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Abstract

Language identification (LI) is an important
task in natural language processing. Sev-
eral machine learning approaches have been
proposed for addressing this problem, but
most of them assume relatively long and well
written texts. We propose a graph-based
N-gram approach for LI called LIGA which
targets relatively short and ill-written texts.
The results of our experimental study show
that LIGA outperforms the state-of-the-art
N-gram approach on Twitter messages LI.

1. Introduction

Motivation. The problem of language identification
(LI) is interesting on its own. However, in many prac-
tical applications LI can be seen as one of the steps of
some larger process. Accurate LI can facilitate use of
background information about the language and use
of more specialized approaches in many natural lan-
guage processing tasks dealing with a collection or a
stream of texts, each of which can be written in a
different language. The multilingual sentiment analy-
sis on social media would be a typical motivating ex-
ample. In (Tromp, 2011), an extensive experimental
study shows that the multilingual sentiment classifica-
tion can be performed more accurately when the pro-
cess is split into four steps; LI, part-of-speech tagging,
subjectivity detection and polarity detection. This be-
comes possible because at each step after LI, models
that utilize language specific knowledge can be ap-
plied. Obviously, if the language of some text is identi-
fied incorrectly then this error will effect the forthcom-
ing steps of the multilingual sentiment analysis and
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thus compromise the use of the relatively complicated
four step procedure. Therefore, it is highly desirable to
minimize the error of LI. Consider another example of
machine translation where the source text’s language
is not known. The translation can not even commence
without first identifying this source language.

Numerous supervised machine learning methods have
been proposed for LI (Luca et al., 2008; Kranig, 2006).
Several experimental studies reported high accuracy
results for different collections of relatively long texts
with proper grammar. The most widely accepted ap-
proach is to use N-grams (Cavnar & Trenkle, 1994). Tt
was shown to be almost 100% accurate for long texts.
For example, in (Cavnar & Trenkle, 1994) the ex-
perimental results showed 99.8% accuracy on the col-
lection of documents written in fourteen different lan-
guages. The results suggested that high accuracies can
be achieve for texts having a text length of at least
400 characters. However when LI is done for docu-
ments shorter than 300 characters, accuracies start to
decrease much faster (though still pertaining the level
of 93%) with respect to relatively longer texts having
at least 400 characters.

Over recent years, with the popularity of social me-
dia, including Twitter and social networks, and conse-
quently social media data analysis like opinion min-
ing, the need for accurate LI (but now on short
and grammatically-ill text messages) has become well-
motivated again.

Problem formulation and our approach. We con-
sider LI as a supervised learning task, particularly
plain single label multi-class classification. Given some
historical or training data in which for each text ¢t we
know a label [, the language in which this text is writ-
ten, our goal is to learn a model such that given some
previously unseen text we can say as accurately as pos-
sible in which language this text is written. We do not
consider cases when for a text written partly in one
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language and partly in some other language someone
would like to get both labels as an output. We also do
not, consider language groups or any other dependen-
cies between the language labels.

We introduce a Graph-based Approach for LI (LIGA)
that allows to learn elements of grammar besides using
N-gram frequencies.

Main results. The experimental study we performed
with the collections of Twitter messages written in
six languages shows that LIGA is statistically signifi-
cantly more accurate than the existing N-gram based
approach regardless of the training set size used to
learn the models (95-98% for LIGA vs. 87-93% for N-
grams) and that LIGA is less prone to overfitting the
sources and domain-specific jargon.

Outline. The rest of the paper is organized as fol-
lows. In Section 2, we give an overview of the related
work on LI discussing the applicability of different ap-
proaches to short, grammatically-ill texts. In Section 3
we introduce LIGA, our approach for LI. Section 4 de-
scribes the experimental study in which we compare
LIGA with the traditional N-gram method. Finally,
Section 5 summarizes our findings and suggests direc-
tion for future work.

