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Solutions to selected exercises

We provide solutions to some of the exercises in the ‘Random Graphs and Complex
Networks’ book [1]. When referring to equations or results in the book, we write e.g.,
[I, (1.4.7)] to indicate equation (1.4.7) in [1].

1.1 Solutions to the exercises of Chapter 1.

Solution to Exercise 1.2. When [I, (1.4.7)] holds with equality, then

1− FX(x) =
∞∑

k=x+1

fk =
∞∑

k=x+1

k−τ .

Therefore, by monotonicity of x 7→ x−τ ,

1− FX(x) ≤
∫ ∞
x

y−τdy =
x1−τ

τ − 1
,

while

1− FX(x) ≥
∫ ∞
x+1

y−τdy =
(x+ 1)1−τ

τ − 1
.

As a result, we obtain that

1− FX(x) =
x1−τ

τ − 1
(1 +O(

1

x
)).

For an example where [I, (1.4.8)] holds, but [I, (1.4.7)] fails, we can take f2k+1 = 0
for k ≥ 0 and, for k ≥ 1,

f2k =
1

kτ−1
− 1

(k + 1)τ−1
.

Then [I, (1.4.7)] fails, while

1− FX(x) =
∑
k>x

fk ∼
1

bx/2cτ−1
∼ 1

xτ−1
.

Solution to Exercise 1.3. Recall that a function x 7→ L(x) is slowly varying when,
for every c > 0,

lim
x→∞

L(cx)

L(x)
= 1.

For L(x) = log x, we can compute

lim
x→∞

L(cx)

L(x)
= lim

x→∞

log(cx)

log x
= lim

x→∞

log x+ log c

log x
= 1.
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For L(x) = e(log x)γ , we compute similarly

lim
x→∞

L(cx)

L(x)
= lim

x→∞
e(log (cx))γ−(log x)γ

= lim
x→∞

elog(x)γ
(

(1+ log c
log x

)γ−1
)

= lim
x→∞

elog(x)γ−1γ log c = 1.

When γ = 1, however, we have that L(x) = elog x = x, which is regularly varying
with exponent 1 instead of exponent 0, as would be necessary for slowly varying
functions.

1.2 Solutions to the exercises of Chapter 2.

Solution to Exercise 2.1. Take

Xn =

{
Y1 for n even,

Y2 for n odd,

where Y1 and Y2 are two independent copies of a random variable which is such that
P(Yi = E[Yi]) < 1. Then, since Y1 and Y2 are identical in distribution, the sequence
(Xn)n≥1 converges in distribution. In fact, (Xn)n≥1 is constant in distribution.

Moreover, X2n ≡ Y1 and X2n+1 ≡ Y2. Since subsequences of converging sequences
are again converging, if (Xn)n≥1 converges in probability, the limit of (Xn)n≥1 should
be equal to Y1 and to Y2. Since P(Y1 6= Y2) > 0, we obtain a contradiction.

Solution to Exercise 2.2. Note that for any ε > 0, we have

P(|Xn| > ε) = P(Xn = n) =
1

n
→ 0. (1.2.1)

Therefore, Xn
P−→ 0, which in turn implies that Xn

d−→ 0. We do not have that
Xn

a.s.−→ 0, since

P(Xm = 0 ∀m ≥ n) =
∞∏
m=n

P(Xm = 0) =
∞∏
m=n

(1− 1/m) = 0. (1.2.2)

Solution to Exercise 2.3. The random variable X with density

fX(x) =
1

π(1 + x2)
,

which is a Cauchy random variable, does the job.
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Solution to Exercise 2.4. Note that, by a Taylor expansion of the moment gen-
erating function, if MX(t) <∞ for all t, then

MX(t) =
∞∑
r=0

E[Xr]
tr

r!
.

As a result, when MX(t) <∞ for all t, we must have that

lim
r→∞

E[Xr]
tr

r!
= 0.

Thus, when t > 1, (2.1.8) follows. Thus, it is sufficient to show that the moment
generating function MX(t) of the Poisson distribution is finite for all t. For this, we
compute

MX(t) = E[etX ] =
∞∑
k=0

etke−λ
λk

k!
= e−λ

∞∑
k=0

(λet)k

k!
= exp{−λ(1− et)} <∞,

for all t.

Solution to Exercise 2.5. We write out

E[(X)r] = E[X(X − 1) · · · (X − r + 1)] =
∞∑
x=0

x(x− 1) · · · (x− r + 1)P(X = x)

=
∞∑
x=r

x(x− 1) · · · (x− r + 1)e−λ
λx

x!

= λr
∞∑
x=r

e−λ
λx−r

(x− r)!
= λr.

Solution to Exercise 2.6. Compute that

E[Xm] = e−λ
∞∑
k=1

km
λk

k!
= λe−λ

∞∑
k=1

km−1 λk−1

(k − 1)!

= λe−λ
∞∑
l=0

(l + 1)m−1λ
l

l!
= λE[(X + 1)m−1].

Solution to Exercise 2.7. By the discussion around [I, (2.1.14)], we have that the

sum
∑n

r=k(−1)k+r E[(X)r]
(r−k)!k!

is alternatingly larger and smaller than P(X = k). Thus, it

suffices to prove that, when [I, (2.8.3)] holds, then also

lim
n→∞

n∑
r=k

(−1)k+r E[(X)r]

(r − k)!k!
=
∞∑
r=k

(−1)k+r E[(X)r]

(r − k)!k!
. (1.2.3)
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This is equivalent to the statement that

lim
n→∞

∞∑
r=n

(−1)k+r E[(X)r]

(r − k)!k!
= 0.

To prove this, we bound∣∣∣ ∞∑
r=n

(−1)k+r E[(X)r]

(r − k)!k!

∣∣∣ ≤ ∞∑
r=n

E[(X)r]

(r − k)!k!
→ 0,

by [I, (2.8.3)].

Solution to Exercise 2.10. For r = 2, we note that

E[(X)r] = E[X2]− E[X],

and, for X =
∑

i∈I Ii a sum of indicators,

E[X2] =
∑
i,j

E[IiIj] =
∑
i 6=j

P(Ii = Ij = 1) +
∑
i

P(Ii = 1).

Using that E[X] =
∑

i P(Ii = 1), we thus arrive at

E[(X)r] =
∑
i 6=j

P(Ii = Ij = 1),

which is [I, (2.1.17)] for r = 2.

Solution to Exercise 2.11. For the Poisson distribution factorial moments are
given by

E[(X)k] = λk

(recall Exercise 2.5.) We make use of [I, Theorems 2.4 and 2.5]. If Xn is binomial
with parameters n and pn = λ/n, then

E[(Xn)k] = E[Xn(Xn − 1) · · · (Xn − k + 1)] = n(n− 1) . . . (n− k + 1)pk → λk,

when p = λ/n and n→∞.

Solution to Exercise 2.12. We prove [I, Theorem 2.7] by induction on d ≥ 1. The
induction hypothesis is that [I, (2.1.17)] holds for all measures P with corresponding
expectations E and all r1, . . . , rd.

[I, Theorem 2.7] for d = 1 is [I, Theorem 2.5], which initializes the induction
hypothesis. We next advance the induction hypothesis by proving [I, (2.1.17)] for
d + 1. For this, we first note that we may assume that E[(Xd+1,n)rd+1

] > 0, since
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(Xd+1,n)rd+1
≥ 0 and when E[(Xd+1,n)rd+1

] = 0, then (Xd+1,n)rd+1
≡ 0, so that [I,

(2.1.17)] follows. Then, we define the measure PX,d by

PX,d(E) =
E
[
(Xd+1,n)rd+1

1E

]
E[(Xd+1,n)rd+1

]
,

for all possible measurable events E . Then,

E[(X1,n)r1 · · · (Xd,n)rd(Xd+1,n)rd+1
] = E[(Xd+1,n)rd+1

]EX,d

[
(X1,n)r1 · · · (Xd,n)rd

]
.

By the induction hypothesis applied to the measure PX,d,

EX,d

[
(X1,n)r1 · · · (Xd,n)rd

]
=

∑∗

i
(1)
1 ,...,i

(1)
r1
∈I1

· · ·
∑∗

i
(d)
1 ,...,i

(d)
rd
∈Id

PX,d
(
I (`)

is
= 1 ∀` = 1, . . . , d, s = 1, . . . , r`

)
.

Next, we define the measure P~id by

P~id(E) =
E
[∏d

`=1 I
(`)

is
1E

]
P
(
I (`)

is
= 1 ∀` = 1, . . . , d, s = 1, . . . , r`

) , (1.2.4)

so that

E[(Xd+1,n)rd+1
]PX,d

(
I (`)

is
= 1 ∀` = 1, . . . , d, s = 1, . . . , r`

)
= E~id [(Xd+1,n)rd+1

]P
(
I (`)

is
= 1 ∀` = 1, . . . , d, s = 1, . . . , r`

)
.

Again by [I, Theorem 2.5],

E~id [(Xd+1,n)rd+1
] =

∑∗

i
(d+1)
1 ,...,i

(d+1)
r1

∈Id+1

P~id(I
(d+1)

i1
= · · · = I (d+1)

ird+1
= 1).

Then, the claim for d+ 1 follows by noting that

P
(
I (`)

is
= 1 ∀` = 1, . . . , d, s = 1, . . . , r`

)
P~id(I

(d+1)

i1
= · · · = I (d+1)

ird+1
= 1)

= P
(
I (`)

is
= 1 ∀` = 1, . . . , d+ 1, s = 1, . . . , r`

)
.

Solution to Exercise 2.14. Observe that∑
x

|px − qx| =
∑
x

(px − qx)1{px>qx} +
∑
x

(qx − px)1{qx>px}

0 = 1− 1 =
∑
x

(px − qx) =
∑
x

(px − qx)1{px>qx} +
∑
x

(px − qx)1{qx>px}.
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We add the two equalities to obtain∑
x

|px − qx| = 2
∑
x

(px − qx)1{px>qx}.

Complete the solution by observing that∑
x

(px −min(px, qx)) =
∑
x

(px − qx)1{px>qx}.

Solution to Exercise 2.13. The proof of [I, (2.2.8)] is the continuous equivalent
of the proof of [I, (2.2.6)]. Therefore, we will only prove [I, (2.2.6)].

Let Ω be the set of possible outcomes of the probability mass functions (px)x∈X
and (qx)x∈X . The set Ω can be partitioned into two subsets

Ω1 = {x ∈ Ω: px ≥ qx} and Ω2 = {x ∈ Ω: px < qx}.

Since (px)x∈X and (qx)x∈X are probability mass functions, the sum
∑

x∈Ω(px − qx)
equals zero. Therefore,∑

x∈Ω

|px − qx| =
∑
x∈Ω1

(px − qx)−
∑
x∈Ω2

(px − qx)

0 =
∑
x∈Ω

(px − qx) =
∑
x∈Ω1

(px − qx) +
∑
x∈Ω2

(px − qx)

Adding and subtracting the above equations yields∑
x∈Ω

|px − qx| = 2
∑
x∈Ω1

(px − qx) = −2
∑
x∈Ω2

(px − qx).

Hence, |F (Ω1)−G(Ω1)| = 1
2

∑
x∈Ω |px − qx|, so that certainly supA |F (A)−G(A)| ≥

1
2

∑
x∈Ω |px − qx|.

It remains to show that |F (A) − G(A)| ≤ 1
2

∑
x∈Ω |px − qx| for all A ⊆ Ω. Let A

be any subset of Ω. Just as the set Ω, the set A can be partitioned into two subsets

A1 = A ∩ Ω1 and A2 = A ∩ Ω2,

so that

|F (A)−G(A)| =
∣∣∣ ∑
x∈A1

(px − qx) +
∑
x∈A2

(px − qx)
∣∣∣ = |αA + βA|.

Since αA is non-negative and βA non-positive, it holds that

|αA + βA| ≤ max
A

(
αA,−βA

)
.
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The quantity αA satisfies

αA ≤
∑
x∈Ω1

(px − qx) =
1

2

∑
x∈Ω

|px − qx|,

while βA satisfies

βA ≥
∑
x∈Ω2

(px − qx) = −1

2

∑
x∈Ω

|px − qx|.

Therefore,

|F (A)−G(A)| ≤ 1

2

∑
x∈Ω

|px − qx| ∀A ⊆ Ω,

which completes the proof.

Solution to Exercise 2.15. By [I, (2.2.15)] and [I, (2.2.20)]

dTV(f, g) ≤ P(X̂ 6= Ŷ ).

Therefore, the first claim follows directly from [I, Theorem 2.10]. The second claim
follows by [I, (2.2.6)].

Solution to Exercise 2.18. Without any loss of generality we can take σ2 = 1.
Then for each t, and with Z a standard normal variate

P(X ≥ t) = P(Z ≥ t− µX) ≤ P(Z ≥ t− µY ) = P(Y ≥ t),

whence X � Y .

Solution to Exercise 2.19. The answer is negative. Take X standard normal and
let Y be normal with mean 0 and variance 2, then X � Y implies

P(Y ≥ t) ≥ P(X ≥ t) = P(Y ≥ t
√

2),

for each t. However, this is false for t < 0.

Solution to Exercise 2.20. Let X be Poisson distributed with parameter λ, then

E
[
etX
]

=
∞∑
n=0

etne−λ
λn

n!
= e−λ

∞∑
n=0

(λet)n

n!
= eλ(et−1).

Put
g(t) = at− logE

[
etX
]

= at+ λ− λet

then g′(t) = a − λet = 0 ⇔ t = log(a/λ). Hence, I(a) in [I, (2.4.12)] is equal to
I(a) = Iλ(a) = a(log (a/λ)− 1) + λ and with a > λ we obtain from [I, (2.4.9)],

P
( n∑
i=1

Xi ≥ an
)
≤ e−nIλ(a).
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This proves [I, (2.8.6)]. For a < λ, we get g′(t) = a − λet = 0 for t = log(a/λ) < 0
and we get again

Iλ(a) = a(log a/λ− 1) + λ.

By [I, (2.4.9)], with a < λ, we obtain [I, (2.8.7)].
Iλ(λ) = 0 and d

da
Iλ(a) = log a − log λ, so that for a < λ the function a 7→ Iλ(a)

decreases, whereas for a > λ the function a 7→ Iλ(a) increases. Because Iλ(λ) = 0,
this shows that for all a 6= λ, we have Iλ(a) > 0.

Solution to Exercise 2.22. By taking expectations on both sides of [I, (2.5.2)],

E[Mn] = E[E[Mn+1|M1,M2, . . . ,Mn]] = E[Mn+1],

since according to the theorem of total probability:

E[E[X|Y1, . . . , Yn]] = E[X].

