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1 Exercise

Let G be a finite abelian group of size g. Consider submultisets of G with zero
sum. Claim: the number of such submultisets of size < g equals the number of
such submultisets of size g.

For example: let G = {0, a, b, c} be elementary abelian. Zero sum multisets
are ∅, 0, 00, aa, bb, cc, 000, 0aa, 0bb, 0cc, abc: 11 of size less than 4, and 0000,
00aa, 00bb, 00cc, 0abc, aaaa, bbbb, cccc, aabb, aacc, bbcc, also 11 of size 4.

Or G = {0, 1, 2, 3} cyclic. Now zero sum multisets are ∅, 0, 00, 13, 22, 000,
013, 022, 112, 233: 10 of size less than 4, and 0000, 0013, 0022, 0112, 0233,
1111, 1133, 1223, 2222, 3333, also 10 of size 4.

Question 1: Proof?

Question 2: Bijective proof?

2 A bijection

For the case of a cyclic group G, Rob Eggermont provided a bijection:

Let G be cyclic of order g, written additively, say with generator 1. Write a
multiset s as a vector (x0, . . . , xg−1), where xi is the number of occurrences of
i in s. Then the size of s is

∑
xi, and s is zero-sum when

∑
ixi ≡ 0 (mod g).

Map a zero-sum set s of size less than g to the zero-sum set t of size g via

(x0, . . . , xg−1) 7→ [x0, x0 + x1, . . . , x0 + x1 + . . .+ xg−1],

where [...] denotes a multiset. The size of this multiset is clearly g. The sum of its
elements is gx0+(g−1)x1+(g−2)x2+. . .+xg−1 = −x1−2x2−. . .−(g−1)xg−1 ≡
0 (mod g), as desired.

Conversely, given the zero-sum multiset t = [y0, . . . , yg−1] of size g, we can
view the yi as elements of {0, 1, . . . , g − 1} and assume y0 ≤ y1 ≤ . . . ≤ yg−1.
Now map t to s via

[y0, . . . , yg−1] 7→ (y0, y1 − y0, y2 − y1, . . . , yg−1 − yg−2).

Then s has size yg−1 < g, and sum (y1 − y0) + 2(y2 − y1) + . . .+ (g− 1)(yg−1 −
yg−2) = −y0−y1−y2− . . .−yg−2 +(g−1)yg−1 = −y0−y1−y2− . . .−yg−1 ≡ 0
(mod g).

Both maps are each other’s inverses, and we constructed the desired bijection
in the case of a cyclic group.
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3 Invariants

Let G be a finite group acting (say, via a representation ρ) on a vector space
V of finite dimension n. This action induces an action on the algebra k[V ] of
polynomials on V . Let k[V ]G denote the subalgebra of G-invariant polynomials.

Since k[V ] is graded by polynomial degree, we have a Poincaré series P (t) =∑
ait

i, where ai is the dimension of the i-homogeneous part of k[V ]G.
Molien gave the following explicit formula:

P (t) =
1

|G|
∑
g

1

det(I − tρ(g))

Now let V be the right regular representation of G. Then Molien’s formula
simplifies to

P (t) =
1

|G|
∑
d

Nd
(1− td)|G|/d

,

where Nd is the number of elements of G of order d.

4 Invariants of abelian groups

Let G be abelian, and let V be the regular representation. Now G permutes the
coordinate functions xg, but is diagonalized on the basis of V ∗ consisting of the
xχ =

∑
χ(g)xg. Indeed, if h sends xg to xgh, then h sends xχ to

∑
χ(g)xgh =

χ(h)−1xχ. Thus, all monomials in this new basis are invariant up to a constant,
and the invariant polynomials have as basis the set of monomials for which
this constant factor is 1. Thus, the invariant monomials are the xχ1

. . . xχm
for

which χ1 . . . χm is identically 1. Since the character group of G is isomorphic
to G, such monomials correspond to zero-sum submultisets of G. We proved:
the number of zero-sum submultisets of size m of G equals am, the dimension
of the m-homogeneous part of k[V ]G.

5 Lemma

Let d | g. In the power series
∑
cit

i = (1− td)−g/d one has cg =
∑

0≤i≤g−1 ci.

Indeed, since (1 − t)−n =
∑(−n

i

)
(−t)i, this claims that

∑n−1
i=0

(
n+i−1

i

)
=(

2n−1
n

)
, and that is clear, since the left hand sum telescopes.

Applying this to Molien’s formula, we see that ag =
∑

0≤i≤g−1 ai, proving
our starting claim. It remains to find a bijective proof in the non-cyclic case.
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