2. Background and Related Work

In this section we discuss related work on LI with the
focus on N-gram based approach as the current state-
of-the-art for LI, which we use in LIGA.

2.1. N-Gram-Based Approach

The N-gram-based approach for LI (Cavnar & Tren-
kle, 1994) chops texts up in equally-sized character
strings, N-grams, of length n. It is assumed that every
language uses certain N-grams more frequently than
other languages, thus providing a clue on the language
the text is in. This idea works due to Zipf’s law stat-
ing that the size of the r-th largest occurrence of the
event is inversely proportional to its rank r (Ha et al.,
2003). Experimental studies in (Cavnar & Trenkle,
1994) suggest that using trigrams (at the character
level) generally yields the best results.

In (Cavnar & Trenkle, 1994) the out-of-placement
measure is used to compare unlabeled text against the
model. This measure sorts the N-grams in both the
model as well as the unlabeled text separately based
on their occurrence counts and compares the model’s
occurrence list with the text’s list. Later, in (Ahmed
et al., 2004) it was shown that the use of a cumula-
tive frequency based measurement yields similar ac-

curacy results yet is more time efficient. The out-of-
placement measure works well when sufficient train-
ing data is available whereas the cumulative frequency
measurement works equally well with little data at
hand. Therefore we will use the cumulative frequency
measurement in our experiments.

2.2. Other Approaches

The idea behind the N-gram-based approach is bor-
rowed from (Dunning, 1994) where using Markov Mod-
els for LI was considered. This approach however lacks
the intuition the N-gram approach has and requires
more time for training a model and for classifying a
new text.

A similar straightforward approach is to use word fre-
quencies. One variant is to use short words (Prager,
1999) as they occur regularly in a language and usu-
ally differ per language. Another variant is to use the
most frequently occurring words (Martino & Paulsen,
1996; Cowie et al., 1999) for the same rationale.

The compression-based approach for LI was proposed
in (Harper & Teahan, 2001). Labeled data is com-
pressed using so-called prediction by partial matching
(PPM) approach to construct language models. An
unlabeled text is also compressed and the number of
bits required to encode this new document is compared
to the number bits used in the language models. The
likeliness of a text with a language model is computed
using entropy as a similarity measurement.

3. LIGA - Graph-Based N-gram
Language Identification

In our approach we want to utilize not only word pres-
ence and occurrences but also their ordering. To cap-
ture the ordering of words, we create a graph model on
labeled data. The labels of its vertices represent the
presence of words in a given language. The weights
of the vertices represent the frequencies of words in a
given language. The crucial part is in the presence and
weights of the edges, which try to capture the gram-
mar (in this particular case only the word ordering) of
a language.

As a starting point for our method, we use the N-gram-
based approach described in Section 2.1. We will thus
not truly capture word information but N-gram infor-
mation. Next, we give the preliminaries (Section 3.1),
the methodology to learn LIGA and to use it for the
model (Section 3.2) and to classify unlabeled texts
(Section 3.3), and time and space complexity analy-
sis (Section 3.4).
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3.1. Preliminaries

We extend a basic graph G = (V, E) with a labeling
function £ : V — L. This labeling function assigns to
each vertex v € V' a label | € L uniquely identifying
the vertex. Let Lang denote all languages present in
our training set, then the function W, : V. x Lang — N
assigns for each vertex v € V and every language [ €
Lang a weight. For edges we have a similar function
W, : E x Lang — N. Since we will incrementally
construct our graph, we may encounter that, for a label
[ of a vertex u to be added, ey : v # uAL(v) =1. We
then say that L(v) is defined. We say L(v) is undefined
in all other cases. We use the same notion of defined
for W, and W..

Using the mentioned extensions, we represent a graph
as the following quintuple.

G=(V,E,L,Wy,We)

A labeled text t of which the language [ is known
is denoted as the binary tuple (¢,1). An unlabeled
text s of will be denoted as the binary tuple (s, \).
We denote all N-grams of a text ¢ as the ordered list
Ny, = [91, 92, -, gr] where n denotes the length of the
N-grams. The order in N, respects the order in which
the N-grams occur in (¢,1).