Solution to Exercise 2.23. First we show that E[|Mn|] < ∞. Indeed, since
E[|Xi|] < ∞, ∀i, and since the fact that Xi is an independent sequence implies that
the sequence |Xi| is independent we get

E[|Mn|] =
n∏
i=0

E[|Xi|] <∞.

To verify the martingale condition, we write

E[Mn+1|X1, X2, . . . , Xn] = E
[ n+1∏
i=1

Xi

∣∣∣X1, X2, . . . , Xn

]
=

( n∏
i=1

Xi

)
· E[Xn+1|X1, X2, . . . , Xn] = MnE[Xn+1] = Mn,

where the last equality is valid almost surely.

Solution to Exercise 2.24. First we show that E[|Mn|] < ∞. Indeed, since
E[|Xi|] <∞∀i,

E[|Mn|] = E
∣∣∣ n∑
i=1

Xi

∣∣∣ ≤ n∑
i=1

E|Xi| <∞.

To verify the martingale condition, we write

E[Mn+1|M1,M2, . . . ,Mn] = E[
n+1∑
i=1

Xi | X0, X1, . . . , Xn]

=
n∑
i=1

Xi + E[Xn+1 | X0, X1, . . . , Xn]

= Mn + E[Xn+1] = Mn,

where the last equality is true almost surely.
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Solution to Exercise 2.25. Again we first that E[|Mn|] < ∞. Indeed, since
E[|Xi|] <∞∀i,

E[|Mn|] = E
∣∣∣E[Y | X0, . . . , Xn]

∣∣∣ ≤ E
[
E
[
|Y |

∣∣ X0, . . . , Xn

]]
= E[|Y |] <∞.

To verify the martingale condition, we compute

E[Mn+1 | X0, . . . , Xn] = E
[
E[Y | X0, . . . , Xn+1]

∣∣∣X0, . . . , Xn

]
= E[Y | X0, . . . , Xn] = Mn + E[Xn+1] = Mn,

the last equality being true almost surely.

Solution to Exercise 2.26. Since Mn is non-negative we have E[|Mn|] = E[Mn] =
µ ≤M , by Exercise 2.22. Hence, according to [I, Theorem 2.24], we have convergence
to some limiting random variable M∞.

Solution to Exercise 2.27. Since Xi ≥ 0, we have Mn =
∏n

i=0Xi ≥ 0, hence the
claim is immediate from Exercise 2.26.

Solution to Exercise 2.28. First,

E[|Mn|] ≤
m∑
i=1

E[|M (i)

n |] <∞.

Secondly, since E[max{X, Y }] ≥ max{E[X],E[Y ]}, we obtain

E[Mn+1 | X0, . . . , Xn] = E
[

m
max
i=0

M (i)

n+1 | X0, . . . , Xn

]
≥ m

max
i=0

E[M (i)

n+1 | X0, . . . , Xn]

=
m

max
i=0

M (i)

n = Mn,

where we use that (M (i)
n )n≥0 is a sequence of martingales with respect to (Xn)n≥0.

Solution to Exercise 2.29. We can write

Mn =
n∑
i=1

(Ii − p),

where (Ii)i≥1 are i.i.d. indicator variables with P(Ii = 1) = 1− P(Ii = 0) = p. Then,
M − n has the same distribution as X − np, while, by Exercise 2.24, the sequence
(Mn)n≥0 is a martingale with

|Mn −Mn−1| = |In − p| ≤ max{p, 1− p} ≤ 1− p,

since p ≤ 1/2. Thus, the claim follows from the Azuma-Hoeffding inequality ([I,
Theorem 2.27]).
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Solution to Exercise 2.30. Since E[Xi] = 0, we have, by Exercise 2.24, that
Mn =

∑n
i=1Xi is a martingale, where by hypothesis,

−1 ≤Mn −Mn−1 = Xn ≤ 1,

so that the condition of [I, Theorem 2.27] is satisfied with Kn = 1. Since E[Mn] = 0,
we have µ = 0 and

∑n
i=1K

2
i = n, hence from [I, (2.5.16)] we get [I, (2.8.14)].

We now compare the Azuma-Hoeffding bound [I, (2.8.14)] with the central limit
approximation. With a = x

√
n+ 1, and σ2 = Var(Xi),

P(|Mn| ≥ a) = P(|Mn| ≥ x
√
n) = P(|Mn|/σ

√
n+ 1 ≥ x/σ)→ 2(1− Φ(x/σ)),

where Φ(t) = 1√
2π

∫ t
−∞ e−u

2/2 du. An accurate approximation of the normal distribu-
tion function for large values of t tells us that

2(1− Φ(t)) = 2φ(t)/t(1 +O(1/t)) =

√
2

t
√
π

e−t
2/2(1 +O(1/t)).

This is a fun exercise to do, by realizing that

1− Φ(t) =

∫ ∞
t

φ(x)dx =

∫ ∞
0

φ(t+ x)dx = φ(t)

∫ ∞
0

e−xt−x
2/2dx,

and then bounding the resulting integral from above and below (where we use that t
is large).

By the central limit theorem and this approximation, with a = x
√
n and σ2 =

Var(Xi) = E[X2
i ],

P(|Mn| ≥ a) ∼ σ
√

2

x
√
nσπ

e−x
2/[2nσ2] =

σ
√

2n

a
√
π

e−a
2/[2nσ2]

Finally, σ2 = E[X2
i ] ≤ 1, so that the leading order term and with a = x

√
n, the

inequality of Azuma-Hoefding is quite sharp! In fact, the approximation becomes
better when σ2 becomes close to 1, for example when Xi ∈ {1,−1} with equal prob-
ability.

1.3 Solutions to the exercises of Chapter 3.

Solution to Exercise 3.1. When η = 0, then, since η is a solution of η = GX(η),
we must have that

p0 = GX(0) = 0.
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Solution to Exercise 3.2. We note that for p = (px)x≥0 given in [I, (3.9.1)], and
writing q = 1− p, we have that E[X] = 2p, so that η = 1 when p ≤ 1/2, and

GX(s) = q + ps2.

Since η satisfies η = GX(η), we obtain that

η = q + pη2,

of which the solutions are

η =
1±
√

1− 4pq

2p
.

Noting further that 1− 4pq = 1− 4p(1− p) = 4p2− 4p+ 1 = (2p− 1)2, and p > 1/2,
we arrive at

η =
1± (2p− 1)

2p
.

Since η ∈ [0, 1) for p > 1/2, we must have that

η =
1− (2p− 1)

2p
=

1− p
p

.

Solution to Exercise 3.3. We compute that

GX(s) = 1− b/p+
∞∑
k=1

b(1− p)k−1sk = 1− b

p
+

bs

1− qs
, (1.3.1)

so that

µ = G′X(1) =
b

p2
.

As a result, η = 1 if µ = b/p2 ≤ 1 follows from [I, Theorem 3.1]. Now, when
µ = b/p2 > 1, then η < 1 is the solution of GX(η) = η, which becomes

1− b

p
+

bη

1− qη
= η,

which has the solution given by [I, (3.9.4)].

Solution to Exercise 3.4. We note that s 7→ GX(s) in (1.3.1) has the property
that for any points s, u, v

GX(s)−GX(u)

GX(s)−GX(v)
=
s− u
s− v

1− qv
1− qu

.

Taking u = η, v = 1 and using that GX(η) = η by [I, Theorem 3.1], we obtain that,
if η < 1,

GX(s)− η
GX(s)− 1

=
s− η
s− 1

p

1− qη
.
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By [I, (3.9.4)], we further obtain that

p

1− qη
= µ−1 = p2/b,

so that we arrive at
GX(s)− η
GX(s)− 1

=
1

µ

s− η
s− 1

.

Since Gn(s) is the n-fold iteration of s 7→ GX(s), we obtain by induction that

Gn(s)− η
Gn(s)− 1

=
1

µn
s− η
s− 1

,

of which the solution is given by the first line of [I, (3.9.5)].

When µ = 1, then we have that b = p2, so that

GX(s) =
q − (q − p)s

1− qs
. (1.3.2)

We now prove by induction that Gn(s) is equal to the second line of [I, (3.9.5)]. For
n = 1, we have that G1(s) = GX(s), so that the induction is initialized by (1.3.2).

To advance the induction, we assume it for n and advance it to n + 1. For this,
we note that, since Gn(s) is the n-fold iteration of s 7→ GX(s), we have

Gn+1(s) = Gn(GX(s)).

By the induction hypothesis, we have that Gn(s) is equal to the second line of (3.9.5),
so that

Gn+1(s) =
nq − (nq − p)G(s)

p+ nq − nqGX(s)
=
nq(1− qs)− (nq − p)(q − (q − p)s)
(p+ nq)(1− qs)− nq(q − (q − p)s)

.

Note that, using p = 1− q,

nq(1− qs)− (nq − p)(q − (q − p)s) =
[
nq − (nq − p)q

]
+ s
[
(q − p)(nq − p)− nq2

]
= (n+ 1)qp− s[qp(n+ 1)− p2], (1.3.3)

while

(p+ nq)(1− qs)− nq(q − (q − p)s) (1.3.4)

=
[
(p+ nq)− nq2

]
+ s
[
(q − p)nq − (p+ nq)q

]
= [p+ nqp]− s(n+ 1)pq = p[p+ (n+ 1)q]− s(n+ 1)pq,

and dividing (1.3.3) by (1.3.4) advances the induction hypothesis.
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Solution to Exercise 3.5. We first note that

P(Zn > 0, ∃m > n such that Zm = 0) = P(∃m > n such that Zm = 0)− P(Zn = 0)

= η − P(Zn = 0).

We next compute, using [I, (3.9.5)],

P(Zn = 0) = Gn(0) =

{
1− µn 1−η

µn−η when b 6= p2;
nq
p+nq

when b = p2.

Using that η = 1 when b ≤ p2 gives the first two lines of [I, (3.9.6)]. When η < 1, so
that µ > 1, we thus obtain

P(Zn > 0, ∃m > n such that Zm = 0) = (1− η)
[ µn

µn − η
− 1
]

=
(1− η)η

µn − η
.

This proves the third line of [I, (3.9.6)].

Solution to Exercise 3.6. By [I, (3.9.1)], we have that GX(s) = q+ ps2. Thus, by
[I, (3.1.18)], we obtain

GT (s) = s
(
q + pGT (s)2

)
,

of which the solutions are given by

GT (s) =
1±

√
1− 4s2pq

2sp
.

Since GT (0) = 0, we must that that

GT (s) =
1−

√
1− 4s2pq

2sp
.

Solution to Exercise 3.7. By (1.3.1), we have GX(s) = 1− b
p

+ bs
1−qs . Thus, by [I,

(3.1.18)], we obtain

GT (s) = s
[
1− b

p
+

bGT (s)

1− qGT (s)

]
.

Multiplying by p(1− qGT (s)), and using that p+ q = 1, leads to

pGT (s)(1− qGT (s)) = s
[
(p− b)(1− qGT (s)) + bpGT (s)

]
= s
[
(p− b) + (b− pq)GT (s)

]
.

We can simplify the above to

pqGT (s)2 + (p+ s(b− pq))GT (s) + s(p− b) = 0,
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of which the two solutions are given by

GT (s) =
−(p+ sbq)±

√
(p+ s(b− pq))2 − 4pqs(p− b)

2pq
.

Since GT (s) ≥ 0 for all s ≥ 0, we thus arrive at

GT (s) =

√
(p+ s(b− pq))2 − 4pqs(p− b)− (p+ sbq)

2pq
.

Solution to Exercise 3.8. Compute

E[Zn | Zn−1 = m] = E[

Zn−1∑
i=1

Xn,i | Zn−1 = m]

= E[
m∑
i=1

Xn,i | Zn−1 = m]

=
m∑
i=1

E[Xn,i] = mµ,

so that, by taking expectations on both sides, and using the tower property of condi-
tional expectations,

E[Zn] = E[E[Zn | Zn−1]] = E[µZn−1] = µE[Zn−1].

Solution to Exercise 3.9. Using induction we conclude from the previous exercise
that

E[Zn] = µE[Zn−1] = µ2E[Zn−2] = · · · = µnE[Z0] = µn.

Hence,
E[µ−nZn] = µ−nE[Zn] = 1.

Therefore, we have that, for all n ≥ 0, E[|µ−nZn|] = E[µ−nZn] <∞. This proves the
first assumption on a martingale.

By the Markov property and the calculations in the previous exercise

E[Zn | Z1, . . . , Zn−1] = E[Zn | Zn−1] = µZn−1,

so that, with Mn = Zn/µ
n,

E[Mn | Z1, . . . , Zn−1] = E[Mn | Zn−1] =
1

µn
µZn−1 = Mn−1,

almost surely. Therefore, Mn = µ−nZn is a martingale with respect to (Zn)n≥1.
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Solution to Exercise 3.11. For a critical branching process with offspring X, we
have µ = E[X] = 1, and so Zn is a martingale. Therefore, for all n,

E[Zn] = E[Z0] = 1.

On the other hand, if P(X = 1) < 1, then, η = 1 by [I, Theorem 3.1], and by
monotonicity,

lim
n→∞

P(Zn = 0) = P(∃n : Zn = 0) = η = 1.

Solution to Exercise 3.10.

P(Zn > 0) = P(Zn ≥ 1) ≤ E[Zn] = µn,

by [I, Theorem 3.3].

Solution to Exercise 3.12. Since T = 1 +
∑∞

n=1 Zn, we obtain by [I, (3.2.1)] that

E[T ] = 1 +
∞∑
n=1

E[Zn] = 1 +
∞∑
n=1

µn = 1/(1− µ).

Solution to Exercise 3.13. For k = 1, we note that, in [I, (3.3.2)], {T = 1} =
{X1 = 0}, so that

P(T = 1) = p0. (1.3.5)

On the other hand, in [I, (3.1.16)], T = 1 precisely when Z1 = X1,1 = 0, which occurs
with probability p0 as well.

For k = 2 in [I, (3.3.2)], since Xi ≥ 0, we have that {T = 2} = {X1 = 1, X2 = 0},
so that

P(T = 2) = p0p1.

On the other hand, in [I, (3.1.16)], T = 2 precisely when Z1 = X1,1 = 1 and Z2 =
X2,1 = 0, which occurs with probability p0p1 as well, as required.

For k = 3 in [I, (3.3.2)], since Xi ≥ 0, we have that {T = 3} = {X1 = 2, X2 =
X3 = 0} ∪ {X1 = X2 = 1, X3 = 0}, so that

P(T = 3) = p2
0p2 + p0p

2
1.

