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Corrigenda Random Graphs and Complex Networks. Vol. 1

Remco van der Hofstad

In this document, we list corrections to Random Graphs and Complex Networks Volume 1 [1]. The line numbers refer
to the original Cambridge University Press edition.

1 Page 37, line 13: “and this, too, is not what we want”. [Thanks to Christoph Schumacher for noting this typo.]

2 Page 38, [I, (1.6.6)] and the formula below it should be changed to∑
j∈[n]

Pjiπj = α
∑
j∈[n]

Mijπj +
1− α
n

∑
j∈[n]

πj = α(Mπ)i +
1− α
n

, (1.6.6)

where M = (Mij)i,j∈[n] is the stochastic matrix

Mij =
1{(j,i)∈E}

d(out)

j

+
1{j∈D}

n
. (1.6.7)

3 Page 44, [I, (1.7.7)]: The equation for Hill’s estimator should read

Hk,m =
1

k

k∑
i=1

log(X(k+1)/X(i)), (1.7.7)

i.e., [I, (1.7.7)] misses a minus sign. [Thanks to Christoph Schumacher for noting this typo.]

4 Page 60: The proof how [I, Theorem 2.4] follows from [I, (2.1.13)] is somewhat confusing. Indeed, rewrite [I,
(2.1.14)] as

N∑
r=k

(−1)k+r
E[(X)r]

(r − k)!k!
, (2.1.14)

which is alternatingly larger than P(X = k) (for N + k even) and smaller than P(X = k) (for N + k odd).
Then, one can apply this to P(Xn = k), and obtain finite-sum upper and lower bounds to P(Xn = k). Since for
the Poisson random variables, these upper and lower bounds will become identical for N → ∞, this completes
the proof. the fact that [I, (2.1.14)] was using the same n as the n in Xn in [I, Theorem 2.4] was highly confusing.
[Thanks to Christoph Schumacher for noting this confusion.]

5 Page 73, line 2: ‘For λ+ t ≤ n....’ [Thanks to Christoph Schumacher for noting this typo.]

6 Page 84, [I, Exercise 2.7]: (2.8.3) should read ∑
r≥k

E[(X)r]

(r − k)!
<∞, (2.8.3)

[Thanks to Christoph Schumacher for noting this typo.]

7 Pages 84-85, [I, Exercises 2.18 and 2.19]: It would be more appropriate to say that ‘X and Y have a normal
distribution’, or ‘X and Y are normal random variables [Thanks to Christoph Schumacher.]

8 Page 94, line -10: ‘It follows that T ′ in (3.3.2)....’ [Thanks to Christoph Schumacher for noting this typo.]

9 Page 94, line 3 of the proof of [I, Lemma 3.6]: It should read that S0 = S′0 = 1.
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10 Page 126, formula [I, (4.3.12)]: Here kn should be an integer, so that the text should read
“By the union bound, for kn = dlog ne,

Pλ(|Cmax| > a log n) ≤ nPλ(|C (1)| > kn) ≤ eIλn1−aIλ = eIλn−δ, (4.3.12)

with δ = aIλ − 1 > 0 whenever a > 1/Iλ.”
[Thanks to Christoph Schumacher for noting this typo.]

11 Page 130, [I, (4.3.40)] should read

χ≥kn(λ) = knP≥kn(λ) +
n∑

t=kn+1

P≥t(λ) ≤ kne−(kn−1)Iλ +
n∑

t=kn+1

e−Iλ(t−1) (4.3.40)

≤ kne−(kn−1)Iλ +
e−knIλ

1− e−Iλ
= O(knn

−aIλ).

[Thanks to Christoph Schumacher for noting this typo.]

12 Page 133, line 7: Since λn = λ(1 − kn/n), it should read that λn − λ = −λkn/n. This makes no difference in
what follows. [Thanks to Christoph Schumacher for noting this typo.]

13 Page 134, [I, (4.4.27)] should read

Pλ(C (j) < k | i←→ j,C (i) = l)− PλC (j) < k) ≤ lkλ/n. (4.4.27)

[Thanks to Christoph Schumacher for noting this typo.]