3.2. Learning a Model

Our goal is given a training set 7 consisting of labeled
texts for every language in Lang to learn a model con-
sisting of a single graph G.

For each text (t,1) € T we construct the list N,,,. For
every m € N,, we create a vertex v with L(v) = m,
but only if L(v) is undefined. For every e € {(u,v) €
VxV: (E(u) = m; N\ [,(’U) = mH_l) = (mi,m¢+1 €
Np,)} we create an edge e, but only if e ¢ E. The
weights are updated as follows:

Wy (v, 1) + 1

W, (v,1) = { . if L(v) is defined

otherwise

We(e,l) + 1

We(e,l) = { 1 if We(e,l) 1S deﬁned

otherwise

When we add a node or edge (i.e. when £(v) or Wk(e, 1)
is undefined respectively), we initialize the weights of
all languages for that vertex or node to 0 before apply-
ing the weight updates. When applying the aforemen-
tioned definitions for all (¢,1) € T we get our graph
G = (V,E,L,W,,W.). We illustrate this by an exam-
ple. Consider the following two texts of which the first
is in Dutch (NL) and the second is in English (EN).

(tlvNL) =
(ta, EN) =

is dit een test
is this a test

We then first create the ordered lists of N-grams.
When using trigrams (n = 3) we get the following,
where a space is denoted by a dot -.

Ns, = [is,, s:d, «di, dit, it-, t-e, -ee, een, en:, n+,
‘te, tes, est)

N3, = [is, s:t, th, thi, his, is-, s-a, -a-, a-t, -te, tes,
est)

We next start constructing the graph. For each n €
N3, N N3, we add a vertex v to our graph, having
L(v) = n. For example, for the first element in N3, we
will create the vertex v having £(v) = is-. For the first
element in N3, we will not add a new vertex as £(v) is
defined. In our example, for vertex v (having L(v) =
is-) we will have W, (v, NL) = 1 and W, (v, EN) =1
as is- occurs once in both the Dutch as well as the
English text.

We next add edges. We will have edges from for
example v to u (e = (v,u)) where L(v) = is- and
L(u) = s-d, capturing the order between the first and
second elements of N3, . Since this connection occurs
only once, and only for the Dutch text, we have that
We(e, NL) =1 and W,(e, EN) = 0.

Figure 1 shows the graph resulting from this example.
The labels of the vertices are shown at the topmost
position inside the vertices. The weights per language
are listed with the vertices and edges.

3.3. Classifying a Text

Once we have constructed G, we can use it to classify
unlabeled texts. To do so, we first need to transform
an unlabeled text into something similar to G such
that we can compare the two.

While for constructing G we use weights to indicate
multiple occurrences of a given N-gram, for the un-
labeled text we create multiple vertices — one for ev-
ery occurrence. We thus in fact get a simple graph,
a path m = (V,E, L, vstart). Here |V| = |N,,| and
if N, = [ni1,na,..,n] then E = {(u,v)|L(u) =
n; AL(v) = ni11}. The node vgiqre € V is the starting
node of our path. To illustrate this, we consider the
following (Dutch) text is dit ook een test of which we
would not know the label in advance. The path 7 for
this example is shown in Figure 2.

A crucial step is to compare m and G. We compute
the so-called path-matching scores for each language
l € Lang. Conceptually, this is done by ‘laying’ the
path over the graph and measuring its similarity for
each language. Since all languages we have knowledge
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Figure 2. The path resulting from the unlabeled example

of are present in a single model, we can compute the
scores for all languages in one go.

