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Abstract

I present a short tutorial and introduction to using the R package TDA, which provides
tools for Topological Data Analysis. Given data, the sailent topological features of underly-
ing space can be quantified with persistent homology. TDA package provides a function for
the persistent homology of the Rips filtration, and a function for the persistent homology
of sublevel sets (or superlevel sets) of arbitrary functions evaluated over a grid of points.
Some common choice of functions for the latter case, such as the distance function, the
distance to a measure, the kNN density estimator, the kernel density estimator, and the
kernel distance, are implemented in the TDA package. The R package TDA also provides a
function for computing the confidence band that determines significance of the features in
the resulting persistence diagrams.

Keywords: Topological Data Analysis, Persistent Homology.

1. Introduction

R(http://cran.r-project.org/) is a programming language for statistical computing and
graphics.

R has several good properties: R has many packages for statistical computing. Also, R is easy
to make (interactive) plots. R is a script language, and it is easy to use. But, R is slow. C or
C++ stands on the opposite end: C or C++ also has many packages(or libraries). But, C or
C++ is difficult to make plots. C or C++ is a compiler language, and is difficult to use. But, C
or C++ is fast. In short, R has short development time but long execution time, and C or C++
has long development time but short execution time.

Several libraries are developed for Topological Data Analysis: for example, GUDHI(?)(https:
//project.inria.fr/gudhi/software/), Dionysus(?)(http://www.mrzv.org/software/dionysus/),
and PHAT(?)(https://code.google.com/p/phat/). They are all written in C++, since Topo-
logical Data Analysis is computationally heavy and R is not fast enough.

R package TDA(http://cran.r-project.org/web/packages/TDA/index.html) bridges be-
tween C++ libraries(GUDHI, Dionysus, PHAT) and R. TDA package provides an R interface
for the efficient algorithms of the C++ libraries GUDHI, Dionysus and PHAT. So by using
TDA package, short development time and short execution time can be both achieved.

R package TDA provides tools for Topological Data Analysis. You can compute several different
things with TDA package: you can compute common distance functions and density estimators,
the persistent homology of the Rips filtration, the persistent homology of sublevel sets of a
function over a grid, the confidence band for the persistence diagram, and the cluster density
trees for density clustering.

2. Setting up

Obviously, you should download R first. R of version at least 3.1.0 is recommended:

http://cran.r-project.org/
https://project.inria.fr/gudhi/software/
https://project.inria.fr/gudhi/software/
http://www.mrzv.org/software/dionysus/
https://code.google.com/p/phat/
http://cran.r-project.org/web/packages/TDA/index.html
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http://cran.r-project.org/bin/windows/base/ (for Windows)

http://cran.r-project.org/bin/macosx/ (for (Mac) OS X)

R is part of many Linux distributions, so you should check with your Linux package management
system.

You can use whatever IDE that you would like to use(Rstudio, Eclipse, Emacs, Vim...). R itself
also provides basic GUI or CUI. I personally use Rstudio:

http://www.rstudio.com/products/rstudio/download/

Before installing R package TDA, Four packages are needed to be installed: parallel, FNN,
igraph, and scales. parallel is included when you install R, so you need to install FNN, igraph,
and scales by yourself. You can install them by following code (or pushing ’Install R packages’
button if you use Rstudio).

##########################################################################

# installing required packages

##########################################################################

if (!require(package = "FNN")) {

install.packages(pkgs = "FNN")

}

if (!require(package = "igraph")) {

install.packages(pkgs = "igraph")

}

if (!require(package = "scales")) {

install.packages(pkgs = "scales")

}

if (!require(package = "TDA")) {

install.packages(pkgs = "TDA")

}

After that, you can install R package TDA as in the following code (or pushing ’Install R
packages’ button if you use Rstudio).

##########################################################################

# installing R package TDA

##########################################################################

if (!require(package = "TDA")) {

install.packages(pkgs = "TDA")

}

Once installation is done, R package TDA should be loaded as in the following code, before
using the package functions.

##########################################################################

# loading R package TDA

##########################################################################

library(package = "TDA")

http://cran.r-project.org/bin/windows/base/
http://cran.r-project.org/bin/macosx/
http://www.rstudio.com/products/rstudio/download/
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3. Sample on manifolds, Distance Functions, and Density Estimators

3.1. Uniform Sample on manifolds

A set of n points X = {x1, . . . , xn} ⊂ Rd has been sampled from some distribution P .

• n sample from the uniform distribution on the circle in R2 with radius r.

##########################################################################

# uniform sample on the circle

##########################################################################

circleSample <- circleUnif(n = 400, r = 1)

plot(circleSample)
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• n sample from the uniform distribution on the sphere Sd in Rd+1 with radius r.

##########################################################################

# uniform sample on the sphere

##########################################################################

sphereSample <- sphereUnif(n = 10000, d = 2, r = 1)

if (!require(package = "rgl")) {

install.packages(pkgs = "rgl")

}

library(rgl)

plot3d(sphereSample)

• n sample from the uniform distribution on the torus in R3 with small radius a and large
radius b.

