by R.P. Nederpelt.

1. Synopsis

The aim of this paper is to prove a theorem (the closure theorem) in lambda-typed lambda-calculus which states that the set of so-called legal expressions is closed under β-reduction. The proof of this theorem will be given in detail.

The theory of lambda-typed lambda-calculus itself will be described in a nutshell, with a minimum of comment. We shall only give definitions necessary for the main theorem and we shall describe roughly some indispensable notions of the theory. Moreover we shall list a number of lemma's needed in the main theorem. These lemma's, which are theorems from lambda-typed lambda-calculus, will be given without proof. The theory of lambda-typed lambda-calculus will be described amply in [1].
2. The language of λ-typed λ-calculus
2.1 The alphabet of the language consists of an infinite set of variables, a basic constant (τ), a number of improper symbols (the brackets ' $[$ ', ']', '\{', '\}' and the comma), and some symbols denoting functions and relations.
2.2 Expressions of the language are defined as follows:
(1) A variable is an expression; τ is an expression.
(2) If A and B are expressions and x is a variable, then $[x, A] B$ and $\{A\} B$ are expressions.

The expression $[x, A] B$ is equivalent to $\lambda x B$ in λ-calculus, where A is the type of x. The expression $\{A\} B$ is equivalent to $B A$ in λ-calculus.

An expression A can be a subexpression of an expression B (denoted as $A \subset B)$. A recursive definition of subexpression is:
(1) $A \subset A$.
(2) $C \subset A$ or $C \subset B \Rightarrow C \subset[x, A] B$.
(3) $C \subset A$ or $C \subset B \Rightarrow C \subset\{A\} B$.
2.3 Parts of expressions of the form $[x, A]$ or $\{A\}$ are called abstractors or applicators respectively. In meta-language we use the capitals A, B, C,... for expressions, Q for strings of abstractors, and P for strings consisting of abstractors and applicators. (A string is the result of juxtaposition; a string may be empty.) For variables we use in meta-language the lower-case letters x, y, z, \ldots

Juxtaposition of letters in meta-language means juxtaposition of the objects they represent. If two meta-letters A and B represent the same object then we put $A \equiv B$; if not, then $A \not \equiv B$.

All meta-symbols can be primed or indexed.
2.4 Variables occurring in an expression immediately following an opening bracket '[' are called binding. All other variables occurring in an expression are called non-binding. The binding x in the expression $[x, A] B$ binds all those non-binding x 's in B which are not yet bound by another binding x. Those non-binding x 's are then called bound (by the binding x in the abstractor $[x, A]$). All non-binding variables which are not bound are free.
2.5 A bound expression is an expression which does not contain free variables. A closed expression is a bound expression in which all binding variables are different. The set of all closed expressions is denoted by Γ. We only use bound expressions which are closed in order to avoid misunder andings as to the binding of variables. This has also its advantages while manipulating expressions. For the theory this is not restriction at all.
2.6 An equivalent definition for closed expressions is the following recursive one (where we write $B V(A)$ for the set of binding variables in A):
(1) $\tau \in \Gamma$.
(2) If $\mathrm{QA} \in \Gamma$ and if x does not occur in QA then $\mathrm{Q}[\mathrm{x}, \mathrm{A}] \mathrm{x} \in \Gamma$.
(3) If QA and $\mathrm{QB} \in \Gamma$ and if $\mathrm{BV}(\mathrm{A}) \cap \mathrm{BV}(\mathrm{B})=\phi$ then $\mathrm{Q}\{\mathrm{A}\} \mathrm{B} \in \Gamma$.
(4) If $Q A$ and $Q \tau \in \Gamma$ and if x does not occur in $Q A$ then $Q[x, A] \tau \in \Gamma$.
(5) If $Q A$ and $Q y \in \Gamma$, if x does not occur in $Q A$ and if $x \neq y$, then $Q[x, A] y \in \Gamma$. By means of this definition we can construct every closed expression in a unique way.
2.7 Let x and y be variables. We say "replace x with y in A " if we want that every x occurring in A is replaced by a y. We define the operator Ref working on an expression A to have the following effect: each variable, which occurs as a binding variable in A, has to be replaced with a 'fresh', never having
been used variable. For example, if y_{1} and y_{2} have not yet been used as variables, and $A \equiv\left[x_{1}, \tau\right]\left[x_{2}, x_{1}\right]\left\{x_{2}\right\} x_{3}$ then Ref A can be $\left[y_{1}, \tau\right]\left[y_{2}, y_{1}\right]\left\{y_{2}\right\} x_{3}$. By defining an order in the set of all variables and by prescribing that Ref uses the 'fresh' variables in this order we can procure that Ref is a uni-valued function, so the expression Ref A is uniquely defined at the spot where we introduce it. But we agree that this same particular expression is also meant. when we use 'Ref A^{\prime} after this spot of introduction, as long as we use it in the same context.