On the other hand, in [I, (3.1.16)],

{T = 3} = {Z1 = Z2 = 1, Z3 = 0} ∪ {Z1 = 2, Z2 = 0},

so that {T = 3} = {X1,1 = X2,1 = 1, X3,1 = 0} ∪ {X1,1 = 2, X2,1 = X2,2 = 0}, which
occurs with probability p2

0p2 + p0p
2
1 as well, as required.

This proves the equality of P(T = k) for T in [I, (3.3.2)] and [I, (3.1.16)] and
k = 1, 2 and 3.
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Solution to Exercise 3.14. We note that

P
(
S0 = Sk+1 = 0, Si > 0 ∀1 ≤ i ≤ k

)
= pP

(
S1 = 1, Si > 0 ∀1 ≤ i ≤ k, Sk+1 = 0

)
,

since the first step must be upwards. By [I, (3.3.2)],

P
(
S1 = 1, Si > 0 ∀1 ≤ i ≤ k, Sk+1 = 0

)
= P(T = k),

which completes the proof.

Solution to Exercise 3.15. Recall that p′x = ηx−1px. We note that p′x ≥ 0 for all
x ∈ N. Furthermore,

∞∑
x=0

p′x =
∞∑
x=0

ηx−1px = η−1

∞∑
x=0

ηxpx = η−1GX(η).

Since η satisfies η = GX(η), it follows also that p′ = (p′x)x≥0 sums up to 1, so that p′

is a probability distribution.

Solution to Exercise 3.16. We compute

Gd(s) =
∞∑
x=0

sxp′x =
∞∑
x=0

sxηx−1px = η−1

∞∑
x=0

(ηs)xpx =
1

η
GX(ηs).

Solution to Exercise 3.17. We note that

E[X ′] =
∞∑
x=0

xp′x =
∞∑
x=0

xηx−1px =
d

ds
GX(s)

∣∣∣
s=η

.

Now, η is the smallest solution of η = GX(η), and, when η > 0, GX(0) = p0 > 0
by Exercise 3.1. Therefore, since s 7→ d

ds
GX(s) is increasing, we must have that

d
ds
GX(s)

∣∣∣
s=η

< 1.

Solution to Exercise 3.18. Since Mn = µ−nZn
a.s.−→ W∞ by [I, Theorem 3.9], by

Lebesgues dominated convergence theorem ([I, Theorem A.1]) and the fact that, for
y ≥ 0 and s ∈ [0, 1], we have that sy ≤ 1, it follows that

E[sMn ]→ E[sW∞ ]. (1.3.6)

However,
E[sMn ] = E[sZn/µ

n

] = Gn(sµ
−n

).

Since Gn(s) = GX(Gn−1(s)), we thus obtain

E[sMn ] = GX

(
Gn−1(sµ

−n
)
)

= GX

(
Gn−1

(
(sµ

−1

)µ
−(n−1)))→ GX

(
GW (s1/µ)

)
,

again by (1.3.6).
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Solution to Exercise 3.19. If Mn = 0, then Mm = 0 for all m ≥ n, so that

{M∞ = 0} = lim
n→∞
{Mn = 0} = ∩∞n=0{Mn = 0}.

On the other hand, {extinction} = {∃n : Mn = 0} or {survival} = {Mn > 0 ∀n}. We
hence conclude that {survival} ⊂ {M∞ > 0} = ∪∞n=0{Mn > 0}, and so

P(M∞ > 0|survival) =
P(M∞ > 0 ∩ {survival})

P(survival)
=

P(M∞ > 0)

1− η
= 1,

because it is given that P(W∞ > 0) = 1− η.

Solution to Exercise 3.20. By [I, Theorem 3.9], we have that Mn = µ−nZn
a.s.−→

W∞. By Fubini’s theorem, we thus obtain that

E[W∞] ≤ lim
n→∞

E[Mn] = 1,

where the equality follows from [I, Theorem 3.3].

Solution to Exercise 3.28. The total offspring equals

T = 1 +
∞∑
n=1

Zn,

see [I, (3.1.16)].

Since we search for T ≤ 3, we must have
∑∞

n=1 Zn ≤ 2 or
∑2

n=1 Zn ≤ 2, because
Zk > 0 for some k ≥ 3 implies

Z3 ≥ 1, Z2 ≥ 1, Z1 ≥ 1,

so that
∞∑
n=1

Zn ≥
3∑

n=1

Zn ≥ 3.

Then, we can write out

P(T = 1) = P(
2∑

n=1

Zn = 0) = P(Z1 = 0) = e−λ,

P(T = 2) = P(
2∑

n=1

Zn = 1) = P(Z1 = 1, Z2 = 0) = P(X1,1 = 1)P(X2,1 = 0) = λe−2λ,

and

P(T = 3) = P(
2∑

n=1

Zn = 2) = P(Z1 = 1, Z2 = 1, Z3 = 0) + P(Z1 = 2, Z2 = 0)

= P(X1,1 = 1, X2,1 = 1, X3,1 = 0) + P(X1,1 = 2, X2,1 = 0, X2,2 = 0)

= (λe−λ)2 · e−λ + e−λ(λ2/2) · e−λ · e−λ = e−3λ3λ2

2
.
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These answers do coincide with

P(T = n) = e−nλ
(nλ)n−1

n!
,

for n ≤ 3.

1.4 Solutions to the exercises of Chapter 4.

Solution to Exercise 4.3. We start by computing P(T = m) for m = 1, 2, 3. For
m = 1, we get

P(T = 1) = P(S1 = 0) = P(X1 = 0) = P(Bin(n− 1, p) = 0) = (1− p)n−1.

For m = 2, we get

P(T = 2) = P(S1 > 0, S2 = 0) = P(X1 > 0, X1 +X2 = 1) = P(X1 = 1, X2 = 0)

= P(X1 = 1)P(X2 = 0|X1 = 1) = P(Bin(n− 1, p) = 1)P(Bin(n− 2, p) = 0)

= (n− 1)p(1− p)n−2 · (1− p)n−2 = (n− 1)p(1− p)2n−4.

For m = 3, we get

P(T = 3) = P(S1 > 0, S2 > 0, S3 = 0) = P(X1 > 0, X1 +X2 > 1, X1 +X2 +X3 = 2)

= P(X1 = 1, X2 = 1, X3 = 0) + P(X1 = 2, X2 = 0, X3 = 0)

= P(X3 = 0|X2 = 1, X1 = 1)P(X2 = 1|X1 = 1)P(X1 = 1)

+P(X3 = 0|X2 = 0, X1 = 2)P(X2 = 0|X1 = 2)P(X1 = 2)

= P(X3 = 0|S2 = 1)P(X2 = 1|S1 = 1)P(X1 = 1)

+P(X3 = 0|S2 = 1)P(X2 = 0|S1 = 2)P(X1 = 2)

= P(Bin(n− 3, p) = 0)P(Bin(n− 2, p) = 1)P(Bin(n− 1, p) = 1)

+P(Bin(n− 3, p) = 0)P(Bin(n− 3, p) = 0)P(Bin(n− 1, p) = 2)

= (1− p)n−3(n− 2)p(1− p)n−3(n− 1)p(1− p)n−2

+(1− p)n−3(1− p)n−3(n− 1)(n− 2)p2(1− p)n−3/2

= (n− 1)(n− 2)p2(1− p)3n−8 + (n− 1)(n− 2)p2(1− p)3n−9/2

= (n− 1)(n− 2)p2(1− p)3n−9(
3

2
− p).

We now give the combinatoric proof. For m = 1,

P(|C (v)| = 1) = (1− p)n−1,

because all connections from vertex 1 have to be closed. For m = 2,

P(|C (v)| = 2) = (n− 1)p(1− p)2n−4

because you must connect one of n− 1 vertices to vertex v and then isolate these two
vertices which means that 2n− 4 connections should not be present.
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For m = 3, the first possibility is to attach one vertex a to 1 and then a second
vertex b to a, with the edge vb being closed. This gives

(n− 1)p(1− p)n−2(n− 2)p(1− p)n−3(1− p)n−3 = (n− 1)(n− 2)p2(1− p)3n−8.

The second possibility is to attach one vertex a to v and then a second vertex b to a,
with the edge vb being occupied. This gives(

n− 1

2

)
p(1− p)n−3p(1− p)n−3(1− p)n−3p =

(
n− 1

2

)
p3(1− p)3n−9.

The final possibility is that you pick two vertices attached to vertex v, and then
leave both vertices without any further attachments to the other n − 3 and being
unconnected (the connected case is part of the second possibility)(

n− 1

2

)
p2(1− p)n−3 · (1− p)2n−5 =

(
n− 1

2

)
p2(1− p)3n−8.

In total, this gives

(n− 1)(n− 2)p2(1− p)3n−8 +

(
n− 1

2

)
p3(1− p)3n−9 +

(
n− 1

2

)
p2(1− p)3n−9

= (n− 1)(n− 2)p2(1− p)3n−9(1− p+
p

2
+

(1− p)
2

)

= (n− 1)(n− 2)p2(1− p)3n−9(
3

2
− p).

Solution to Exercise 4.5. We first pick 3 different elements i, j, k from {1, 2, . . . , n}
without order. This can be done in (

n

3

)
different ways. Then all three edges ij, ik, jk have to be present, which has probability
p3. The number of triangles is the sum of indicators running over all unordered triples.
These indicators are dependent, but that is of no importance for the expectation,
because the expectation of a sum of dependent random variables equals the sum of
the expected values. Hence the expected number of occupied triangles equals:(

n

3

)
p3.
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Solution to Exercise 4.6. We pick 4 elements i, j, k, l from {1, 2, . . . , n} This kan
be done in (

n

4

)
different ways. This quadruple may form an occupied square in 3 different orders,
that is (i, j, k, l), (i, k, j, l) and (i, j, l, k). Hence there are

3 ·
(
n

4

)
squares in which all four sides should be occupied. Hence the expected number of
occupied squares equals

3

(
n

4

)
p4.

Solution to Exercise 4.7. We define the sequence of random variables (Xn)n≥1

where Xn is the number of occupied triangles in an Erdős-Rényi random graph with
edge probability p = λ/n. Next we introduce the indicator functions, for a = (i, j, k)
with 1 ≤ i < j < k ≤ n,

Ia,n :=

{
0 triangle a not connected;

1 triangle a connected.

According to [I, (2.1.17)],

lim
n→∞

E[(Xn)r] = lim
n→∞

∑∗

a1,a2,...,ar∈I

P(Ia1,n = 1, Ia2,n = 1, . . . , Iar,n = 1). (1.4.1)

Now, there are two types of collections of triangles, namely, sets of triangles in which
all edges are distinct, or the set of triangles for which at least one edge occurs in two
different triangles. In the first case, we see that the indicators Ia1,n, Ia2,n, . . . , Iar,n are
independent, in the second case, they are not. We first claim that the collection of
(a1, a2, . . . , ar) for which all triangles contain different edges has size

(1 + o(1))

(
n

3

)r
. (1.4.2)

To see this, we note that the upper bound is obvious (since
(
n
3

)r
is the number of

collections of r triangles without any restriction). For the lower bound, we note that
ai = (ki, li,mi) for ki, li,mi ∈ [n] such that ki < li < mi. We obtain a lower bound on
the number of triangles containing different edges when we assume that all vertices
ki, li,mi for i = 1, . . . , r are distinct. There are precisely

r−1∏
i=0

(
n− i

3

)
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of such combinations. When r is fixed, we have that

r−1∏
i=0

(
n− i

3

)
= (1 + o(1))

(
n

3

)r
.

Thus, the contribution to the right-hand side of (1.4.1) of collections (a1, a2, . . . , ar)
for which all triangles contain different edges is, by independence and (1.4.2), equal
to

(1 + o(1))

(
n

3

)r(λ3

n3

)r
= (1 + o(1))

(λ3

6

)r
.

We next prove that the contribution to the right-hand side of (1.4.1) of collections
(a1, a2, . . . , ar) for which at least one edge occurs in two different triangles. We give
a crude upper bound for this. We note that each edge which occurs more that once
reduces the number of possible vertices involved. More precisely, when the collection
of triangles (a1, a2, . . . , ar) contains precisely 3r − l edges for some l ≥ 1, then the
collection of triangles (a1, a2, . . . , ar) contains at most 3r − 2l vertices, as can easily
be seen by induction. As a result, the contribution to the right-hand side of (1.4.1)
of collections (a1, a2, . . . , ar) (a1, a2, . . . , ar) contains precisely 3r− l edges is bounded
by

n3r−2l(λ/n)3r−l = λ3r−ln−l = o(1).

Since this is negligible, we obtain that

lim
n→∞

E[(Xn)r] =
(λ3

6

)r
.

Hence, due to [I, Theorem 2.4] we have that the number of occupied triangles in an
Erdős-Rényi random graph with edge probability p = λ/n has an asymptotic Poisson
distribution with parameter λ3/6.

Solution to Exercise 4.8. We have

E[∆G] = E

 ∑
i,j,k∈[n]

1{ij,ik,jk occupied}

 =
∑

i,j,k∈[n]

E
[
1{ij,ik,jk occupied}

]
= n(n− 1)(n− 2)

(
λ

n

)3

,

and

E[WG] = E

 ∑
i,j,k∈[n]

1{ij,jk occupied}

 =
∑

i,j,k∈[n]

E
[
1{ij,jk occupied}

]
= n(n− 1)(n− 2)

(
λ

n

)2

.

This yields for the clustering coefficient

CCG = λ/n.
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Solution to Exercise 4.9. We have E [WG] = n(n− 1)(n− 2)p2 = nλ2(1 + o(1)).
We can aso compute using [I, (1.5.3)] that

Var(WG) = O(p3n4) = O(n),

so that Var(WG) � E [WG]2. We conclude by Chebychev’s inequality ([I, Theorem
2.18]) that

WG

E[WG]

P−→ 1.

Hence, also WG/n
P−→ λ2 and, therefore, n/WG

P−→ 1/λ2. We have already shown
in the previous exercise that the number of occupied triangles has an asymptotic
Poisson distribution with parameter λ3

6
. ∆G is six times the number of triangles (see

[I, (1.5.3)]), and thus ∆G

d−→ 6 · Poi(λ3
6

). Slutsky’s Theorem states that

Xn
P−→ c and Yn

d−→ Y ⇒ XnYn
d−→ cY

Hence n∆G

WG

d−→ 6
λ2
Y, where Y ∼ Poi(λ3/6).

