
Basic arithmetic by rewriting and its complexity

Hans Zantema

December, 2003

Constructors

There are three basic number types: pos representing positive integers, nat rep-
resenting non-negative integers, and int representing all integers.

For the positive integers there are three constructor symbols, having the fol-
lowing types.

1 : → pos
.0 : pos → pos (λx · 2x)
.1 : pos → pos (λx · 2x+ 1)

Every positive integers can be uniquely represented as a ground term over these
three symbols. This representation corresponds to the usual binary notation in
which a postfix notation for .0 and .1 is used. For instance, the number 29 is
11101 in binary notation, and is written as 1.1.1.0.1 as a postfix ground term.
Since we will also use symbols for which prefix notation is most convenient, and
mixing postfix and prefix notation does not increase readability, we will always
use prefix notation, in which 29 is written as .1(.0(.1(.1(1)))).

For the non-negative integers there are two constructor symbols, having the
following types.

0 : → nat
cpn : pos → nat (λx · x)

Hence the number 0 is written as 0, and every other non-negative integer is
written as cpn(t) where t is the pos-representation of the number. The operation
cpn is the conversion from positive integers to non-negative integers.

For the integers there are two constructor symbols, having the following types.

cni : nat → int (λx · x)
– : pos → int (λx · −x)

Hence an integer is written as cni(t) where t is a ground term of type nat if its
value is ≥ 0, and it is written as –(t) where t is a ground term of type pos if it is
negative.

1

For all three basic number types there is a bijective correspondence between
the constructor ground terms and the set that the basic type intends to represent.
This was one main requirement of the integer representation that we are looking
for.

The conversion operations cpn and cni may be left implicit if for all symbols
involved the types are known. For instance, if f : pos → pos and g : int → int,
then g(f(· · ·)) should be read as g(cni(cpn(f(· · ·)))). Although these conversion
operations may be left implicit we shall always write them explicitly.

In order to be able to use equalities and inequalities between numbers, we
also need the basic type bool for booleans. For the booleans we only have two
constants:

F : → bool
T : → bool

intended to represent false and true, respectively.
Summarizing, written in BNF we have the following constructor ground terms:

pos ::= 1 | .0(pos) | .1(pos)
nat ::= 0 | cpn(pos)
int ::= cni(nat) | –(pos)
bool ::= F | T.

Defined symbols and rewrite rules

Apart from the constructor symbols we introduced until now there are other
symbols called defined symbols. For all defined symbols that we introduce we
give rewrite rules is such a way that the term rewrite system consisting of all of
these rules have the following convenient properties:

• For every rule the root of the left hand side is a defined symbol, and all
other symbols of the left hand side are constructor symbols.

• One every ground term containing at least one defined symbol a rewrite
rule is applicable.

• If on a term for which all non-root symbols are constructor symbols two
rules are applicable, then the result of the corresponding one-step reductions
is equal.

• Every rule is left-linear, i.e, in the left hand side every variable occurs at
most once.

• The term rewrite system is terminating, i.e., it does not allow infinite re-
ductions. Even more, we want bounds on the lengths of the reductions
corresponding to the complexity of usual integer computations.

2

One consequence of these properties is that the term rewrite system is weakly
orthogonal and hence confluent, not only for ground terms but also for open
terms. Hence every term t rewrites to its unique normal form N(t), the term
obtained form t by applying rewriting as long as possible. Due to termination
such a normal form will always be obtained, and due to confluence it is unique,
i.e., it does not depend on choices among different possible rewrite steps. In
particular for every ground term its normal form is a ground constructor term:
the unique ground constructor term representing the same value as the original
ground term.

We will use xp, yp, . . . for variables of type pos, xn, yn, . . . for variables of type
nat and xi, yi, . . . for variables of type int.

For all of the basic operations we introduce a version for each of the basic
types as far as they are relevant. Sometimes we need a few auxiliary symbols.

