

© 2013 TU/e, WIN Version 1.5

A Process for 2IM24/2IM25

 2

1 Introduction ... 3

1.1 Technical part of the process .. 3

1.2 Management part of the process ... 5

1.2.1 SPMP .. 6

1.2.2 SQAP .. 8

1.2.3 SCMP .. 8

1.3 Example .. 9

2 User Requirements phase .. 10

2.1 Example: User requirements ... 12

3 Software Requirements Phase ... 14

3.1 Example: Initial logical model .. 15

3.2 Example: Extended logical model .. 15

3.3 Example: Sequence diagram ... 17

3.4 Example: Screenshots ... 18

4 Architectural Design Phase ... 19

4.1 Example: Architectural model .. 20

5 Detailed Design Phase ... 22

6 Implementation .. 23

6.1 Example: High-level view .. 23

6.2 Example: Detailed view .. 24

7 Test Phases .. 25

7.1 Unit Tests .. 25

7.2 Integration Tests.. 25

7.3 System Test ... 25

7.4 Acceptance Test .. 25

8 Concluding remarks ... 27

References ... 28

Appendix A: The Coffee Machine .. 29

Appendix B: Overview of phases and deliverables .. 32

 3

1 Introduction
This document describes a specific software development process for the Software

Engineering Project for the Minor Programs (2IM24/2IM25). Many books have been

written about software engineering, e.g. [1] and [2]. The process described here is a very

much simplified and adapted version of the Software Engineering Standards of the

European Space Agency (ESA) [5], which is a relatively compact standard. The process

is divided into several phases: the User Requirements (UR), Software Requirements

(SR), Architectural Design (AD), Detailed Design (DD), Implementation and Testing

phases. Previously, this course was given as 2IM22; this is the first year this project is

given as 2IM24 and 2IM25. As this is also the last year this course is given, it was

decided not to change the name of the course website.

Although the deliverables that accompany these phases should be delivered

consecutively, this does not mean that the phases are executed strictly sequentially. For

example, some implementation work will generally be done early in the process, to

eliminate risks late in the process. Participants of the 2IM24/2IM25 projects generally

have little programming experience. Therefore, it is important that some team members

start as soon as possible with experiments involving prototypes that explore possible

solutions for the products to be delivered. The knowledge obtained with these prototypes

ensures that the implementation will not suffer major delays due to this gap in the

knowledge of the team. In general, it is important to identify and eliminate risks as early

as possible.

It is important that team members spend their time as evenly as possible from the

beginning of the project, spending approximately 1/3 of the available hours during the

first quartile and 2/3 of the available hours during the second quartile. The reason to

spend less time during the first quartile is that, in general, the early phases require more

feedback which slows down the process. Teams tend to spend too few hours in the

beginning of a project as the deadline is still far away. However, when the project team is

too slow in the early phases of the project, this usually results in a lack of time at the end.

This, in turn, results in loss of quality and/or loss of implemented functionality.

Therefore, a schedule is set in Table 2 of Appendix B. The schedule contains hard

deadlines that will be strictly adhered to and soft deadlines that serve as guidelines.

Sections 1.1 and 1.2 give an overview of the technical and management aspects of the

process. In the chapters that follow, the phases and the contents of the deliverables of the

phases are described in more detail. Due to the limited amount of time available during

2IM24/2IM25 projects, not all phases need to be (fully) executed (see also Appendix B:

Overview of phases and deliverables).

1.1 Technical part of the process

The UR and SR phases are concerned with requirements (i.e. the “what”), whereas the

AD and DD phases are concerned with implementation (i.e., the “how”). A starting point

is a short informal description of the customer’s wishes. The role of the customer in

2IM24/2IM25 is played by the teaching staff.

 4

During the UR phase, requirements are elicited from the customer. A logical (UML)

model based on these requirements is constructed in the SR phase. Modeling the

requirements serves several purposes: the model is used to check if the requirements are

complete and to ensure that the team understands the problem domain. The logical model

also serves to model the external behavior (functionality) of the system to be built: a

stimulus from the environment can be “followed” through the model until a response is

produced (see Appendix A: The Coffee Machine).

In the SR phase, a prototype is constructed as well. The prototype models the user

interface. This way, both the functionality of the system to be built and the user interface,

i.e., all external features of the system are described. The prototype can consist of

drawings, screenshots or even a working program with limited functionality.

During the AD phase, an architectural (UML) model is designed. The system is described

in terms of a number of modules (components, packages), each of which has a well-

defined purpose. The interfaces of each module are described and a logical model is

designed for each module. After the interfaces and the functionality of all modules are

designed in detail, the modules can be constructed by independent teams as both the

external interfaces and the functionality have been decided upon. During the DD phase,

the internal structure of each module is designed in detail. In the Implementation phase,

the modules are implemented. In the SEP projects for the minors, The DD and

Implementation phases are combined for practical purposes. During the Testing phases,

the implementation is tested

After a module is implemented, it can be tested in isolation by a Unit Test (UT). When

modules are completed, they can be assembled and tested in combination – the

Integration Tests (IT). Assembly and testing takes place in the inverse direction of the

dependencies between the modules. The running example used in this document consists

of three modules:

1. the database which does not depend on any other module,

2. the database access package which depends on the database, and

3. the main (user interface) package which depends on the database package and,

therefore, indirectly also on the database itself.