Solution to Exercise 4.10. We have to show that for each x, the event {|C (v)| ≥
x} remains true if the the number of edges increases.

Obviously by increasing the number of edges the number |C (v)| increases or stays
the same depending on whether or not some of the added edges connect new vertices
to the cluster. In both cases {|C (v)| ≥ x} remains true.

Solution to Exercise 4.11. This is not true. Take two disjoint clusters which
differ by one in size, and suppose that the larger component equals Cmax, before
adding the extra edges. Take any v ∈ Cmax. Now add edges between the second
largest component and isolated vertices. If you add two of such edges, then the new
Cmax equals the union of the second largest component and the two isolated vertices.
Since originally v did not belong to the second largest component and v was not
isolated, because it was a member of the previous largest component, we now have
v /∈ Cmax.

Solution to Exercise 4.12. By [I, (4.2.1)],

Eλ[|C (v)|] =
∞∑
k=1

P(|C (v)| ≥ k) ≤
∞∑
k=1

Pn,p(T ≥ k) = E[T ] =
1

1− µ
, (1.4.3)

where
µ = E[Offspring] = np = λ.

Hence,
Eλ[|C (v)|] ≤ 1/(1− λ).
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Solution to Exercise 4.14. We recall that Z≥k =
∑

i∈[n] 1{|C (i)|≥k}. We note that

Z≥k = 0 when |Cmax| < k, since |C (i)| < k for every i ∈ [n]. Further, if |Cmax| ≥ k,
then take the smallest i such that |C (i)| ≥ k. There are at least k vertices j ∈ C (i)
for which then |C (j)| = |C (i)| ≥ k, so all these j contribute, so that Z≥k ≥ k. This
implies that |Cmax| ≥ k precisely when Z≥k ≥ k.

Solution to Exercise 4.15. Intuitively the statement is logical, for we can see M
as doing n trails with success probability p and for each trial we throw another coin
with success probability q. The eventual amount of successes are the successes for
which both trails ended in success and is thus equal to throwing n coins with succes
probability pq.

There are several ways to prove this in detail, we give two of them.

Suppose we have two binomial trials N and Y both of length n and with success
probabilities p, q, respectively. We thus create two vectors filled with ones and zeros.
For each index i = 1, 2, . . . , n we compare the vectors and in case both entries are
1, we will see this as a success. The now counted amount of successes is of course
Bin(n, pq) distributed.

Now we produce the first vector similarly by denoting ones and zeros for the
successes and losses in trail N . For each ’one’, we produce an other outcome by a
Be(q) experiment. We count the total number of successes of these experiments and
those are of course Bin(N, q) distributed. But now, this is the same as the experiment
described above, since all Bernoulli outcomes are independent. Hence if N ∼ Bin(n, p)
and M ∼ Bin(N, q), then M ∼ Bin(n, pq).

We will also give an analytical proof, which is somewhat more enhanced. We wish
to show that

P(M = m) =

(
n

m

)
(pq)m(1− pq)n−m

by explicitly conditioning on N and performing the sum.

Of course we have

P(M = m) =
n∑

i=m

P(N = i) ·
(
i

m

)
· qm · (1− q)i −m,

=
n∑

i=m

(
n

i

)
· (p)i · (1− p)n−i ·

(
i

m

)
· qm · (1− q)i −m.

Rearranging terms yields

P(M = m) =
(1− p)nqm

(1− q)m
n∑

i=m

(
n

i

)(
i

m

)
pi

(1− p)i
(1− q)i.
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Further analysis yields

P(M = m) =(1− p)n
( q

1− q

)m n∑
i=m

n!

i!(n− i)!
i!

m!(i−m)!

(p(1− q)
1− p

)i
= (1− p)n

( q

1− q

)m n!

m!

n∑
i=m

1

(n− i)!(i−m)!

(p(1− q)
1− p

)i
= (1− p)n(

q

1− q
)m
n!m!∑ n−m

k=0

1

(n− k −m)!(m+ k −m)!

(p(1− q)
1− p

)k+m

= (1− p)n(
q

1− q
)m

n!

m!(n−m)!

n−m∑
k=0

(n−m)!

(n− k −m)!k!

(p(1− q)
1− p

)k+m

=

(
n

m

) n−m∑
k=0

(
n−m
k

)
pk+m(1− p)n−m−kqm(1− q)k+m−m

=

(
n

m

)
pmqm

n−m∑
k=0

(
n−m
k

)
pk(1− p)n−m−k(1− q)k.

It is thus sufficient to show that
∑n−m

k=0

(
n−m
k

)
pk(1− p)n−m−k(1− q)k = (1− pq)n−m.

We use Newton’s binomium to conclude that
n−m∑
k=0

(
n−m
k

)
pk(1− p)n−m−k(1− q)k = (1− p)n−m

n−m∑
k=0

(
n−m
k

)(p− pq
1− p

)k
= (1− p)n−m

(
1 +

p− pq
1− p

)n−m
= (1− p)n−m

(1− p+ p− pq
1− p

)n−m
= (1− pq)n−m,

as required.

Now we can use this result to prove that Nt ∼ Bin(n, (1− p)t) by using induction.
The initial value N0 = n− 1 is given, hence

N1 ∼ Bin(n− 1, 1− p), so that N2 ∼ Bin(N1, 1− p) ∼ Bin(n− 1, (1− p)2).

Iteration yields that indeed Nt ∼ Bin(n− 1, (1− p)t).

Solution to Exercise 4.16. We have that the cluster of i has size l. Furthermore,
we have Pλ

(
i←→ j

∣∣|C (i)| = l
)

+ Pλ
(
i←→/ j

∣∣|C (i)| = l
)

= 1 Of course i, j ∈ [n] and
j 6= i. So, having i fixed, gives us n− 1 choices for j in ERn(p) and l − 1 choices for
j in C (i). Hence,

Pλ
(
i←→ j

∣∣|C (i)| = l
)

=
l − 1

n− 1
,

and thus

Pλ
(
i←→/ j

∣∣|C (i)| = l
)

= 1− l − 1

n− 1
.
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Solution to Exercise 4.17. The extinction probability η satisfies

ηλ = GX(ηλ) = E[ηXλ ] = e−λ+ληλ

Hence,
ζλ = 1− ηλ = 1− e−λ+λη = 1− e−λζλ .

This equation has only two solutions for λ > 1, one of which is ζλ = 0, the other must
be the survival probability.

Solution to Exercise 4.18. We compute that

χ(λ) = Eλ[|C (1)|] = Eλ
[ n∑
j=1

1{j∈C (1)}

]
= 1 +

n∑
j=2

Eλ[1{j∈C (1)}]

= 1 +
n∑
j=2

Eλ[1{1↔j}] = 1 +
n∑
j=2

Pλ(1↔ j) = 1 + (n− 1)Pλ(1↔ 2).

Solution to Exercise 4.19. In this exercise we denote by |C(1)| ≥ |C(2)| ≥ . . ., the
components ordered by their size. Relation [I, (4.4.1)] reads that for ν ∈ (1

2
, 1):

P
(∣∣|Cmax| − nζλ

∣∣ ≥ nν
)

= O(n−δ).

Observe that

Pλ(1↔ 2) = Pλ(∃C (k) : 1 ∈ C (k), 2 ∈ C (k))

=
∑
l≥1

Pλ(1, 2 ∈ C(l)) = Pλ(1, 2 ∈ C(1)) +
∑
l≥2

Pλ(1, 2 ∈ C(l))

=
(nζλ ± nν)2

n2
+O(n−δ) +

∑
l≥2

Pλ(1, 2 ∈ C(l)).

For l ≥ 2, we have |C(l)| ≤ K log n with high probability, hence

Pλ(1, 2 ∈ C(l)) ≤
K2 log2 n

n2
+O(n−2),

so that ∑
l≥2

Pλ(1, 2 ∈ C(l)) ≤
K2 log2 n

n
+O(n−1)→ 0.

Together, this shows that

Pλ(1↔ 2) = ζ2
λ +O(n−δ),

for some δ > 0.
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Solution to Exercise 4.20. Combining Exercises 4.18 and 4.19 yields

χ(λ) = 1 + (n− 1)ζ2
λ(1 + o(1)) = nζ2

λ(1 + o(1)).

Solution to Exercise 4.21. According to the duality principle, the random graph
obtained by removing the largest connected component from a supercritical Erdős-
Rényi random graph is again an Erdős-Rényi random graph of size

m = nηλ(1 + oP(1)) =
µλn

λ
(1 + oP(1)),

where µλ < 1 < λ are conjugates as in [I, (3.6.6)]. Thus, the remaining graph is in the
subcritical regime. Hence, studying the second largest component in a supercritical
graph is close to studying the largest component in the remaining graph.

As a result of [I, Theorems 4.4 and 4.5], for any ε > 0,

lim
n→∞

P
( |Cmax|

logm
> I−1

µλ
+ ε
)

+ P
( |Cmax|

logm
< I−1

µλ
− ε
)

= 0.

Hence, |Cmax|/ logm
P−→ I−1

µλ
. But logm/ log n → 1 as n → ∞, since n − m =

ζλn(1 + oP(1)) and thus m = n(1− ζλ)(1 + oP(1)). Hence |Cmax|/ log n
P−→ I−1

µλ
.

Solution to Exercise 4.22. Denote

Zn =
Xn − anpn√
anpn(1− pn)

,

so that we need to prove that Zn converges is distribution to a standard normal
random variable Z. For this, it suffices to prove that the moment generating function
MZn(t) = E

[
etZn

]
of Zn converges to that of Z.

Since the variance of Xn tends to infinity, the same holds for an. Now we write
Xn as to be a sum of an Bernoulli variables Xn =

∑an
i=1 Yi, where (Yi)1≤i≤an are

independent random variables with Yi ∼ Be(pn). Thus, we note that the moment
generating function of Xn equals

MXn(t) = E
[
etXn

]
= E

[
etY1 ]an .

We further prove, using a simple Taylor expansion,

logE[etY1
]

= log
(
pne

t + (1− pn)
)

= pnt+
t2

2
pn(1− pn) +O(|t|3pn).

Thus, with tn = t/
√
anpn(1− pn),

MZn(t) = MXn(tt)e
anpntn = ean logE[etY1 ] = e

t2n
2
pn(1−pn)+O(|tn|3anpn) = et

2/2+o(1).

We conclude that limn→∞MZn(t) = et
2/2, which is the moment generating function

of a standard normal distribution. [I, Theorem 2.3(b)] implies that Zn
d−→ Z, as

required. Hence, the CLT follows and [I, (4.5.15)] implies [I, (4.5.16)].
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Solution to Exercise 4.25. We have that nλ/2 edges are added in a total system
of n(n− 1)/2 edges. This intuitively suggests that the behavior of ERn(M) is similar

to ERn(p) with p = nλ/2
n(n−1)/2

and λ′ = n · p, so that one would expect subcritical

behavior |Cmax|/ log n
P−→ I−1

λ . We now provide the details of this argument.
We make use of the crucial relation [I, (4.6.1)], and further note that when we

increase M , then we make the event |Cmax| ≥ k more likely. This is a related version
of monotonicity as in [I, Section 4.1.1]. In particular, from [I, (4.6.1)], it follows that
for any increasing event E, and with p = λ/n,

Pλ(E) =

n(n−1)/2∑
m=1

Pm(E)P
(
Bin(n(n− 1)/2, p) = m) (1.4.4)

≥
∞∑

m=M

Pm(E)P
(
Bin(n(n− 1)/2, p) = m)

≥ PM(E)P
(
Bin(n(n− 1)/2, p) ≥M).

We conclude that PM(E) = o(1) follows from Pλ(E) = o(1) when p is chosen such
that P

(
Bin(n(n−1)/2, p) ≥M) = 1−o(1). Here we write PM for the law of ERn(M).

Take a > I−1
λ and let kn = a log n. We first show that PM(|Cmax| ≥ kn) = o(1).

For this, we use the above monotonicity to note that, for every λ′,

PM(|Cmax| ≥ kn) ≤ Pλ′(|Cmax| ≥ kn)/P
(
Bin(n(n− 1)/2, λ′/n) ≥M).

For any λ′ > λ, we have P
(
Bin(n(n − 1)/2, λ′/n) ≥ M) = 1 + o(1). Now, since

λ 7→ I−1
λ is continuous, we can take λ′ > λ such that I−1

λ′ < a, we further obtain by [I,
Theorem 4.4] that Pλ′(|Cmax| ≥ kn) = o(1), so that PM(|Cmax| ≥ kn) = o(1) follows.

Next, take a < I−1
λ , take kn = a log n, and we next wish to prove that PM(|Cmax| ≤

kn) = o(1). For this, we make use of a related bound as in (1.4.4), namely, for a
decreasing event F , we obtain

Pλ(F ) =

n(n−1)/2∑
m=1

Pm(F )P
(
Bin(n(n− 1)/2, p) = m)

≥
M∑
m=1

Pm(F )P
(
Bin(n(n− 1)/2, p) = M)

≥ PM(F )P
(
Bin(n(n− 1)/2, p) ≤M).

Now, we take p = λ′/n where λ′ < λ, so that P
(
Bin(n(n− 1)/2, p) ≤M) = 1− o(1).

Then, we pick λ′ < λ such that I−1
λ′ > a and use [I, Theorem 4.5]. We conclude

that, with high probability, |Cmax|/ log n ≤ I−1
λ + ε) for any ε > 0, and, again with

high probability, |Cmax|/ log n ≥ I−1
λ − ε) for any ε > 0. This directly yields that

|Cmax|/ log n
P−→ I−1

λ .
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1.5 Solutions to the exercises of Chapter 5.

Solution to Exercise 5.2. Fix some r > 0, then

χ(1) ≥
rn2/3∑
k=1

P1(|C (1)| ≥ k) ≡
rn2/3∑
k=1

P≥k(1). (1.5.1)

By Proposition 5.2, for some c1 = c1(r) and uniformly for k ≤ rn2/3,

P≥k(1) ≥ c1√
k
.

Substituting this bounds into (1.5.1) yields

χ(1) ≥
rn2/3∑
k=1

c1√
k
≥ c′1rn

1/3,

where c′1 > 0 and r > 0.

Solution to Exercise 5.4. By [I, Theorem 3.16],

1

λ
e−IλtP∗1(T ∗ = t) =

1

λ
e−(λ−1−log λ)t t

t−1

t!
e−t.

Rearranging the terms in this equation we get

1

λ
e−IλtP∗1(T ∗ = t) =

1

λ

(
elog λ

)t tt−1

t!
e−λt =

(λt)t−1

t!
e−λt.