Successor and predecessor

Symbols:
succp : pos → pos (λx · x+ 1)
succn : nat → pos (λx · x+ 1)
succi : int → int (λx · x+ 1)
predi : int → int (λx · x− 1)

Auxiliary symbol:

predp : pos → pos (λx ·max(1, x− 1))

Rewrite rules for positive successor:

succp(1) → .0(1)
succp(.0(xp)) → .1(xp)
succp(.1(xp)) → .0(succp(xp))

Rewrite rules for natural successor:

succn(0) → 1
succn(cpn(xp)) → succp(xp)

Rewrite rules for integer successor:

succi(cni(xn)) → cni(cpn(succn(xn)))
succi(–(1)) → cni(0)

succi(–(.0(xp))) → –(predp(.0(xp)))
succi(–(.1(xp))) → –(predp(.1(xp)))

3

Rewrite rules for positive predecessor:

predp(1) → 1
predp(.0(1)) → 1

predp(.0(.0(xp))) → .1(predp(.0(xp)))
predp(.0(.1(xp))) → .1(predp(.1(xp)))

predp(.1(xp)) → .0(xp)

Rewrite rules for integer predecessor:

predi(cni(0)) → –(1)
predi(cni(cpn(1))) → cni(0)

predi(cni(cpn(.0(xp)))) → cni(cpn(predp(.0(xp))))
predi(cni(cpn(.1(xp)))) → cni(cpn(.0(xp)))

predi(–(xp)) → –(succp(xp))

Addition, subtraction and absolute value

Symbols:
plusp : pos× pos → pos (λxy · x+ y)
plusn : nat× nat → nat (λxy · x+ y)
plusi : int× int → int (λxy · x+ y)
minb : int× int → int (λxy · x− y)
minu : int → int (λx · −x)
abs : int → nat (λx · |x|)

Auxiliary symbols:

double : int → int (λx · 2x)
minpi : pos× pos → int (λxy · x− y)

Rewrite rules for positive addition:

plusp(1, xp) → succp(xp)
plusp(.0(xp), 1) → succp(.0(xp))
plusp(.1(xp), 1) → .0(succp(xp))

plusp(.0(xp), .0(yp)) → .0(plusp(xp, yp))
plusp(.0(xp), .1(yp)) → .1(plusp(xp, yp))
plusp(.1(xp), .0(yp)) → .1(plusp(xp, yp))
plusp(.1(xp), .1(yp)) → .0(succp(plusp(xp, yp)))

Rewrite rules for natural addition:

plusn(0, xn) → xn

plusn(xn, 0) → xn

plusn(cpn(xp), cpn(yp)) → cpn(plusp(xp, yp))

4

Rewrite rules for integer addition:

plusi(cni(xn), cni(yn)) → cni(plusn(xn, yn))
plusi(cni(0),–(xp)) → –(xp)

plusi(cni(cpn(xp)),–(yp)) → minpi(xp, yp)
plusi(–(xp), cni(0)) → –(xp)

plusi(–(xp), cni(cpn(yp))) → minpi(yp, xp)
plusi(–(xp),–(yp)) → –(plusp(xp, yp))

Rewrite rules for the auxiliary symbol minpi:

minpi(1, 1) → cni(0)
minpi(.0(xp), 1) → cni(cpn(predp(.0(xp))))
minpi(.1(xp), 1) → cni(cpn(.0(xp)))
minpi(1, .0(xp)) → –(predp(.0(xp)))
minpi(1, .1(xp)) → –(.0(xp))

minpi(.0(xp), .0(yp)) → double(minpi(xp, yp))
minpi(.1(xp), .0(yp)) → succi(double(minpi(xp, yp)))
minpi(.0(xp), .1(yp)) → predi(double(minpi(xp, yp)))
minpi(.1(xp), .1(yp)) → double(minpi(xp, yp))

Rewrite rules for the auxiliary symbol double:

double(cni(0)) → cni(0)
double(cni(cpn(xp))) → cni(cpn(.0(xp)))

double(–(xp)) → –(.0(xp))

Rewrite rules for unary minus minu:

minu(cni(0)) → cni(0)
minu(cni(cpn(xp))) → –(xp)

minu(–(xp)) → cni(cpn(xp))

Rewrite rule for subtraction minb:

minb(xi, yi) → plusi(xi,minu(yi))

Rewrite rules for absolute value:

abs(cni(xn)) → xn

abs(–(xp)) → cpn(xp)

Properties of the additive rewrite system

Let Radd be the rewrite system consisting of all rules until now.