To keep track of the matching scores of our languages,
we maintain a scoring function PM : Lang — R as-
signing a rational number to every language | € Lang.
Initially, we say that PM(l) = 0 for all | € Lang.
Let G = (V, E, L, W,,W,) be the graph representing
our model and 7 = (V' E', L', vstart) be our labeled
path. In order to keep our method robust with re-
spect to differing quantities of labeled data for dif-
ferent languages, we will normalize the scores. Let
Yo = Zoev(ZierangWo(v,1))) be the total sum of
all weights contained in all nodes in G. Also, let ¥, =
Yece(ZicLang(We(e, 1)) be the sum of all weights con-
tained in all edges in G. We then start traversing our
path 7 in G starting with node vstqr¢. Let v) denote the
node we are currently visiting (initially, v} = vgtart)-
We try to find a v € V such that L(v) = L'(v}). Note
that there is at most one such node but there may be
none. We update the matching scores according to (1).
In this step we account for the occurrence of a given
N-gram from 7 in G.

The next step is to account for the order. We find
the only edge ¢/ € E’ that has our previous node v}

as source, if any (since the last node has no outgoing
edges). We thus find the edge ¢’ = (vj,vj, ;). We then
update the matching scores according to (2).

We have now accounted for the order between two N-
grams present in our path whose label is given in nodes
v; and vj ;. We next continue traversing our path
by performing (1) again for vj,, after which we can
apply (2). This process continues until we find a node
vl,q € V' such that ~(Jyevs : (v),,4,v") € E'); this is
the ending node not having any outgoing edges.

When we have matched the entire path onto the graph,
we need our function PM to determine the language.
For each language, PM maps it onto a value in R.
More specifically, since the weights of the nodes ac-
counted to PM are normalized and so are the weights
of the edges, we end up with a score in [0, 2] (when our
model is isomorphic to our path for a given language,
we get a score of 1 for the nodes and 1 for the edges).
We now say that the text of which we were identify-
ing the language is in language | = argmaxicrang :

PM(I).
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PM() +
PM(I)

We (e,l
PM(1) + el

vl»ELtmg : PM(Z) = {

leLang . PM(Z)

PM(I)

3.4. Time and Space Complexity of LIGA

Let T {(t1,11), (t2,12), .oy (tm, lm)} represent all
texts t; with their respective labels I; of our train-
ing set. For every t; we create its N-grams which
can be done in O(|t;|) time, i.e. linear in the size of
the text. As we create the N-grams, we add them to
our graph in parallel by keeping track of the previ-
ous N-gram for the edge addition. The time required
to build G is hence O(Jt;|) for a single text ¢;. Let
NOW tiae = argmazser : (Vee7 : |ti| > |t;]) be the
longest all texts in 7. The total time required to train
a model is bound by O(m-|tmqz|), where m is the num-
ber of texts in 7, which is asymptotically equivalent
to the regular N-gram-based approach. Note however
that the constant for LIGA is greater than for the N-
gram-based approach.

When we classify (tnew, A) with G, we again first create
the N-grams in O(|tpew|) time, forming a path. We
then traverse the path in our graph. Since for every
N-gram in our path we have to check at most one node
in G (namely, the node having the same label) and
at most one edge, this is also linear in the size of the
unlabeled text. Classifying a text hence requires O([t])
time.

For the space required to store our model, the worst
case would be when we have a completely non-
overlapping training set. Every text in such a training
set would yield a single string or path that is discon-
nected from all other paths. Since such a single path
represents a single text ¢, we have one node for each N-
gram of the text, thus requiring O(|t|) space. We will
have exactly [t| — 1 edges since the starting N-gram
has no incoming edges and the ending N-gram has no
outgoing edges. The space required to store the edges
is hence also linear in the text’s size, requiring O(|t]).
Using similar notation as with the time complexity, we
need O(|l] - m - |tmaz|) space to store the model. The
|I| component is the number of languages present in
our model and originates from the fact that we need
to store |I| weights for each node and edge. Similar
reasoning shows that we require O(|¢|) space to store
the path representing unlabeled data.