Solution to Exercise 5.3. Let τn(λ) = Pλ(1←→ 2) = Pλ(2 ∈ C (1)). Then,

χn(λ) = 1 + (n− 1)τn(λ).

Thus,
∂

∂λ
χn(λ) = (n− 1)

∂

∂λ
τn(λ).

For the derivative of τn(λ) we use that

∂

∂λ
τn(λ) =

∑
ij

Pλ(ij pivotal for 1←→ 2),

where we write that an edge ij is pivotal for an increasing event E when E occurs in
the configuration where ij is added to the configuration, while E does not occur in
the configuration where ij is removed from the configuration (here, when the edge is
occupied, then we cannot add it, and when the edge is vacant, we do not remove it).
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We note that

Pλ(ij pivotal for 1←→ 2 | |C (1)| = l, |C (2)| = k, 1←→/ 2) = lk.

Therefore,
Pλ(ij pivotal for 1←→ 2 | |C (1)| = l) ≤ E[|C (2)|],

where the right hand side is the expected cluster size of the random graph on [n− l]
where the edge probability λ/n = (λ(n− l)/n)/(n− l).

The above ideas imply that

∂

∂λ
χn(λ) ≤

n∑
l=1

lPλ(|C (1)| = l)χn−l(λ
n− l
n

).

The function l 7→ χn−l(λ
n−l
n

) is decreasing (since every edge is present independently
with probability λ/n, which is independent of l). Hence

∂

∂λ
χn(λ) ≤ χn(λ)

n∑
l=1

lPλ(|C (1)| = l) = χn(λ)2,

or
∂
∂λ
χn(λ)

χn(λ)2
≤ 1. (1.5.2)

The second part of the exercise relies on integration. Integrate both the left-hand
and the right-hand side of (1.5.2) between λ and 1 to conclude that

1

χn(λ)
− 1

χn(1)
≤ 1− λ.

Bring 1/χn(1) to the other side to obtain

1

χn(λ)
≤ 1

χn(1)
+ 1− λ,

which is equivalent to

χn(λ) ≥ 1

χn(1)−1 + (1− λ)
.

Solution to Exercise 5.5. By [I, (5.3.8)] and [I, (5.3.10)],

Eλ[Y 2] = nPλ(|C (1)| = 1) + n(n− 1)
( λ

n(1− λ
n
)

+ 1
)
Pλ(|C (1)| = 1)2

= n

(
1− λ

n

)n−1

+ n(n− 1)

(
1− λ

n

)2n−3

= n
(
1− λ

n

)n−1
(

1 + (n− 1)
(

1− λ

n

)n−2)
.
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Consider the first power. Taking the logarithm yields

log n+ (n− 1) log(1− λ

n
) = log n+ (n− 1) log(1− log n+ t

n
).

Taylor expanding the logarithm gives

log n+ (n− 1) log(1− log n+ t

n
) = log n− (n− 1)

[ log n+ t

n
+O

(( log n+ t

n

)2
)]
.

The latter expression can be simplified to

log n− (n− 1)
[ log n+ t

n
+O

(( log n+ t

n

)2
)]

= log n− n− 1

n
log n− n− 1

n
t+O

((log n+ t)2

n

)
= −t+

log n

n
+
t

n
+O

((log n+ t)2

n

)
,

and, as n tends to infinity,

−t+
log n

n
+
t

n
+O

((log n+ t)2

n

)
→ −t.

Hence,

lim
n→∞

n

(
1− λ

n

)n−1

= e−t.

A similar argument gives that as n→∞

lim
n→∞

(
1− λ

n

)n−2

= e−t.

Therefore, we conclude
lim
n→∞

Eλ[Y 2] = e−t(1− e−t),

which is the second moment of a Poisson random variable with mean e−t.

1.6 Solutions to the exercises of Chapter 6.

Solution to Exercise 6.1. By the definition of pij in [I, (6.2.1)], the numerator of
pij is (nλ)2(n− λ)−2 when wi = nλ/(n− λ) for all i ∈ [n]. The denominator of pij is

n∑
i=1

nλ

n− λ
+

(
nλ

n− λ

)2

=
n2λ

n− λ
+

(
nλ

n− λ

)2

=
n2λ(n− λ) + (nλ)2

(n− λ)2
=

n3λ

(n− λ)2
.

Dividing the numerator of pij by its denominator gives

pij =
(nλ)2

n3λ
=
λ

n
.
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Solution to Exercise 6.2. Consider the distribution function Fn(x) = P(wU ≤ x)
of a uniformly chosen vertex U and let x ≥ 0. The law of total probability gives that

P(wU ≤ x) =
n∑
i=1

P(wU ≤ x | U = i)P(U = i)

=
1

n

n∑
i=1

1{wi≤x}, x ≥ 0,

as desired.

Solution to Exercise 6.4. By [I, (6.2.17)], Fn(x) = 1
n
(bnF (x)c+ 1)∧ 1. To prove

pointwise convergence of this function to F (x), we note that

Fn(x) ≤ 1

n
(nF (x) + 1) = F (x) +

1

n
.

Further, since bxc+ 1 ≥ x,

Fn(x) ≥ 1

n
(bnF (x)c+ 1) ∧ 1 ≥ 1

n
(nF (x)) ∧ 1 = F (x).

We conclude that

|Fn(x)− F (x)| ≤ 1/n,

which proves the pointwise convergence of Fn to F , as desired.

Solution to Exercise 6.5. We note that x 7→ F (x) is non-decreasing, since it is
a distribution function. This implies that x 7→ 1 − F (x) is non-increasing, so that
u 7→ [1− F ]−1(u) is non-increasing.

To see [I, (6.10.1)], we let U be a uniform random variable, and note that

1

n

n∑
i=1

h(wi) = E
[
h
(

[1− F ]−1(dUne/n)
)]
.

Now, dUne/n ≥ U a.s., and since u 7→ [1 − F ]−1(u) is non-increasing, we obtain
that [1 − F ]−1(dUne/n) ≤ [1 − F ]−1(U) a.s. Further, again since x 7→ h(x) is non-
decreasing,

h
(

[1− F ]−1(dUne/n)
)
≤ h

(
[1− F ]−1(U)

)
.

Thus,

1

n

n∑
i=1

h(wi) ≤ E
[
h
(

[1− F ]−1(U)
)]

= E[h(W )],

since [1−F ]−1(U) has distribution function F when U is uniform on (0, 1) (recall the
remark below [I, (6.2.16)]).
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Solution to Exercise 6.6. Using the non-decreasing function h(x) = xα in Exercise
6.5, we have that for a uniform random variable U

1

n

n∑
i=1

wαi =

∫ 1

0

[1− F ]−1

(
dune
n

)α
1

n
du

= E
[(

[1− F ]−1(dUne/n)
)α]

.

We also know that dUne/n ≥ U a.s., and since u 7→ [1 − F ]−1(u) is non-increasing
by Exercise 6.5 and x 7→ xα is non-decreasing, we obtain that

1

n

(
[1− F ]−1(dUne/n)

)α ≤ 1

n

(
[1− F ]−1(U)

)α
.

The right hand side function is integrable with value E[Wα], by assumption. There-
fore, by the dominated convergence theorem ([I, Theorem A.1]), the integral of the
left hand side converges to the integral of its pointwise limit. Since dUne/n converges
almost surely to U , we get that [1− F ]−1(dUne/n)

a.s.−→ [1− F ]−1(U), as desired.

Solution to Exercise 6.7. By [I, (6.2.14)],

wi = [1− F ]−1(i/n).

Now apply the function [1− F ] to both sides to get

[1− F ](wi) = i/n,

which, by the assumption, can be bounded from above by

i/n = [1− F ](wi) ≤ cw
−(τ−1)
i .

This inequality can be rewritten to

i−
1

τ−1 (cn)
1

τ−1 ≥ wi,

where the left hand side is a descending function in i for τ > 1. This implies

wi ≤ w1 ≤ c
1

τ−1n
1

τ−1 , ∀i ∈ [n],

giving c′ = c
1

τ−1 as desired. In fact, we have proved the stronger inequality that

wi ≤ c′(n/i)
1

τ−1 .

Solution to Exercise 6.9. A mixed Poisson variable X has the property that
P(X = 0) = E[e−W ] is strictly positive, unless W is infinite with probability 1.
Therefore, the random variable Y with P(Y = 1) = 1

2
and P(Y = 2) = 1

2
cannot be

represented by a mixed Poisson variable.



1.6 Solutions to the exercises of Chapter 6. 33

Solution to Exercise 6.10. By definition, the characteristic function of X is

E[eitX ] =
∞∑
n=0

eitnP(X = n) =
∞∑
n=0

eitn
(∫ ∞

0

fW (w)
e−wwn

n!
dw

)
,

where fW (w) is the density function of W evaluated in w. Since all terms are non-
negative we can interchange summation and integration. Rearranging the terms gives

E[eitX ] =

∫ ∞
0

fW (w)e−w

(
∞∑
n=0

(eitw)
n

n!

)
dw =

∫ ∞
0

fW (w)e−w exp(eitw)dw

=

∫ ∞
0

fW (w) exp((eit − 1)w)dw.

The latter expression is the moment generating function of W evaluated in eit−1.

Solution to Exercise 6.11. By the tower property of conditional expectations, we
have that E[E[X | W ]] = E[X]. Computing the expected value on the left hand side
gives

E[X | W = w]] =
∑
k

ke−w
wk

k!

= e−w
∑
k

w(k−1)

(k − 1)!
= w, (1.6.1)

so E[X | W = w] = w, and E[X | W ] = W . Taking expectations yields the claim.

For the second moment of X, we consider E[E[X(X − 1) | W ]] = E[X(X − 1)].
Computing the expected value on the left hand side gives

E[X(X − 1) | W = w] =
∑
k

k(k − 1)e−w
wk

k!

= e−w
∑
k

w(k−2)

(k − 2)!
= w2,

so E[X(X − 1) | W = w] = w2, and E[X(X − 1) | W ] = W 2. Taking expectations
yields E[X(X − 1)] = E[W 2].

Now, we have that Var(X) = E[X2]−E[X]2 = E[W 2]+E[W ]−E[W ]2 = Var(W )+
E[W ].

Solution to Exercise 6.13. Suppose there exists a ε > 0 such that ε ≤ wi ≤ ε−1

for every i. Now take the independent variables D̂i as in [I, (6.3.13)]. By [I, (6.3.14)],
we obtain the bound

P
(

(D1, . . . , Dm) 6= (D̂1, . . . , D̂m)
)
≤ 2

m∑
i,j=1

pij

= 2
m∑

i,j=1

wiwj
`n + wiwj

.



34 Solutions to selected exercises

Now `n =
∑n

i=1wi ≥ nε and ε2 ≤ wiwj ≤ ε−2. Therefore,

2
m∑

i,j=1

wiwj
ln + wiwj

≤ 2m2 ε−2

nε+ ε2
= o(1),

since m = o(
√
n).

Solution to Exercise 6.17. We have to prove that we can choose n so large that

max
k
|E[P (n)

k ]− pk| ≤
ε

2
.

We know that
lim
n→∞

E[P (n)

k ] = lim
n→∞

P(D1 = k) = pk.

Take M so large that
∑

k>M pk ≤ ε/4. Then, take n so large that |E[P (n)

k ] − pk| ≤
ε/(4M) for every k ≤M , which is possible since M is finite. This in particular implies
that |E[P (n)

k ]− pk| ≤ ε
2

for every k ≤M .
Further, also∑

k>M

E[P (n)

k ] = 1−
∑
k≤M

E[P (n)

k ]

≤ 1−
∑
k≤M

(pk − ε/(4M)) =
∑
k>M

pk + ε/4 ≤ ε/2,

so that certainly E[P (n)

k ], pk ≤ ε/2 for every k > M . We conclude that |E[P (n)

k ]−pk| ≤
ε
2

holds for every k > M .
It is not hard to extend this proof to the statement we can choose n so large that∑
k |E[P (n)

k ]− pk| ≤ ε/2.

Solution to Exercise 6.18. Using the hint, we get

P(
n

max
i=1

wi ≥ εn) ≤
n∑
i=1

P(wi ≥ εn)

= nP(w1 ≥ εn).

This probability can be rewritten, and applying the Markov inequality ([I, Theorem
2.17]) now gives

nP(w1 ≥ εn) = nP(1{w1≥εn}w1 ≥ εn) ≤ 1

ε
E[w11{w1>εn}]→ 0,

by Lebesgue’s dominated convergence theorem ([I, Theorem A.1]) and the fact that
w11{w1>εn}

a.s.−→ 0. Therefore, maxni=1 wi = oP(n), and

1

n2

n∑
i=1

w2
i ≤

1

n

n
max
i=1

w2
i → 0,

as desired.
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Solution to Exercise 6.20. We rewrite∫ ∞
0

[1− FW (x)]dx =

∫ ∞
0

∫ ∞
x

FW (dw)dx.

Interchange the order of integration (which is allowed since all functions involved are
non-negative) to obtain∫ ∞

0

[1− FW (x)]dx =

∫ ∞
0

∫ ∞
x

FW (dw)dx =

∫ ∞
0

wFW (dw) = E[W ].

Thus, the mean is infinite precisely when
∫∞

0
[1− FW (x)]dx =∞.

Solution to Exercise 6.23. It suffices to prove that

∏
1≤i<j≤n

(uiuj)
xij =

n∏
i=1

u
di(x)
i ,

where di(x) =
∑

j∈[n] xij.

The proof will be given by a simple counting argument. Consider the powers of
uk in the left hand side, for some k = 1, . . . , n. For k < j ≤ n, the left hand side
contains the terms u

xkj
k , whereas for 1 ≤ i < k, it contains the terms uxikk . When

combined, and using the fact that xij = xji for all i, j, we see that the powers of uk

in the left hand side can be written as
∑
j 6=k

xkj. But since xii = 0 for all i, this equals∑
j∈[n] xij = di(x), as required.

Solution to Exercise 6.24. We pick tk = t and ti = 1 for all i 6= k. Then,

E[tDk ] =
∏

1≤i≤n : i 6=k

`n + wiwkt

`n + wiwk

= ewk(t−1)
∑

1≤i≤n : i6=k
wi
`n

+Rn ,

where

Rn =
∑

1≤i≤n : i 6=k

log

(
1 +

wiwkt

`n

)
− log

(
1 +

wiwk
`n

)
− wk(t− 1)

∑
1≤i≤n : i 6=k

wi
`n

=
∑

1≤i≤n: : 6=k

log(`n + wiwkt)− log(`n + wiwk)− wk(t− 1)
∑

1≤i≤n : i 6=k

wi
`n
.