Theorem 1 The rewrite system Radd has the following properties:

5

1. Radd is terminating;

2. Radd is confluent;

3. all reductions from a term to its normal form have the same length;

4. a ground term is a normal form if and only if it is a constructor term;

Proof:

1. Termination of Radd is proved by recursive path order, for instance by choos-
ing the precedence

minb > plusi > plusn > plusp > minu > minpi > double > abs >

succi > predi > succn > succp > predp > – > cni > cpn > .1 > .0 > 1 > 0.

2. Radd is confluent since it is weakly orthogonal.

3. All reductions from a term to its normal form have the same length since
Radd satisfies the diamond property. This hold since Radd is weakly orthogo-
nal and for every rule every occurring variable occurs both exactly once in
the left hand side and exactly once in the right hand side.

4. Every constructor term is a normal form since every left hand side of a rule
contains a defined symbol. Conversely for every ground term containing a
defined symbol a rule is applicable.

2

The next theorem gives a linear bound on reduction lengths of terms con-
taining only one defined symbol. To stress the subtility of this theorem we first
give an example showing that this property does not hold for terms containing
an arbitrary number of defined symbols. For n ≥ 0 the term

(succppredp)n(.0)n(1)

consisting of 3n+ 1 symbols allows the following reduction

(succppredp)n(.0)n(1) = (succppredp)n−1(succp(predp((.0)n(1))))
→n (succppredp)n−1(succp((.1)n−1(1)))
→n (succppredp)n−1((.0)n(1))
→2n (succppredp)n−2((.0)n(1))
· · · · · ·
→ (.0)n(1)

of 2n2 steps.
We write |t| for the size of a term t, i.e., |t| is the number of symbols (both

constructor symbols and defined symbols) in t.

6

Theorem 2 The length of an Radd-reduction of a term t containing exactly one
defined symbol is linear in |t|.

Proof: A basic idea of getting bounds on reduction lengths is the following.
Define a weight function W to the natural numbers such that the weight of a
term strictly decreases by every rewrite step. Then the length of a reduction
starting in t is at most W (t). In our case we want a linear bound, so we want
W (t) to be linear in |t|. This is achieved if we give every symbol f a weight wf

and define W (t) of simply to be the sum of all weights of the symbols in t, i.e.,
we define inductively

W (f(t1, . . . , tn)) = wf +
n∑

i=1

W (ti).

Unfortunately it is not possible to define a uniform weight for all symbols, since
in the above example we saw a linear size term having a reduction of quadratic
length. The reason for this quadratic behavior was in the mixture of successor and
predecessor symbols. Therefore we will prove linear bounds on reduction lengths
by the weight approach for reductions in which predecessor symbols do not occur
and also for reductions in which successor symbols do not occur. Finally we will
prove that every reduction of the shape that we consider can be polished in such
a way that after a linear number of steps it is in one of these two classes.

Claim 1. Let t be a term composed from constructors and one or
more from the defined symbols succp, succn, plusp, plusn, minu, abs
and double. Then the length of an Radd-reduction of t is linear in |t|.

The proof of this claim is easily given by the weight approach: define

w0 = w1 = w.0 = w– = wcni
= wcpn = 1 and w.1 = wf = 2

for all defined symbols f . Then it is easily seen from the rewrite rules that in
every step in the Radd-reduction of t only symbols occur from the given set, and
the weight strictly decreases. This gives a linear reduction length, more precisely,
the redcution length of t is at most 2|t|.

Claim 2. Let t be a term composed from constructors and one or
more from the defined symbols predp, minu, abs and double. Then the
length of an Radd-reduction of t is linear in |t|.

The proof of this claim is again given by the weight approach: now define

w0 = w1 = w.1 = w– = wcni
= wcpn = 1 and w.0 = wf = 2

for all defined symbols f . Again it is easily seen from the rewrite rules that in
every step in the Radd-reduction of t only symbols occur from the given set, and

7

the weight strictly decreases in every rewrite step, hence again giving a linear
reduction length.

