On Properties of Higher-Order Delaunay Graphs with Applications*

Manuel Abellanas ${ }^{\dagger}$ Prosenjit Bose ${ }^{\ddagger}$ Jesús García ${ }^{\S}$ Ferran Hurtado ${ }^{〔}$ Mariano Nicolás ${ }^{\|}$
Pedro A. Ramos**

Abstract

In this work we study the order- k Delaunay graph, which is formed by edges $p q$ having a circle through p and q and containing no more than k sites. We study the combinatorial structure of the set of triangulations that can be constructed with edges of this graph and show that it is connected under the flip operation if $k \leq 1$ and for every k if points are in convex position. We also study the hamiltonicity of the order- k Delaunay graph and give an application to a coloring problem.

1 Introduction

The Delaunay graph is an ubiquitous structure in the field of Computational Geometry. It is well known that this graph is a triangulation when the points are in general position and that it can be easily completed to a triangulation in the presence of degenerate configurations. An encyclopedic treatment of this structure can be found in the book by Okabe et al. [7].

The edges of a Delaunay triangulation of a planar point set P have a simple geometric definition (i.e. its proximity measure). Two points $p, q \in P$ form a Delaunay edge provided that there exists a circle with p and q on its boundary with no points of $P \backslash\{p, q\}$ in its interior.

This condition can be generalized in a natural way by relaxing the requirement that the circle needs to be empty. In this way, we say that $p, q \in P$ form an edge of the order-k Delaunay graph provided that there exists a circle with p and q on its boundary with at most k points of the set $P \backslash\{p, q\}$ inside the circle. Note that the order-0 Delaunay graph is the standard one.

[^0]In [3] the authors don't focus on the order-k Delaunay graph yet its edges are defined and called order- k Delaunay edges; then they deal with the problem of computing the set of order- k Delaunay edges which can be completed to a triangulation such that all the triangles have order at most k, where the order of a triangle is defined as the number of points contained inside its circumscribing circle. For the constrained Delaunay triangulation, related problems are considered in [4].

It may be surprising that similar questions have been considered some years ago for graphs related to the Delaunay graph: In [8], properties of the orderk Gabriel Graph (GG) are investigated and an algorithm for its construction is proposed, while in [1] it is shown that the order-20 Relative Neighborhood Graph (RNG) is Hamiltonian.

In this paper, we concentrate mainly on the study of some graph theoretic properties of the order- k Delaunay graph as well on some applications arising from these properties.

2 Order- k Delaunay graph

Throughout this paper, unless explicitly stated otherwise, P will be a set of points in the plane in general position - no three points are collinear and no four are on a circle.

Definition 1 Given two points $p, q \in P$, the order of $p q$ is the smallest integer k such that there exists a circle through p and q containing in its interior k points of P. The order-k Delaunay graph of P, denoted $k-D G(P)$, is formed by the edges with order at most k.

We start by giving an upper bound on the number of edges of the order- k Delaunay graph which can be derived taking into account its relation with higher order Voronoi diagrams [7].

Theorem 1 Let P be a set of points in general position and let $|k-D G(P)|$ be the number of edges of the order- k Delaunay graph. Then

$$
|k-D G(P)| \leq 3(k+1) n-3(k+1)(k+2)
$$

If P is in convex position, then

$$
|k-D G(P)| \leq 2(k+1) n-\frac{3}{2}(k+1)(k+2)
$$

Proof. Let $b_{p q}$ be the bisector of points p and q and let $V_{k}(P)$ be the order- k Voronoi diagram of P. Clearly, if the order of $p q$ is k, an edge of $b_{p q}$ appears for the first time in $V_{k+1}(P)$. In [2], it is shown that the total number of connected components that appear in the set of lines $\left\{b_{p q} \mid p, q \in P\right\}$ when all Voronoi diagrams up to order k are put together is

$$
\lambda_{k}=3 k n-\frac{3}{2} k(k+1)-\sum_{j=1}^{k} e_{j}(P)
$$

where $e_{j}(P)$ is the number of j-sets of P. If P is in convex position, then $\sum_{j=1}^{k} e_{j}(S)=k n$, while for arbitrary P is known that

$$
\sum_{j=1}^{k} e_{j}(S) \geq 3\binom{k+1}{2}
$$

(see [2],[6]). Therefore, the result follows from the fact that $|k-D G(P)| \leq \lambda_{k+1}$.