##########################################################################

# uniform sample on the torus

##########################################################################
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torusSample <- torusUnif(n = 10000, a = 1.8, c = 5)

if (!require(package = "rgl")) {

install.packages(pkgs = "rgl")

}

library(rgl)

plot3d(torusSample)

3.2. Distance Functions, and Density Estimators

We compute distance functions and density estimators over a grid of points. Suppose a set of
points X = {x1, . . . , xn} ⊂ Rd has been sampled from some distribution P . The following code
generates a sample of 400 points from the unit circle and constructs a grid of points over which
we will evaluate the functions.

##########################################################################

# uniform sample on the circle, and grid of points

##########################################################################

X <- circleUnif(n = 400, r = 1)

Xlim <- c(-1.6, 1.6)

Ylim <- c(-1.7, 1.7)

by <- 0.065

Xseq <- seq(from = Xlim[1], to = Xlim[2], by = by)

Yseq <- seq(from = Ylim[1], to = Ylim[2], by = by)

Grid <- expand.grid(Xseq, Yseq)

• The distance function is defined for each y ∈ Rd as ∆(y) = infx∈X ‖x− y‖2.

##########################################################################

# distance function

##########################################################################

distance <- distFct(X = X, Grid = Grid)

par(mfrow = c(1,2))

plot(X, xlab = "", ylab = "", main = "Sample X")

persp(x = Xseq, y = Yseq,

z = matrix(distance, nrow = length(Xseq), ncol = length(Yseq)),

xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,

expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.5,

main = "Distance Function")
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Sample X Distance Function

• Given a probability measure P , the distance to measure (DTM) is defined for each y ∈ Rd

as

dm0(y) =

√
1

m0

∫ m0

0
(G−1y (u))2du,

where Gy(t) = P (‖X − y‖ ≤ t) and 0 < m0 < 1 is a smoothing parameter. The DTM can
be seen as a smoothed version of the distance function. For more details see ?.

Given X = {x1, . . . , xn}, the empirical version of the DTM is

d̂m0(y) =

√√√√1

k

∑
xi∈Nk(y)

‖xi − y‖2,

where k = dm0ne and Nk(y) is the set containing the k nearest neighbors of y among
x1, . . . , xn.

##########################################################################

# distance to measure

##########################################################################

m0 <- 0.1

DTM <- dtm(X = X, Grid = Grid, m0 = m0)

par(mfrow = c(1,2))

plot(X, xlab = "", ylab = "", main = "Sample X")

persp(x = Xseq, y = Yseq,

z = matrix(DTM, nrow = length(Xseq), ncol = length(Yseq)),

xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,

expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.5,

main = "DTM")
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Sample X DTM

• The k Nearest Neighbor density estimator, for each y ∈ Rd, is defined as

δ̂k(y) =
k

n vd r
d
k(y)

,

where vn is the volume of the Euclidean d dimensional unit ball and rdk(x) is the Euclidean
distance form point x to its kth closest neighbor among the points of X.

##########################################################################

# k nearest neighbor density estimator

##########################################################################

k <- 60

kNN <- knnDE(X = X, Grid = Grid, k = k)

par(mfrow = c(1,2))

plot(X, xlab = "", ylab = "", main = "Sample X")

persp(x = Xseq, y = Yseq,

z = matrix(kNN, nrow = length(Xseq), ncol = length(Yseq)),

xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,

expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.5,

main = "kNN")
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Sample X kNN

• The Gaussian Kernel Density Estimator (KDE), for each y ∈ Rd, is defined as

p̂h(y) =
1

n(
√

2πh)d

n∑
i=1

exp

(
−‖y − xi‖22

2h2

)
.

where h is a smoothing parameter.

##########################################################################

# kernel density estimator

##########################################################################

h <- 0.3

KDE <- kde(X = X, Grid = Grid, h = h)

par(mfrow = c(1,2))

plot(X, xlab = "", ylab = "", main = "Sample X")

persp(x = Xseq, y = Yseq,

z = matrix(kNN, nrow = length(Xseq), ncol = length(Yseq)),

xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,

expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.5,

main = "KDE")
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• The Kernel distance estimator, for each y ∈ Rd, is defined as

κ̂h(y) =

√√√√ 1

n2

n∑
i=1

n∑
j=1

Kh(xi, xj) +Kh(y, y)− 2
1

n

n∑
i=1

Kh(y, xi),

where Kh(x, y) = exp
(
−‖x−y‖22

2h2

)
is the Gaussian Kernel with smoothing parameter h.