Note that for Claim 1 it is essential that the weight of .0 is smaller than the
weight of .1, while the reverse holds for Claim 2.

It remains to prove the theorem for the case that the single defined symbol in
the term t is succi, predi, plusi, minpi or minb. By substitution of variables by the
constants 0 and 1, and removing everything above the defined symbols, without
loss of generality we may assume that t is a ground term of which the root is one
of the given defined symbols.a

If the root of t is succi then either t = succi(cni(u)) or t = succi(–(u)) for some
constructor term u. In the first case after one reduction step t is transformed to
succn(u), on which Claim 1 can be applied; in the second case after one reduction
step t is transformed to a term on which Claim 2 can be applied, in both cases
yielding a linear reduction length.

If the root of t is predi then either t = predi(cni(u)) or t = predi(–(u)) for
some constructor term u, again yielding a term after one reduction step on which
Claim 1 or Claim 2 can be applied.

Now assume that the root of t is minpi. We will construct a particular reduc-
tion of t. First apply the last four rules for minpi as long as possible, yielding
a reduction t →∗ C[minpi(t1, t2)] in which the context C consists of the symbols
succi, predi and double, and in which t1 = 1 or t2 = 2 (or both). Next reduce
minpi(t1, t2) to its normal form u; after one step this takes at most a linear num-
ber of reduction steps due to Claim 2. Next apply the three rules for double,
the four rules for succi and the five rules for predi as long as possible. Since
in every step here at least one of the symbols double, succi or predi disappears,
this takes a linear number of steps. Since the argument of every symbol succi

and predi has always double as its root, due to the way C was constructed, and
double applied on a constructor term always rewrites to a term of the shape
cni(0), cni(cpn(.0(· · ·))) or –(.0(· · ·)), always a rule for succi or predi is applicable.
Hence this reduction ends in a term of the shape cni(0) or D[v] where D is either
cni(cpn(2)) or –(2), and v is a ground term constructed from 1, .0, .1, succp and
predp. Since every succp-symbol in v originates from a succi-symbol or a predi-
symbol in C where its argument has double as its root, in v every succp-symbol
has .0 as its root. Now each of these succp-symbols can be removed by applying
the rule succp(.0(xp))→ .1(xp), yielding a term on which Claim 2 can be applied,
yielding a normal form of D[v] in a linear number of steps. In all cases we found
a reduction of t to its normal form of which the length is linear in |t|. Due to
part 3 of Theorem 1 this holds for every reduction of t.

Next assume that the root of t is plusi. From the rules for plusi it is easily seen
that after one reduction step is transformed either in a term in which Claim 1 is
applicable, or it is of the shape minpi(t1, t2). In both cases we already obtained a
linear reduction length.

8

Finally assume that the root of t is minb. Then after one reduction step the
term reads plusi(t1,minu(t2)). Due to Claim 1 minu(t2) reduces to a normal form u
in a linear number of steps, hence plusi(t1,minu(t2)) reduces to plusi(t1, u), which
reduces to normal form in a linear number of steps as we saw above. Hence we
have a reduction from t to normal form in a linear number of steps; due to part
3 of Theorem 1 this holds for every reduction of t. 2

Multiplication

Symbols:
multp : pos× pos → pos (λxy · x ∗ y)
multn : nat× nat → nat (λxy · x ∗ y)
multi : int× int → int (λxy · x ∗ y)

Rewrite rules for positive multiplication:

multp(1, xp) → xp

multp(.0(xp), yp) → .0(multp(xp, yp))
multp(.1(xp), yp) → plusp(.0(multp(xp, yp)), yp)

Rewrite rules for natural multiplication:

multn(0, xn) → 0
multn(xn, 0) → 0

multn(cpn(xp), cpn(yp)) → cpn(multp(xp, yp))

Rewrite rules for integer multiplication:

multi(cni(xn), cni(yn)) → cni(multn(xn, yn))
multi(cni(0),–(yp)) → cni(0)

multi(cni(cpn(xp)),–(yp)) → –(multp(xp, yp))
multi(–(xp), cni(0)) → cni(0)

multi(–(xp), cni(cpn(yp))) → –(multp(xp, yp))
multi(–(xp),–(yp)) → cni(cpn(multp(xp, yp)))