If we need other "fresh variables", in the same expression A, then we use an index with 'Ref': Ref A uses the first set of fresh variables, Ref, A another one.
2.8 The transformation α-reduction (denoted by ${ }^{\prime} \geq_{\alpha}{ }^{\prime}$ ') is the transitive transformation generated by:
"If $A \in \Gamma$, if y is a variable not occurring in A, and if B is the expression obtained from A by replacing the variable x by y in A, then $A \geq{ }_{\alpha} B$."

Since we did not require x to occur in A it follows that α-reduction is reflexive. Obviously α-reduction is symmetric, too. So α-reduction generates an equivalence-relation. It is also clear that $A \geq_{\alpha}$ Ref A.

An α-reduction with one variable or none renamed as described between the apostrophes of the definition is called a one-step a-reduction and denoted as $A \geq{ }_{\alpha} B$.

We state the following theorems:
(i) If $A \in \Gamma$ and $A \geq_{\alpha} B$ then $B \in \Gamma$,
(ii) corollary: if $A \in \Gamma$ then $\operatorname{Ref} A \in \Gamma$.
2.9 Substitution of A for x in B is denoted by ($x:=A$) B and defined as follows:
(1) $(x:=A) x \equiv \operatorname{Ref} A ;(x:=A) y \equiv y$ if $y \neq x ;(x:=A) \tau \equiv \tau$
(2) $(x:=A)[x, B] C \equiv[x, B] C ;(x:=A)[y, B] C \equiv[y,(x:=A) B](x:=A) C$ if $y \neq x$ (3) $(x:=A)\{B\} C \equiv\{(x:=A) B\}(x:=A) C$.

For convenience we also define ($x:=A$) P for a string P of abstractors and applicators:

$$
\text { If }(x:=A) P \tau \equiv P^{\prime} \tau \text {, then }(x:=A) P \equiv P^{\prime}
$$

2. 10 The relation β-reduction (denoted by ${ }^{\prime} \geq_{\beta}{ }^{\prime}$) is the reflexive and transitive relation generated by:
(1) If $Q\{A\}[x, B] C \in \Gamma$ then $Q\{A\}[x, B] C \geq_{\beta} Q(x:=A) C$.
(2) If $Q C$ and $Q\{A\} C \in \Gamma$ and if $Q C \geq_{\beta} Q D$ then $Q\{A\} C \geq_{\beta} Q\{A\} D$.
(3) If $Q A$ and $Q[x, A] C \in \Gamma$ and if $Q A \geq_{\beta} Q B$ then $Q[x, A] C \geq_{\beta} Q[x, B] C$.
(4) If $Q A$ and $Q\{A\} C \in \Gamma$ and if $Q A \geq_{\beta} Q B$ then $Q\{A\} C \geq_{\beta} Q\{B\} C$.

We recall that Q denotes a string of abstractors.
We call rule (2) to (4) the monotony-mules of B-reduction.
A B-reduction $A \geq_{\beta} B$ obtained by one application of rule (1) followed by a number of applications of the monotony-rules is called a one-step β-reduction and denoted as $A \geq_{\beta}^{\prime} B$.

If A reduces to B by a sequence of α - and β-reductions then we write $A \geq B$.