14 Page 136, line 11: It should read that g(α;λ) > 1 (as it does on Page 137, line 3).

15 Page 136, [I, (4.4.38)]: To be consistent with [I, (4.4.36)], all Pλ’s except for the first should be P’s. [Thanks to
Christoph Schumacher for noting this typo.]

16 Page 136, [I, (4.4.39)]: The last line of [I, (4.4.39)] should read

= exp
(
st− n(1− e−λt/n)(1− e−s)

)
, (4.4.39)

[Thanks to Christoph Schumacher for noting this typo.]

17 Page 136, line -2: This should read “by the fact that ex − 1 > x for every x ∈ R \ {0}. As a result, s∗ ≥ 0
precisely when t ≤ bαnc with α ≤ ζλ.” [Thanks to Christoph Schumacher for noting this typo.]

18 Page 137: [I, (4.4.42)] should read

Pλ(St = 0) ≤ e−t
(
−log g(t/n;λ)−1+g(t/n;λ)

)
= e−tIg(t/n;λ) . (4.4.42)

[Thanks to Christoph Schumacher for noting this typo.]
19 Page 171: The last line of [I, (5.4.7)] should read “≤ 2λ+2λ2

n
”. On the next line, this means that the inequality

should become “Since 2λ+2λ2

n
≤ εn

2
,...” [Thanks to Christoph Schumacher for noting this typo.]

20 Pages 171-172: The probability measure Pλ should be replaced by P in [I, (5.4.12)–(5.4.17)] for all events involving
X1 and X2. [Thanks to Christoph Schumacher for noting this typo.]

21 Page 172, line 10: “See Theorem 6.10 below.” [Thanks to Christoph Schumacher for noting this typo.]

22 Page 174, [I, Exercise 5.8]: The exercise should read Mn
P−→ ∞ when a < 1

2
, while Mn

P−→ 0 when a > 1
2
.

[Thanks to Bas Kleijn for noting this typo.]

23 Page 174, [I, Exercise 5.9]: The norming is not quite correct. It should read λ = 1
2

log n+ 1
2

log logn+ t. [Thanks
to Bas Kleijn for noting this typo.]

24 Page 175, [I, Exercises 5.11 and 5.12]: It should be λ = log n+ 2 log log n+ t, rather than λ = 2 log n+ t.
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25 Page 175, [I, Exercises 5.16 and 5.15]: [I, (5.6.6)] should read

Dmax/ log n
Pλ−→ 0. (5.6.6)

Similarly, [I, (5.6.7)] should read

Dmax/an
Pλ−→ 0. (5.6.7)

[Thanks to Christoph Schumacher for noting this typo.]

26 Page 180, after (I.1): ‘for each integer k ≤ n’. The counterexample is n = 1, d1 = d2 = 2. [Thanks to Christoph
Schumacher for noting this typo.]

27 Page 196: The first inequality in [I, (6.4.13)] is in fact an equality. [Thanks to Christoph Schumacher for noting
this typo.]

28 Page 211, between [I, (6.4.17)] and [I, (6.4.18)]: This should read “IfXij = 1, then X̂ij = 0 and Yj;i+X̂ij = k−1,
while, if Xij = 0, then X̂ij = 1 and Yi;j + Xij = k. Therefore, by the independence of the events {X̂ij = 1}
and {Yi;j + Xij = k − 1}, as well as the independence of the events {Xij = 1} and {Yj;i + X̂ij = k},...” As a
result, [I, (6.4.18)] should be replaced by

P(Di = Dj = k)− P(Di = k)P(Dj = k) ≤ pij[P(Di = k) + P(Dj = k − 1)] (6.4.18)

and [I, (6.4.19)] by ∑
k≥0

Var(P (n)

k ) ≤ 1

n
+

2

n2

∑
i,j∈[n]

pij → 0, (6.4.19)

This causes no necessary additional changes. [Thanks to Marta Milewska and Christoph Schumacher for noting
this typo.]

29 Page 199, below [I, (6.6.7)], it should read “in which case we return to (6.2.1) since, for i 6= j,...” [Thanks to
Christoph Schumacher for noting this omission.]