3 Flip-graph of order- k triangulations

In this section we study the structure of the set of triangulations that can be constructed using edges of the order- k Delaunay graph. We say that a triangulation T has order k if all its edges have order at most k and there is some edge with order exactly k. We recall that if a triangulation T_{1} has two triangles $p q r$ and pqs in convex position, we can get another triangulation T_{2} by deleting the edge $p q$ and adding the edge r s. This operation is called a flip. In this situation, we say that the edge $p q$ is locally Delaunay if the circle passing through p, q and r does not contain point s.

Definition 2 The flip-graph of triangulations with order at most k, denoted by $T G_{k}(P)$, is defined in the following way:

1. the vertices are the triangulations of P with order at most k,
2. two triangulations T_{1} and T_{2} are connected with an edge in $T G_{k}(P)$ if they differ in a flip.

If $k=0, T G_{0}(P)$ is a single vertex (the Delaunay triangulation) and thus connected. In the following theorem we answer the question of the connectedness of these graphs.

Theorem 2

a) $T G_{1}(P)$ is connected.
b) $T G_{k}(P)$ can be disconnected if $k \geq 2$.
c) If P is in convex position, then $T G_{k}(P)$ is connected for every $k \geq 0$.

Figure 1: Illustration for the proof of Theorem 2

Proof. Let T be a triangulation with order one and let $D T$ be the Delaunay triangulation of P. We are going to show that if $T \neq D T$ there exists an edge of T which is not locally Delaunay and can be flipped to an edge with order at most one.

Let $p q$ be an edge which is not locally Delaunay (then, it has order one) and let rs be the edge that we get when $p q$ is flipped (see Figure 1). If $r s$ has order at most one then we have done, so assume that $r s$ has order at least two. Because $p q$ is not locally Delaunay and has order one, there exists a circle $C_{p q}$ passing through p and q and containing a single point, which is necessarily either r or s. In the following, we assume that $C_{p q}$ contains r and, therefore, the edges $p r$ and $q r$ are Delaunay edges.

Let $C_{p q s}$ be the circle passing through p, q and s and $C_{r s}$ the circle tangent to $C_{p q s}$ at s and passing through r. Let R_{1} and R_{2} be the regions inside $C_{r s}$ and outside both of the circle $C_{p q}$ and the quadrilateral prqs. It is easy to see that each of the regions contains exactly one point, as illustrated in Figure 1).

Let us denote by u and v, respectively, the points inside the regions R_{1} and R_{2}, and by $C_{p r s}$ the circle through p, r and s. The circle $C_{p r s}$ contains at least two points and no point different from u and v can be inside it. This shows that the edge $p v$ has order at most one. In an analogous way, it can be seen that the edge $q u$ has order at most one. If the edge $p s$ is not locally Delaunay then we have finished because the triangle $p s u$ is in T and we can flip the edge $p s$ to $q u$ so we can assume that $p s$ is locally Delaunay.

If triangle $p s u$ is not in T, then we can consider the set of triangles C intersected by segment $q u$ and show that if $p^{\prime} q^{\prime} s^{\prime}$ and $p^{\prime} u s^{\prime}$ are adjacent triangles in C then the edge $p^{\prime} s^{\prime}$ is not locally Delaunay while the edge $q^{\prime} u$ has order zero and this concludes the proof of part a).

In Figure 2 we show an example of a triangulation with order two such that every possible flip increases its order to three. Therefore, $T G_{2}(P)$ is not connected.

The proof of part c) is omitted in this extended abstract due to space limitations.