We state the following theorems:
(i) If $A \in \Gamma$ and $A \geq_{\beta} B$ then $B \in \Gamma$.
(ii) If $Q C$ and $Q[x, A] C \in \Gamma$ and if $Q C \geq_{\beta} Q D$ then $Q[x, A] C \geq_{\beta} Q[x, A] D$.
(This last theorem is apparently missing in the set of monotony-rules for β-reduction; it turns out to be a consequence of the rules of β-reduction.)
2.11 Let A and $B \in \Gamma$. We define an equivalence between A and B ($A \sim B$) as follows:

A $\sim B$ if there exists $a \operatorname{such}$ that $A \geq D$ and $B \geq D$.
The transitivity of this equivalence is implied by the nurch-Rosser theorem, which holds also for our special λ-calculus. (We can also prove Church-Rosser directly; cf. [2]).
2.12 If $A \in \Gamma$ and $A \equiv P_{1}[x, B] P_{2} x$, then we define Typ $A \equiv P_{1}[x, B] P_{2}$ Ref B. Analogously, if $\operatorname{Typ}^{n} A \equiv P_{1}[x, B] P_{2} x$ for some $n \geq 1$ then $\operatorname{Typ}^{n+1} A \equiv$ $P![x, B] P_{2}$ Ref B. We define $\operatorname{Typ}^{0} A \equiv A$.

The following theorem holds:
(i) If $A \in \Gamma$ and Typ A is defined then Typ $A \in \Gamma$.
2.13 For each expression in Γ we define a number called class (CI):
(1) If $A \equiv P_{\tau}$ then $\mathrm{Cl} A=1$;
(2) If $\mathrm{A} \equiv \mathrm{Px}$ then $\mathrm{Cl} \mathrm{A}=\mathrm{Cl}(\operatorname{Typ} \mathrm{A})+1$.

The theorem holds:
(i) If $A \in \Gamma$ then $\operatorname{Typ}^{\mathrm{ClA}^{-1}} \mathrm{~A} \equiv \mathrm{P} \tau$.

This "highest possible power" of Typ has a special significance. We abbreviate Typ ${ }^{C 1 A-1} A$ as Typ ${ }^{\star} A$.
2. 14 Let $A \in \Gamma$. We define a norm ν on A by recursion with respect to the subexpressions of A :
(1) If $\tau \subset A$ then $\nu(\tau) \equiv \tau$.
(2) If $x \subset A$ and x is bound by the binding x in the abstractor $[x, B]$ then $\nu(x) \equiv \nu(B)$.
(3) If $[x, B] C \subset A$ then $v([x, B] C) \equiv[x, v(B)] \cup(C)$.
(4) If $\{B\} C \subset A$ then $\nu(\{B\} C) \equiv\{\nu(B)\} \nu(C)$.

We can prove that $\nu(A)$ is well-defined for every $A \in \Gamma$. It is obvious that $v(A)$ contains no bound variables. The most important property of this norm is stated in 3.4 (XIII).

We state the theorem:
If $A \in \Gamma$ then $v(A) \in \Gamma$; if $A \geq_{\alpha} B$ then $v(A) \geq_{\alpha} v(B)$.
2.15 In the alternative definition of closed expression, given in 2.6 , we find:
"(3) If $Q A$ and $Q B \in \Gamma$ and if $B V(A) \cap B V(B)=\varnothing$ then $Q\{A\} B \in \Gamma "$. The common interpretation of $\{A\} B$ is: the function B applied to the argument A. Clearly we put in Γ no restrictions on the argument A with respect to the domain of B. In a subset of Γ, called:the set of legal expressions, abbreviated as Λ, we want the argument of a function to "match" with the domain of that function.

As definition of legal expressions we use the definitions of 2.6 (1), (2), (4) and (5), where we read Λ instead of Γ, and a new (3) which reads: (3) If $Q A$ and $Q B \in \Lambda$, if $T y P^{*} Q B \geq Q[y, K] L$ and $T y P Q A \geq Q K$ for certain K and L, and if $B V(A) \cap B V(B)=\notin$ then $Q\{A\} B \in \Lambda$.

