
Technische Hogeschool, Eindhoven

Department of Mathematics

N o t i t i e 22, 1 1 May 1971,

AUT-SL, a s i n g l e l i n e ve r s ion of AUTOMATH

by N.G. de Brui jn.

I . I n t roduc t ion

We can w r i t e AUTOMATN i n a form a s s tud ied by M r . R. Nederpelt (C21),

c a l l e d A-AUTOMATH. This amounts t o abo l i sh ing block openers and i n d i c a t o r

s t r i n g s , w r i t i n g every th ing i n the form of a b s t r a c t i o n s ; some of t h e s e

a b s t r a c t i o n s a r e no t n e c e s s a r i l y l i g i t i m a t e i n AUTOMATH i t s e l f . Moreover,

express ions l i k e b (C L) a r e rep laced by th ings l i k e {ZS}IL2}{~1} B , 1 ' Z2' 3
where B i s n o t t h e same a s b, bu t r e l a t e d t o B by means of obvious abs t r ac t -

ions.

We can go f u r t h e r a long t h i s l i n e : F i r s t we can abo l i sh a l l d e f i n i t i o n s ,

i . e . a l l l e t t e r s expressed by means of a middle o t h e r than PN o r EB. A next

s t e p i s t o abo l i sh PN's: Being under t he r e i g n of a given axiom can be in-

t e r p r e t e d a s l i v i n g i n a block where the axiom i s a block opener. For

example, t h e book fol lowing

bool := PN

b := -
TRUE := PN

can be compared wi th a

type

bool

book preceded by t h e q u a n t i f i e r s t r i n g

Cbool ,typelCtrue,Cx,boolJtypel. (2 1

The l a t t e r seems t o be , i n some sense , s t r o n g e r than (1) . The form

(2) has t h e fol lowing f e a t u r e : I f we have some model f o r (1) (i , e . a type

B and a mapping T a t t a c h i n g a category t o every ob jec t wi th category & I ,
then the r e s t of t h e book can be appl ied t o t h a t model j u s t by s u b s t i t u t i o n .

I n t he form (I) , however, such conclusions can only be made metarnathematic-

a l l y : every proof of t h e book fol lowing (I) can be r e w r i t t e n , by t r i v i a l

t r a n s l a t i o n , as a proof of a s tatement about such a model.

Since we a r e abo l i sh ing a l l d e f i n i t i o n s , o r , what i s t h e same th ing ,

abo l i sh ing a l l abb rev ia t ions , any i n t e r e s t i n g l i n e of an AUTOMATH book can

now be w r i t t e n and read independently of t he preceding book: a l l necessary

informat ion i s t o be condensed i n t h a t l i n e .

There i s a f u r t h e r ex tens ion , t o be explained now. I n AUTOMATB we

I?ar(w f-lire l i n d a of express ions . F i r s t , t he re i s a s i n g l e I-exp'atessi.cn,

viz. the expression "type". (In AUT-QE, an extension of AUTOMATH, we have

also I-expressions like Cx,natlCy,boolltype.) Next there are 2-expressions,

as C in a line like

a := C type.

Finally, we have 3 expressions like O in

a := c type
b t= 0 C .

But we do - not admit, in AUTOMATH, 4-expressions like I' in

In AUT-SL, there is no such restriction. In ALT-SL, we write quantifier

strings like

Ca,typelCb,alCc,blCd,cl

corresponding to

There a r e two aspects in which AUT-SL deviates from AUTOMATH. First we

do not consider n-conversion in AUT-SL. That is, we do not admit reduction

of Cx,A]Ix)f to f (if x is not free in f). It would not be hard, however,

to modify AUT-SL such as to admit rrconversion. A second difference seems

to be more serious. In AUTOMATH we have the following. If the book contains

we may write

.. . := Ct,Alq(t) type* (3)

In AUT-QE, however, we may write (3) as well as (4) :

In AUT-SL we are more strict: we allow (4) but we forbid (3). This

convention makes the language somewhat simpler. It seems to be a good

strategy to study this simpler case in every detail before returning to

AUTOMATH.

