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On Properties of Higher-Order Delaunay Graphs with Applications∗
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Abstract

In this work we study the order-k Delaunay graph,
which is formed by edges pq having a circle through
p and q and containing no more than k sites. We
study the combinatorial structure of the set of trian-
gulations that can be constructed with edges of this
graph and show that it is connected under the flip
operation if k ≤ 1 and for every k if points are in con-
vex position. We also study the hamiltonicity of the
order-k Delaunay graph and give an application to a
coloring problem.

1 Introduction

The Delaunay graph is an ubiquitous structure in the
field of Computational Geometry. It is well known
that this graph is a triangulation when the points are
in general position and that it can be easily completed
to a triangulation in the presence of degenerate config-
urations. An encyclopedic treatment of this structure
can be found in the book by Okabe et al. [7].
The edges of a Delaunay triangulation of a planar

point set P have a simple geometric definition (i.e.
its proximity measure). Two points p, q ∈ P form a
Delaunay edge provided that there exists a circle with
p and q on its boundary with no points of P \ {p, q}
in its interior.
This condition can be generalized in a natural way

by relaxing the requirement that the circle needs to
be empty. In this way, we say that p, q ∈ P form
an edge of the order-k Delaunay graph provided that
there exists a circle with p and q on its boundary with
at most k points of the set P \ {p, q} inside the circle.
Note that the order-0 Delaunay graph is the standard
one.
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In [3] the authors don’t focus on the order-k Delau-
nay graph yet its edges are defined and called order-k
Delaunay edges; then they deal with the problem of
computing the set of order-k Delaunay edges which
can be completed to a triangulation such that all the
triangles have order at most k, where the order of a
triangle is defined as the number of points contained
inside its circumscribing circle. For the constrained
Delaunay triangulation, related problems are consid-
ered in [4].
It may be surprising that similar questions have

been considered some years ago for graphs related to
the Delaunay graph: In [8], properties of the order-
k Gabriel Graph (GG) are investigated and an al-
gorithm for its construction is proposed, while in [1]
it is shown that the order-20 Relative Neighborhood
Graph (RNG) is Hamiltonian.
In this paper, we concentrate mainly on the study of

some graph theoretic properties of the order-k Delau-
nay graph as well on some applications arising from
these properties.

2 Order-k Delaunay graph

Throughout this paper, unless explicitly stated other-
wise, P will be a set of points in the plane in general
position – no three points are collinear and no four
are on a circle.

Definition 1 Given two points p, q ∈ P , the order
of pq is the smallest integer k such that there exists
a circle through p and q containing in its interior k
points of P . The order-k Delaunay graph of P , de-
noted k −DG(P ), is formed by the edges with order
at most k.

We start by giving an upper bound on the number
of edges of the order-k Delaunay graph which can be
derived taking into account its relation with higher
order Voronoi diagrams [7].

Theorem 1 Let P be a set of points in general po-
sition and let |k−DG(P )| be the number of edges of
the order-k Delaunay graph. Then

|k −DG(P )| ≤ 3(k + 1)n− 3(k + 1)(k + 2)
If P is in convex position, then

|k −DG(P )| ≤ 2(k + 1)n− 3
2
(k + 1)(k + 2)
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Proof. Let bpq be the bisector of points p and q
and let Vk(P ) be the order-k Voronoi diagram of P .
Clearly, if the order of pq is k, an edge of bpq appears
for the first time in Vk+1(P ). In [2], it is shown that
the total number of connected components that ap-
pear in the set of lines {bpq | p, q ∈ P} when all Voronoi
diagrams up to order k are put together is

λk = 3kn−
3
2
k(k + 1)−

k∑
j=1

ej(P ),

where ej(P ) is the number of j-sets of P . If P is
in convex position, then

∑k
j=1 ej(S) = kn, while for

arbitrary P is known that

k∑
j=1

ej(S) ≥ 3
(
k + 1
2

)
(see [2],[6]). Therefore, the result follows from the fact
that |k −DG(P )| ≤ λk+1. �

3 Flip-graph of order-k triangulations

In this section we study the structure of the set of
triangulations that can be constructed using edges of
the order-k Delaunay graph. We say that a triangu-
lation T has order k if all its edges have order at most
k and there is some edge with order exactly k. We
recall that if a triangulation T1 has two triangles pqr
and pqs in convex position, we can get another trian-
gulation T2 by deleting the edge pq and adding the
edge rs. This operation is called a flip. In this situ-
ation, we say that the edge pq is locally Delaunay if
the circle passing through p, q and r does not contain
point s.

Definition 2 The flip-graph of triangulations with
order at most k, denoted by TGk(P ), is defined in
the following way:

1. the vertices are the triangulations of P with order
at most k,

2. two triangulations T1 and T2 are connected with
an edge in TGk(P ) if they differ in a flip.

If k = 0, TG0(P ) is a single vertex (the Delaunay
triangulation) and thus connected. In the following
theorem we answer the question of the connectedness
of these graphs.