A Taylor expansion of x 7→ log(a+ x) yields that

log(a+ x) = log(a) +
x

a
+O(

x2

a2
).
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Therefore, applying the above with a = `n and x = wiwk, yields that, for t bounded,

Rn = O(w2
k

n∑
i=1

w2
i

`2
n

) = o(1),

by Exercise 6.3, so that

E[tDk ] = ewk(t−1)
∑

1≤i≤n:i6=k
wi
`n (1 + o(1))

= ewk(t−1)(1 + o(1)), (1.6.2)

since wk is fixed. Since the generating function of the degree converges, the degree
of vertex k converges in distribution to a random variable with generating function
ewk(t−1) (recall [I, Theorem 2.3(c)]). The probability generating function of a Poisson
random variable with mean λ is given by eλ(t−1), which completes the proof of [I,
Theorem 6.7(a)].

For [I, Theorem 6.7(b)], we use similar ideas, now taking ti = ti for i ≤ m and
ti = 0 for i > m. Then,

E[
m∏
i=1

tDii ] =
∏

1≤i≤m,i<j≤n

`n + wiwjti
`n + wiwj

=
m∏
i=1

ewi(ti−1)(1 + o(1)),

so that the claim follows.

Solution to Exercise 6.25. The degree of vertex k is close in distribution to a
random variable with generating function ewk(t−1). We take wi = λ

1−λ/n which yields

for the generating function e
λ(t−1)
1−λ/n . This gives us for the degree a Poi( λ

1−λ/n) random

variable, which for large n is close to a Poi(λ) random variable.

Solution to Exercise 6.26. The Erdős-Rényi Random Graph is obtained by taking
wi ≡ λ

1−λ
n

. Since pij = λ/n → 0, [I, Theorem 6.7(b)] states that the degrees are

asymptotically independent.

Solution to Exercise 6.27. Let X be a mixed Poisson random variable with
mixing distribution γW τ−1. The generating function of X now becomes

GX(t) = E[tX ] =
∞∑
k=0

tkP(X = k)

=
∞∑
k=0

tkE[e−γW
τ−1 (γW τ−1)k

k!
]

= E

[
e−γW

τ−1
∞∑
k=0

(γW τ−1t)k

k!

]
= E[e(t−1)γW τ−1

].
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Solution to Exercise 6.28. Since h(0) = 0, we can use that

h(x) =

∫ x

0

h′(y)dy.

Thus,

E[h(X)] =

∫ ∞
0

h(x)FX(dx) =

∫ ∞
0

∫ x

0

h′(y)dyFX(dx).

By the assumption, we are allowed to interchange the order of integration. This yields

E[h(X)] =

∫ ∞
0

∫ ∞
y

h′(y)dyFX(dx) =

∫ ∞
0

h′(y)dy[1− FX](x),

as required.

Solution to Exercise 6.30. By definition, p(n) and q(n) are asymptotically equiva-
lent if for every sequence (En) of events

lim
n→∞

µ(n)(En)− ν(n)(En) = 0,

where µ(n), ν(n) are the laws corresponding to the probability mass functions p(n), q(n),
respectively. By taking the sequence of events En = {x} for some x ∈ X for all n,
this means that asymptotical equivalence implies that also

lim
n→∞

max
x∈X
|p(n)

x − q(n)x | = 0. (1.6.3)

By Exercise 2.16 in turn, this also implies that

lim
n→∞

dTV(p(n), q(n)) = 0.

Conversely, if the total variation distance converges to zero, which means that the
maximum over all events En of the difference µ(n)(En)− ν(n)(En) converges in absolute
value to zero. Since this maximum is taken over all events En, it will certainly hold
for any specific En as well. Therefore, it follows that for any sequence of events that
µ(n)(En)− ν(n)(En) must converge to zero as well, which is equivalent to asymptotical
equivalence. /ensol

Solution to Exercise 6.31. We recall that

dTV(M,M ′) = sup
A⊂Z
|P(M ∈ A)− P(M ′ ∈ A)|. (1.6.4)

Now, for binomial random variables with the same m and with success probabilities
p and q respectively, we have that

P(M = k)

P(M ′ = k)
=
(p
q

)k(1− p
1− q

)m−k
=
(1− p

1− q
)m(p(1− q)

q(1− p)
)k
,
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which is monotonically increasing or decreasing for p 6= q. As a result, we have that
the supremum in (1.6.4) is attained for a set A = {0, . . . , j} for some j ∈ N, i.e.,

dTV(M,M ′) = sup
j∈N
|P(M ≤ j)− P(M ′ ≤ j)|. (1.6.5)

Now assume that limN→∞m(p − q)/√mp = α ∈ (−∞,∞). Then, by Exercise 4.22,

(M − mp)/√mp d−→ Z ∼ N (0, 1) and (M ′ − mp)/√mp d−→ Z ′ ∼ N (α, 1), where
N (µ, σ2) denotes a normal random variable with mean µ and variance σ2. Therefore,
we arrive at

dTV(M,M ′) = sup
j∈N
|P(M ≤ j)− P(M ′ ≤ j)| = sup

x∈R
|P(Z ≤ x)− P(Z ′ ≤ x)|+ o(1)

→ Φ(α/2)− Φ(−α/2),

where x 7→ Φ(x) is the distribution function of a standard normal random variable.
Thus, dTV(M,M ′) = o(1) precisely when α = 0, which implies that m(p− q)/√mp =
o(1).

Solution to Exercise 6.32. We write

dTV(p, q) =
1

2

∑
x

|px − qx| =
1

2

∑
x

(
√
px +

√
qx)|
√
px −

√
qx|

=
1

2

∑
x

√
px|
√
px −

√
qx|+

1

2

∑
x

√
qx|
√
px −

√
qx|. (1.6.6)

By the Cauchy-Schwarz inequality, we obtain that∑
x

√
px|
√
px −

√
qx| ≤

√∑
x

px

√∑
x

(
√
px −

√
qx)2 ≤ 2−1/2dH(p, q). (1.6.7)

The same bound applies to the second sum on the right-hand side of (1.6.6), which
proves the upper bound in [I, (6.10.17)].

For the lower bound, we bound

dH(p, q)2 =
1

2

∑
x

(
√
px−

√
qx)

2 ≤ 1

2

∑
x

(
√
px +

√
qx)|
√
px−

√
qx| = dTV(p, q). (1.6.8)

Solution to Exercise 6.33. By Exercise 6.30, we have that p(n) = (p(n)
x )x∈X and

q(n) = (q(n)x )x∈X are asymptotically equivalent if and only if their total variation dis-
tance converges to zero. By Exercise 6.32, we know that [I, (6.10.17)] holds, and
therefore also

2−1/2dTV(p(n), q(n)) ≤ dH(p(n), q(n)) ≤
√
dTV(p(n), q(n)).

Both the left and right hand side of those inequalities converge to zero if dTV(p(n), q(n))→
0, which implies by the sandwich theorem that dH(p(n), q(n)) → 0. Conversely, if
dH(p(n), q(n))→ 0, by [I, (6.10.17)] we have that dTV(p(n), q(n))→ 0.
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Solution to Exercise 6.34. We bound

ρ(p, q) =
(√

p−√q
)2

+
(√

1− p−
√

1− q
)2

= (p− q)2
(
(
√
p+
√
q)−2 + (

√
1− p+

√
1− q)−2

)
.

Solution to Exercise 6.35. We wish to show that P(Y = k) = e−λp (λp)k

k!
. We will

use that in the case of X = x fixed, Y is simply a Bin(x, p) random variable. We have

P(Y = k) = P
( X∑
i=0

Ii = k
)

=
∞∑
x=k

P(X = x) · P
( x∑
i=0

Ii = k
)

=
∞∑
x=k

e−λ
λx

x!
·
(
x

k

)
pk(1− p)x−k = e−λ

∞∑
x=k

λx

x!
· x!

(x− k)!k!
pk(1− p)x−k

= e−λ
(λp)k

k!

∞∑
x=k

λx−k(1− p)x−k

(x− k)!
= e−λ

(λp)k

k!

∞∑
x=0

(λ− λp)x

x!

= e−λeλ−λp
(λp)k

k!
= e−λp

(λp)k

k!
,

as required.

We define Y to be the number of edges between i and j at time t and X the same
at time t−1. Furthermore we define Ik to be the decision of keeping edge k or not. It
is given that X ∼ Poi(

wiwj
`t−1

) and Ik ∼ Be(1− wt
`t

). According to what is shown above
we now obtain that Y is a Poisson random variable with parameter

wiwj
`t−1

· (1− wt
`t

) = wiwj
1

`t−1

`t − wt
`t

= WiWj
1

`t−1

`t−1

`t
=
wiwj
`t

,

as required.

Solution to Exercise 6.36. A graph is simple when it has no self loops or double
edges between vertices. Therefore, the Norros-Reittu random graph is simple at time
n if Xii = 0 for all i ∈ [n], and Xij = 0 or Xij = 1 for all i 6= j. By Exercise 6.35,
we know that the number of edges Xij between i and j at time n are Poisson with
parameter

wiwj
`n

. The probability then becomes

P(NRn(w) simple) = P(0 ≤ Xij ≤ 1,∀i 6= j)P(Xii = 0,∀i)

=
∏

1≤i<j≤n

(P(Xij = 0) + P(Xij = 1))
n∏
k=1

P(Xkk = 0)

=
∏

1≤i<j≤n

e−
wiwj
`n (1 +

wiwj
`n

)
n∏
k=1

e−
w2
k
`n

= e−
∑

1≤i≤j≤n
wiwj
`n

∏
1≤i<j≤n

(1 +
wiwj
`n

).
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Solution to Exercise 6.37. Let Xij ∼ Poi(
wiwj
`n

) be the number of edges between

vertex i and j at time n. The non-simple degree D̂k(n) of vertex k at time n satisfies

D̂k(n) =
n∑
j=1

Xkj,

and because Xkj is Poisson with mean
wkwj
Ln

, the sum will be Poisson with mean

n∑
j=1

wkwj
`n

= wk

∑n
j=1wj

`n
= wk.

Therefore, since the wi are i.i.d, the non-simple degree D̂Un(n) at time n has a mixed
Poisson distribution with mixing distribution Fn. The real degree degree Dk(n) of
vertex k at time n satisfies

Dk(n) =
∑
j 6=i

1{Xkj=1}.

As in the previous exercise, we can compute the probability that Dk(n) = D̂k(n) to
be equal to

e−
∑
j∈[n]

wkwj
`n

∏
1≤j≤n : j 6=k

(1 +
wiwj
`n

) = e−
w2
k
`n

∏
1≤j≤n : j 6=i

e−
wiwj
`n (1 +

wkwj
`n

).

When [I, Conditions 6.4(a)-(b)] hold, we can take K so large that Fn(K) ≥ 1 − ε
uniformly for all n sufficiently large. Then, we can split

P(DUn(n) = l) = P(D̂Un(n) = l) + P(DUn(n) = l, D̂Un(n) > l)

− P(D̂Un(n) = l, DUn(n) < l),

and

P(DUn(n) = l, D̂Un(n) > l) ≤ P(wUn > K) + P(DUn(n) = l, D̂Un(n) > l, wUn ≤ K).

The first is at most ε, the second is bounded by P(DUn(n) 6= D̂Un(n) > l, wUn ≤ K) =
O(1/n).

Solution to Exercise 6.38. Couple Xn = X(Gn) and X ′n = X(G′n) by coupling
the edge occupation statuses Xij of Gn and X ′ij of G′n such that [I, (6.8.11)] holds.

Let (X̂n, X̂
′
n) be this coupling and let En and E ′n be the sets of edges of the coupled

versions of Gn and G′n, respectively. Then, since X is increasing

P(X̂n ≤ X̂ ′n) ≥ P(En ⊆ E ′n) = P(Xij ≤ X ′ij∀i, j ∈ [n]) = 1,

which proves the stochastic domination by [I, Lemma 2.12].
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1.7 Solutions to the exercises of Chapter 7.

Solution to Exercise 7.1. Consider for instance the graph of size n = 4 with de-
grees {d1, . . . , d4} = {3, 3, 1, 1} or the graph of size n = 5 with degrees {d1, . . . , d5} =
{4, 4, 3, 2, 1}.

Solution to Exercise 7.2. For 2m vertices we use m pairing steps, each time
pairing two vertices with each other. For step i + 1, we have already paired 2i
vertices. The next vertex can thus be paired with 2m− 2i− 1 other possible vertices.
This gives for all pairing steps the total amount of possibilities to be

(2m− 1)(2m− 3) · · · (2m− (2m− 2)− 1) = (2m− 1)!!. (1.7.1)

Solution to Exercise 7.8. We can write

P
(
`n is odd

)
= P

(
(−1)`n = −1

)
=

1

2

(
1− E[(−1)`n ]

)
=

1

2

(
1− φ`n(π)]

)
,

where φ`n(t) = E[eit`n ] denotes the characteristic function of `n.

To compute E[(−1)`n ], we use the characteristic function φd1(t) = E[eitd1 ] as fol-
lows:

φd1(π) = E[(−1)d1 ].

Since (−1)`n = (−1)
∑
di where (di)i∈[n] are i.i.d. random variables, we have φ`n(π) =

(φd1(π))n. Furthermore,

φd1(π) = −P(d1 is odd) + P(d1 is even).

Now we assume P(d1 is odd) 6∈ {0, 1}. This gives us

− 1 < P(d1 is even)− P(d1 is odd) < 1,

so that |φd1(π)| < 1, which leads directly to the statement that P(`n is odd) is expo-
nentially close to 1

2
.

Solution to Exercise 7.10. We compute

∞∑
k=1

kp(n)

k =
∞∑
k=1

k
( 1

n

n∑
i=1

1{d̃i=k}

)
=

1

n

n∑
i=1

∞∑
k=1

k1{d̃i=k} =
1

n

n∑
i=1

di =
`n
n
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Solution to Exercise 7.11. The probability that there are at least three edges
between i and j is bounded above by

di(di − 1)(di − 2)dj(dj − 1)(dj − 2)

(`n − 1)(`n − 3)(`n − 5)
.

Thus, by Boole’s inequality, the probability that there exist vertices i 6= j such that
there are at least three edges between i and j is bounded above by

n∑
i,j=1

di(di − 1)(di − 2)dj(dj − 1)(dj − 2)

(`n − 1)(`n − 3)(`n − 5)
= o(1),

since di = o(
√
n) when [I, Conditions 7.8(a)-(c)] holds (this follows by applying

Exercise 6.3 to the weights w = d) as well as `n ≥ n. We conclude that the probability
that there are i, j ∈ [n] such that there are at least three edges between i and j is
o(1) as n → ∞. As a result, (Sn,Mn) converges in distribution to (S,M) precisely

when (Sn, M̃n) converges in distribution to (S,M).