Figure 2: An isolated triangulation in $T G_{2}(P)$

4 Hamiltonicity of Order-k Delaunay Graph

In this section, we show that the order-15 Gabriel Graph (GG) contains a Hamiltonian cycle. Note that 15 -GG is a subgraph of the 15 -DG. The key idea behind the proof is the following. Given a particular Hamiltonian cycle h through a set of n points, define the distance sequence, $d s(h)=\delta_{1}, \ldots, \delta_{n}$ to be the sequence of edge lengths in the cycle sorted from longest to shortest edge. Given any two Hamiltonian cycles x and y, we can compare lexicographically their edge length sequences. In the following theorem we prove that a cycle associated with an edge length sequence which is minimum with that order has the property that every edge belongs to 15 -GG.

Theorem 3 Given a set P of n points in the plane in general position, the graph 15-GG contains a Hamiltonian cycle (and hence $15-D G$ too).

Proof. Let H be the set of all Hamiltonian cycles through the points of P. Let $m=a_{0}, a_{1}, \ldots, a_{n-1}$ be a cycle in H with minimal distance sequence. We will show that all of the edges of m are in 15-GG. We proceed by contradiction.

Suppose that there are some edges in m that are not in 15-GG. Let $e=\left[a_{i} a_{i+1}\right]$ be the longest edge that is not in $15-\mathrm{GG}$ (all index manipulation is modulo n). Let B be the circle with a_{i} and a_{i+1} as diameter.

Claim 1: No edge of m can be completely inside B. Suppose there was an edge $f=\left[a_{j}, a_{j+1}\right]$ inside B. By deleting e and f from m and adding either $\left[a_{i}, a_{j}\right],\left[a_{i+1}, a_{j+1}\right]$ or $\left[a_{i}, a_{j+1}\right],\left[a_{i+1}, a_{j}\right]$, we construct a new cycle m^{\prime} whose distance sequence is strictly smaller than that of m since $d\left(a_{i}, a_{i+1}\right)>$ $\max \left\{d\left(a_{i}, a_{j}\right), d\left(a_{i+1}, a_{j+1}\right), d\left(a_{i}, a_{j+1}\right), d\left(a_{i+1}, a_{j}\right)\right\}$. But this is a contradiction since m is a minimal distance sequence.

Therefore, we may assume that no edge of m lies completely inside B. Since e is not 15-GG there must be at least $w \geq 16$ points of P in B. Let $U=u_{1}, u_{2}, \ldots, u_{w}$ represent these points indexed
in the order we would encounter them on the cycle starting from a_{i}. Let $S=s_{1}, s_{2}, \ldots, s_{w}$ and $T=t_{1}, t_{2}, \ldots, t_{w}$ represent the vertices where s_{i} is the vertex preceding u_{i} on the cycle and t_{i} is the vertex succeeding u_{i} on the cycle.

Let D be the circle centered at a_{i+1} with radius $2 r$.
Claim 2: No point of T can be inside D. Suppose $t_{j} \in T$ is in D, then $d\left(t_{j}, a_{i+1}\right)<2 r$. Construct a new cycle m^{\prime} by removing the edges $\left[u_{j}, t_{j}\right],\left[a_{i}, a_{i+1}\right]$ and adding the edges $\left[a_{i+1}, t_{j}\right],\left[a_{i}, u_{j}\right]$. Since the two edges added have length strictly less than $2 r$, $d s\left(m^{\prime}\right)<d s(m)$ which is a contradiction.

Let c be the midpoint of the edge $\left[a_{i}, a_{i+1}\right]$. Let C be the circle centered at c with radius $2 r$ and

Claim 3: There are at most 4 points of T in C. Suppose that there are 5 points of T in C. Note that the 5 points are in $C \cap \bar{D}$ by the previous claim. However, this means that there must be two points t_{j}, t_{k} such that $\angle\left(t_{j}, c, t_{k}\right)<\pi / 3$. But this implies that $\left|\overline{t_{j} t_{k}}\right|<2 r$.