30 Page 206, above [I, (6.7.21)]: “then we can find a sequence εn ↘ such that...” [Thanks to Christoph Schumacher
for this addition.]

31 Page 206, line -3: The statement that c = c(ε) ≥ 0 is not very helpful. It should read “c > 0”. A more precise
version is “c = 1

16
”, as shown in the following argument, where we assume without loss of generality that p ≤ q:

ρ(p, q) =
(√
p−√q

)2
+
(√

1− p−
√

1− q
)2

=
( p− q
√
p+
√
q

)2
+
( (1− p)− (1− q)√

1− p+
√

1− q

)2
= (p− q)2

(
√

1− p+
√

1− q)2 + (
√
p+
√
q)2

(
√
p+
√
q)2(
√

1− p+
√

1− q)2

0≤q≤p≤1
≥ (p− q)2

(
√

1− p+
√

0)2 + (
√
p+
√

0)2

(
√
p+
√
p)2(
√

1 +
√

1)2

=
(p− q)2

16p
. (1.1.1)

[Thanks to Christoph Schumacher for this comment, and the nice argument in (1.1.1).]

32 Page 203, [I, Theorem 6.18]: The above has some repercussions in [I, Theorem 6.18]. In [I, Theorem 6.18], we
additionally assume

lim sup
n→∞

max
1≤i<j≤n

qij ≤ 1− ε. (1.1.2)
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Then we conclude the asymptotic equivalence of IRGn(p) and IRGn(q) if and only if [I, (6.7.2)] holds.

lim
n→∞

∑
1≤i<j≤n

(pij − qij)2

pij ∨ qij
= 0. (6.7.2)

The modified condition (6.7.2) is indeed equivalent to the asymptotic equivalence of the graphs IRGn(p) and
IRGn(q), since ∑

1≤i<j≤n

(pij − qij)2

pij ∨ qij
(1.1.1)
≤ 1

c

∑
1≤i<j≤n

ρ(pij, qij) (1.1.3)

[I, (6.7.19)]
≤ −2

c
logH(Pn,Qn)

[I, (6.7.16)]
= −2

c
log
(
1− (dH(Pn,Qn))2

)
[I, (6.7.12)]
≤ −2

c
log
(
1− dTV(Pn,Qn)

)
→ 0,

when dTV(Pn,Qn)→ 0. [Thanks to Christoph Schumacher for this comment, and the nice argument in (1.1.3).]

33 Page 203, [I, Theorem 6.19]: In [I, Theorem 6.19], replace [I, (6.8.4)] by∑
i∈[n]

w3
i = o(`3/2n ). (6.8.4)

Indeed, [I, Theorem 6.19] was written with [I, Condition 6.4] in mind. [I, Condition 6.4] implies that `n = Θ(n).
However, since [I, Theorem 6.19] does not assume [I, Condition 6.4], there are counterexamples to the current
statement. For example, taking w1 = w2 = 1 and wi = 1/(n − 2) for i ∈ [n] \ {1, 2} produces an obvious
counterexample, since p(CL)

ij = 1
3

and pij = p(GRG)

ij = 1
4
. [Thanks to Christoph Schumacher for this correction, and

the counterexample.]

34 Page 203, [I, (6.8.8)]: Replace this chain of inequalities by

`−3/2n

∑
i∈[n]

w3
i ≤ `−3/2n max

i∈[n]
wi
∑
i∈[n]

w2
i =

maxi∈[n]wi√
n

E[W 2
n ]

(E[Wn])3/2
→ 0. (6.8.8)

[Thanks to Christoph Schumacher for this correction.]

35 Page 208, above [I, (6.8.10)]: “ that there is at least one edge between vertices i and j is, conditionally on the
weights,...” [Thanks to Christoph Schumacher for this correction.]

36 [I, Exercise 6.18] can be considered to be a special case of [I, Exercise 6.3] with random weights. It is arguably
preferable to restrict [I, Exercise 6.3] to deterministic weights. [Thanks to Christoph Schumacher for this observa-
tion.]

37 Page 217, two lines below [I, Example 7.4]: “(recall (I.1) on page 180)” [Thanks to Christoph Schumacher for this
correction.]