The condition printed in italics is called the applicability condition. We can weaken this applicability condition: see 3.5 (XIV).
3. A list of lemma's
3.1 A lemma concerning Γ :
I. $Q[x, A] B \in \subset, x \notin B \Rightarrow Q B \in \Gamma$.
3.2 Lemma's concerning reduction and equivalence:
II. $\mathrm{QC}, \mathrm{QPC} \in \Gamma, \mathrm{QC} \geq \mathrm{QD} \Rightarrow \mathrm{QPC} \geq \mathrm{QPD}$.
III. $Q[x, A] B \in \Gamma, Q[x, A] B \geq Q[x, C] D \Rightarrow Q A \geq Q C$.
IV. $P A, P[x, B] \operatorname{Ref} D \in \Gamma \Rightarrow P \operatorname{Ref}(x:=A) D \geq_{\alpha} P(x:=A) \operatorname{Ref}{ }_{1} D$.
3.3 Lemma's concerning Typ and CI:
N.B. If we write $\operatorname{Typ}^{n} A$ then we assume that $\operatorname{Typ}^{n} A$ is defined (i.e. $n \leq C 1 A-1$); we call such a value of n vatid.
V. $A \in \Gamma, A \geq_{\alpha} B \Rightarrow \operatorname{Typ}^{n} A \geq_{\alpha} \operatorname{Typ}^{n} B$.
VI. $\mathrm{PB}, \mathrm{PP}{ }^{\prime} \mathrm{B} \in \Gamma \Rightarrow \mathrm{Cl} \mathrm{PB}=\mathrm{CI} \mathrm{PP}{ }^{\prime} \mathrm{B}$.
VII. $A \in \Gamma, A \geq{ }_{\alpha} B \Rightarrow C 1 A=C 1 B$.
VIII. PA $\in \Gamma \Rightarrow \operatorname{Typ}^{n} \mathrm{PA} \equiv \mathrm{PA}^{\prime}$.
IX. PA, PP'A $A: \operatorname{Typ}^{n} P A \geq_{\alpha} P A^{\prime} \Leftrightarrow \operatorname{Typ}^{n} P P^{\prime} A \geq_{\alpha} P P^{\prime} A^{\prime}$.
X. $Q A, Q P A \in \Gamma, \operatorname{Typ}^{n} Q A \geq Q B \Rightarrow T^{n}{ }^{n} Q P A \geq Q P B$.
XI. $\mathrm{QA}, \mathrm{QB}, \mathrm{QPA}, \mathrm{QPB} \in \Gamma, \mathrm{Typ}^{\mathrm{n}} \mathrm{QA} \approx \operatorname{Typ}^{\mathrm{n}} \mathrm{QB} \Rightarrow \mathrm{Typ}^{\mathrm{n}} \mathrm{QPA} \sim \mathrm{Typ}^{\mathrm{n}} \mathrm{QPB}$.
3.4 Lemma's concerning the norm v :
XII. $A \in \Gamma, B \in A \Rightarrow \nu(B)$ shorter than $v(A)$.
XIII. $A \in \Gamma \Rightarrow v(A) \geq_{i} v\left(\operatorname{Typ}^{n} A\right)$.

3.5 Lemma's concerning Λ :

XIV. $\mathrm{QA}, \mathrm{QB} \in \Lambda, \operatorname{Typ}^{*} \mathrm{QB} \sim \mathrm{Q}[\mathrm{y}, \mathrm{K}] \mathrm{L}$ and $\mathrm{Typ} \mathrm{QA} \sim \mathrm{QK}$ for certain K and L , and $B V(A) \cap B V(B)=\phi \Rightarrow Q\{A\} B \in \Lambda$.
XV. $A \in A, A \geq{ }_{\alpha} B \Rightarrow B \in \Lambda$.
XVI. $A \in \Lambda \Rightarrow \operatorname{Typ}^{n} A \in \Lambda$.
XVII. $Q A, Q B \in \Lambda, Q[x, A] B \in \Gamma \Rightarrow Q[x, A] B \in \Lambda$.
XVIII. $Q\{A\} B \in \Lambda \Rightarrow Q A, Q B \in \Lambda$.
XIX. $Q[x, A] B \in \Lambda \Rightarrow Q A \in \Lambda$.
$X X . Q[x, A] B \in \Lambda, Q B \in \Gamma \Rightarrow Q B \in \Lambda$.
XXI. $\mathrm{Q}[\mathrm{x}, \mathrm{A}] \mathrm{C}, \mathrm{QB} \in \Lambda, \mathrm{Cl} \mathrm{QA}=\mathrm{Cl} \mathrm{QB}, \mathrm{Typ}^{\mathrm{n}} \mathrm{QA} \sim \operatorname{Typ}^{\mathrm{n}} \mathrm{QB}$ for all valid $\left.\mathrm{n} \Rightarrow \mathrm{Q} \Rightarrow \mathrm{x}, \mathrm{B}\right] \mathrm{C} \in \Lambda$. XXII. $Q\{A\}[x, B] C, Q[x, B] D \in \Lambda \Rightarrow Q\{A\}[x, B] D \in \Lambda$.