Since $|T| \geq 15$, there are at least 11 points of T outside C. Decompose the plane into 10 cones of angle $\pi / 5$ centered at c. By the pigeon-hole principle, there must be one cone with at least 2 points, t_{j} and t_{k}. We note that $d\left(t_{j}, t_{k}\right)$ is either less than $2 r$ or less than max $d\left(c, t_{j}\right)-r, d\left(c, t_{k}\right)-r$ (a proof of this fact can be found in the technical report). Construct a new cycle m^{\prime} from m by first deleting $\left[t_{j}, u_{j}\right],\left[t_{k}, u_{k}\right],\left[a_{i}, a_{i+1}\right]$. This results in three paths. One of the paths must contain both a_{i} and either t_{j} or t_{k}. WLOG, suppose that a_{i} and t_{j} are on the same path. Add the edges $\left[a_{i}, u_{k}\right],\left[a_{i+1}, u_{j}\right],\left[t_{j}, t_{k}\right]$. The resulting cycle m^{\prime} has a strictly smaller distance sequence since max $\left[t_{j}, u_{j}\right],\left[t_{k}, u_{k}\right],\left[a_{i}, a_{i+1}\right]>$ $\max \left[a_{i}, u_{k}\right],\left[a_{i+1}, u_{j}\right],\left[t_{j}, t_{k}\right]$.

5 Coloring with Applications

Given a set of n points in the plane, Har-Peled and Smorodinsky [5] showed how to assign one of m colors to each of the n points such that every circle C containing more than one point has at least one point in C with a unique color. Such a coloring is called a conflict-free coloring (CF-coloring for short). The Delaunay graph is used both in the coloring algorithm and to show that m is $O(\log n)$. This type of coloring finds application in the assignment of frequencies in a cellular network.

In this section, we generalize the result in [5]. We show that with $O(\log n / \log (8 c k /(8 c k-1))$ colors, a set of n points in the plane can be colored so that every circle containing at least k points contains at least k points with unique color (where the maximum number of edges in $(k-1)$-DG is ckn for some constant c). We call such a coloring a k-conflict-free coloring. In the context of cellular networks, this can be viewed
as ensuring that for every client in range of k or more towers, there always exists at least k different towers with which the client can communicate without interference.

As noted in Theorem 1, the number of edges in $(k-1)$-DG is at most $c k n$ where $c=3$ when the points are in general position and $c=2$ when points are in convex position. This implies that the average degree of a vertex in $(k-1)$-DG is at most $2 c k$ and, by using a standard argument which is omitted in this extended abstract, it can be seen that there are always big independent sets with bounded degree:

Lemma 4 Every $(k-1)$-DG has an independent set of size at least $n / 8 c k$ where each vertex in the set has degree at most $4 c k$.

The coloring algorithm is simple and repeated applies the above lemma. Find a large independent set in the $(k-1)$-DG of the given point set P. Assign a unique color to the points in the independent set. Remove these points from P and repeat as long as $|P|>0$. In the next lemma, we show that this algorithm provides a k-conflict free coloring and the total number of colors used is $\log n / \log (8 c k /(8 c k-1))$

Lemma 5 With $\log n / \log (8 c k /(8 c k-1))$ colors, a set of n points can be colored so that every circle containing at least k points contains k points whose color is unique.

Proof. First, at each iteration, we remove an independent set of size at least $n / 8 c k$. Let $C(n)$ represent the number of colors used for a $(k-1)$-DG graph with n vertices. We can bound $C(n)$ with the following recurrence: $C(n) \leq C((8 c k-1) n / 8 c k)+1$. This recurrence resolves to $C(n) \leq \log n / \log (8 c k /(8 c k-1))$ as required.