We shall define AUT-SL by means of a program that checks the correct-

ness of an AUT-SL line. The program produces the "normal form" of a given

expression, and it produces, if possible, the category of that expression.

It either accepts or rejects: it can be shown that the program will never

run indefinitely. The proof of this termination property will be given

with the aid of a norm, i.e. a positive integer attached, in a particular

way, to each accepted expression. The definition of that norm is also given

in the program. This norm has been derived by simplification of a norm

suggested by Mr. Nederpelt (his norm is not a number, but an expression).

2. The syntax of AUT-SL

The syntax is very simple. We have two sets of symbols: "dummies" and

"signs". The set of dummies is infinite; they are different from the signs.

The signs are given by

<sign, : : = , I C I 1 1 (1 1 I type
We can now define "expressions", "quantifier strings" and "expression tails"

recursively:

<expression, ::= <quantifier string><expression tail>

quantifier string> ::= I C <dummy>, <expression>l<quantif ier string>
<expression tail> : := type 1 <dummy' [{<expression> }<expression>

Our program will attach a normal form to any expression it finds

acceptable. These normal forms are "normal expressions"; their syntax is

given by

<normal expr> ::= <normal quant str><normal expr tail>

<normal quant s tr> : : = I~<dumm~>,<normal expr>l<normal quant str>

<normal expr tail> : := type I <dmmy>) (<normal expr>l<normal expr tail>
The consequence is that in normal expressio~w the "1'' is never immediate-

l y f o ' k m e d 5y a "[".

The handling of dummies (i. e. the answer to the quescion of 'which

occurrences of a d-y are bound by which quantifiers) is as explained

in CII, with the simplification that parentheses "(" , ' I) " do not occur.

3. An example

Assume we offer the following expression to the program:

then this is taken in as Z. The action of the program produces as the

normal form, to be called Z 1 '

Moreover it produces k = 2, i.e. it says that Z and Z are 2-expressions.
1

And the program produces the category of Z, viz. Z2 :

As the norm it presents the value m = 7. We devote a few words to its

background: Every dummy has a category: viz. in Z the dummy "nonempty" has

the category "Cksi,typelbool". Moreover, we have the difference between

binding occurrences of a dummy (i.e. occurrences followed by a comma) and

bound occurrences (i.e. all other occurrences).

Mr. Nederpelt's norm is obtained roughly as follows: replace the bound

occurrences of dummies by their categories. Carry this on until no further

bound occurrences of dummies are left. In this way our expression Z gives

rise to

Next we start cancelling parts like iA)Cx,BI. So {type)Cx,typeltype

reduces to type. Actually all braces (1 can be removed this way: the fact
that this can be done is a consequence of the acceptability of Z. What

remains is

Cbool,typelCtrue,Cx,typeltypelCnonempty,Cksi,typeltypel~a,typeltype

and that is essentially Mr. Nederpelt's norm. It is - not an acceptable

expression itself.

The simpler norm m we shall work with, is just the number of occurrences

of type in Mr. Nederpelt's norm. There are 7 of them, so m = 7.

4. The program

The program is written in ALGOL 60, with some trivial extensions. It

uses words like "expression". "quantifier string" in the same way as ordin-

ary ALGOL 60 uses words like integer and - real. There is an input statement

Z := read by which the given expression is fed into the program, and there

are output statements like print (ZI) which produces the actual expression

that was denoted by ZI, just like print (k) produces the actual number that

was denoted by k.

The program uses the following equality of expressions : A E B means

that the expressions A and B can be transformed into each other by means

of a-conversion, i.e. just by the very unessential process of changing

names of dummies (provided that name changing is not done so clumsily that

the relation between a bound occurrence and the binding occurrence of a

dunnny is disturbed).