Theorem 2

a) TG1(P ) is connected.

b) TGk(P ) can be disconnected if k ≥ 2.

c) If P is in convex position, then TGk(P ) is con-
nected for every k ≥ 0.

p q

r
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Cpq

Cpqs

Crs

R1 R2u v

Figure 1: Illustration for the proof of Theorem 2

Proof. Let T be a triangulation with order one and
let DT be the Delaunay triangulation of P . We are
going to show that if T %= DT there exists an edge of
T which is not locally Delaunay and can be flipped to
an edge with order at most one.
Let pq be an edge which is not locally Delaunay

(then, it has order one) and let rs be the edge that
we get when pq is flipped (see Figure 1). If rs has
order at most one then we have done, so assume that
rs has order at least two. Because pq is not locally
Delaunay and has order one, there exists a circle Cpq

passing through p and q and containing a single point,
which is necessarily either r or s. In the following, we
assume that Cpq contains r and, therefore, the edges
pr and qr are Delaunay edges.
Let Cpqs be the circle passing through p, q and s and

Crs the circle tangent to Cpqs at s and passing through
r. Let R1 and R2 be the regions inside Crs and outside
both of the circle Cpq and the quadrilateral prqs. It
is easy to see that each of the regions contains exactly
one point, as illustrated in Figure 1).
Let us denote by u and v, respectively, the points

inside the regions R1 and R2, and by Cprs the circle
through p, r and s. The circle Cprs contains at least
two points and no point different from u and v can
be inside it. This shows that the edge pv has order at
most one. In an analogous way, it can be seen that
the edge qu has order at most one. If the edge ps is
not locally Delaunay then we have finished because
the triangle psu is in T and we can flip the edge ps to
qu so we can assume that ps is locally Delaunay.
If triangle psu is not in T , then we can consider

the set of triangles C intersected by segment qu and
show that if p′q′s′ and p′us′ are adjacent triangles in
C then the edge p′s′ is not locally Delaunay while the
edge q′u has order zero and this concludes the proof
of part a).
In Figure 2 we show an example of a triangula-

tion with order two such that every possible flip in-
creases its order to three. Therefore, TG2(P ) is not
connected.
The proof of part c) is omitted in this extended

abstract due to space limitations. �
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Figure 2: An isolated triangulation in TG2(P )

4 Hamiltonicity of Order-k Delaunay Graph

In this section, we show that the order-15 Gabriel
Graph (GG) contains a Hamiltonian cycle. Note that
15-GG is a subgraph of the 15-DG. The key idea be-
hind the proof is the following. Given a particular
Hamiltonian cycle h through a set of n points, define
the distance sequence, ds(h) = δ1, . . . , δn to be the se-
quence of edge lengths in the cycle sorted from longest
to shortest edge. Given any two Hamiltonian cycles
x and y, we can compare lexicographically their edge
length sequences. In the following theorem we prove
that a cycle associated with an edge length sequence
which is minimum with that order has the property
that every edge belongs to 15-GG.

Theorem 3 Given a set P of n points in the plane in
general position, the graph 15-GG contains a Hamil-
tonian cycle (and hence 15-DG too).

Proof. Let H be the set of all Hamiltonian cycles
through the points of P . Let m = a0, a1, . . . , an−1

be a cycle in H with minimal distance sequence. We
will show that all of the edges of m are in 15-GG. We
proceed by contradiction.
Suppose that there are some edges inm that are not

in 15-GG. Let e = [aiai+1] be the longest edge that is
not in 15-GG (all index manipulation is modulo n).
Let B be the circle with ai and ai+1 as diameter.
Claim 1: No edge of m can be completely inside

B. Suppose there was an edge f = [aj , aj+1] inside
B. By deleting e and f from m and adding either
[ai, aj ], [ai+1, aj+1] or [ai, aj+1], [ai+1, aj ], we con-
struct a new cycle m′ whose distance sequence is
strictly smaller than that of m since d(ai, ai+1) >
max{d(ai, aj), d(ai+1, aj+1), d(ai, aj+1), d(ai+1, aj)}.
But this is a contradiction since m is a minimal
distance sequence.
Therefore, we may assume that no edge of m lies

completely inside B. Since e is not 15-GG there
must be at least w ≥ 16 points of P in B. Let
U = u1, u2, . . . , uw represent these points indexed

in the order we would encounter them on the cy-
cle starting from ai. Let S = s1, s2, . . . , sw and
T = t1, t2, . . . , tw represent the vertices where si is
the vertex preceding ui on the cycle and ti is the ver-
tex succeeding ui on the cycle.
Let D be the circle centered at ai+1 with radius 2r.
Claim 2: No point of T can be inside D. Suppose

tj ∈ T is in D, then d(tj , ai+1) < 2r. Construct a
new cycle m′ by removing the edges [uj , tj ], [ai, ai+1]
and adding the edges [ai+1, tj ], [ai, uj ]. Since the
two edges added have length strictly less than 2r,
ds(m′) < ds(m) which is a contradiction.
Let c be the midpoint of the edge [ai, ai+1]. Let C

be the circle centered at c with radius 2r and
Claim 3: There are at most 4 points of T in C.