Solution to Exercise 7.14. We start by evaluating [I, (7.10.8)] from the right- to
the left-hand side. This gives

µE[(X + 1)r−1] = µ
∞∑
k=1

(k + 1)r−1 e−µµk

k!
=
∞∑
k=1

(k + 1)r
e−µµk+1

(k + 1)!
;

=
∞∑
n=1

nr
e−µµn

n!
=
∞∑
x=0

xr
e−µµx

x!
= E[Xr].

Now we can use the independency of the two random variables and the result above
for the evaluation of [I, (7.10.9)] to obtain

E[XrY s] = E[Xr]E[Y s] = E[Xr]µYE[(Y + 1)s−1] = µYE[Xr(Y + 1)s−1].

Solution to Exercise 7.15. We use a two-dimensional extension of [I, Theorem
2.3(e)], stating that when the mixed moments E[Xr

nY
s
n ] converge to the moments

E[XrY s] for each r, s = 0, 1, 2, . . ., and the moments of X and Y satisfy [I, (2.1.8)],
then (Xn, Yn) converges in distribution to (X, Y ). See also [I, Theorem 2.6] for the
equivalent statement for the factorial moments instead of the normal moments, from
which the above claim actually follows. Therefore, we are left to prove the asymptotics
of the mixed moments of (Sn,Mn).

To prove that E[SrnM
s
n] converge to the moments E[SrM s], we again make use of

induction, now in both r and s.
Proposition 7.13 follows when we prove that

lim
n→∞

E[Srn] = E[Sr] = µSE[(S + 1)r−1], (1.7.2)
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and
lim
n→∞

E[SrnM
s
n] = E[SrM s] = µME[Sr(M + 1)s−1], (1.7.3)

where the second equalities in (1.7.2) and (1.7.3) follow from [I, (7.10.8)] and [I,
(7.10.9)].

To prove (1.7.2), we use the shape of Sn in [I, (7.3.19)], which we restate here as

Sn =
n∑
i=1

∑
1≤a<b≤di

Iab,i.

Then, we prove by induction on r that

lim
n→∞

E[Srn] = E[Sr]. (1.7.4)

The induction hypothesis is that (1.7.4) is true for all r′ ≤ r − 1, for CMn(d) when
n → ∞ and for all (di)i∈[n] satisfying [I, Conditions 7.8(a)-(c)]. We prove (1.7.4) by
induction on r. For r = 0, the statement is trivial, which initializes the induction
hypothesis.

To advance the induction hypothesis, we write out

E[Srn] =
n∑
i=1

∑
1≤a<b≤di

E[Iab,iS
r−1
n ]

=
n∑
i=1

∑
1≤a<b≤di

P(Iab,i = 1)E[Sr−1
n |Iab,i = 1].

When Iab,i = 1, then the remaining stubs need to be paired in a uniform manner.
The number of self-loops in the total graph in this pairing has the same distribution
as

1 + S ′n, (1.7.5)

where S ′n is the number of self-loops in the configuration model where with degrees
(d′i)i∈[n], where d′i = di−2, and d′j = dj for all j 6= i. The added 1 in (1.7.5) originates
from Iab,i. By construction, the degrees (d′i)i∈[n] still satisfy [I, Condition 7.8(a)-(c)].
By the induction hypothesis, for all k ≤ r − 1

lim
n→∞

E[(S ′n)k] = E[Sk].

As a result,
lim
n→∞

E[(1 + S ′n)r−1] = E[(1 + S)r−1].

Since the limit does not depend on i, we obtain that

lim
n→∞

E[Srn] = E[(1 + S)r−1] lim
n→∞

n∑
i=1

∑
1≤a<b≤di

P(Iab,i = 1)

= E[(1 + S)r−1] lim
n→∞

n∑
i=1

di(di − 1)

2

=
ν

2
E[(1 + S)r−1] = E[Sr].
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This advances the induction hypothesis, and completes the proof of (1.7.2).

To prove (1.7.3), we perform a similar induction scheme. Now we prove that, for all

r ≥ 0, E[SrnM̃
s
n] converges to E[SrM s] by induction on s. The claim for s = 0 follows

from (1.7.2), which initializes the induction hypothesis, so we are left to advance the
induction hypothesis. We follow the argument for Sn above. It is not hard to see that
it suffices to prove that, for every ij,

lim
n→∞

E[SrnM̃
s−1
n |Is1t1,s2t2,ij = 1] = E[Sr(1 +M)s−1].

Note that when Is1t1,s2t2,ij = 1, then we know that two edges are paired together to
form a multiple edge. Removing these two edges leaves us with a graph which is
very close to the configuration model with degrees (d′i)i∈[n], where d′i = di − 2, and
d′j = dj − 2 and d′t = dt for all t 6= i, j. The only difference is that when a stub
connected to i is attached to a stub connected to j, then this creates an additional
number of multiple edges. Ignoring this effect creates the lower bound

E[SrnM̃
s−1
n |Is1t1,s2t2,ij = 1] ≥ E[Srn(M̃n + 1)s−1],

which, by the induction hypothesis, converges to E[Sr(1 +M)s−1, ] as required.
Let I ′s1t1,s2t2,ij denote the indicator that stub s1 is connected to t1, s2 to t2 and no

other stub of vertex i is connected to a stub of vertex j. Then,

1

2

∑
1≤i 6=j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

I ′s1t1,s2t2,ij ≤ M̃n ≤
1

2

∑
1≤i 6=j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

Is1t1,s2t2,ij.

Hence,

E[SrnM̃
s
n] ≤ 1

2

∑
1≤i 6=j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

P(Is1t1,s2t2,ij = 1)E
[
SrnM̃

s−1
n |Is1t1,s2t2,ij = 1

]
,

and

E[SrnM̃
s
n] ≤ 1

2

∑
1≤i 6=j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

P(I ′s1t1,s2t2,ij = 1)E
[
SrnM̃

s−1
n |I ′s1t1,s2t2,ij = 1

]
.

Now, by the above, E
[
SrnM̃

s−1
n |Is1t1,s2t2,ij = 1

]
and E

[
SrnM̃

s−1
n |I ′s1t1,s2t2,ij = 1

]
converge

to E
[
Sr(M + 1)s−1

]
, independently of s1t1, s2t2, ij. Further,

1

2

∑
1≤i 6=j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

P(I ′s1t1,s2t2,ij = 1)→ ν2/2,

and also
1

2

∑
1≤i 6=j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

P(Is1t1,s2t2,ij = 1)→ ν2/2.

This implies that

E[SrnM̃
s−1
n |Is1t1,s2t2,ij = 1] = E[Srn−1M̃

s−1
n−1] + o(1).

The remainder of the proof is identical to the one leading to (1.7.2).
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Solution to Exercise 7.16. To obtain a triangle we need to connect three pairs of
half-edges incident to (at most) 3 vertices in a sequence. This is equivalent to pairing
the half-edges (s1, t1), (s2, t2), (s3, t3) where s1 and t3 are incident to some vertex i
with degree di, s2 and t1 to vertex j with degree dj and s3, t2 to some vertex k with
degree dk. Obviously,

1 ≤s1 ≤ di, 1 ≤ t3 ≤ di,

1 ≤t1 ≤ dj, 1 ≤ s2 ≤ dj,

1 ≤t2 ≤ dk, 1 ≤ s3 ≤ dk.

The probability of connecting s1 to t1 is 1/(`n− 1). Furthermore, connecting s2 to t2
occurs with probability 1/(`n−3) and s3 to t3 with probability 1/(`n−5). Of course,
for s1, we can pick all half-edges incident to vertex i, and we have di − 1 half-edges
left from which we may choose t3. Hence, for the expected number of triangles, we
obtain∑
i<j<k

didj
`n − 1

· (dj − 1)dk
`n − 3

· (dk − 1)(di − 1)

`n − 5
=
∑
i<j<k

di(di − 1)

`n − 1
· dj(dj − 1)

`n − 3
· dk(dk − 1)

`n − 5

=
1

6

( n∑
i=1

di(di − 1)

`n

)3

+ o(1).

We will show that

∑
i<j<k

di(di − 1)

`n − 1
· dj(dj − 1)

`n − 3
· dk(dk − 1)

`n − 5
∼ 1

6

( n∑
i=1

di(di − 1)

`n

)3

by expanding the righthand-side. We define

Σ :=
( n∑
i=1

di(di − 1)

`n

)3

.

Then,

Σ =
n∑
i=1

(di(di − 1)

`n

)3

+ 3
n∑
i=1

n∑
j=1,j 6=i

(di(di − 1)

`n

)2(dj(dj − 1)

`n

)
+

∑
i 6=j 6=k

di(di − 1)

`n
· dj(dj − 1)

`n
· dk(dk − 1)

`n
,

where the first part contains n terms, the second n(n−1) and the third n(n−1)(n−2).
So for large n we can say that

Σ =
∑
i 6=j 6=k

di(di − 1)

`n
· dj(dj − 1)

`n
· dk(dk − 1)

`n
+ o(1).
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Now there are six possible orderings of i, j, k, hence

1

6
Σ =

∑
i<j<k

di(di − 1)

`n
· dj(dj − 1)

`n
· dk(dk − 1)

`n
+ o(1)

=
∑
i<j<k

di(di − 1)

`n − 1
· dj(dj − 1)

`n − 3
· dk(dk − 1)

`n − 5
+ o(1).

Solution to Exercise 7.20. In this case we have di = r for all i ∈ [n]. This gives
us

ν = lim
n→∞

n∑
i=1

di(di − 1)

`n
= lim

n→∞

n∑
i=1

r(r − 1)

nr
= r − 1.

Furthermore,

n∏
i=1

di! =
n∏
i=1

r! = (r!)n.

Finally we have for the total number of stubs `n = rn. Substituting these variables in
(7.5.1) gives us for the number of simple graphs with constant degree sequence di = r

e−
(r−1)

2
− (r−1)2

4
(rn− 1)!!

(r!)n
(1 + o(1)).

1.8 Solutions to the exercises of Chapter 8.

Solution to Exercise 8.1. At time t, we add a vertex vt, and connect it with each
vertex vi, 1 ≤ i < t with probability p = λ/t. For the edges between vertices vi and
vj with i, j ∈ [t − 1], we remove the edge with probability 1/t, independently for all
pairs of edges. We next prove that the result, at time n, has the same distribution as
ERn(λ/n).

For this, we note that the occupations status of all edges are independent variables
by construction. We only need to show that every edge has occupation probability
1/n. Let ij with 1 ≤ i < j ≤ n be an edge. The edge is there precisely when it is
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added at time j, and not removed afterwards. All decisions are independent, so that

P(ij occupied) = P(ijadded at time j)
n∏

t=j+1

P(ijkept at time t)

=
λ

j

n∏
t=j+1

(
1− 1

t

)
=
λ

j

n∏
t=j+1

(t− 1

t

)
=
λ

j

j

n
=
λ

n
,

as required.

Solution to Exercise 8.2. We will use an induction argument over t. For t = 1
we have a single vertex v1 with a self-loop, hence d1(1) = 2 ≥ 1. This initializes the
induction hypothesis.

Now suppose at time t we have di(t) ≥ 1 forall i ∈ [t]. At time t+1 we add a vertex
vt+1. We do not remove any edges, so we only have to check whether the newly added
vertex has a non-zero degree. Now the algorithm adds the vertex having a single
edge, to be connected to itself, in which case dt+1(t + 1) = 2, or to be connected to
another already existing vertex, in which case its degree is 1. In the latter case, one
is added to the degree of the vertex to which vt+1 is connected, thus that degree is
still greater than zero. Hence we can say that di(t + 1) ≥ 1 for all i ∈ [t + 1]. This
advances the induction hypothesis.

We can now conclude that di(t) ≥ 1 for all i and t. The statement di(t) + δ ≥ 0
for all δ ≥ −1 follows directly.

Solution to Exercise 8.3. The statement

1 + δ

t(2 + δ) + (1 + δ)
+

t∑
i=1

di(t) + δ

t(2 + δ) + (1 + δ)
= 1

follows directly when the following equation holds:

(1 + δ) +
t∑
i=1

(di(t) + δ) = t(2 + δ) + (1 + δ).

In turn, this is true when

t∑
i=1

(di(t) + δ) = t(2 + δ).

But since
∑t

i=1 di(t) = 2t by construction, the latter equation holds. Hence, the
upper statement holds and the probabilities do sum up to one.
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Solution to Exercise 8.6. We again use an induction argument. At time t = 1
we have a single vertex v1 with a self-loop, and the statement holds. At time t = 2
we add a vertex v2 and connect it with v1 with the given probability

P
(
v2 → v1

∣∣PA(1,δ)

1

)
=

2− 1

1
= 1.

Now suppose at time t we have a graph with one vertex v1 containing a self-loop
and t − 1 other vertices having only one edge which connects it to v1. In that case
d1(t) = 2 + (t− 1) = t+ 1 and all other vertices have degree 1.

At time t+ 1 we add a vertex vt+1 having one edge which will be connected to v1

with probability

P
(
vt+1 → v1

∣∣PA(1,δ)

t

)
=
t+ 1− 1

t
= 1.

Hence, the claim follows by induction.

The implication for m > 1 is that vertex 1 contains 2m self-loops, and every other
vertex is connected with m edges to vertex 1.

Solution to Exercise 8.7. The proof is by induction on t ≥ 1. For t = 1, the
statement is correct, since, at time 2, both graphs consist of two vertices with two
edges between them. This initializes the induction hypothesis.

To advance the induction hypothesis, we assume that the law of
(
PA(1,α)

t (c)
)t
s=1

is

equal to the one of
(
PA(1,δ)

s (b)
)t
s=1

, and, from this, prove that the law of
(
PA(1,δ)

s (c)
)t
s=1

is equal to the one of
(
PA(1,δ)

s (b)
)t
s=1

. The only difference between PA(1,δ)

t+1 (b) and

PA(1,δ)

t (b) and between PA(1,α)

t+1 (c) and PA(1,α)

t (c) is to what vertex the (t+ 1)st edge is
attached. For

(
PA(1,δ)

t (b)
)∞
t=1

and conditionally on PA(1,δ)

t (b), this edge is attached to
vertex i with probability (Di(t) + δ)/[t(2 + δ)].