Assembly in this case is to first assemble and test the database and the database access

package and then to add the main package and test the entire system. After the IT, a

System Test (ST) follows in which the entire functionality is tested. Finally, the

Acceptance Test (AT) is executed by the customer. If this test passes, the system can be

transferred to the customer in the Transfer (TR) phase and the project ends. For

2IM24/2IM25, this process is somewhat simplified.

 5

Figure 1: Relation between the construction and test phases.

There are direct relations between the test phases and the construction phases (Figure 1).

The AT is based on the User Requirements Document and must be agreed on with the

customer. Although the details of the tests can only be filled in later, the decision what to

test and the method of testing should be decided during the UR phase. A flow scheme to

test the requirements is provided on the course web site. This way, it is ensured that the

requirements can be tested. It prevents one from writing down requirements such as “the

user interface must be user-friendly”. A report detailing the what and how to test (one or

two sentences per requirement) must be delivered. After the User Interface is agreed on

with the customer in the SR phase, the AT can be finished, because then the precise

procedure for each test can be established.

The System Test is based on the software requirements. In general, this is an extended

version of the AT and also stress tests (these test if the system can endure peak loads) are

executed if relevant. Likewise, the IT is based on the architectural design and the UT on

the detailed design.

It is advisable to explicitly include the tests in the planning: specification, implementation

and execution. The planning then more clearly shows when the implementation should be

finished, namely well ahead of the project deadline… From week 15,, no new features

should be added; only the functionality realized up to then should be tested and

debugged.

1.2 Management part of the process

Several management documents must be delivered. Most of these documents need to be

updated as the project progresses. For example, the Software Project Management Plan

(SPMP) initially contains the start and end dates for all phases, but only a detailed

planning for the first two phases (the SR phase starts before the deadline of the

document). Also included in the SPMP is the planning for the various testing activities.

The SPMP also specifies how the project is organized: it specifies the roles that the team

members have in the different phases. The SPMP is updated at the end of each phase with

the detailed planning for the next phase. The other management documents set out rules

 6

for various activities. The Software Quality Assurance Plan (SQAP) describes how

software quality is ensured (e.g. describes coding and documentation standards) and the

Software Configuration Management Plan (SCMP) describes how the various

deliverables are managed. In particular, it details the structure of the project repository

and version management.

Management documents should be kept as short as possible. Do not produce long

documents with many rules that nobody adheres to. Instead, state only some basic rules

that you think everybody can strictly follow.

The Project Manager (PM) is responsible for the SPMP. The PM is responsible for the

identification of the tasks to be accomplished and the allocation of manpower to each

task. This Therefore, the PM must know how much time each team member can spend

and when the team members are available. Notice that the PM does not make all

decisions on his/her own (primus inter pares)!

Team members should keep track of the time they spend on the project. The PM must

collect these data and report these to Senior Management (SM): the teaching staff. It is

important to administer time accurately as the data will be useful for future generations of

students. Do not forget to include the hours spent during the regular classes! A spread

sheet is available from the 2IM22/2IM24/2IM25 web site http://www.win.tue.nl/2IM22.

The Quality Manager (QM) is responsible for the SQAP. The QM must ensure that

products adhere to the standards set out in the SQAP and therefore plays an important

role in (organization of) reviews.

The Configuration Manager (CM) is responsible for the SCMP. The CM initially

organizes the project repository (in Subversion) as described in the SCMP and ensures

that the repository remains organized as described in the SCMP.

The following documents should be produced; the items listed are the main contents.

Each of these documents has a main part and an appendix for each phase that gives

specific details for that phase.

1.2.1 SPMP

The SPMP should contain:

 Project organization:

Who is responsible for which task, in particular PM, QM, CM and the

team leaders for the different phases. Make sure a backup is available for

each role, to ensure continuity in case of, e.g., illness.

 Other organizational aspects:

E.g., when meetings are planned.

 Effort estimation for each phase:

Estimates can be obtained from the SPMPs of projects of previous years

(follow the links to the projects from the main page of the web site

http://www.win.tue.nl/2IM22) or from the SEP projects for Computer

http://www.win.tue.nl/2IM22
http://www.win.tue.nl/2IM22

 7

Science students (http://wwwis.win.tue.nl/2IP35). This will at least give an

estimate of the relative lengths of the phases. The particulars of your

project may give rise to allot more time for a particular phase.

In the planning, it should be assumed that all requirements of high and

medium priority will be implemented.

 Planning when various test activities are done:

Plan, design, prerequisites and execution

 How time registration is set up

 Risk analysis and actions to be taken to reduce risks:

For each risk, analyze its impact, the probability that it occurs, how it can

be avoided and how the risk can be mitigated
1
.

Notice that the total amount of time to be spent should equal the number of man-hours

available.

For each phase (add before start of phase):

 A list of deliverables

 When deliverables are reviewed and the team members that do the review (notice

that the SQAP describes which documents are reviewed and how the reviews are

organized, so the SQAP is needed as input for this)

 Task assignment

 Effort estimation for each task and deliverable

Estimates can be obtained from the SPMPs of previous 2IM22 or SEP

projects or by using your own judgment.