Wolwl) if ey« L(v) = L(v))

otherwise

P

if Jeer : Fu,w e Vi L(v) =L (V))A
L(w) = L' (vi,) Ne = (v,w))

otherwise

4. Experimental evaluation

We compare the performance of the proposed LIGA
approach with the N-gram-based approach for LI. Par-
ticularly, we are interested in the following three as-
pects; (a) comparing the accuracy of two approaches
on the LI of short texts (Twitter messages), (b) look-
ing into the effect of reducing the amount of training
data on the accuracies, and (c) comparing the gen-
eralization and (over)specialization properties of two
approaches with respect to the source, domain or jar-
gon the present in the training data.

In their work (Cavnar & Trenkle, 1994) use newsgroup
articles having culture as topic. The messages in their
dataset hence all share the same domain. The gener-
alization/specialization experiments address this prob-
lem.

In the following sections we first describe the dataset
used in this study and the experiment setup, and then
present the main results.

4.1. Dataset and Experiment Setup

The dataset was constructed from the social medium
Twitter. The Twitter API is used to extract messages
from accounts known to only contain messages of a
specific language. We do this for six languages and six
accounts per language. The six languages are German,
English, Spanish, French, Italian and Dutch. These
are languages we have sufficient knowledge of to iden-
tify. Moreover, including Spanish, French and Italian
presents a challenge as these languages contain a lot of
similar word extensions and trigram patterns. For ev-
ery language we have at least one account of a person
instead of an institution (such as BBC News). We as-
sume that each account has its own domain and hence
its own jargon that typically is not, or less often, used
in the other domains. When we indicate a domain
as random we mean that its messages are a mixture
of other domains. The rationale behind using six ac-
counts per language is that our experiments require
us to have different domains but incorporating tens or
hundreds of accounts is very laborious.

As a pre-processing step, we inspect our data as
in (Cavnar & Trenkle, 1994), removing messages that
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Table 1. Splitting the data into training and test sets.

Lang. DomaAIN Exp. 1 Exp. 2
S1 .
DE SPORTS traim testa,,,
Sy ¢ testy
ni . .
NATIONAL . trainy traing
NEWS Ny, } test testa, ..
T1 .
RANDOM . [ traim testa,.,
rn ¢ testy
NL TELECOM.

contain multiple languages or bilingual terminology.
From each message we also deliberately remove links,
usernames preceded by an @ sign, term references pre-
ceded by a # sign or smilies such as :) and punctua-
tion. The rationale behind this is that we want to learn
a model on the language itself whereas these entities
are language-independent. Moreover, the use of Twit-
ter for our experiments is just to show an application
on short texts, learning Twitter-specific patterns con-
taining username or channel references is not desired.
The final dataset contains 9066 labeled messages of at
most 140 bytes.!

In both approaches we use trigrams (as suggested
in (Cavnar & Trenkle, 1994)) and the frequency based
measurement of (Ahmed et al., 2004).

In all cases we compare the mean accuracy of the N-
gram approach against the mean accuracy of LIGA.
The mean accuracies are obtained by taking the mean
of 50 different ten-fold cross-validation experiment
runs. We check for statistical significance using pair-
wise T-tests.

In order to compare the accuracies of both methods,
we learn a model on one part of the data, which we call
trainy, and test it on another part of the data, called
test; formed as illustrated in Table 1, column Exp. 1.
We use all accounts of all languages. The size of traing
varies to investigate the influence of the corpus’ size.
We use 5%, 10%, 25% and 50% of the entire dataset
stratified per language and sampled uniformly.

We also investigate how much each approach learns
about the actual language itself rather than about a
particular domain. To analyze this, we learn a model

!The dataset is made available online at
http://www.win.tue.nl/~mpechen/projects/smm/

Table 2. Accuracies averaged over 50 runs.

