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I .  I n t roduc t ion  

We can w r i t e  AUTOMATN i n  a  form a s  s tud ied  by M r .  R. Nederpelt  (C21), 

c a l l e d  A-AUTOMATH. This amounts t o  abo l i sh ing  block openers and i n d i c a t o r  

s t r i n g s ,  w r i t i n g  every th ing  i n  the  form of a b s t r a c t i o n s ;  some of t h e s e  

a b s t r a c t i o n s  a r e  no t  n e c e s s a r i l y  l i g i t i m a t e  i n  AUTOMATH i t s e l f .  Moreover, 

express ions  l i k e  b (C L ) a r e  rep laced  by th ings  l i k e  {ZS}IL2}{~1} B ,  1 '  Z2' 3 
where B i s  n o t  t h e  same a s  b,  bu t  r e l a t e d  t o  B by means of obvious abs t r ac t -  

ions.  

We can go f u r t h e r  a long t h i s  l i n e :  F i r s t  we can abo l i sh  a l l  d e f i n i t i o n s ,  

i . e .  a l l  l e t t e r s  expressed by means of a  middle o t h e r  than  PN o r  EB. A next  

s t e p  i s  t o  abo l i sh  PN's: Being under t he  r e i g n  of a  given axiom can be in-  

t e r p r e t e d  a s  l i v i n g  i n  a block where the  axiom i s  a block opener. For 

example, t h e  book fol lowing 

bool  := PN 

b := - 
TRUE := PN 

can be  compared wi th  a  

type 

bool  

book preceded by t h e  q u a n t i f i e r  s t r i n g  

Cbool ,typelCtrue,Cx,boolJtypel. (2 1 

The l a t t e r  seems t o  be ,  i n  some sense ,  s t r o n g e r  than  (1) .  The form 

(2) has  t h e  fol lowing f e a t u r e :  I f  we have some model f o r  (1) ( i , e .  a type 

B and a mapping T a t t a c h i n g  a  category t o  every ob jec t  wi th  category & I ,  
then  the  r e s t  of t h e  book can be  appl ied  t o  t h a t  model j u s t  by s u b s t i t u t i o n .  

I n  t he  form ( I ) ,  however, such conclusions can only be made metarnathematic- 

a l l y :  every proof of t h e  book fol lowing ( I )  can be r e w r i t t e n ,  by t r i v i a l  

t r a n s l a t i o n ,  as a  proof of a s tatement  about such a  model. 

Since we a r e  abo l i sh ing  a l l  d e f i n i t i o n s ,  o r ,  what i s  t h e  same th ing ,  

abo l i sh ing  a l l  abb rev ia t ions ,  any i n t e r e s t i n g  l i n e  of an AUTOMATH book can 

now be w r i t t e n  and read independently of t he  preceding book: a l l  necessary 

informat ion  i s  t o  be condensed i n  t h a t  l i n e .  

There i s  a f u r t h e r  ex tens ion ,  t o  be  explained now. I n  AUTOMATB we 

I?ar(w f-lire l i n d a  of express ions .  F i r s t ,  t he re  i s  a  s i n g l e  I-exp'atessi.cn, 



viz. the expression "type". (In AUT-QE, an extension of AUTOMATH, we have 

also I-expressions like Cx,natlCy,boolltype.) Next there are 2-expressions, 

as C in a line like 

a := C type. 

Finally, we have 3 expressions like O in 

a := c type 
b t= 0 C .  

But we do - not admit, in AUTOMATH, 4-expressions like I' in 

In AUT-SL, there is no such restriction. In ALT-SL, we write quantifier 

strings like 

Ca,typelCb,alCc,blCd,cl 

corresponding to 

There a r e  two aspects in which AUT-SL deviates from AUTOMATH. First we 

do not consider n-conversion in AUT-SL. That is, we do not admit reduction 

of Cx,A]Ix)f to f (if x is not free in f). It would not be hard, however, 

to modify AUT-SL such as to admit rrconversion. A second difference seems 

to be more serious. In AUTOMATH we have the following. If the book contains 

we may write 

.. . := Ct,Alq(t) type* (3 )  

In AUT-QE, however, we may write (3) as well as (4) : 



In AUT-SL we are more strict: we allow (4) but we forbid (3). This 

convention makes the language somewhat simpler. It seems to be a good 

strategy to study this simpler case in every detail before returning to 

AUTOMATH. 