Let Rmult be the rewrite system consisting of all rules until now. We want to
analyze which of the properties of Theorem 1 hold for Rmult, and what can be said
about the lengths of reductions. It turns out that the third property of Theorem
1 does not hold in general. For instance, the term multp(.1(1), succp(1)) reduces
in two steps to plusp(.0(multp(1, .0(1)), .0(1)) if first succp(1) is reduced to .0(1),
but reduces in three steps to the same term if first the rule multp(.1(xp), yp) →
plusp(.0(multp(xp, yp)), yp) is applied. This gives rise to reductions to normal form
of different lengths.

In real computations however normal forms are computed of terms in which
the arguments of defined symbols are constructor terms. For such terms we will
show that this undesired behavior does not occur.

9

We define a multiplication term to be a term in which there is at most one oc-
currence of the symbols multp, multn and multi, and if it occurs then its arguments
are constructor terms.

For any term t we write N(t) for the normal form of t w.r.t. Rmult.

Theorem 3 The rewrite system Rmult has the following properties:

1. Rmult is terminating and confluent, and a ground term is a normal form if
and only if it is a constructor term;

2. |t| ≥ |N(t)| for every ground term t;

3. all reductions from a multiplication term to its normal form have the same
length;

4. the length of a reduction from a multiplication term to its normal form is
at most quadratic in the size of the term.

Proof: Part 1 is similar to parts 1, 2 an 4 of Theorem 1, for termination by
recursive path order the precedence has to be extended by

multi > multn > multp > plusp.

For part 2 we apply induction on |t|. If t is a constant then the property holds
since t is a normal form. If t = f(u) for any unary symbol f then |u| ≥ |N(u)| by
the induction hypothesis, and N(f(u)) = N(f(N(u))) by uniqueness of normal
form. For all choices of f we check that |v| + 1 ≥ |N(f(v)| for every ground
constructor term v by counting the number of digits of the value of f(v). For
instance for f = succp then |v|+1 ≥ |N(f(v)| follows from 2x ≥ x+1 for positive
values of x. Since N(u) is a ground constructor term we obtain

|t| = |u|+ 1 ≥ |N(u)|+ 1 ≥ |N(f(N(u))| = |N(f(u))| = |N(t)|.

Similarly if t = f(t1, t2) for any binary symbol f we obtain

|t| = |t1|+ |t2|+ 1 ≥ |N(t1)|+ |N(t2)|+ 1

≥ |N(f(N(t1), N(t2))| = |N(f(t1, t2))| = |N(t)|;
here for all binary symbols f we have to check that |v1|+|v2|+1 ≥ |N(f(v1, v2)| for
all ground constructor terms v1, v2 by counting the number of digits of the values,
for instance for f = multp this follows from the observation that the positive
ground constructor term vi represents a number ni satisfying 2|vi|−1 ≤ ni < 2|vi|

for i = 1, 2, and n1 ∗ n2 < 2|v1|+|v2|, hence n1 ∗ n2 will be represented by a ground
constructor term of size at most |v1|+ |v2|. This concludes the proof of part 2.

For part 3 we apply induction on the length of the reduction to normal form.
If none of the symbols multp, multn or multi occurs then part 3 of Theorem 1

10

applies. In the remaining case let t = C[m(t1, t2)] be a multiplication term in
which m is one of the symbols multp, multn or multi, and assume that t→ ui →∗ n
are two reductions from t to its normal form n for i = 1, 2. Due to the shape of
the rules we conclude that u1 and u2 are multiplication terms. By the induction
hypothesis we may assume that every reduction from ui to n has length ni form
i = 1, 2; we have to prove that n1 = n2. Since ti is a constructor term and
hence a normal form, we have either ui = Di[m(t1, t2)] for a context Di satisfying
C[x]→ Di[x], or ui = C[vi] for m(t1, t2)→ vi, for i = 1, 2. We distinguish three
cases:

1. Let ui = Di[m(t1, t2)] and C[x] → Di[x] for i = 1, 2. Then a context E
exists for which Di[x] → E[x] for i = 1, 2, since no multiplication symbol
occurs in C and for every rule for any other defined symbol every occurring
variable occurs exactly once in both the left hand side and the right hand
side. Let w = E[m(t1, t2)], then ui → w for i = 1, 2, hence n1 = 1 +k = n2,
where k is the length of a reduction from w to n.