 Risk analysis (see above)

Make sure to assign tasks to the proper phase, e.g., coding experiments should be counted

as time spent for the Implementation phase. The time spent in the weekly instructions can

be attributed to the current phase, or to, e.g., the phase that is explained during the

instruction.

On a weekly basis, the following tables should be added to the SPMP:

1. The total number of hours spent per task and the number of hours required to

complete the task

2. The total number of hours spent per phase and the number of hours required to

complete the phase

3. Revised estimates of the time allotted for tasks and phases

4. For each team member the total number of hours spent and the number of hours to

be spent per week for the rest of the project

These tables should be discussed with the entire team, so the project’s status is known to

all team members.

1
 A high risk with a high impact needs to be addressed immediately!

http://wwwis.win.tue.nl/2R690

 8

When more time than estimated was spent to complete a phase, less time is available for

later phases and tasks (4. above). In this case, requirements of medium priority must be

dropped in order to finish the project within budget. If the first phases take less time than

estimated, some of the low priority requirements can be included for implementation. In

either case, the SPMP should identify these requirements. Notice that a project can only

be successfully concluded if all requirements are implemented or if the team members

have all spent their available hours (approximately).

When significant deviations from the estimated effort occur, document what caused these

deviations.

1.2.2 SQAP

The SQAP contains:

 Documentation standards (e.g., layout, cover, standard chapters)

Each document should have a cover with at least the group logo, title,

authors, project name, date and version number (see SCMP)

 Design standards (in SQAP/SR, /AD)

 Coding standards (in SQAP/DD), e.g. naming conventions

 Software quality assurance metrics, e.g. maximum length of procedures,

maximum number of parameters of procedures and percentage of comments in

the code (in SQAP/DD)

 How is it verified that products adhere to these standards

 Organization of reviews: who, what, how

Usually, at least one of the authors, an independent team member and the

SQAM should take part in a review. At least all product documents, the

SCMP, SQAP and SPMP should be reviewed. Artifacts such as minutes

do not need to be reviewed. The artifact to be reviewed can be read

beforehand or during the review. It is convenient to enter defects into a

template for reviews, together with an indication of the severity, if and

how the defect will be solved and by whom

 Optionally, a problem reporting procedure

1.2.3 SCMP

The SCMP describes:

 Structure of document storage including that for source code, minutes, problem

reports and document templates

 Identification of documents (e.g. version numbers)

A common format for version numbers is x.y.z, where x and y start at 0. z

starts at 1 and is increased with each minor change. y is increased after it is

approved in an internal review, after which z is set to 0. and x is increased

only when the document is approved by the customer (e.g., in case of the

requirements document) or when the document is approved by SM (e.g., the

SQAP), after which y and z are set to 0. When defects are discovered and the

 9

document is changed, z is increased. This way, it is easy to see the status of a

document, e.g., a document x.0.0 is a document that has not been changed

since the customer or SM has approved it.

This document should contain a 1 to 3 page description of how you plan to structure your

repository in Subversion. In particular, it should also define how the program code is

managed to allow several people to work on the same module and to define where the

most recent versions can be found.

1.3 Example

As a running example, we use a very simple (database) application that contains students,

courses and the participation of students in courses. Students can be added and removed

and changes can be made to the student data. Courses can be added, removed and listed.

Students can register for courses and a grade can be set for courses that a student has

completed. The example is only partially elaborated, in particular for the architecture and

implementation phases.

The example includes

- a short initial informal description from the customer

- the user requirements derived from it

- a first version of the logical model

- the logical model

- parts of the prototype

- the architectural model

- a high-level view of the implementation

- a detailed view of the implementation

 10

2 User Requirements phase

During the User requirements phase, the requirements are elicited from the customer.

One of the main problems in this phase is that the views of the customer and the

development team are usually different. The UR and SR phases are meant to let these

views on the system converge as much as possible. This is accomplished by, e.g.,

frequent meetings with the customer and construction of prototypes. The User

Requirements Document (URD) serves as a contract between the team and the customer.

For information about requirements and the requirements process, see [3], [8] and [11].

The URD should start with a general description of the product’s functionality, the

environment in which it is used and a characterization of its users. Then the individual

requirements should be listed, grouped by functionality, and a number of scenarios (i.e.

examples of typical uses of the system) should be given. If appropriate, also include a

glossary of domain-specific terms. You may use a spreadsheet for the functional and

extra-functional requirements.

Requirements should be stated unambiguously in plain short sentences. The quality of

each requirement can be analyzed with the aid of the flow scheme of Figure 2, which is

similar to the procedure described in [3]. Notice that it is also checked if requirements

can be tested. The results of this last check should be recorded in the User Requirements

Analysis report (URAR) as these can be used later in the process. Notice that only the

testing method is identified, not the detailed procedure. In the running example, there is a

requirement: “The system provides functionality to add a student”. The URAR should

contain at least one test case for adding a student. The method of testing specified in the

URAR could be “inspection of the database after closing the application” to see if the

student has actually been added. Notice that there are tools to assess the quality of

requirements.