38 Page 222, [I, Definition 7.5]: [I, (7.2.3)] in [I, Definition 7.5] should hold for all m ∈ [`n/2].

39 Page 230, two lines below [I, (7.3.21)]: “Note that when `n ≤ 3, there cannot be any multiple edges, so from now
on, we assume that `n ≥ 4.” [Thanks to Christoph Schumacher for this correction.]

40 Page 230, [I, Proposition 7.13]: “Then (Sn, M̃n) converges in distribution to (S,M).” This is in fact what we
prove. [Thanks to Christoph Schumacher for this correction.]

41 Page 230, [I, below Proposition 7.13]: “Indeed, Theorem 7.12 is a simple consequence of Proposition 7.13, since
CMn(d) is simple precisely when Sn = M̃n = 0. By the weak convergence result stated in Proposition 7.13 and
the independence of S andM , the probability that Sn = M̃n = 0 converges to e−µS−µM , where µS and µM are the
means of the limiting Poisson random variables S and M .” [Thanks to Christoph Schumacher for this correction.]
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42 Page 233, proof of [I, Theorem 7.12 and Proposition 7.13]: I am grateful to Clara Stegehuis for pointing out a
problem in the proof of [I, Proposition 7.13]. On page 233, line -3, it is written that ‘the upper bound in [I, (7.4.9)]
always holds.’ This is incorrect. Indeed, fix a pair of vertices i and j for which two edges must be present, say s1t1
and s2t2 are paired. That actually makes it more likely that also s1t1 and s3t3 are being paired. These issues arise
exactly when there are severalm(2)

i that involve the same pair of vertices, as then there are less half-edges that need
to be paired. Here we complete the proof given, by an induction on the number of pairs of vertices that have several
edges between them.

We refer to the notation in the [I, proof of Proposition 7.13]. Recall that

I1 = I1(d) = {(st, i) : i ∈ [n], 1 ≤ s < t ≤ di}, (1.1.4)

I2 = I2(d) = {(s1t1, s2t2, i, j) : 1 ≤ i < j ≤ n, 1 ≤ s1 < s2 ≤ di, 1 ≤ t1 6= t2 ≤ dj}, (1.1.5)

where we make the dependence on the degree sequence d explicit. Recall the notation
∑∗

for the sum over
distinct indices introduced in [I, Theorem 2.7]. By [I, Theorem 2.7],

E[(Sn)s(M̃n)r] =
∑∗

m
(1)
1 ,...,m

(1)
s ∈I1

m
(2)
1 ,...,m

(2)
r ∈I2

P
(
I (1)

m
(1)
1

= · · · = I (1)

m
(1)
s

= I (2)

m
(2)
1

= · · · = I (2)

m
(2)
r

= 1
)
. (1.1.6)

Denote ~m(2) = (m(2)

1 , . . . ,m
(2)

r ). For i, j ∈ [n] with i 6= j and m(2) ∈ I2, we write that (i, j) ∈ I2 when there
exist s1t1 and s2t2 such that m(2) = (s1t1, s2t2, i, j). We let

p(~m(2)) = #{(i, j) : ∃r1, r2 ∈ [r] such that (i, j) ∈ m(2)

r1
, (i, j) ∈ m(2)

r2
}. (1.1.7)

We perform induction with respect to p(~m(2)). The induction hypothesis is that there exists εn(d) = o(1) such
that

Q(s,r)

n (l,d) ≡
∑∗

m
(1)
1 ,...,m

(1)
s ∈I1

m
(2)
1 ,...,m

(2)
r ∈I2

P
(
I (1)

m
(1)
1

= · · · = I (1)

m
(1)
s

= I (2)

m
(2)
1

= · · · = I (2)

m
(2)
r

= 1
)

(1.1.8)

≤ εn(d)l
( |I1(d)|
`n − 2s− 4r + 1

)s( |I2(d)|
(`n − 2s− 4r + 1)2

)r
,

when the sum is restricted to those ~m(2) for which p(~m(2)) = l.