We shall define AUT-SL by means of a program that checks the correct- 

ness of an AUT-SL line. The program produces the "normal form" of a given 

expression, and it produces, if possible, the category of that expression. 

It either accepts or rejects: it can be shown that the program will never 

run indefinitely. The proof of this termination property will be given 

with the aid of a norm, i.e. a positive integer attached, in a particular 

way, to each accepted expression. The definition of that norm is also given 

in the program. This norm has been derived by simplification of a norm 

suggested by Mr. Nederpelt (his norm is not a number, but an expression). 

2. The syntax of AUT-SL 

The syntax is very simple. We have two sets of symbols: "dummies" and 

"signs". The set of dummies is infinite; they are different from the signs. 

The signs are given by 

<sign, : : = ,  I C I 1 1  ( 1  1 I type 
We can now define "expressions", "quantifier strings" and "expression tails" 

recursively: 

<expression, ::= <quantifier string><expression tail> 

quantifier string> ::= I C <dummy>, <expression>l<quantif ier string> 
<expression tail> : := type 1 <dummy' [ {<expression> }<expression> 

Our program will attach a normal form to any expression it finds 

acceptable. These normal forms are "normal expressions"; their syntax is 

given by 

<normal expr> ::= <normal quant str><normal expr tail> 

<normal quant s tr> : : = I~<dumm~>,<normal expr>l<normal quant str> 

<normal expr tail> : := type I <dmmy>) (<normal expr>l<normal expr tail> 
The consequence is that in normal expressio~w the "1'' is never immediate- 

l y  f o ' k m e d  5y a "[". 



The handling of dummies (i. e. the answer to the quescion of 'which 

occurrences of a d-y are bound by which quantifiers) is as explained 

in CII, with the simplification that parentheses "(" , ' I ) "  do not occur. 

3. An example 

Assume we offer the following expression to the program: 

then this is taken in as Z. The action of the program produces as the 

normal form, to be called Z 1 ' 

Moreover it produces k = 2, i.e. it says that Z and Z are 2-expressions. 
1 

And the program produces the category of Z, viz. Z2 : 

As the norm it presents the value m = 7. We devote a few words to its 

background: Every dummy has a category: viz. in Z the dummy "nonempty" has 

the category "Cksi,typelbool". Moreover, we have the difference between 

binding occurrences of a dummy (i.e. occurrences followed by a comma) and 

bound occurrences (i.e. all other occurrences). 

Mr. Nederpelt's norm is obtained roughly as follows: replace the bound 

occurrences of dummies by their categories. Carry this on until no further 

bound occurrences of dummies are left. In this way our expression Z gives 

rise to 

Next we start cancelling parts like iA)Cx,BI. So {type)Cx,typeltype 

reduces to type. Actually all braces ( 1 can be removed this way: the fact 
that this can be done is a consequence of the acceptability of Z. What 

remains is 

Cbool,typelCtrue,Cx,typeltypelCnonempty,Cksi,typeltypel~a,typeltype 

and that is essentially Mr. Nederpelt's norm. It is - not an acceptable 



expression itself. 

The simpler norm m we shall work with, is just the number of occurrences 

of type in Mr. Nederpelt's norm. There are 7 of them, so m = 7. 

4. The program 

The program is written in ALGOL 60, with some trivial extensions. It 

uses words like "expression". "quantifier string" in the same way as ordin- 

ary ALGOL 60 uses words like integer and - real. There is an input statement 

Z := read by which the given expression is fed into the program, and there 

are output statements like print (ZI) which produces the actual expression 

that was denoted by ZI, just like print (k) produces the actual number that 

was denoted by k. 

The program uses the following equality of expressions : A E B means 

that the expressions A and B can be transformed into each other by means 

of a-conversion, i.e. just by the very unessential process of changing 

names of dummies (provided that name changing is not done so clumsily that 

the relation between a bound occurrence and the binding occurrence of a 

dunnny is disturbed). 

The program contains the statements 

create new dunnny s '  ; D1:= subst(s := s', D) 

which have the following meaning. First, s' is a dummy that has not been 

used before in the expressions occurring in the program. The second state- 

ment means that D' gets as its value the expression we obtain from D if we 

replace every occurrence of s by s ' .  

In our syntax an empty string was presented by the simple procedure of 

writing nothing at all. Since this is not always very clear, we shall write 

$I for the empty string. 