Requirements should be accompanied by a priority. The highest priority requirements

must be implemented in the final product, the lowest priority requirements will only be

present if time allows this. The priorities indicate the order in which functionality is

implemented. Obviously, the lower priority requirements must be taken into account in

the design, so that the design does not prevent or hamper implementation of these

requirements.

In addition to the functional and so-called extra-functional requirements, the URD should

describe a number of scenarios that illustrate typical uses of the system. These scenarios

may also be useful for the ATP.

During this phase, the project plan and the other management documents are written,

globally for the entire project and in detail for the UR and SR phases.

Already in this phase, experiments must be conducted in areas where the team’s expertise

is lacking (high risks). For example, if a web application should be delivered, it can be

investigated which scripting languages are available and which seem to be most suitable.

 11

Likewise, the customer may prescribe a certain programming language that the team is

not familiar (enough) with. In this case, team members can start experimenting to

accomplish tasks that will most likely be needed in the final implementation. This results

in a number of “prototypes” that will speed up the final implementation. These activities

are not restricted to the UR phase, but continue during the entire project.

Deliverables for this phase are the URD, URAR, SPMP, SCMP and SQAP.

Figure 2: Requirements analysis

 12

2.1 Example: User requirements

Initial informal description of the system by the customer
.

The system is used to administer students, courses and the course participation of

students. The system must be implemented in Java and use a relational database to store

the data. The system must have a graphical user interface.

User Requirements

Functional Requirements (priorities not shown)
2

Functionality concerning students

The user can add and remove students and change the data recorded for each student.

UR-1 For each student, the system stores
3

a. a unique student identifier

b. last name

c. initials

d. date of birth

UR-2 The system provides functionality to list the students

UR-3 The system provides functionality to select a student

UR-4 The system provides functionality to remove a selected student

UR-5 The system provides functionality to change the data of a selected student

UR-6 The system provides functionality to add a student

Functionality concerning courses

The user can add and remove courses and change the data recorded for each course.

UR-7 For each course, the system stores

a. a unique course identifier

b. course name

UR-8 The system provides functionality to list the courses

UR-9 The system provides functionality to select a course

UR-10 The system provides functionality to remove a selected course

UR-11 The system provides functionality to change the data of a selected course

UR-12 The system provides functionality to add a course

Functionality concerning course participation

UR-13 For each course participation, the system stores

2
 Many requirements documents use the style “The system shall…”. As this sounds rather archaic, present

tense is used here. This is actually equally commanding.
3
 Notice that this is actually shorthand for 4 different requirements, which should be individually traced as

UR-1a, UR-1b, etc.

 13

a. a course

b. a student

c. a grade

UR-14 The system provides functionality to list the course participations

UR-15 The system provides functionality to select a course participation

UR-16 The system provides functionality to remove a selected course participation

UR-17 The system provides functionality to add a course participation

UR-18 When adding a course participation, the user can select the course from a list provided

by the system

UR-19 When adding a course participation, the user can select the student from a list provided

by the system

Extra-functional requirements

UR-20 The system is implemented in Java

UR-21 The data is stored in a relational database

UR-22 The system has a graphical user interface

 14

3 Software Requirements Phase

During the SR phase, a model is made to describe the problem. This description should

not take any implementation details into account. The reason for this phase is for the team

to get an understanding of the problem and the entities that play a role in it. The model

should describe the system as seen “from the outside”. With the model, it must be

possible to simulate its behavior. The model is given as a UML [6], [9], [10], [12] class

diagram, use case diagrams and sequence diagrams. The model describes what the

product should do, not how.

A good starting point for the model is the requirements document. A noun that occurs in

the requirements often indicates that a particular class is needed in the model. Likewise,

an adjective may indicate that a particular attribute is needed and a verb can indicate the

need for a method. If no attributes and methods are found with a candidate for a class, it

is likely that the class is irrelevant to the model. This leads to an initial logical model (see

section 3.1). From the scenarios in the URD, a number of typical use cases can be

derived. Each use case is a “driver” for a sequence diagram. With the classes, methods

and attributes in the initial logical model, try to represent a typical use case with a

Sequence Diagram (SD). This usually leads to the conclusion that additional classes,

methods and attributes are needed in the class diagram. Add these to the class diagram

and repeat the process until you have an extended logical model with which you can trace

an input (a method call from the “outside” on one of its classes) through the model until

the expected output is produced. It is very well possible that missing or incomplete User

Requirements are discovered in the process. This is another reason to go through the SR

phase.

Appendix A: The Coffee Machine shows the end product of this process. In this

appendix, it is shown how the classes and methods are derived from a short description of

the functionality and an SD shows how user actions result in a cup of coffee. Notice that

the coffee machine might be a modern coffee machine as they can be found throughout

the TU/e or it might be a box with a goblin inside. Although this is stretching it a bit, it

might describe the process of ordering a cup of coffee in a restaurant and the actions of a

waiter.