The claim in (1.1.8) completes the argument in the proof of the upper bound in [I, proof of Theorem 2.7],
where an upper bound on the case where l = 0 was proved in [I, (7.4.11)]. The claim in (1.1.8) shows that the
contributions for l ≥ 1 vanish, which, in turn, completes the proof.

The induction hypothesis is initialised for l = 0 by [I, (7.4.11)]. To advance the induction hypothesis, we assume
that l ≥ 1, and pick the smallest pair (i, j) in the lexicographic order for which there exist r1, r2 ∈ [r] such that
(i, j) ∈ m(2)

r1
, (i, j) ∈ m(2)

r2
. Let e ≥ 3 be the number of edges involved in the pairing needed for I (2)

m
(2)
r1

= 1 to

occur for all r1 for which (i, j) ∈ m(2)

r1
and let q = #{r1 ∈ [r] : (i, j) ∈ m(2)

r1
}. Then

Qn(l,d) ≤
∑
e≥3

r∑
q=2

∑
i,j∈[n]

(di)e(dj)e
(`n − 2s− 4r + 1)2e

Q(s,r−q)
n (l − 1,d′), (1.1.9)

where d′v = dv for all v 6∈ {i, j} and d′v = dv − e for v ∈ {i, j}. Using that |I1(d′)| ≤ |I1(d)|, |I2(d′)| ≤
|I2(d)|, and by the induction hypothesis,

Q(s,r−q)
n (l − 1,d′) ≤ εn(d)l

( |I1(d)|
`n − 2s− 4r + 1

)s( |I2(d)|
(`n − 2s− 4r + 1)2

)r−q
. (1.1.10)

Let

bn = min
{

1,
|I2(d)|

(`n − 2s− 4r + 1)2

}−1
, (1.1.11)
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and

εn(d) =
∑
e≥3

r∑
q=2

bqn
∑
e≥3

(∑
i∈[n]

(di)e
(`n − 2s− 4r + 1)e

)2
, (1.1.12)

then indeed

Qn(l,d) ≤ εn(d)l
( |I1(d)|
`n − 2s− 4r + 1

)s( |I2(d)|
(`n − 2s− 4r + 1)2

)r
. (1.1.13)

This advances the induction hypothesis, and we are left to prove that εn(d) = o(1) under [I, Condition 7.8(a)-(c)].
This follows since, under these conditions, dmax = o(

√
n) and bn = O(1) since we assumed that ν > 0, so that

εn(d) ≤
r∑
q=2

bqn
∑
e≥3

(∑
i∈[n]

(di)2
(`n − 2s− 4r + 1)2

)2( d2max

`n − 2s− 4r + 1

)e−2
≤ Cr

d2max

n
, (1.1.14)

for some Cr > 0.

43 Page 238, [I, Theorem 7.18]: “Let En be a subset of multi-graphs for which P(CMn(d) ∈ En)
P−→ 1 when d

satisfies Conditions 7.8(a)-(c) in probability.” [Thanks to Christoph Schumacher and Louigi Addario-Berry for this
correction.]

44 Page 238, before [I, (7.5.7)]: “By (7.5.6), for every set En,...” [Thanks to Christoph Schumacher for this correction.]

45 Page 239, line -4: “Further, since Condition 6.4(c) holds, Exercise 6.3 implies that...” [Thanks to Christoph Schu-
macher for this correction.]

46 Page 239, line -4: “so that p(CL)

ij = (wiwj/`n) ∧ 1 = wiwj/`n...” [Thanks to Christoph Schumacher for this
correction.]

47 Page 239, [I, (7.5.12)]: While strictly speaking not being wrong, it is more illuminating to rewrite [I, (7.5.12)]: as∑
i∈[n]

di(di − 1) =
∑

i,j,k∈[n] : j 6=k

IijIik = 2
∑

i,j,k∈[n] : j<k

IijIik, (7.5.12)

[Thanks to Christoph Schumacher for this correction.]