EXPERIMENT LIGA N-GRAM T-TEST
5% SAMPLE 949 £ 08 875+ 15 Vv
10% SAMPLE 96.4 £ 0.5 90.6 £ 1.0 Vv
25% SAMPLE 97.3 £ 0.5 925+ 0.9 Vv
50% SAMPLE 97.5 £ 0.5 93.1 £0.8 Vv
5% vs. 50% 94.9 +£ 0.8 93.1 £ 0.8 Vv
GENERALIZATION 924 + 1.0 83.5 £ 1.8 Vv
SPECIALIZATION ~ 98.3 £ 0.8 95.5 £ 1.6 V4
ONE HOLDOUT 95.6 £ 1.6 89.2 + 4.3 Vv
Two HOLDOUTS  95.2 £ 0.9 88.1 £ 2.7 Vv

on data from one domain and test it on other domains.
For each language, we choose a single account on which
we learn our model and then test on the remaining
accounts (Table 1, column Exp. 2). The training set
traing consists of % of all data of one single account
for each language. There are now two test sets. The
first, tests, .. is the remaining % of the same account
and will allow us to judge how specific each model is
for a single domain. The second, tests, ., consists of
all other accounts. This test set will show us how well
the learnt model generalizes to other domains.

Finally, we analyze the influence of jargon. To study
this, we learn a model on all accounts of all languages
except for one or two hold-out accounts which are re-
served for testing. Assuming that each account repre-
sents a single domain, we can get to know how impor-
tant it is to capture domain-specific jargon since any
domain-specific jargon present in one of the holdout
accounts likely will not be included in our model. The
formation of the training and test datasets can be seen
as the inverse of Table 1, column Exp. 2.

4.2. Experiment Results

The main results are presented in Table 2 which shows,
averaged over 50 experiment runs, the accuracies and
standard deviations for LIGA and N-gram approaches.
The last column shows the result of pairwised T-test
(which was positive for each comparison in our case).

Effect of the training set size. As expected we
can see that as the size of the training data grows, the
accuracy increases and variance decreases with both
approaches. However, LIGA has much better perfor-
mance than N-gram approach especially when a small
amount of labeled data is available.

The row ‘5% vs. 50%’ of Table 2 compares LIGA
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learned on 5% of the training data against the N-gram-
based approach using 50% of the training data. LIGA
still has statistically significant higher accuracy.

It can be clearly seen from Figure 3 that LIGA con-
sistently outperforms N-gram approach on each of the
50 experiment runs. To avoid overloading of the graph
we present only accuracies corresponding to the use of
5% and 50% of available labeled data.

Using more than 50% of labeled data for training a
LI model in our case did not result in any further sig-
nificant improvement of the classification accuracy for
either of the two approaches and therefore we omit
these results for the sake of conciseness.

=& LIGA5% —=—LIGA50% --®--N-gram 5% N-gram 50%

1.00
0.98 -
0.96
0.94
0.92 ) (O X
0.90
0.88
0.86 T b 7 B
0.84 S e

1 5 9 13 17 21 25 29 33 37 41 45 49

| » » - X
A s B0 M A fe ittt A S 2 & 5
b 7ol S\ ¢ R Y 2

Single experiment run ID

Figure 3. Accuracy results over 50 different runs for LIGA
and N-gram approaches when trained either on 5% or on
50% of available labeled data.

Generalization and domain-specific jargon re-
sults. The ‘Generalization’ and ‘Specialization’ rows
in Table 2 and Figure 4 show the results from the gen-
eralization experiments. As one would expect, a model
learned on a specific domain yields higher accuracies in
that domain than in other domains. This behavior is
shown by the difference in accuracies between the gen-
eralization results and the specialization results. The
specialization accuracy for both approaches is often
close to 100%, yet LIGA is statistically significantly
better than N-gram approach.

For the generalization experiments, we clearly see that
LIGA again consistently (Figure 4) outperforms the
N-gram based approach. The accuracy of LIGA never
drops below 90% whereas that of the N-gram based
approach is never higher than 90%.

