How depends the future on the past?

Kees van Hee

Agenda
• A brief history of Wil and Kees
• Excursions in Petri nets
• Big data and the future

“Nothing is forever” 1984 – 2018
Developments in Computer Science / Data Science
Brief history of the early days
Brief history of the early days

- Wil and I started both at TU/e in 1984
Wil and I started both at TU/e in 1984
Wil as freshman, I as ‘fresh’ professor
Brief history of the early days

- Wil and I started both at TU/e in 1984
- Wil as freshman, I as ‘fresh’ professor
- I worked before 6 years in a consultancy firm building decision support systems
Brief history of the early days

• Wil and I started both at TU/e in 1984
• Wil as freshman, I as ‘fresh’ professor
• I worked before 6 years in a consultancy firm building decision support systems
• Information Systems Group was founded:

“Nothing is forever” 1984 – 2018
Developments in Computer Science / Data Science
Brief history of the early days

- Wil and I started both at TU/e in 1984
- Wil as freshman, I as ‘fresh’ professor
- I worked before 6 years in a consultancy firm building *decision support systems*
- Information Systems Group was founded:
 1. Databases
Brief history of the early days

• Wil and I started both at TU/e in 1984
• Wil as freshman, I as ‘fresh’ professor
• I worked before 6 years in a consultancy firm building decision support systems
• Information Systems Group was founded:
 1. Databases
 2. Specification of dynamic systems

“Nothing is forever” 1984 – 2018
Developments in Computer Science / Data Science
Brief history of the early days

• Wil and I started both at TU/e in 1984
• Wil as freshman, I as ‘fresh’ professor
• I worked before 6 years in a consultancy firm building decision support systems
• Information Systems Group was founded:
 1. Databases
 2. Specification of dynamic systems
 3. Intelligent information systems

“Nothing is forever” 1984 – 2018
Developments in Computer Science / Data Science
Wil and I started both at TU/e in 1984
Wil as freshman, I as ‘fresh’ professor
I worked before 6 years in a consultancy firm building decision support systems
Information Systems Group was founded:
1. Databases
2. Specification of dynamic systems
3. Intelligent information systems
Wil started his master thesis project in 1987: ExSpect (late Marc Voorhoeve)
• Wil and I started both at TU/e in 1984
• Wil as freshman, I as ‘fresh’ professor
• I worked before 6 years in a consultancy firm building decision support systems
• Information Systems Group was founded:
 1. Databases
 2. Specification of dynamic systems
 3. Intelligent information systems
• Wil started his master thesis project in 1987: ExSpect (late Marc Voorhoeve)
• Idea: *transform methods in tools* such that practitioners can use the tools without knowing all the details
TNO paid us in 1988 for the tool development:
2 PhD’s: Wil and Arno
Instead of teaching they had a programming task
I asked Jaap Wessels, my own promotor
to co-supervise Wil

PhD in 1992
Assistant prof 1992
Associate prof 1996
Wil in other departments
I was in industry 1994-2004

My chair 2006-2018

Parttime excursion to Bakkenist Management Consultants 1993-1998

"Nothing is forever" 1984 – 2018
Developments in Computer Science / Data Science
Excursions in Petri nets
• Our goal was to develop methods to specify and simulate complex information systems by models
• Our goal was to develop methods to specify and simulate complex information systems by models
• Today this is called model-driven architecture
• Our goal was to develop methods to specify and simulate complex information systems by models
• Today this is called model-driven architecture
• We developed our own model of concurrent processes, concepts as action, datastore and function
Our goal was to develop methods to specify and simulate complex information systems by models.
Today this is called model-driven architecture.
We developed our own model of concurrent processes, concepts as action, datastore and function.
We developed our own functional language to define functions.
• Our goal was to develop methods to specify and simulate complex information systems by models.
• Today this is called model-driven architecture.
• We developed our own model of concurrent processes, concepts as *action*, *datastore*, and *function*.
• We developed our own functional language to define functions.
• Then we discovered that the formalism was almost identical to colored Petri nets (1988).
Our goal was to develop methods to specify and simulate complex information systems by models.
Today this is called model-driven architecture.
We developed our own model of concurrent processes, concepts as action, datastore and function.
We developed our own functional language to define functions.
Then we discovered that the formalism was almost identical to colored Petri nets (1988).
So we joined the Petri nets community.
Our goal was to develop methods to specify and simulate complex information systems by models
Today this is called model-driven architecture
We developed our own model of concurrent processes, concepts as action, datastore and function
We developed our own functional language to define functions
Then we discovered that the formalism was almost identical to colored Petri nets (1988)
So we joined the Petri nets community
ExSpect became the competitor of CPN-tools
Workflow management systems were discovered as a new component of information systems (like the dbms)

- Petri nets were the right tool to model them: workflow nets

Wil’s tool: YAWL
Soundness

Wil’s tool: WOFLAN
• 1996 Wil came to me to tell that he solved the problem I had given to Arno in 1988: “How to determine if a process (later workflow) will properly end?”

Wil’s tool: WOFLAN

Soundness
1996 Wil came to me to tell that he solved the problem I had given to Arno in 1988: “How to determine if a process (later workflow) will properly end?”