2. Let ui = Di[m(t1, t2)] and C[x] → Di[x] and uj = C[vj] for m(t1, t2) → vj

for i 6= j. Let w = Di[vj], then ui → w and uj → w, hence n1 = 1+k = n2,
where k is the length of a reduction from w to n.

3. Let ui = C[vi] for m(t1, t2) → vi for i = 1, 2. Then v1 = v2 since only one
rule is applicable on m(t1, t2). Hence u1 = C[v1] = C[v2] = u2.

In all cases we proved that n1 = n2, concluding the proof of part 3.
For part 4 we define d(t) to be the number of defined symbols in a term t, and

we choose c to be a constant such that every Radd-reduction of a term t containing
exactly one defined symbol has length at most c|t|; this exists due to Theorem
2. We will prove by induction on the reduction length that for every ground
multiplication term t there is a reduction to normal form of length at most

c ∗ d(t) ∗ |t|+ 2cM2

where M = 0 if none of the symbols multp, multn or multi occurs in t, and
M = |m(t1, t2)| if t = C[m(t1, t2)] where m is one of the symbols multp, multn
or multi. Clearly this bound is quadratic in |t|. By substitution of variables
by constants, and observing that reductions to normal form then never will be
shorter, we see that the required property for general terms follows from this
property for ground terms. By part 3 we conclude that the property holds for all
reductions of t to normal form if it has been proven to hold for a single one.

First consider the case that none of the symbols multp, multn or multi occurs
in t. If t contains no defined symbol then t is a normal form and the property
trivially holds; if t contains a defined symbol then it can be written as t = C[u]
such that u contains exactly one defined symbol. Then there is a reduction from
u to N(u) of at most c|u| steps, giving rise to a reduction from t = C[u] to

11

C[N(u)] of the same length. Now |u| ≥ |N(u)| by part 2, hence |t| ≥ |C[N(u)]|.
Applying the hypothesis on C[N(u)] yields a reduction to normal form of length
at most

c ∗ d(C[N(u)]) ∗ |C[N(u)]| = c ∗ (d(t)− 1) ∗ |C[N(u)]| ≤ c ∗ (d(t)− 1) ∗ |t|,

hence the total length of the reduction to normal form of t is at most

c|u|+ c ∗ (d(t)− 1) ∗ |t| ≤ c|t|+ c ∗ (d(t)− 1) ∗ |t| = c ∗ d(t) ∗ |t|,

which we had to prove.
In the remaining case we have t = C[m(t1, t2)] where m is one of the symbols

multp, multn or multi, and t1, t2 are constructor terms. We concentrate on the
case that m = multp and t1 = .1(u), for all other cases the proof is similar but
much simpler, and left to the reader. Write v = plusp(.0(multp(u, t2), t2). Now t =
C[multp(.1(u), t2)] rewrites in one step to C[v]. Applying the induction hypothesis
on v yields a reduction from v to N(v) of at most c ∗ 2 ∗ |v|+ 2c(M − 1)2 steps.
Since |v| ≤ 2M − 1 this number is at most 2cM2. This gives rise to a reduction
of C[v] to C[N(v)] of at most 2cM2 steps. Since N(v) = N(multp(.1(u), t2)) we
obtain from part 2 that |C[N(v)]| ≤ |C[multp(.1(u), t2)| = |t|. Hence applying
the induction hypothesis on C[N(v)] yields a reduction from C[N(v)] to normal
form of length at most c ∗ d(C[N(v)) ∗ |C[N(v)| ≤ c ∗ (d(t)− 1) ∗ |t|. Combining
all reduction steps yields a reduction form t to normal form of length at most

1 + 2cM2 + c ∗ (d(t)− 1) ∗ |t| ≤ c ∗ d(t) ∗ |t|+ 2cM2,

concluding the proof of part 4. 2

Now we show that some conditions in Theorem 3 are essential. In part 2 it is
essential to restrict to ground terms. For instance, the normal form of the open
term multp(.1(xp), yp) is the bigger term plusp(.0(multp(xp, yp)), yp).