Next, we show that the coloring is k-conflict free. Let C be any circle containing a set P of at least k points. Consider the k points in C whose colors have highest value (recall that the first independent set was given color 0 and an independent set removed at step i was given color i). If all these k points have unique colors, the lemma is proved. For sake of a contradiction, assume that at least 2 of these k points have the same color. Let i be the largest color whose value is not unique. Note that there are fewer than k points in P whose color value is strictly greater than i. Also note that at iteration i of the algorithm, all points with color less than i have been removed from P. Let P_{i} be the set of points in P receiving color i. Since C contains P_{i}, there is a circle C^{\prime} contained in C that has two points x, y of P_{i} on its boundary and no points of P_{i} in its interior. However, since there are fewer than k points whose color is larger than i, this means that C^{\prime} contains fewer than k points in its interior at iteration i of the algorithm. However, this
contradicts the fact that x and y are in an independent set selected at iteration i.

Corollary 6 A set of n points in general position can be colored with $\log n / \log (24 k /(24 k-1))$ colors so that every circle containing at least k points contains k points whose color is unique. If the set of n points is in convex position, then $\log n /(\log (16 k /(16 k-1))$ colors are sufficient

Note that we only used the fact that there are large numbers of vertices of bounded degree in $(k-1)$-DG in order to show that there is a sufficiently large independent set. If one can find a larger independent set that is guaranteed to exist in all $(k-1)$-DG graphs, then the above bounds can be improved.

6 Conclusion

In this work we have investigated some properties of higher order Delaunay graphs. There are several questions that remain open, and we emphasize the following:

- give some lower bound on the size of k-DG and a tight upper bound,
- show that k-DG is Hamiltonian for small k.

References

[1] M. S. Chang, C. Y. Tang, and R. C. T. Lee. 20-relative neighborhood graphs are Hamiltonian. In Proc Internat. Sympos. on Algorithms, LNCS-450, pp 53-65. Springer, 1990.
[2] H. Edelsbrunner, N. Hasan, R. Seidel, and X. J. Shen. Circles through two points that always enclose many points. Geom. Dedicata, 32:1-12, 1989.
[3] J. Gudmundsson, M. Hammar, and M. van Kreveld. Higher order Delaunay triangulations. Comput. Geom. Theory Appl., 23:85-98, 2002.
[4] J. Gudmundsson, H. Haverkort, and M. van Kreveld. Constrained higher order Delaunay triangulations. In Abstracts 19th European Workshop Comput. Geom., pages 105-108, 2003.
[5] S. Har-Peled and S. Smorodinsky. Combinatorial geometry: On conflict-free of points and simple regions in the plane. In Proc. 19th Annu. ACM Sympos. Comput. Geom., pages 114-123, 2003.
[6] L. Lovász, K. Vesztergombi, U. Wagner, and E. Welzl. Convex quadrilaterals and k-sets. Contemporary Mathematics, 342:139-148, 2004.
[7] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd Ed.. J. Wiley and Sons, 2000.
[8] T. H. Su and R. C. Chang. The k-Gabriel graphs and their applications. In Proc. Internat. Sympos. on Algorithms, LNCS-450, pp 66-75. Springer, 1990.

[^0]: *Partially supported by grants NSERC, DURSI 2001SGR00224 and MCYT BFM2003-0368, TIC2003-08933-C02-01 and BMF2002-04402-C02-01
 ${ }^{\dagger}$ Dep. Matemática Aplicada, Facultad de Informática, Universidad Politécnica de Madrid, Spain. mabellanas@fi.upm.es
 \ddagger School of Computer Science, Carleton University, Ottawa, Canada. jit@scs.carleton.ca
 §Dep. Matemática Aplicada, Escuela Univ. de Informática, Universidad Politécnica de Madrid. jglopez@eui.upm.es
 ${ }^{\text {I }}$ Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya. Ferran.Hurtado@upc.edu
 $\|^{\|}$Department of Mathematics, University of Kentucky. cnicolas@ms.uky.edu
 ** Departamento de Matemáticas, Universidad de Alcalá. pedro.ramos@uah.es

