimension n. This action induces an action on the algebra $k[V]$ of polynomials on V. Let $k[V]^{G}$ denote the subalgebra of G-invariant polynomials.

Since $k[V]$ is graded by polynomial degree, we have a Poincaré series $P(t)=$ $\sum a_{i} t^{i}$, where a_{i} is the dimension of the i-homogeneous part of $k[V]^{G}$.

Molien gave the following explicit formula:

$$
P(t)=\frac{1}{|G|} \sum_{g} \frac{1}{\operatorname{det}(I-t \rho(g))}
$$

Now let V be the right regular representation of G. Then Molien's formula simplifies to

$$
P(t)=\frac{1}{|G|} \sum_{d} \frac{N_{d}}{\left(1-t^{d}\right)^{|G| / d}}
$$

where N_{d} is the number of elements of G of order d.

4 Invariants of abelian groups

Let G be abelian, and let V be the regular representation. Now G permutes the coordinate functions x_{g}, but is diagonalized on the basis of V^{*} consisting of the $x_{\chi}=\sum \chi(g) x_{g}$. Indeed, if h sends x_{g} to $x_{g h}$, then h sends x_{χ} to $\sum \chi(g) x_{g h}=$ $\chi(h)^{-1} x_{\chi}$. Thus, all monomials in this new basis are invariant up to a constant, and the invariant polynomials have as basis the set of monomials for which this constant factor is 1 . Thus, the invariant monomials are the $x_{\chi_{1}} \ldots x_{\chi_{m}}$ for which $\chi_{1} \ldots \chi_{m}$ is identically 1 . Since the character group of G is isomorphic to G, such monomials correspond to zero-sum submultisets of G. We proved: the number of zero-sum submultisets of size m of G equals a_{m}, the dimension of the m-homogeneous part of $k[V]^{G}$.

5 Lemma

Let $d \mid g$. In the power series $\sum c_{i} t^{i}=\left(1-t^{d}\right)^{-g / d}$ one has $c_{g}=\sum_{0 \leq i \leq g-1} c_{i}$.
Indeed, since $(1-t)^{-n}=\sum\binom{-n}{i}(-t)^{i}$, this claims that $\sum_{i=0}^{n-1}\binom{n+i-1}{i}=$ $\binom{2 n-1}{n}$, and that is clear, since the left hand sum telescopes.

Applying this to Molien's formula, we see that $a_{g}=\sum_{0 \leq i \leq g-1} a_{i}$, proving our starting claim. It remains to find a bijective proof in the non-cyclic case.