##########################################################################

# kernel distance

##########################################################################

h <- 0.3

Kdist <- kernelDist(X = X, Grid = Grid, h = h)

par(mfrow = c(1,2))

plot(X, xlab = "", ylab = "", main = "Sample X")

persp(x = Xseq, y = Yseq,

z = matrix(Kdist, nrow = length(Xseq), ncol = length(Yseq)),

xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,

expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.5,

main = "Kernel Distance")
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4. Persistent Homology

4.1. Persistent Homology Over a Grid

gridDiag function computes the persistent homology of sublevel (and superlevel) sets of the
functions. The function gridDiag evaluates a given real valued function over a triangulated
grid (in arbitrary dimension), constructs a filtration of simplices using the values of the func-
tion, and computes the persistent homology of the filtration. The user can choose to compute
persistence diagrams using either the Dionysus library (library = "Dionysus") or the PHAT
library (library = "PHAT") .

The following code computes the persistent homology of the superlevel sets
(sublevel = FALSE) of the kernel density estimator (FUN = kde, h = 0.3) using the point
cloud stored in the matrix X from the previous example. The other inputs are the features of
the grid over which the kde is evaluated (lim and by), and a logical variable that indicates
whether a progress bar should be printed (printProgress).

##########################################################################

# persistent homology of a function over a grid

##########################################################################

Diag <- gridDiag(X = X, FUN = kde, lim = cbind(Xlim, Ylim), by = by,

sublevel = FALSE, library = "Dionysus", printProgress = FALSE, h = 0.3)

The function plot plots persistence diagram for objects of the class "diagram". 8th line of the
following command produces the third of the following plot.

##########################################################################

# plotting persistence diagram

##########################################################################

par(mfrow = c(1,3))

plot(X, main = "Sample X")

persp(x = Xseq, y = Yseq,
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z = matrix(KDE, nrow = length(Xseq), ncol = length(Yseq)),

xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,

expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.9,

main = "KDE")

plot(x = Diag[["diagram"]], main = "KDE Diagram")
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The function plot for the class "diagram" provide the options of rotating the diagram (rotated
= TRUE), drawing the barcode in place of the diagram (barcode = TRUE).

##########################################################################

# other options for plotting persistence diagram

##########################################################################

par(mfrow = c(1,3))

plot(Diag[["diagram"]], main = "KDE Diagram")

plot(Diag[["diagram"]], rotated = TRUE, main = "Rotated Diagram")

plot(Diag[["diagram"]], barcode = TRUE, main = "Barcode")
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4.2. Rips Diagrams

The Vietoris-Rips complex R(X, ε) consists of simplices with vertices in
X = {x1, . . . , xn} ⊂ Rd and diameter at most ε. The ripsDiag function computes the per-
sistence diagram of the Rips filtration built on top of a point cloud. The user can choose
to compute the Rips persistence diagram using either the C++ library GUDHI (library =

"GUDHI") , or Dionysus (library = "Dionysus") .

The following code generates 60 points from two circles, as in the following figure:
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##########################################################################

# generating samples from two circles

##########################################################################

Circle1 <- circleUnif(n = 60)

Circle2 <- circleUnif(n = 60, r = 2) + 3

Circles <- rbind(Circle1, Circle2)

plot(Circles, xlab="", ylab="")
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We specify the limit of the Rips filtration(maxscale = 5) and the max dimension(maxdimension
= 1) of the homological features we are interested in (0 for components, 1 for loops, 2 for voids,
etc.). Then we plot the data and the diagram.

##########################################################################

# Rips persistence diagram

##########################################################################

Diag <- ripsDiag(X = Circles, maxdimension = 1, maxscale = 5,

library = "GUDHI", printProgress = FALSE)

par(mfrow=c(1,2))

plot(Circles, xlab="", ylab="")

plot(Diag[["diagram"]])
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4.3. Bottleneck and Wasserstein Distances

Diag1 <- ripsDiag(X = Circle1, maxdimension = 1, maxscale = 5)

Diag2 <- ripsDiag(X = Circle2, maxdimension = 1, maxscale = 5)

print(bottleneck(Diag1 = Diag1[["diagram"]], Diag2 = Diag2[["diagram"]],

dimension = 1))

## [1] 1.175885

print(wasserstein(Diag1 = Diag1[["diagram"]], Diag2 = Diag2[["diagram"]],

p = 2, dimension = 1))

## [1] 1.764362

4.4. Landscapes and Silhouettes
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tseq <- seq(from = 0, to = 5, length = 1000) #domain

Land <- landscape(Diag = Diag[["diagram"]], dimension = 1, KK = 1, tseq = tseq)

plot(tseq, Land, type = "l", main = "1st Landscape, dim=1", ylab = "", asp = 1,

col = "red", lwd = 3)
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1st Landscape, dim=1

tseq

tseq <- seq(from = 0, to = 5, length = 1000) #domain

Sil <- silhouette(Diag = Diag[["diagram"]], p = 1, dimension = 1, tseq = tseq)

plot(tseq, Sil, type = "l", main="Silhouette (p=1), dim=1", ylab = "", asp = 1,

col = "red", lwd = 3)
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tseq
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