Suppose that there are 5 points of T in C. Note that
the 5 points are in C∩D by the previous claim. How-
ever, this means that there must be two points tj , tk
such that ∠(tj , c, tk) < π/3. But this implies that
|tjtk| < 2r.
Since |T | ≥ 15, there are at least 11 points of T

outside C. Decompose the plane into 10 cones of
angle π/5 centered at c. By the pigeon-hole princi-
ple, there must be one cone with at least 2 points,
tj and tk. We note that d(tj , tk) is either less than
2r or less than max d(c, tj)− r, d(c, tk)− r (a proof
of this fact can be found in the technical report).
Construct a new cycle m′ from m by first deleting
[tj , uj ], [tk, uk], [ai, ai+1]. This results in three paths.
One of the paths must contain both ai and either tj
or tk. WLOG, suppose that ai and tj are on the
same path. Add the edges [ai, uk], [ai+1, uj ], [tj , tk].
The resulting cycle m′ has a strictly smaller dis-
tance sequence since max [tj , uj ], [tk, uk], [ai, ai+1] >
max [ai, uk], [ai+1, uj ], [tj , tk].

�

5 Coloring with Applications

Given a set of n points in the plane, Har-Peled and
Smorodinsky [5] showed how to assign one of m col-
ors to each of the n points such that every circle C
containing more than one point has at least one point
in C with a unique color. Such a coloring is called a
conflict-free coloring (CF-coloring for short). The De-
launay graph is used both in the coloring algorithm
and to show that m is O(log n). This type of coloring
finds application in the assignment of frequencies in a
cellular network.
In this section, we generalize the result in [5]. We

show that with O(log n/ log(8ck/(8ck − 1)) colors, a
set of n points in the plane can be colored so that ev-
ery circle containing at least k points contains at least
k points with unique color (where the maximum num-
ber of edges in (k − 1)-DG is ckn for some constant
c). We call such a coloring a k-conflict-free coloring.
In the context of cellular networks, this can be viewed
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as ensuring that for every client in range of k or more
towers, there always exists at least k different tow-
ers with which the client can communicate without
interference.
As noted in Theorem 1, the number of edges in

(k − 1)-DG is at most ckn where c = 3 when the
points are in general position and c = 2 when points
are in convex position. This implies that the average
degree of a vertex in (k − 1)-DG is at most 2ck and,
by using a standard argument which is omitted in this
extended abstract, it can be seen that there are always
big independent sets with bounded degree:

Lemma 4 Every (k− 1)-DG has an independent set
of size at least n/8ck where each vertex in the set has
degree at most 4ck.

The coloring algorithm is simple and repeated ap-
plies the above lemma. Find a large independent set
in the (k − 1)-DG of the given point set P . Assign
a unique color to the points in the independent set.
Remove these points from P and repeat as long as
|P | > 0. In the next lemma, we show that this algo-
rithm provides a k-conflict free coloring and the total
number of colors used is log n/ log(8ck/(8ck − 1))

Lemma 5 With log n/ log(8ck/(8ck − 1)) colors, a
set of n points can be colored so that every circle
containing at least k points contains k points whose
color is unique.

Proof. First, at each iteration, we remove an inde-
pendent set of size at least n/8ck. Let C(n) represent
the number of colors used for a (k−1)-DG graph with
n vertices. We can bound C(n) with the following
recurrence: C(n) ≤ C((8ck − 1)n/8ck) + 1. This re-
currence resolves to C(n) ≤ log n/ log(8ck/(8ck − 1))
as required.
Next, we show that the coloring is k-conflict free.

Let C be any circle containing a set P of at least
k points. Consider the k points in C whose colors
have highest value (recall that the first independent
set was given color 0 and an independent set removed
at step i was given color i). If all these k points have
unique colors, the lemma is proved. For sake of a
contradiction, assume that at least 2 of these k points
have the same color. Let i be the largest color whose
value is not unique. Note that there are fewer than k
points in P whose color value is strictly greater than
i. Also note that at iteration i of the algorithm, all
points with color less than i have been removed from
P . Let Pi be the set of points in P receiving color i.
Since C contains Pi, there is a circle C ′ contained in
C that has two points x, y of Pi on its boundary and
no points of Pi in its interior. However, since there
are fewer than k points whose color is larger than i,
this means that C ′ contains fewer than k points in its
interior at iteration i of the algorithm. However, this

contradicts the fact that x and y are in an independent
set selected at iteration i. �

Corollary 6 A set of n points in general position can
be colored with log n/ log(24k/(24k−1)) colors so that
every circle containing at least k points contains k
points whose color is unique. If the set of n points
is in convex position, then log n/(log(16k/(16k − 1))
colors are sufficient

Note that we only used the fact that there are large
numbers of vertices of bounded degree in (k − 1)-DG
in order to show that there is a sufficiently large inde-
pendent set. If one can find a larger independent set
that is guaranteed to exist in all (k − 1)-DG graphs,
then the above bounds can be improved.

6 Conclusion

In this work we have investigated some properties of
higher order Delaunay graphs. There are several ques-
tions that remain open, and we emphasize the follow-
ing:

– give some lower bound on the size of k-DG and
a tight upper bound,

– show that k-DG is Hamiltonian for small k.
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