48 Page 239, [I, (7.5.13)]: Replace the first line of this equation as

E
[ 1

n

∑
i∈[n]

di(di − 1)
]

=
2

n

∑
i,j,k∈[n] : j<k,j 6=i 6=k

wiwj
`n

wiwk
`n

. (7.5.13)

The third equality is stated without argument. It can be obtained by inclusion-exclusion, by first adding and sub-
tracting the j = i contribution, followed by the k ∈ {i, j} contributions. The subtracted contributions give rise to
the subtracted sums. [Thanks to Christoph Schumacher for this correction.]

49 Page 240, [I, (7.5.15)]: The last line should be replaced by

+
8

n2

∑
i,j,k,l∈[n]

pijpikpil +
8

n2

∑
i,j,k,l∈[n]

pijpjkpkl. (7.5.15)

[Thanks to Christoph Schumacher for this correction.]

50 Page 241, below [I, (7.5.16)]: “By Condition 6.4(c), E[W 2
n ] converges, and also maxi∈[n]wi = o(

√
n).” [Thanks

to Christoph Schumacher for this correction.]

51 Page 247, line 5: “The general set-up assuming Conditions 6.4(a)-(c), together with the degree asympotics stated
in Theorem 7.19, allow us to easily extend Theorem 7.25 to GRGn(w):” [Thanks to Christoph Schumacher for
this correction.]
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52 Page 247, [I, Corollary 7.26]: In [I, Corollary 7.26], it should be assumed that the weights w satisfy [I, Condi-
tions 6.4(a)-(c)], since otherwise [I, Theorem 7.19] cannot be invoked. [Thanks to Christoph Schumacher for this
correction.]

53 Page 247, (7.7.11) should be replaced by

P(D? = k) = P
(
Poi(W ?) = k − 1

)
. (7.7.11)

[Thanks to Christoph Schumacher for this correction.]

54 Page 247, proof of [I, Corollary 7.26]: “By Theorem 7.19, the degrees d = (di)i∈[n] satisfy Conditions 7.8(a)-(c)
with D ∼ Poi(W ).” Further, it is useful to observe that D? ∼ Poi(W ?) + 1 when D ∼ Poi(W ). [Thanks to
Christoph Schumacher for this correction.]

55 Page 252, [I, Exercise 7.7:] It is instructive to add here “and that Condition 7.8(c) holds whenever E[D2] < ∞.”
[Thanks to Christoph Schumacher for this suggestion.]

56 Page 255, [I, Exercise 7.25:] Here, one should assume that τ ∈ (2, 5
2
). Indeed, when τ > 2, the number of multi-

edges between vertices i and j with i, j ∈ [3] is of the order n2/(τ−1)−1, so that the number of triangles equals
n6/(τ−1)−3, where

6/(τ − 1)− 3 > 1

precisely when τ < 5
2
.

57 Page 260, line -2: “We start with PA(m,δ)

1 consisting of a single vertex with m self-loops.” [Thanks to Christoph
Schumacher for this correction.]

58 Page 262, below [I, (8.2.2)]: The text here is a little confusing, since there will almost surely be infinitel;y many
self-loops, even though the probability of adding one at any given time is small. It is better to write “... since the
probability to add a self-loop in PA(m,δ)

t is quite small when t is large.” [Thanks to Christoph Schumacher for this
suggestion.]

59 Page 263, [I, (8.3.10)] should be replaced by

Di(t) + δ

t1/(2+δ)
= Mi(t)

(1 + δ)Γ(i− 1/(2 + δ))

Γ(i)
(1 +O(1/t)) (8.3.10)

a.s.−→Mi

(1 + δ)Γ(i− 1/(2 + δ))

Γ(i)
≡ ξi.

[Thanks to Christoph Schumacher for this correction.]

60 Page 265, [I, (8.4.9)]. This formula should read

P(X = k) =
Γ(k + r)

k!Γ(r)
pr(1− p)k. (8.4.9)

61 Page 265, [I, (8.4.10)]. This formula should read

pk = E[P(X = k −m)]. (8.4.10)

62 Page 298-299, [I, Exercise 8.16]: The above two changes also have consequences for [I, Exercise 8.16], where also
pk = E[P(X = k)] should be replaced with pk = E[P(X = k −m)].