The Software Requirements Document (SRD) should contain a general description, the

initial logical and extended logical models (see the next sections), use cases and sequence

diagrams, along with some clarifying text. In addition, each class, method and attribute in

the extended logical model should be documented. For a class, explain its function and

possible invariant properties. For a method, describe its function and pre- and post-

conditions. For an attribute, describe its purpose. Each of these Software Requirements

should be numbered and it should be documented from which User Requirement it is

derived. Never renumber your User Requirements after this in order to avoid rework of

the SRD! This tracing is also done from User Requirements (URs) to Software

Requirements (SRs), to verify that all URs are covered by SRs

The SRD contains a problem description, so do not use implementation terminology!

 15

In addition to the model, a prototype should be delivered that demonstrates the Graphical

User Interface (GUI). This can be done with a number of screenshots and some

description that demonstrates the use cases. Another possibility is a mock-up with which

one can navigate between the different screens that contain all the controls of the final

product but without any further functionality behind it. Notice that the GUI prototype is a

contract between the team and the customer once the SRD has been accepted! Because

the GUI is agreed upon during the SR phase, the ATP can now be completed: the test

cases can now be elaborated to contain the precise sequence of actions needed to perform

the test and the test procedures can be added (see section 7.4)

Deliverables for this phase are the SRD, the STP, the completed ATP, and the additions

to the management documents. Since the ATP is only needed during the last weeks, the

hard deadline is set to week 14.

3.1 Example: Initial logical model

Figure 3: Initial version of the logical model
4

3.2 Example: Extended logical model

When elaborating the initial version of the logical model, it became apparent that the

Administration class would become too large. This class is the logical choice to ‘own’ the

Students, Courses and Participation sets. Since there would be add, change, remove, etc.

4
 Notice that only part of the operations and attributes have been included in the figure. Setters and getters

are never included. Attributes that are graphically represented (on the edges) are not shown in the boxes.

 16

methods for each of these, it was decided to introduce Administration classes for each of

these sets.

Figure 4: Extended logical model.

 17

3.3 Example: Sequence diagram

Figure 5: Sequence diagram.

 18

3.4 Example: Screenshots

Figure 6 and Figure 7 show screenshots of the prototype: the main menu and the student

table.

Figure 6: The main menu.

Figure 7: The student screen.

 19

4 Architectural Design Phase

The goal of the Architectural Design (AD) phase is to divide the system into a number of

coherent pieces (packages) that can be developed in isolation by different groups. This

division also reduces the complexity, because each package has a lower complexity than

the entire application.

The AD phase is the first phase that concerns the construction of the software. The

extended logical model is a good starting point for an architectural model, but it needs to

be extended with some implementation details. The GUI must be added to the model as it

is not modeled in the SR phase. In an application that uses a database, entities in the

database will have a representation in both the database model and the software model.

Likewise, some of these entities will also have a representation in the GUI. Normally,

classes from the logical model will also need to be extended with extra attributes.

Packages should be chosen such that a package implements, e.g., a logically coherent set

of functions or services. There should be fewer class associations between classes in

different packages than between classes in the same package. In order to work

independently on different packages, it is necessary to define the interfaces between the

packages. These interfaces consist of all the methods that can be called from “outside”

the package including their signature, i.e., their name, parameters, and return types.

The AD Document (ADD) should contain the model and describe the interfaces between

the packages. Document these Architectural Requirements in the same way as the

Software Requirements. Document the function of each package as well. Trace the

Architectural Requirements to the Software Requirements and v.v. The functionality of

each package is described by a logical model as in the SRD, i.e., for each package there

should be class diagram of the classes in that package. Often, parts of the extended

logical model can be re-used here. Notice that sequence diagrams can help you in the

design process!

After the architecture has been designed, it is also possible to determine how to assemble

and test the system. After the packages are implemented and tested in isolation, one can

start testing packages together. Packages are assembled starting with a package that does

not depend on other packages. The first package to add to this is a package that only

depends on the first. In this way, one continues until the entire system is assembled. The

advantage of this approach is that only test drivers
5
 are needed, and no test stubs

6
. The

Integration Test Plan (ITP) describes the order in which the system is assembled, which

extra facilities are needed, and which tests will be done to verify the correct functioning

of the system.

The architecture diagram for the running example is shown in Figure 8. The system is

split into three packages: the GUI, the database and a package that serves as an

5
 Drivers are classes from which the methods of the newly added package are called.

6
 Stubs replace called classes by dummy implementations.

 20

abstraction layer for the database. In this package, the data from the database are

converted to a format suitable to store in Java arrays. Only the functionality for the

student table is elaborated. Each package still contains only logical models, so most

implementation details have not been added yet.

Notice that the interface between the DBAbstractionLayer package and the GUI already

requires knowledge of implementation details: remove and change must have the row

number as parameter (not shown below). This can be avoided by passing the entire record

in both cases. However, an additional internal action is then required in the

DBAbstractionLayer package to locate the record in the database, which results in a

locate(record) method in this package. This introduces unnecessary overhead in the

application as the record number is returned by the TableModel (a standard Java class) that

implements the StudentAdministration in the GUI. This is a typical architectural issue: some

generality is sacrificed for performance.

It is essential that prototypes are built to experiment with implementation details. In this

case this would mean to find out how TableModels work, how to query the database and

how to build the GUI.