Wil called the property soundness

Wil’s tool: WOFLAN

Soundness
• 1996 Wil came to me to tell that he solved the problem I had given to Arno in 1988: “How to determine if a process (later workflow) will properly end?”
• Wil called the property soundness
• Soundness is difficult property AGF in CTL (a very new development then)

Wil’s tool: WOFLAN
• 1996 Wil came to me to tell that he solved the problem I had given to Arno in 1988: “How to determine if a process (later workflow) will properly end?”
• Wil called the property soundness
• Soundness is difficult property AGEF in CTL (a very new development then)
• Later when I returned to the university soundness became a hot topic for me: soundness-by-construction
Process Mining

Wil’s tool: PROM

“Nothing is forever” 1984 – 2018
Developments in Computer Science / Data Science
• In 2002 Wil told about his new activity: *discovery of process models from log data*
In 2002 Wil told about his new activity: *discovery of process models from log data*

I told him that in my days there was not enough data to fit models, so certainly not to discover them!
• In 2002 Wil told about his new activity: *discovery of process models from log data*
• I told him that in my days there was not enough data to fit models, so certainly not to discover them!
• Also in this field Wil inspired me to do some research
• In 2002 Wil told about his new activity: *discovery of process models from log data*
• I told him that in my days there was not enough data to fit models, so certainly not to discover them!
• Also in this field Wil inspired me to do some research
• So in the beginning I inspired Wil and later he me in doing strange things!

Wil’s tool: PROM
• In 2002 Wil told about his new activity: *discovery of process models from log data*
• I told him that in my days there was not enough data to fit models, so certainly not to discover them!
• Also in this field Wil inspired me to do some research
• So in the beginning I inspired Wil and later he me in doing strange things!

Wil’s tool: PROM
How depends the future on the past?

Big Data!
How depends the future on the past?

Big Data!

• ‘The best predictor of future behavior is past behavior’ (Th.Roosevelt, Mark Twain,...)
How depends the future on the past?

Big Data!

• ‘The best predictor of future behavior is past behavior’ (Th. Roosevelt, Mark Twain, ...)
• The past is all we have!
How depends the future on the past?

Big Data!

- ‘The best predictor of future behavior is past behavior’ (Th.Roosevelt, Mark Twain,...)
- The past is all we have!
- Today we monitor everything: Big Data
How depends the future on the past?

Big Data!

• ‘The best predictor of future behavior is past behavior’ (Th. Roosevelt, Mark Twain, …)
• The past is all we have!
• Today we monitor everything: Big Data
• Selecting the relevant data is a Big Problem
How depends the future on the past?

Big Data!

• ‘The best predictor of future behavior is past behavior’ (Th.Roosevelt, Mark Twain,...)
• The past is all we have!
• Today we monitor everything: Big Data
• Selecting the relevant data is a Big Problem
• Certainly good for reconstruction of the past
How depends the future on the past?

Big Data!

• ‘The best predictor of future behavior is past behavior’ (Th.Roosevelt, Mark Twain,...)
• The past is all we have!
• Today we monitor everything: Big Data
• Selecting the relevant data is a Big Problem
• Certainly good for reconstruction of the past
• But does it help in prediction?

"Nothing is forever" 1984 – 2018
Developments in Computer Science / Data Science
How depends the future on the past?

Big Data!

• ‘The best predictor of future behavior is past behavior’ (Th.Roosevelt, Mark Twain, ...)
• The past is all we have!
• Today we monitor everything: Big Data
• Selecting the relevant data is a Big Problem
• Certainly good for reconstruction of the past
• But does it help in prediction?
• If we know all data of all roulette tables of the last century, we can not make a better prediction of the outcome!
How depends the future on the past?

Big Data!
If Nature is deterministic, the past determines the future completely.
But if processes are chaotic there is never enough data to predict exactly.
How depends the future on the past?

Big Data!

• If Nature is deterministic, the past determines the future completely
• But if processes are chaotic there is never enough data to predict exactly
• If it is non-deterministic we may only predict possibilities or distributions
How depends the future on the past?

Big Data!

• If Nature is *deterministic*, the past determines the future completely
• But if processes are *chaotic* there is never enough data to predict exactly
• If it is *non-deterministic* we may only predict possibilities or distributions
• If the state of Nature state can be represented by an arbitrary real number, we can only find a *computable* number

"Nothing is forever" 1984 – 2018
Developments in Computer Science / Data Science
If Nature is deterministic, the past determines the future completely.
But if processes are chaotic there is never enough data to predict exactly.
If it is non-deterministic we may only predict possibilities or distributions.
If the state of Nature state can be represented by an arbitrary real number, we can only find a computable number.
So we can not predict everything.
How depends the future on the past?

Big Data!

- If Nature is *deterministic*, the past determines the future completely
- But if processes are *chaotic* there is never enough data to predict exactly
- If it is *non-deterministic* we may only predict possibilities or distributions
- If the state of Nature state can be represented by an arbitrary real number, we can only find a *computable* number
- So we can not predict everything
- Like the uncertainty relations of Heisenberg for quantum mechanics
• If Nature is *deterministic*, the past determines the future completely
• But if processes are *chaotic* there is never enough data to predict exactly
• If it is *non-deterministic* we may only predict possibilities or distributions
• If the state of Nature state can be represented by an arbitrary real number, we can only find a *computable* number
• So we can not predict everything
• Like the uncertainty relations of Heisenberg for quantum mechanics
• So I end with a question: *Is there a fundamental limit for predictability?*