63 Page 273, [I, (8.6.18)]. This formula should read

sup
k

sup
t
|εk(t)| ≤ C. (8.6.18)

[Thanks to Christoph Schumacher for this correction.]
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64 Page 274, below [I, (8.6.22)]. “When t = 1, we have that PA(1,δ)

1 consists of a vertex with a single self-loop.”
[Thanks to Christoph Schumacher for this correction.]

65 Page 276, two lines above [I, (8.6.40)]. “Note that then k ≥ dt(2 + δ)e + 2 ≥ t + 2, since δ > −1. Since the
maximal degree of PA(1,δ)

t is t + 2 (which happens precisely when all edges are connected to the initial vertex),
we have that N̄k(t + 1) = 0 for k ≥ t + 4.” As a result, the argument for k = t + 2 and k = t + 3 is missing.
For these cases, we can use that N̄k(t + 1) is exponentially small, since at least t − 2 of the edges should be
connected to vertex 1, and the probability to connect to vertex 1 is at most 3

4
. Aside from this, the argument can be

followed. This also has some minor consequences in the m ≥ 2 setting around [I, (8.6.91)]. [Thanks to Christoph
Schumacher for this correction.]

66 Page 276, [I, (8.6.44)] should be replaced by

(Tt+1Q)k =
(

1− k + δ

t(2 + δ′) + (1 + δ′)

)
Qk +

k − 1 + δ

t(2 + δ′) + (1 + δ′)
Qk−1. (8.6.44)

67 Page 279, below [I, (8.6.64)] it is claimed that Tu is a contraction. However, that is not quite true (and also not
what is used in the proof). Indeed, for δ = 0 and for m = 1,

(Tt+1p)k
[I, (8.6.44)]

=
(

1− k

2t+ 1

)
pk +

k − 1

2t+ 1
pk−1 (1.1.15)

[I, (8.6.56)]
=

(
1− k

2t+ 1
+
k − 1

2t+ 1

k + 2

k − 1

)
pk

=
(

1 +
2

2t+ 1

)
pk

> pk.

The precise statements that are needed in the proof are [I, (8.6.66)], as well as the precise contraction property in [I,
Lemma 8.13]. [I, (8.6.66)] follows from a double application of [I, (8.6.63)], for which we need that supk k

2|Qk| ≤
K, which is true for . The proof for (pk)k≥1. The proof of [I, Lemma 8.13] is self-contained. [Thanks to Christoph
Schumacher for this observation.]

68 Page 281, [I, (8.6.87)] should read

‖T (m)

t+1Q‖∞ ≤ ‖Tmt+1Q‖∞ ≤
(

1− 1

mt(2 + δ′) + (1 + δ′)

)
‖Q‖∞ (8.6.87)

≤
(

1− 1

t(2m+ δ) + (m+ δ)

)
‖Q‖∞.

[Thanks to Christoph Schumacher for this correction.]

69 Page 292, [I, (8.9.9)] should be replaced by

pk = (2 + δ)
Γ(k + δ)

Γ(1 + δ)

Γ(2 + 2δ)

Γ(k + 3 + 2δ)
, (8.9.9)

see also [2, Section 4.2].
70 Page 298, [I, Exercise 8.14]: [I, (8.11.3)] should read

E[Di(t) + δ] = (1 + 1{i∈{1,2}} + δ)
Γ(t+ 1/(2 + δ))Γ(i)

Γ(t)Γ(i+ 1{i=1} + 1/(2 + δ))
. (8.11.3)

[Thanks to Christoph Schumacher for this correction.]

71 Page 302, [I, Definition A.3]: [I, (A.1.3)] should read

lim sup
K→∞

lim sup
n→∞

E[|Xn|1{|Xn|>K}] = 0. (A.1.3)

[Thanks to Christoph Schumacher for this correction.]
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72 Page 302, [I, Definition A.3]: In order to apply [I, Theorem A.1] after [I, (A.1.5)], one has to invoke Skorohod’s rep-
resentation theorem first to get a coupling ((X̂n)n, X̂) with X̂n

a.s.−→ X̂ . This representation can also be obtained
using the coupling in the proof of [I, Theorem A.4]. [Thanks to Christoph Schumacher for this correction.]
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