We already gave an example showing that for part 3 it is essential to restrict
to multiplication terms. The same holds for part 4. For instance, for n ≥ 0 the
term

multp((.1)n(1), (succppredp)n(.0)n(1))

reduces by n applications of the rule multp(.1(xp), yp)→ plusp(.0(multp(xp, yp)), yp)
to a term having n + 1 occurrences of the subterm (succppredp)n(.0)n(1). Since
this subterm admits a reduction of quadratic length, the original term admits a
reduction of cubic length.

Exponentiation

Symbols:
powp : pos× pos → pos (λxy · xy)
pown : nat× pos → nat (λxy · xy)
powi : int× pos → int (λxy · xy)

12

Rewrite rules for positive exponentiation:

powp(xp, 1) → xp

powp(xp, .0(yp)) → powp(multp(xp, xp), yp)
powp(xp, .1(yp)) → multp(xp, powp(multp(xp, xp), yp))

Rewrite rules for natural exponentiation:

pown(0, xp) → 0
pown(cpn(xp), yp) → cpn(powp(xp, yp))

Rewrite rules for integer exponentiation:

powi(cni(xn), yp) → cni(pown(xn, yp))
powi(–(xp), 1) → –(xp)

powi(–(xp), .0(yp)) → cni(cpn(powp(xp, .0(yp))))
powi(–(xp), .1(yp)) → –(powp(xp, .1(yp)))

Boolean operations

We will use xb, yb, . . . for variables of type bool.

Symbols:
not : bool → bool
and : bool× bool → bool
or : bool× bool → bool
eqp : pos× pos → bool
eqn : nat× nat → bool
eqi : int× int → bool
grp : pos× pos → bool
grn : nat× nat → bool
gri : int× int → bool
ifp : bool× pos× pos → pos
ifn : bool× nat× nat → nat
ifi : bool× int× int → int

Rewrite rules for basic boolean operations:

not(F) → T
not(T) → F

and(xb,T) → xb

and(xb,F) → F
and(T, xb) → xb

and(F, xb) → F
or(xb,T) → T
or(xb,F) → xb

or(T, xb) → T
or(F, xb) → xb

13

Rewrite rules for positive equality:

eqp(1, 1) → T
eqp(1, .0(xp)) → F
eqp(1, .1(xp)) → F
eqp(.0(xp), 1) → F

eqp(.0(xp), .0(yp)) → eqp(xp, yp)
eqp(.0(xp), .1(yp)) → F

eqp(.1(xp), 1) → F
eqp(.1(xp), .0(yp)) → F
eqp(.1(xp), .1(yp)) → eqp(xp, yp)

Rewrite rules for natural equality:

eqn(0, 0) → T
eqn(0, cpn(xp)) → F
eqn(cpn(xp), 0) → F

eqn(cpn(xp), cpn(yp)) → eqp(xp, yp)

Rewrite rules for integer equality:

eqi(cni(xn), cni(yn)) → eqn(xn, yn)
eqi(cni(xn),–(yp)) → F
eqi(–(xp), cni(yn)) → F
eqi(–(xp),–(yp)) → eqp(xp, yp)

Rewrite rules for positive inequality:

grp(1, 1) → F
grp(1, .0(xp)) → F
grp(1, .1(xp)) → F
grp(.0(xp), 1) → T

grp(.0(xp), .0(yp)) → grp(xp, yp)
grp(.0(xp), .1(yp)) → grp(xp, yp)

grp(.1(xp), 1) → T
grp(.1(xp), .0(yp)) → not(grp(yp, xp))
grp(.1(xp), .1(yp)) → grp(xp, yp)

Rewrite rules for natural inequality:

grn(0, 0) → F
grn(0, cpn(xp)) → F
grn(cpn(xp), 0) → T

grn(cpn(xp), cpn(yp)) → grp(xp, yp)