Deliverables of this phase: ADD, ITP and additions to the management documents.

4.1 Example: Architectural model

Figure 8: Architectural model (only Students shown).

 21

The interface of the DBAbstractionLayer package (for the GUI package) consists of the

methods of the classes Student and Database and the attribute of Database (setters and

getters of the attribute are implicitly given). The interface of the DB package consists of

the table structure and the queries. Notice that only a part of the Java packages is shown

(general utility packages are left out).

 22

5 Detailed Design Phase
In the Detailed Design phase, the architectural design is refined to the point where it can

be directly implemented (coded). However, as the participants in this course are not, in

general, experienced programmers, a detailed design would probably only be a waste of

time. Therefore, the detailed design and implementation phase coincide for

2IM24/2IM25. However, the Detailed Design Document (DDD) should record some

implementation considerations (design decisions) in addition to the documentation of the

classes in the implementation.

 23

6 Implementation

In this phase, different groups can implement the different packages. Important issues in

this phase are version management and to make sure that everyone has access to the latest

versions of packages. Make sure to divide the work properly, so that it is unlikely that

two people are working on the same file at the same time. Therefore, it is imperative to

use Subversion (SVN) and TortoiseSVN to manage your code. A repository will be

created for each group on the department’s SVN server.

Document the final implementation in the Detailed Design Document (DDD): packages,

classes, methods and attributes. For each of these, document in the header resp.

declaration, its purpose and the Software Requirement(s) from which it originates. For a

class, document the class invariants, if applicable. For a function, document parameters,

return type and pre- and post-conditions. It is strongly recommended to use a

documentation generator for this purpose. Use either a documentation generator built into

your development environment (e.g., JavaDoc in Netbeans), or use a general purpose

documentation generator, e.g., [7]. To use a documentation generator, the information for

the DDD is entered as comments in a special format in the code. Because this information

is part of the code, it is easy to keep the documentation in line with the code.

Stop adding and finishing new functionality by week14, after that, only test the code and

just repair defects found.

Deliverables: DDD, Software User Manual (SUM), code and updates of the management

documents. The SUM describes installation and use of your product.

6.1 Example: High-level view

Figure 9 shows a high-level view of the implementation (excluding the database).

Figure 9: High level view of the implementation.

 24

6.2 Example: Detailed view

Figure 10 shows the classes as reverse-engineered from the implementation. Some other

(nameless) classes were also found. These were MouseAdapter and Runnable classes

from the Java packages. Notice the differences as compared to the Architectural Model.

Figure 10: Implementation details.

 25

7 Test Phases

Each test involves specification (what will be tested), design (how will the test be done,

inputs, expected outputs) and execution. The AT additionally requires some preparation

because it is executed in the customer’s (in this case the staff’s) environment.

7.1 Unit Tests

Due to time constraints, it may not be feasible to do unit tests for all classes and

packages. However, some classes have to be tested with the unit test facilities provided

by your development environment, as explained in the lectures by Dr. Verhoeff.

Do not wait with testing until you have a complete first version: implement part of the

functionality and test this part before continuing! Obviously, during the testing you’ll

have to go back to the implementation phase very often. In principle, one should the

repeat all previous testing, which might take too much time for 2IM24/2IM25. However,

with the test facilities of your development environment, it is easy to automatically repeat

all previous tests.

Deliverables: updates of management documents, a Unit Test Plan (UTP) and Unit Test

Reports (UTRs). As the number of hours available per student were lower in the previous

years, the UTP and UTRs were not required in previous years, so no examples are

available. Guidelines for the contents of these documents will be provided.

7.2 Integration Tests

In this phase, the system is assembled according to the ITP, typically in the direction

opposite to the dependencies.

Deliverables: update of management documents.

7.3 System Test

In this phase, the system is exhaustively tested to make sure the system will not fail the

AT. The ST should be a superset of the AT. Include test cases that test extreme

circumstances. For example, if you have an array A that can contain up to 10 items, make

sure you have a test case that checks the case when it contains 10 items and check what

happens if you try to store 11 items in the array if there is any chance that this might

occur.

Deliverables: none

7.4 Acceptance Test

The ATP consists of test procedures and is constructed during the SR phase. A test

procedure defines what the inputs are, which test cases are executed and what the

expected outputs are. The scenarios from the URD may provide some clues for the

construction of the test procedures. A test procedure groups different test cases to reduce

 26

the amount of work involved (i.e. preparing the initial state for the test case). The URAR

is a good starting point for the ATP test cases. In the running example, a test case that

verifies that it is not possible to create duplicate student identifiers can be combined with,

e.g., test cases that verify if students can be added and that the system can provide a list

of students.

Prepare the AT well. For example, if a prerequisite of the AT is that a certain application

is installed on the customer’s PC, make sure the customer knows this in advance. If, for

some reason, the customer can not or would not like to install this application, a solution

to this problem should be found. These kinds of issues should not be resolved shortly

before the AT, because an alternative solution may require some time to arrange. Making

sure that all arrangements for the AT are handled timely is a task of the PM and should be

included in the planning.