The program contains clauses like "if X starts with [I1, which are not 
ALGOL but cannot be easily misunderstood. And it contains things like 

"write X = Cu,Y1Z1'. It means: we know at this stage that X has the form 

[ . . . , . . . I . . .  ; now give u,Y,Z the (uniquely determined) values such that 

indeed X = Cu,YJZ. 

The reader will notice that the execution of the program causes quite 

some duplication of work. Having to choose between simpler program and 

shorter execution, we preferred the former. 



begin  procedure check (Q, X, X I ,  X2 ,  k, m); va lue  Q, X; 

q u a n t i f i e r  s t r i n g  Q ;  express ion  X, X I ,  X2; i n t e g e r  k ,  m; 

begin i f  X i s  a dummy then  

begin dummy y ;  q u a n t i f i e r  s t r i n g  Q I ' ' express ion  A, A , ,  A2 ; inteRer ka; 

i f  Q - + then  goto wrong; w r i t e  Q Z Q,CY,A]; - - 
i f  y $ X then  check (Q1, X, X I ,  X2 ,  k ,  m) - - 
e l s e  begin check (Q],  A, A], A2, ka, m); - 

X y X ;  X :=A ' k:=k + I  
2 1 '  a 

end - 
end 

e l s e  i f  X r type  -- 
e l s e  i f  X s t a r t s  -- 

begin dummy 

write 

check 

check 

then  begin k := l ;  X I : =  type;  m:=l - 
with  C - then  

U; express ion  Y ,  Y 1 ,  Y2 ,  Z ,  Z I ,  Z 2 ;  i n t e g e r  

X = Cu,YIZ; 

(4, y ,  Y * ,  Y2 '  ky' my); 

(QCU,YI, z ,  z , ,  Z2 ,  k ,  m ); m:=m +m ' z Y z' 
X,:=Cu,Y I2  . i f  k > 1 then  X2:-Cu,Y IZ 1 1 '  - - 1 2  

end - 
e l s e  i f  X s t a r t s  wi th  ( then  -- 

begin express ion  Y, 5, y2,  z ,  z I ,  z2,  w l ,  w2; 
i n t e  e r  k , kZ, kw, m m Z y  mw; 
- Y  Y' 
w r i t e  X E ( ~ 1 2 ;  

check (Q, Y ,  YI, Y 2 ,  ky, my); if k = I  then  wrong; 
Y -  

check (Q, Z ,  Z I ,  Z 2 ,  kZ ,  mk); if Z 1  E type then  goto wrong; 

i f  k > I  then check (Q, { Y ~ ~ Z ~ ,  W I ,  W 2 ,  kw, mW)i - z - 
i f  Z s t a r t s  w i th  C then - 1 - 

begin  dummy u; express ion  V,  R; 

w r i t e  Z 1 ?Cu,VIR; - i f  V$Y2 then  goto wrong; 

i f  ( ~ = t y ~ e ) v ( R  i s  a dunrmy # u) - 
then  check (Q, R,  X I ,  X 2 ,  k ,  m) - 

e l s e  i f  Rru then  begin X :=Y . X2:=Y2; -- - 1 I '  

e l s e  i f  R s t a r t s  wi th  { then -- 
begin express ion  C, D; w r i t e  R:(ClD; 

check(Q, l IYI lCu,VICl{YI lCu,VID,XI ,X2,k,m) 



e l s e  i f  R s t a r t s  wi th  C then  -- 
begin dummy s ;  express ion  C ,  D, Dl; 

w r i t e  RzCs , C l D ;  

c r e a t e  new .dunmy s ' ; 

e l s e  g o t o  wrong; - 

else begin  XI:=IY,)Zl;  - 
i f  kZ=l  - then goto wrong; x2 := w2; 

e l s e  goto wrong - 
end procedure check; - 

program: 

express ion  E, E l ,  E2 ;  i n t e g e r  k ,  m; E := read;  

check ( 4 ,  E, E l ,  E2, k, d; 
p r i n t  ( E l ) ;  p r inh (k ) ;  p r in t (m)  ; if k > 1 - then  p r i n t  (E2) ; 

goto end; 

wrong : p r i n t ( {  t h e  given express ion  i s  no t  acceptab le  i ) ;  
end : 

end 



5. Termination of t he  program 

The program e i t h e r  accepts  of r e j e c t s :  i t  does n o t  run  forever .  We 

s h a l l  ske tch  a proof f o r  t h i s  s ta tement .  