The program contains the statements

create new dunnny s ' ; D1:= subst(s := s', D)

which have the following meaning. First, s' is a dummy that has not been

used before in the expressions occurring in the program. The second state-

ment means that D' gets as its value the expression we obtain from D if we

replace every occurrence of s by s ' .

In our syntax an empty string was presented by the simple procedure of

writing nothing at all. Since this is not always very clear, we shall write

$I for the empty string.

The program contains clauses like "if X starts with [I1, which are not
ALGOL but cannot be easily misunderstood. And it contains things like

"write X = Cu,Y1Z1'. It means: we know at this stage that X has the form

[. . . , . . . I . . . ; now give u,Y,Z the (uniquely determined) values such that

indeed X = Cu,YJZ.

The reader will notice that the execution of the program causes quite

some duplication of work. Having to choose between simpler program and

shorter execution, we preferred the former.

begin procedure check (Q, X, X I , X2 , k, m); va lue Q, X;

q u a n t i f i e r s t r i n g Q ; express ion X, X I , X2; i n t e g e r k , m;

begin i f X i s a dummy then

begin dummy y ; q u a n t i f i e r s t r i n g Q I ' ' express ion A, A , , A2 ; inteRer ka;

i f Q - + then goto wrong; w r i t e Q Z Q,CY,A]; - -
i f y $ X then check (Q1, X, X I , X2 , k , m) - -
e l s e begin check (Q], A, A], A2, ka, m); -

X y X ; X :=A ' k:=k + I
2 1 ' a

end -
end

e l s e i f X r type --
e l s e i f X s t a r t s --

begin dummy

write

check

check

then begin k := l ; X I : = type; m:=l -
with C - then

U; express ion Y , Y 1 , Y2 , Z , Z I , Z 2 ; i n t e g e r

X = Cu,YIZ;

(4, y , Y * , Y2 ' ky' my);

(QCU,YI, z , z , , Z2 , k , m); m:=m +m ' z Y z'
X,:=Cu,Y I2 . i f k > 1 then X2:-Cu,Y IZ 1 1 ' - - 1 2

end -
e l s e i f X s t a r t s wi th (then --

begin express ion Y, 5, y2, z , z I , z2, w l , w2;
i n t e e r k , kZ, kw, m m Z y mw;
- Y Y'
w r i t e X E (~ 1 2 ;

check (Q, Y , YI, Y 2 , ky, my); if k = I then wrong;
Y -

check (Q, Z , Z I , Z 2 , kZ , mk); if Z 1 E type then goto wrong;

i f k > I then check (Q, { Y ~ ~ Z ~ , W I , W 2 , kw, mW)i - z -
i f Z s t a r t s w i th C then - 1 -

begin dummy u; express ion V, R;

w r i t e Z 1 ?Cu,VIR; - i f V$Y2 then goto wrong;

i f (~ = t y ~ e) v (R i s a dunrmy # u) -
then check (Q, R, X I , X 2 , k , m) -

e l s e i f Rru then begin X :=Y . X2:=Y2; -- - 1 I '

e l s e i f R s t a r t s wi th { then --
begin express ion C, D; w r i t e R:(ClD;

check(Q, l IYI lCu,VICl{YI lCu,VID,XI ,X2,k,m)

e l s e i f R s t a r t s wi th C then --
begin dummy s ; express ion C , D, Dl;

w r i t e RzCs , C l D ;

c r e a t e new .dunmy s ' ;

e l s e g o t o wrong; -

else begin XI:=IY,)Zl; -
i f kZ=l - then goto wrong; x2 := w2;

e l s e goto wrong -
end procedure check; -

program:

express ion E, E l , E2 ; i n t e g e r k , m; E := read;

check (4 , E, E l , E2, k, d;
p r i n t (E l) ; p r inh (k) ; p r in t (m) ; if k > 1 - then p r i n t (E2) ;

goto end;

wrong : p r i n t ({ t h e given express ion i s no t acceptab le i) ;
end :

end

5. Termination of t he program

The program e i t h e r accepts of r e j e c t s : i t does n o t run forever . We

s h a l l ske tch a proof f o r t h i s s ta tement .

