Exercise

aeb

2013-10-12

1 Exercise

Let G be a finite abelian group of size g. Consider submultisets of G with zero
sum. Claim: the number of such submultisets of size < g equals the number of
such submultisets of size g.

For example: let G = {0,a, b, ¢} be elementary abelian. Zero sum multisets
are 0, 0, 00, aa, bb, cc, 000, Oaa, 0bb, Occ, abc: 11 of size less than 4, and 0000,
00aa, 00bb, 00cc, Oabe, aaaa, bbbb, ccce, aabb, aacc, bbee, also 11 of size 4.

Or G =1{0,1,2,3} cyclic. Now zero sum multisets are §), 0, 00, 13, 22, 000,
013, 022, 112, 233: 10 of size less than 4, and 0000, 0013, 0022, 0112, 0233,
1111, 1133, 1223, 2222, 3333, also 10 of size 4.

Question 1: Proof?

Question 2: Bijective proof?

2 A bijection

For the case of a cyclic group G, Rob Eggermont provided a bijection:

Let G be cyclic of order g, written additively, say with generator 1. Write a
multiset s as a vector (zo,...,Z4—1), where x; is the number of occurrences of
¢ in s. Then the size of s is Y x;, and s is zero-sum when > iz; = 0 (mod g).

Map a zero-sum set s of size less than g to the zero-sum set ¢ of size g via

(.’1?0,...,31‘9,1) — [J:O,xo—i—xl,...,mo—l—xl—&—...—&—xg,l],

where [...] denotes a multiset. The size of this multiset is clearly g. The sum of its

elements is gzo+(9—1)z1+(9—2)z2+. . . +x9-1 = —21—222—...—(9—1)z49-1 =
0 (mod g), as desired.
Conversely, given the zero-sum multiset ¢ = [yo,...,yg—1] of size g, we can

view the y; as elements of {0,1,...,¢9 — 1} and assume yo < 1 < ... < yg_1.
Now map ¢ to s via

[yUa e 72/9—1] = (Yo, Y1 — Yo, Y2 — Y1, - yYg—1 — yg—z)-

Then s has size y,—1 < g, and sum (y1 —yo) +2(y2 — 1) + ...+ (9 — 1) (yg—1 —
Yg—2) = —Yo—Y1—Y2—---—Yg2F+(9—yg-1=—Yo—y1—y2—... —Yg—1 =0
(mod g).

Both maps are each other’s inverses, and we constructed the desired bijection
in the case of a cyclic group.



3 Invariants

Let G be a finite group acting (say, via a representation p) on a vector space
V of finite dimension n. This action induces an action on the algebra k[V] of
polynomials on V. Let k[V]¢ denote the subalgebra of G-invariant polynomials.
Since k[V] is graded by polynomial degree, we have a Poincaré series P(t) =
3" a;t?, where a; is the dimension of the i-homogeneous part of k[V]%.
Molien gave the following explicit formula:
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Now let V' be the right regular representation of G. Then Molien’s formula
simplifies to

1 N,
P(t> = @g (1 7td(;‘G‘/d7

where N, is the number of elements of G of order d.

4 Invariants of abelian groups

Let G be abelian, and let V' be the regular representation. Now G permutes the
coordinate functions x4, but is diagonalized on the basis of V* consisting of the
xy = »_ x(9)xy. Indeed, if h sends x4 to x4y, then h sends xy to > x(9)zgn =
x(h)~xy. Thus, all monomials in this new basis are invariant up to a constant,
and the invariant polynomials have as basis the set of monomials for which
this constant factor is 1. Thus, the invariant monomials are the z,, ...z, for
which x1...xm, is identically 1. Since the character group of G is isomorphic
to G, such monomials correspond to zero-sum submultisets of G. We proved:
the number of zero-sum submultisets of size m of G equals a,,, the dimension
of the m-homogeneous part of k[V]%.

5 Lemma
Let d|g. In the power series S cit' = (1 —t%)79/% one has ¢, = > o<i<g—1 Ci-

Indeed, since (1 —t)~" = 3" (7")(—t)’, this claims that >0 ("7 =

K3 K3
(2";1), and that is clear, since the left hand sum telescopes.

Applying this to Molien’s formula, we see that a; = Zo<¢<971 a;, proving
our starting claim. It remains to find a bijective proof in the non-cyclic case.