Let us look a t  the  most c r u c i a l  p a r t  of t h e  program. It i s  about 

l Y I I Z I  where Z l  = CU,VIICID. Since Z i s  i n  normal form, we have 
1 

ICID = {CnIICn-I l . . . ICIIv (with C = C ). Since C ... , C a r e  a l l  "simpler" n 1 n 
than  Z l ,  we may assume t h a t  

* 
can be  reduced t o  normal form Ci , f o r  i = I ,  ..., n.  Now i f  v # u, t h e  

normal form of {Y 3 Z 1  i s  obtained.  I f  v = u,  we g e t  1 

which i s  n o t  n e c e s s a r i l y  normal. Assume 

The danger a r i s e s  t h a t  w i s  equal  t o  one of x l ,  ... ,x  where L = min(k,n).  
R ,  

This means t h a t  a t  a f u r t h e r  s t a g e  i n  t he  program t h e  w w i l l  be  replaced 
* 

by on2 of t he  Ci , s o  t h a t  we s t i l l  have no normal form a s  y e t .  I n  order  
* 

t o  cope wi th  t h i s  d i f f i c u l t y ,  we remark t h a t  t h e  norm of t h i s  Ci i s  l e s s  
* 

than the  norm of Y The argument i s  t h a t  t h i s  norm of Ci equals  t h e  I *  
norm of A.( the norm of A. i s  unaf fec ted  by the  s u b s t i t u t i o n s  t h a t  have taken 

1 1 * * 
p lace  i n  t he  meantime: x l  := C 1  , xi := C. ,... ). And the  norm of Ai i s  

1 

obviously l e s s  than  the  norm of Y 
1 '  

The f e a t u r e  we j u s t  descr ibed ,  makes i t  p o s s i b l e  t o  ca r ry  out  induct ion  

wi th  r e spec t  t o  t he  norm of Y ' w e  assume t h a t  t h e  program te rmina tes  f o r  1 ' 
a l l  CY IZ i f  t h e  norm of Y I  i s  < N (YI and Z i n  normal form); next  we 

I I I 
t ake  a Y wi th  norm N and we assume t h a t  t he  program te rmina tes  wi th  {Y I Z  

1 1 1  
f o r  a l l  Z wi th  l e s s  than M symbols. Having assumed t h i s ,  we can dea l  with 

I 
t h e  case  wi th  Y of norm N and Z with M symbols i n  t h e  way we descr ibed 

I 1 
above. 

This arrangement of t he  proof i s  p a r t l y  due t o  M r .  L.S. van Benthem 

J u t t i n g ,  working on ideas  proposed by M r .  L.E.  Fleischhacker .  



6 .  F i n a l  remarks 

The language AUT-SL has been defined by means of r educ t ion  t o  normal 

form. The nex t  s t e p  i s  t h a t  we can produce a  number of language r u l e s  t h a t  

do no t  involve  t h e  normal form e x p l i c i t l y .  F i r s t ,  l e t  us c a l l  two accept- 

a b l e  expressions d e f i n i t i o n a l l y  equiva len t  (symbol: 2) i f  they  have t h e  

same normal form. Next we can formulate  r u l e s  producing d e f i n i t i o n a l  

equiva lence ,  l i k e :  

I! i f  A,  2 A,, B ]  - B ~ ,  i f  ( A I I B l  i s  acceptab le ,  

then iA2]B2 i s  acceptab le ,  and { A I ? B I  IA2}B2. 

I n  t h i s  way, we can phrase q u i t e  a number of der ived  r u l e s  f o r  AIJT-SL. On 

t h e  o the r  hand, we could t ake  t h e s e  derived r u l e s  a s  t h e  d e f i n i t i o n  of 

AUT-SL ( i n  t h e  same l i n e  as  t h e  d e f i n i t i o n  of AUTOMATH), and prove t h e  

r e d u c i b i l i t y  t o  normal forms a s  a  theorem. 

References 

[ I ]  N.G. de Bru i jn ,  On the  use of bound v a r i a b l e s  i n  ALTOMATH. 

Technological Univers i ty ,  Eindhoven, I n t e r n a l  Report,  

N o t i t i e  9 (26 November 1970). 

C21 R.P. Nederpel t ,  LAMBDA-AUTOMATH, 

Technological Univers i ty ,  Eindhoven, I n t e r n a l  Report,  

N o t i t i e  17 (8 January 1971).  