For
(
PA(1,α)

t (c)
)∞
t=1

, instead, and conditionally on PA(1,α)

t (c), this edge is attached
to vertex i with probability

α
1

t
+ (1− α)

Di(t)

2t
.

Bringing the terms onto a single denominator yields

Di(t) + 2 α
1−α

2
1−αt

,

which agrees with (Di(t) + δ)/[t(2 + δ)] precisely when 2 α
1−α = δ, so that

α =
δ

2 + δ
.

The argument is similar for
(
PA(1,δ)

t

)
t≥1
, and we omit the details
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Solution to Exercise 8.10. We write

Γ(t+ 1) =

∫ ∞
0

xte−xdx. (1.8.1)

Using partial integration we obtain

Γ(t+ 1) = [−xte−x]∞x=0 +

∫ ∞
0

txt−1e−xdx = 0 + t ·
∫ ∞

0

xt−1e−xdx = tΓ(t),

as required.

In order to prove that Γ(n) = (n− 1)! for n = 1, 2, . . . we again use an induction
argument. For n = 1,

Γ(1) =

∫ ∞
0

x0e−xdx =

∫ ∞
0

e−xdx = 1 = (0)!.

Now the upper result gives us for n = 2

Γ(2) = 1 · Γ(1) = 1 = (2− 1)!.

Suppose now that for some n ∈ N we have Γ(n) = (n − 1)!. Again [I, (8.3.2)] gives
us for n+ 1

Γ(n+ 1) = nΓ(n) = n(n− 1)! = n!.

Induction yields Γ(n) = (n− 1)! for n = 1, 2, . . ..

Solution to Exercise 8.11. We rewrite [I, (8.11.1)] to be

e−ttt−
1
2

√
2π ≤ Γ(t+ 1) ≤ e−ttt

√
2π
(

1 +
1

12t

)
,

(
t

e
)t
√

2π

t
≤ Γ(t+ 1) ≤ (

t

e
)t
√

2π(1 +
1

12t
),

(
t

e
)t
√

2π

t
≤ tΓ(t) ≤ (

t

e
)t
√

2π(1 +
1

12t
),

(
t

e
)t
√

2π

t

1

t
≤ Γ(t) ≤ (

t

e
)t
√

2π

t

√
t(1 +

1

12t
).

Using this inequality in the left-hand side of [I, (8.3.9)], we obtain

( t
e
)t
√

2π
t

1
t

( t−a
e

)t−a
√

2π
t−a
√
t− a(1 + 1

12(t−a)
)
≤ Γ(t)

Γ(t− a)
≤

( t
e
)t
√

2π
t

√
t(1 + 1

12t
)

( t−a
e

)t−a
√

2π
t−a

1
t−a

,

which is equivalent to

tt

(t− a)t−a
e−a

t
√
t(1 + 12/(t− a))

≤ Γ(t)

Γ(t− a)
≤ tt

(t− a)t−a
e−a(1 + 1/12t)√

t− a
.

We complete the proof by noting that t−a = t(1+O(1/t)) and 1+1/12t = 1+O(1/t),
as well as

tt

(t− a)t−a
= ta(1− a

t
)−(t−a) = ta(1 +O(1/t)).
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Solution to Exercise 8.12. This result is immediate from the collapsing of the
vertices in the definition of PA(m,δ)

t , which implies that the degree of vertex v(m)

i in
PA(m,δ)

t is equal to the sum of the degrees of the vertices v(1)

m(i−1)+1, . . . , v
(1)

mi in PA(1,δ/m)

mt .

Solution to Exercise 8.18. We wish to prove

P
(
|P≥k(t)− E[P≥k(t)]| ≥ C

√
t log t

)
= o(t−1). (1.8.2)

First of all we have P≥k(t) = 0 for k > mt. We define, similarly to the proof of [I,
Proposition 8.4], the Doob martingale

Mn = E
[
P≥k(t) | PA(m,δ)

n

]
.

We have

E[Mn+1 | PA(m,δ)

n ] = E
[
E
[
P≥k(t) | PA(m,δ)

n+1

] ∣∣ PA(m,δ)

n

]
= E

[
P≥k(t) | PA(m,δ)

n

]
= Mn.

Hence Mn is a martingale.
Furthermore, Mn satisfies the moment condition, since

E
[
Mn

]
= E

[
P≥k(t)

]
≤ t <∞.

Clearly, PA(m,δ)

0 is the empty graph, hence for M0, we obtain

M0 = E
[
P≥k(t)|PAm,δ(0)

]
= E

[
P≥k(t)].

We obtain for Mt that

Mt = E
[
P≥k(t)|PA(m,δ)

t

]
=
[
P≥k(t),

since P≥k(t) can be determined when PA(m,δ)

t is known. Therefore, we have

P≥k(t)− E[P≥k(t)] = Mt −M0.

To apply the Azuma-Hoeffding inequality ([I, Theorem 2.27]), we have to bound
|Mn −Mn−1|. In step n, m edges are added to the graph. Now P≥k only changes is
an edge is added to a vertex with degree k − 1. Now m edges have influence on the
degree of at most 2m vertices, hence, the maximum amount of vertices of which de
degree is increased to k is at most 2m. So we have |Mn −Mn−1| ≤ 2m, as in the
proof of [I, Lemma 8.6].

The Azuma-Hoeffding inequality now gives us

P
(
|P≥k(t)− E[P≥k(t)]| ≥ a

)
≤ 2e−

a2

8m2t .

Taking a = C
√
t log t, C2 ≥ 8m, we obtain

P
(
|P≥k(t)− E[P≥k(t)]| ≥ C

√
t log t

)
= o(t−1), (1.8.3)

as required.
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Solution to Exercise 8.19. We have for κk(t) and γk(t) the following equations:

κk(t) =
( 1

2 + δ
− t

t(2 + δ) + (1 + δ)

)
(k − 1 + δ)pk−1

−
( 1

2 + δ
− t

t(2 + δ) + (1 + δ)

)
(k + δ)pk,

γk(t) = −1{k=1}
1 + δ

t(2 + δ) + (1 + δ)
+ 1{k=2}

1 + δ

t(2 + δ) + (1 + δ)
.

We start with Cγ. We have, since (2 + δ)/(1 + δ) ≥ 1,

|γk(t)| ≤
1 + δ

t(2 + δ) + (1 + δ)
≤ 1

t(2+δ
1+δ

) + 1
≤ 1

t+ 1
.

So indeed Cγ = 1 does the job. For κk(t),

κk(t) =
( 1

2 + δ
− t

t(2 + δ) + (1 + δ)

)(
(k − 1 + δ)pk−1 − (k + δ)pk

)
.

This gives us

|κk(t)| ≤
∣∣∣ 1

2 + δ
− t

t(2 + δ) + (1 + δ)

∣∣∣ · ∣∣∣(k − 1 + δ)pk−1 − (k + δ)pk

∣∣∣,
≤

∣∣∣ 1

2 + δ
− t

t(2 + δ) + (1 + δ)

∣∣∣ · sup
k≥1

(k + δ)pk,

=
∣∣∣t(2 + δ) + (1 + δ)− (2 + δ)t

t(2 + δ)2 + (1 + δ)(2 + δ)

∣∣∣ · sup
k≥1

(k + δ)pk,

=
∣∣∣ 1 + δ

t(2 + δ)2 + (1 + δ)(2 + δ)

∣∣∣ · sup
k≥1

(k + δ)pk,

=
∣∣∣ 1

2 + δ
· 1

t(2+δ
1+δ

) + 1

∣∣∣ · sup
k≥1

(k + δ)pk,

≤
∣∣∣ 1

t(2+δ
1+δ

) + 1

∣∣∣ · sup
k≥1

(k + δ)pk,

≤ 1

t+ 1
· sup
k≥1

(k + δ)pk.

Hence, Cκ = supk≥1(k+ δ)pk does the job. In fact, even Cκ = supk≥1(k+ δ)pk/(2 + δ)
works.

Solution to Exercise 8.20. We note that∑
i : Di(t)≥l

Di(t) ≥ lN≥l(t),

where we recall that N≥l(t) = #{i ≤ t : Di(t) ≥ l} is the number of vertices with
degree at least l.
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By the proof of [I, Proposition 8.4] (see also Exercise 8.18), there exists C1 such
that uniformly for all l,

P
(
|N≥l(t)− E[N≥l(t)]| ≥ C1

√
t log t

)
= o(t−1).

By [I, Proposition 8.7], there exists a constant C2 such that

sup
l≥1
|E[Pl(t)]− tpl| ≤ C2.

Therefore, we obtain that, with probability exceeding 1− o(t−1),

N≥l(t) ≥ E[N≥l(t)]− C1

√
t log t ≥ E[N≥l(t)]− E[N≥2l(t)]− C1

√
t log t

≥
2l−1∑
l=l

[tpl − C2]− C1

√
t log t ≥ C3tl

1−τ − C2l − C1

√
t log t ≥ Btl2−τ ,

whenever l is such that

tl1−τ � l, and tl1−τt �
√
t log t.

The first condition is equivalent to l� t
1
τ , and the second to l� t

1
2(τ−1) (log t)−

1
2(τ−1) .

Note that 1
τ
≥ 1

2(τ−1)
for all τ > 2, so the second condition is the strongest, and

follows when tl2−τ ≥ K
√
t log t for some K sufficiently large.

Then, for l satisfying tl2−τ ≥ K
√
t log t, we have with probability exceeding 1 −

o(t−1), ∑
i:Di(t)≥l

Di(t) ≥ Btl2−τ .

Solution to Exercise 8.21. We prove [I, (8.11.5)] by induction on j ≥ 1. Clearly,
for every t ≥ i,

P(Di(t) = 1) =
t∏

s=i+1

(
1− 1 + δ

(2 + δ)(s− 1) + (1 + δ)

)
=

t∏
s=i+1

( s− 1

s− 1 + 1+δ
2+δ

)
(1.8.4)

=
Γ(t)Γ(i+ 1+δ

2+δ
)

Γ(t+ 1+δ
2+δ

)Γ(i)
,

which initializes the induction hypothesis, since C1 = 1.
To advance the induction, we let s ≤ t be the last time at which a vertex is added

to i. Then,

P(Di(t) = j) =
t∑

s=i+j−1

P
(
Di(s− 1) = j − 1

) j − 1 + δ

(2 + δ)(s− 1) + 1 + δ

× P
(
Di(t) = j | Di(s) = j

)
.
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By the induction hypothesis, we have that

P
(
Di(s− 1) = j − 1

)
≤ Cj−1

Γ(s− 1)Γ(i+ 1+δ
2+δ

)

Γ(s− 1 + 1+δ
2+δ

)Γ(i)
. (1.8.5)

Moreover, analogously to (1.8.4), we have that

P(Di(t) = j|Di(s) = j) =
t∏

q=s+1

(
1− j + δ

(2 + δ)(q − 1) + (1 + δ)

)
(1.8.6)

=
t∏

q=s+1

(q − 1− j−1
2+δ

q − 1 + 1+δ
2+δ

)
=

Γ(t− j−1
2+δ

)Γ(s+ 1+δ
2+δ

)

Γ(t+ 1+δ
2+δ

)Γ(s− j−1
2+δ

)
.

Combining (1.8.5) and (1.8.6), we arrive at

P(Di(t) = j) ≤
t∑

s=i+j−1

(
Cj−1

Γ(s− 1)Γ(i+ 1+δ
2+δ

)

Γ(s− 1 + 1+δ
2+δ

)Γ(i)

)( j − 1 + δ

(2 + δ)(s− 1) + (1 + δ)

)
×
(Γ(t− j−1

2+δ
)Γ(s+ 1+δ

2+δ
)

Γ(t+ 1+δ
2+δ

)Γ(s− j−1
2+δ

)

)
.

We next use that

Γ(s− 1 +
1 + δ

2 + δ
)((2 + δ)(s− 1) + (1 + δ)) = (2 + δ)Γ(s+

1 + δ

2 + δ
),

to arrive at

P(Di(t) = j) ≤ Cj−1
j − 1 + δ

2 + δ

Γ(i+ 1+δ
2+δ

)

Γ(i)

Γ(t− j−1
2+δ

)

Γ(t+ 1+δ
2+δ

)

t∑
s=i+j−1

Γ(s− 1)

Γ(s− j−1
2+δ

)
.

We note that, whenever l + b, l + 1 + a > 0 and a− b+ 1 > 0,

t∑
s=l

Γ(s+ a)

Γ(s+ b)
=

1

a− b+ 1

[Γ(t+ 1 + a)

Γ(t+ b)
− Γ(l + 1 + a)

Γ(l + b)

]
(1.8.7)

≤ 1

a− b+ 1

Γ(t+ 1 + a)

Γ(t+ b)
.

Application of (1.8.7) for a = −1, b = − j−1
2+δ

, l = i+ j− 1, so that a− b+ 1 = j−1
2+δ

> 0
when j > 1, leads to

P(Di(t) = j) ≤ Cj−1
j − 1 + δ

2 + δ

Γ(i+ 1+δ
2+δ

)

Γ(i)

Γ(t− j−1
2+δ

)

Γ(t+ 1+δ
2+δ

)

1
j−1
2+δ

Γ(t)

Γ(t− j−1
2+δ

)
(1.8.8)

= Cj−1
j − 1 + δ

j − 1

Γ(i+ 1+δ
2+δ

)

Γ(i)

Γ(t)

Γ(t+ 1+δ
2+δ

)
.

Equation (1.8.8) advances the induction by [I, (8.11.6)].
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Solution to Exercise 8.26. Suppose αδin +γ = 0, then, since all non-negative, we
have γ = 0 and either α = 0 or δin = 0.
Since γ = 0, no new vertices are added with non zero in-degree.

In case of α = 0 we have β = 1, and thus we only create edges in G0. Hence,
no vertices exist outside G0 and thus there cannot exist vertices outside G0 with
in-degree non zero.

In case of δin = 0 (and γ = 0 still), vertices can be created outside G0, but in
its creation phase we will only give it an outgoing edge. This edge will be connected
to a vertex inside G0, since δin = 0 and the possibility to is thus zero to create an
ingoing edge to a vertex with di(t) = 0. Similarly, in case edges are created within
the existing graphs, all ingoing edges will be in G0 for the same reason. So, during
all stages all vertices outside G0 will have in-degree zero.

Next suppose that γ = 1. Then the only edges being created during the process
are those from inside the existing graph to the newly created vertex. So once a vertex
is created and connected to the graph, it will only be able to gain out-going edges.
Hence, the in-degree remains one for all vertices outside G0 at all times.
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