Let us look a t the most c r u c i a l p a r t of t h e program. It i s about

l Y I I Z I where Z l = CU,VIICID. Since Z i s i n normal form, we have
1

ICID = {CnIICn-I l . . . ICIIv (with C = C). Since C ... , C a r e a l l "simpler" n 1 n
than Z l , we may assume t h a t

*
can be reduced t o normal form Ci , f o r i = I , ..., n. Now i f v # u, t h e

normal form of {Y 3 Z 1 i s obtained. I f v = u, we g e t 1

which i s n o t n e c e s s a r i l y normal. Assume

The danger a r i s e s t h a t w i s equal t o one of x l , ... ,x where L = min(k,n).
R ,

This means t h a t a t a f u r t h e r s t a g e i n t he program t h e w w i l l be replaced
*

by on2 of t he Ci , s o t h a t we s t i l l have no normal form a s y e t . I n order
*

t o cope wi th t h i s d i f f i c u l t y , we remark t h a t t h e norm of t h i s Ci i s l e s s
*

than the norm of Y The argument i s t h a t t h i s norm of Ci equals t h e I *
norm of A.(the norm of A. i s unaf fec ted by the s u b s t i t u t i o n s t h a t have taken

1 1 * *
p lace i n t he meantime: x l := C 1 , xi := C. ,...). And the norm of Ai i s

1

obviously l e s s than the norm of Y
1 '

The f e a t u r e we j u s t descr ibed , makes i t p o s s i b l e t o ca r ry out induct ion

wi th r e spec t t o t he norm of Y ' w e assume t h a t t h e program te rmina tes f o r 1 '
a l l CY IZ i f t h e norm of Y I i s < N (YI and Z i n normal form); next we

I I I
t ake a Y wi th norm N and we assume t h a t t he program te rmina tes wi th {Y I Z

1 1 1
f o r a l l Z wi th l e s s than M symbols. Having assumed t h i s , we can dea l with

I
t h e case wi th Y of norm N and Z with M symbols i n t h e way we descr ibed

I 1
above.

This arrangement of t he proof i s p a r t l y due t o M r . L.S. van Benthem

J u t t i n g , working on ideas proposed by M r . L.E. Fleischhacker .

6 . F i n a l remarks

The language AUT-SL has been defined by means of r educ t ion t o normal

form. The nex t s t e p i s t h a t we can produce a number of language r u l e s t h a t

do no t involve t h e normal form e x p l i c i t l y . F i r s t , l e t us c a l l two accept-

a b l e expressions d e f i n i t i o n a l l y equiva len t (symbol: 2) i f they have t h e

same normal form. Next we can formulate r u l e s producing d e f i n i t i o n a l

equiva lence , l i k e :

I! i f A, 2 A,, B] - B ~ , i f (A I I B l i s acceptab le ,

then iA2]B2 i s acceptab le , and { A I ? B I IA2}B2.

I n t h i s way, we can phrase q u i t e a number of der ived r u l e s f o r AIJT-SL. On

t h e o the r hand, we could t ake t h e s e derived r u l e s a s t h e d e f i n i t i o n of

AUT-SL (i n t h e same l i n e as t h e d e f i n i t i o n of AUTOMATH), and prove t h e

r e d u c i b i l i t y t o normal forms a s a theorem.

References

[I] N.G. de Bru i jn , On the use of bound v a r i a b l e s i n ALTOMATH.

Technological Univers i ty , Eindhoven, I n t e r n a l Report,

N o t i t i e 9 (26 November 1970).

C21 R.P. Nederpel t , LAMBDA-AUTOMATH,

Technological Univers i ty , Eindhoven, I n t e r n a l Report,

N o t i t i e 17 (8 January 1971).