Provide the customer with

 A CD with your installation files and input files for the test

 A copy of the ATP

 A copy of the SUM

The customer must do the acceptance test on his/her own without aid from the team. The

group must record which tests pass or fail and the result should be recorded in a test

report. If all tests pass and all the highest priority requirements are tested, the customer

may accept the product.

Deliverables: Acceptance Test Report (ATR), presentation (see chapter 8).

 27

8 Concluding remarks
In this document, a software development process for 2IM24/2IM25 has been described.

The process covers both the technical part (i.e. the phases UR, SR, AD, DD,

implementation, UT, IT, ST, and AT) as well as the managerial part, and includes various

examples. Deliverables are described for each of the phases of the technical part.

Moreover, it is described which management documents must be created or updated

during each phase. This document briefly describes what the management documents

should contain. An overview of the phases and deliverables can be found in Appendix B:

Overview of phases and deliverables. Appendix B also contains a table that gives hard

and soft deadlines for deliverables and planned activities during class hours.

The Project is concluded with a presentation for all groups and the teaching staff. The

presentation should cover both the product (including a demonstration) and the process.

Include some statistics; include at least the number of lines of (real) code and hours spent

(per phase and in total). Recommendations for improvements are appreciated. Also cover

topics such as what you have learnt, was it enjoyable and did you get insight into the

software engineering process.

 28

References
The ESA standard [5] is available from:

http://wwwis.win.tue.nl/2R690/doc/ECSS-E-ST-40C(6March2009).pdf.

Note that [4] is based on the ESA standard.

[1] I. Sommerville, Software Engineering, Addison-Wesley, ISBN 0-321-31379-8, 8
th

edition, 2007.

[2] T.C. Lethbridge and R. Laganière, Object-Oriented Software Engineering –

Practical Software Development using UML and Java, McGrawHill, ISBN 0-07-

70109082, 2
nd

 edition, 2005.

[3] Suzanne Robertson and James Robertson, Mastering the requirements process,

Addison-Wesley, 1999.

[4] C.Mazza, J.Fairclough, B.Melton, D. de Pablo, A.Scheffer, R.Stevens, M.Jones,

G.Alvesi, Software Engineering Guides, Prentice Hall, ISBN 0-13-449281-1, 1996.

[5] ESA European Cooperation for Space Standardization, ECSS-E-ST-40C, European

Space Agency, 6 March 2009.

[6] Formal descriptions available from http://www.omg.org/spec/UML/

[7] Robodoc: http://www.xs4all.nl/~rfsber/Robo/robodoc.html;

NaturalDocs: http://www.naturaldocs.org/

[8] M. Mannion and B. Keepence, SMART Requirements, Software Engineering Notes

Vol. 20, 2, pp. 42-47, 1995, ACM Press

[9] M. Fowler, UML Distilled, Addison Wesley, ISBN 0-321-19368-7, 3
rd

 edition,

2003

[10] J. Arlow, I. Neustadt, UML 2 and the Unified Process, Addison-Wesley, ISBN:

0201770601, 2002

[11] K. Wiegers, Software Requirements, Microsoft Press, ISBN 0-7356-1879-8, 2nd

Edition, 2003

[12] UML Basics, http://docs.kde.org/, type in search box: UML

http://wwwis.win.tue.nl/2R690/doc/ECSS-E-ST-40C(6March2009).pdf
http://www.xs4all.nl/~rfsber/Robo/robodoc.html
http://www.naturaldocs.org/
http://docs.kde.org/

 29

Appendix A: The Coffee Machine

The following text is a very short description of a coffee machine:

The coffee machine delivers coffee in different strengths and with different amounts of

sugar and milk, as selected by the customer. The coffee machine presents menus that

allow making the different choices. The product is served in a cup.

This example model is not meant to be complete, e.g., payment for the product is not

modeled and no facilities are present in the model to signal if products or cups have run

out. It is merely tried to illustrate how class diagrams and sequence diagrams can be used

together to develop a useful analysis model.

Notes on modeling

The underlined words give a good clue about classes, the italic ones about methods and

highlighted words about attributes.

Figure 11: Class diagram.

 30

Some aspects were not modeled in the class diagram shown in Figure 11 either for

simplicity (menu) or in order not to implicitly make design decisions, e.g. whether the

coffee comes in big thermos flasks or as beans that need grinding, addition of water and

filtering. As there is no such detail in the spec, we need to ask the customer. So modeling

the problem induces questions about details that need answers from the client.

The cup, in principle, places itself. Notice that the reference to the cups should not be

named “cupholder” – this is too much directed to implementation. For most coffee

machines, this will be the reality, but it is not justified by this requirements specification.

Tea is added only to show that the model is easily extended with other products. To be

able to easily extend the model for other products (tea, milk, soup, cocoa) the class

Product has been introduced. To generate a menu, the names of all products in the

products aggregation can easily be collected without knowing about individual products.

The ingredients class was introduced to be able to treat all ingredients in a uniform way.

The add method is abstract in the Ingredients class and must be implemented by each

individual ingredient, which makes sense as adding, e.g. coffee from a reservoir is quite

different from adding sugar.

Each product knows what its ingredients are, so the knowledge about the preparation of

the product is entirely with the individual products.