14

Rewrite rules for integer inequality:

gri(cni(xn), cni(yn)) → grn(xn, yn)
gri(cni(xn),–(yp)) → T
gri(–(xp), cni(yn)) → F
gri(–(xp),–(yp)) → grp(yp, xp)

Rewrite rules for selection:

ifp(T, xp, yp) → xp

ifp(F, xp, yp) → yp

ifn(T, xn, yn) → xn

ifn(F, xn, yn) → yn

ifi(T, xi, yi) → xi

ifi(F, xi, yi) → yi

In order to improve readability we write the three arguments of these operators
on separate lines if these arguments are big terms.

Div and mod

Symbols:
mod : nat× pos → nat (λxy · xmody)
div : nat× pos → nat (λxy · xdivy)

Auxiliary symbols:
f : pos× pos → pos
g : pos× pos× pos → pos

The intended meaning of f and g is the following. For x ≥ y > 0 we have
f(x, y) = 2i ∗ y for the unique positive integer i satisfying

2i ∗ y ≤ x < 2i+1 ∗ y.

For x ≥ y > 0, z > 0 we have g(x, y, z) = 2i ∗z for the same value i, i.e., g(x, y, z)
is defined by

g(x, y, z) ∗ y = f(x, y) ∗ z.

15

Rewrite rules:

mod(0, yp) → 0
mod(cpn(xp), yp) → ifn(grp(yp, xp),

cpn(xp),
mod(abs(minpi(xp, f(xp, yp))), yp))

f(xp, yp) → ifp(grp(.0(yp), xp),
yp,
f(xp, .0(yp)))

div(0, yp) → 0
div(cpn(xp), yp) → ifn(grp(yp, xp),

0,
plusn(cpn(g(xp, yp, 1)), div(abs(minpi(xp, f(xp, yp))), yp)))

g(xp, yp, zp) → ifp(grp(.0(yp), xp),
zp,
g(xp, .0(yp), .0(zp)))

Note that these rewrite rules are not terminating in the general sense since
we have a rule of the shape f(xp, yp) → C[f(xp, yp)σ] for a context C and a
substitution σ. However, if we disallow rewriting inside the second or third
argument of an if-symbol (this is a particular case of context-sensitive rewriting),
then we may expect that termination can be proved, or even better a bound on
the length of reductions.

An approach to achieve termination without restricting to context-sensitive
rewriting is the following. For every if-symbol in the above rewrite rules we
introduce a fresh symbol IFi, for a number i, and replace the rule of the shape

t→ if(C, u, v)

for terms t, u, v and boolean term C by the three rules

t → IFi(C, x1, . . . , xn)
IFi(T, x1, . . . , xn) → u
IFi(F, x1, . . . , xn) → v

where x1, . . . , xn are the variables occurring in u or v. Applying this approach
transforms the above rules for mod and div to the following rules, using four
auxiliary symbols.

Auxiliary symbols:

IF1 : bool× pos× pos → nat
IF2 : bool× pos× pos → pos
IF3 : bool× pos× pos → nat
IF4 : bool× pos× pos× pos → pos

16

Rewrite rules:

mod(0, yp) → 0
mod(cpn(xp), yp) → IF1(grp(yp, xp), xp, yp)

IF1(T, xp, yp) → cpn(xp)
IF1(F, xp, yp) → mod(abs(minpi(xp, f(xp, yp))), yp)

f(xp, yp) → IF2(grp(.0(yp), xp), xp, yp)
IF2(T, xp, yp) → yp

IF2(F, xp, yp) → f(xp, .0(yp))
div(0, yp) → 0

div(cpn(xp), yp) → IF3(grp(yp, xp), xp, yp)
IF3(T, xp, yp) → 0
IF3(F, xp, yp) → plusn(cpn(g(xp, yp, 1)), div(abs(minpi(xp, f(xp, yp))), yp))
g(xp, yp, zp) → IF4(grp(.0(yp), xp), xp, yp, zp)

IF4(T, xp, yp, zp) → zp

IF4(F, xp, yp, zp) → g(xp, .0(yp), .0(zp))

17