LIGA achieves higher accuracies both within the do-
main the model was trained on as well as outside
that domain. This indicates that LIGA is likely to
be less sensitive to domain-bound usage of language
and hence is likely to learn more about the language

—=—L|IGA Spec --®--N-gram Spec —e—LIGA Gen

N-gram Gen

1.00
0.98
0.96
0.94
0.92
0.90
0.88
0.86
084 244 T2t a g vy A — T
0.82 4
0.80 LS L e |

1 5 9 13 17 21 25 29 33 37 41 45 49

Single experiment run ID

Figure 4. Accuracy results over 50 different runs for LIGA
and N-gram approaches when trained on one domain and
tested on all other domains (see Table 1, column Exp. 2
for clarification).

itself rather than about the domain messages belong
to.

The results plotted in Figure 5 stem from holding out
one or two accounts. Averaged results are in the last
two rows of Table 2. We can observe a moderate drop
in accuracy for both approaches with respect to not
holding out any account. LIGA’s accuracy drops by
2-3% on a single holdout and the N-gram-based ap-
proach’s accuracy drops by 4-5%. Testing on two hold-
out accounts decreases accuracy a bit further but not
much. This indicates that the use of domain-specific
jargon introduces an error of around 3% for LIGA and
5% for the N-gram-based approach. LIGA consistently
outperforms the N-gram-based approach.

LIGA 1holdout —#—LIGA 2holdouts --®--N-gram lholdout —s—N-gram 2holdouts
1.00
0.98
0.96
0.94
0.92
0.90
0.88
0.86
0.84
0.82
0.80

Single experiment run ID

Figure 5. Accuracy results over 50 different runs for LIGA
and N-gram approaches with one and two hold out ac-
counts.

We observe that for some holdout accounts the accu-
racy is always lower than for others. There are thus
some domains that use more jargon than others. How-
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ever, across multiple experiment runs, the variance in
accuracy is always much larger for the N-gram ap-
proach.

5. Conclusions

In this paper we have studied the problem of language
identification on relatively short texts typical for so-
cial media like Twitter. Earlier works on language
identification showed promising and highly accurate
results for well-constructed, sufficiently long enough
texts. However, the results were shown to deteriorate
considerably when texts become a few hundred char-
acters long.

We proposed LIGA — a graph-based approach that
aims to capture the elements of language grammar.
The experimental results confirmed our expectation
that for short texts LIGA outperforms the current
state-of-the-art N-gram approach for language identi-
fication, showing consistently higher accuracy results
even with an order less labeled data used to learn the
model from. Besides that, our experiments suggested
that LIGA is less likely to be sensitive to use of jargon
or to domain boundaries.

Future Work. LIGA currently captures only one
aspect of grammar, the order of words or trigrams at
the character level. It would be interesting to see what
other grammatical aspects can aid to the problem of
language identification. One such aspect may be to in-
corporate words that can (or often do) start sentences.
Our method can be easily extended to use this infor-
mation by computing N-grams that begin some texts
and taking them into account in path-matching.

We evaluated the performance of our approach only
on short texts extracted from Twitter with respect to
the goals of this study. However, it would be inter-
esting to compare these results with results obtained
from using longer texts or texts extracted from other
sources. In addition to regarding other sources, us-
ing more data and especially incorporating more lan-
guages, gives stronger results and a broader compari-
Som.

Language identification is typically part or one step of
a bigger process. The error made in this step is hence
propagated along the pipeline of remaining tasks. It
is Interesting to study how severely this error affects
succeeding steps. In (Tromp, 2011) we show how to
quantify this effect for the case of the multilingual sen-
timent analysis on social media.

An open issue not addressed in related work on lan-
guage identification is dealing with an absence of cer-

tain N-grams or words that influences the certainty
of classification. When an unlabeled text contains a
number of N-grams not present in a learned model,
the learned model will not be confident about the la-
bel. This suggests assigning confidence scores to the
assigned labels that can be utilized in the further nat-
ural language processing routine or in the mechanism
suggesting updates to or relearning of the language
identification models.
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