In an actual implementation, the cups aggregation would probably be replaced by a class

to control a cup holder, which actually might involve quite a bit of logic, e.g., when users

may place their own cups. Likewise, the Coffee class is most likely replaced by the

control software for an instant coffee container.

Use dynamics (sequence diagrams, state charts) from the start. In this case, start e.g. with

the classes coffee machine, coffee, sugar, milk and menu, place the attributes and

methods that you identify. Then, try to make a Sequence Diagram for this model; see

Figure 12 for an example. From the SDs you will find missing methods, classes and

attributes. Then go back to the CD, add these things and back to SD. This is the fastest

way to come up with a model: do not focus too long on the static aspects only, because

once you get to the dynamic aspects you have to change too much! In the static diagrams,

consider likely extensions so your model is extendible, without compromising its

simplicity. In this case, each product controls its own recipe and the abstract product and

ingredient classes make the model flexible: as long as it can be poured into a cup any

product can still be incorporated.

Note that Figure 12 starts with the initialization (i.e. creation) of the system, and a user

subsequently selects coffee with sugar, the strength of the coffee, the amount of sugar,

and the actual service (i.e. “pour”).

 31

Figure 12: Sequence diagram.

 32

Appendix B: Overview of phases and deliverables
An overview of the phases of the described software development process for

2IM24/2IM25 is given in Table 1. This table also indicates which deliverables are not

required for 2IM24/2IM25. The postfix “*” in the column Deliverables denotes that an

update of the deliverable is required (preparing for the next phase).

Phase Deliverables Not required for

2IM24/2IM25

User Requirements (UR) SPMP, SCMP, SQAP,

URD, URAR

Software Requirements (SR) SRD, STP, ATP

SPMP*, SCMP*, SQAP*

Architectural Design (AD) ADD, ITP,

SPMP*, SCMP*, SQAP*

Detailed Design (DD) DDD, UTP,

SPMP*, SCMP*, SQAP*

SPMP*, SCMP*, SQAP*

Implementation code, SUM, DDD,

SPMP*, SCMP*, SQAP*

Unit Test (UT) UTR,

SPMP*, SCMP*, SQAP*

Integration Test (IT) ITR,

SPMP*, SCMP*, SQAP*

ITR

System Test (ST) STR,

SPMP*, SCMP*, SQAP*

STR

Acceptance Test (AT) presentation, ATR
Table 1: Overview of phases and deliverables.

Table 2 gives the scheduled activities and the deadlines for the project. Time during

classes is spent on explanations about the process and the different phases, on answering

any questions that may arise and on discussing deliverables with individual teams. The

teams can request presentations of issues of general concern that need clarification.

When a hard deadline is indicated in the schedule, the final version of the deliverable

must be handed over during class hours. This version will be used to grade the

performance of the team. Obviously, if there are legitimate reasons for a delay, an

extension of a hard deadline can be negotiated. Soft deadlines are not explicitly marked

as such. They indicate the state in which particular documents should be at that point in

time. If this is not the case, the team should put in extra hours to catch up. This is also the

case when an extension of a hard deadline is granted.

The phase extensions of the management documents can be delivered to SM at the end of

the project. Of course these extensions must be ready before the start of the relevant

phase and the extensions can be discussed during class hours.

 33

 34

week Class hours Activities non-class hours following week

1
4/9

Introduction Assignments and process

During the entire project: research and prototyping
activities.
Organize project
Management documents (/UR)

2
11/9

First hour: Introduction Software
Engineering

URD, URAR

Management documents

3
18/9

First hour: Introduction SE
Discuss URD, URAR and management
documents

URD, URAR

Management documents
Discuss requirements and URD with customer

4
25/9

First hour: Introduction SE
Introduction UML
Discuss documents

URD, URAR, management documents (/SR)
Discuss URD with customer and get approval

5
2/10

Deadline Approved URD, URAR and
management documents
Modeling exercise

SRD (models, prototype)

6
9/10

Discuss models, prototype First version SRD(models, prototype, SRs, UCs)

7
16/10

Discuss first version SRD Second version SRD

8
23/10

Discuss second version SRD
 Discuss AD phase

Final version SRD

9
12/11

Deadline SRD, updates management
documents (/AD)

ADD (models)
Updates management documents (/DD)

10
19/11

Deadline updates management
documents (/DD)
Discuss AD models

First version ADD (models, requirements)
Coding

11
26/11

Discuss first version ADD Final version ADD
Coding

12
3/12

Deadline ADD Coding/ Unit testing
User Manual, ATP,UTP,UTR

13
10/12

Discuss ATP, UTP, UTR, User Manual Coding
User Manual, ATP,UTP,UTR

14
17/12

Deadline approved ATP, User Manual
Discuss UTP, UTR

Coding
User Manual, ATP, Integration & System Testing,
Debugging
1st AT

15
7/1

Deadline 1st AT, UTP
Test reports

Coding, testing, debugging, finish documentation
2nd AT, UTR

16
14/1

Deadline 2nd AT, UTR
Test reports (ATR, UTR)
Final presentation
Delivery project/product documentation

Possibly: final presentations + delivery
documentation at a later date, to be discussed

Table 2: Schedule and deadlines