4. The closure theorem

4.1 Definition: We call two expressions E and F co-legal if (1) $E \in \Lambda, F \in \Lambda$,
(2) Typ ${ }^{k} E \sim$ Typ $^{k} E$ for all valid k and (3) Cl(E) $=C l(F)$.

Lemma $A:$ If E and F are co-legal, $E \geq_{\alpha} E^{\prime}$ and $F \geq_{\alpha} F^{\prime}$, then E^{\prime} and F^{\prime} are co-legal.

Proof: By Lemma (XV): $E^{\prime} \in \Lambda$ and $F^{\prime} \in \Lambda$.
By (V) : Typ ${ }^{k} E \geq_{\alpha} \operatorname{Typ}^{k^{\prime}} E^{\prime}$ and $\operatorname{Typ}^{k_{F}} \geq_{\alpha} \operatorname{Typ}^{k^{\prime}}{ }^{\prime}$. So Typ $E^{\prime} \sim^{\prime} \operatorname{Typ}^{k^{\prime}}{ }^{\prime}$. By (VII): C1 E $=C 1 E^{\prime}$ and CI $F=C 1 F^{\prime}$, hence $C 1 E^{\prime}=C 1 F^{\prime}$.

Note: Co-Iegality is an equivalence relation.
4.2

Lemma B: Let E and F be co-legal and $E \geq_{\beta} F$. If $E^{\prime} \geq_{\beta} F^{\prime}$ is a direct consequence of $E \geq_{B} F$ according to one of the monotony rules for β-reduction (i.e. rule (2), (3), (4) of 2.10), and if $E^{\prime} \in \Lambda$ then E^{\prime} and F^{\prime} are co-legal.

Proof: case 1: $E \geq_{\beta} F$ is $Q C \geq_{\beta} Q D, E^{\prime} \equiv Q\{A\} C \in \Lambda$ and $E^{\prime} \geq_{\beta} F^{\prime} \equiv Q\{A\} D$.
(1) Since $Q\{A\} C \in A: Q A \in \Lambda, T^{\prime}{ }^{*}{ }^{*} Q C \geq Q[x, M] N$ and Typ $Q A \geq Q M$. If $\operatorname{Typ}^{*} \mathrm{QC} \equiv \operatorname{Typ}^{\mathrm{P}} \mathrm{QC}$, then $\mathrm{Typ}^{*} \mathrm{QD} \equiv \mathrm{Typ}^{\mathrm{P}} \mathrm{QD}_{\mathrm{Q}}$ since $\mathrm{Cl}(\mathrm{QC})=\mathrm{Cl}(\mathrm{QD})$. Hence $\operatorname{Typ}^{*} \mathrm{QC} \sim \operatorname{Typ}^{\star} \mathrm{QD}$, so $\mathrm{Typ}^{*} \mathrm{QD} \sim \mathrm{Q}[\mathrm{x}, \mathrm{M}] \mathrm{N}$. From (XIV): Q\{A\}D$\in \Lambda$.
(2) (XI) implies: $\operatorname{Typ}^{k} Q\{A\} C \sim T^{k}{ }^{k} Q\{A\} D$ for all valid k.
(3) Moreover: $\mathrm{Cl} \mathrm{Q}\{\mathrm{A}\} \mathrm{C}=\mathrm{Cl} \mathrm{QC}=\mathrm{Cl} \mathrm{QD}=\mathrm{Cl} \mathrm{Q}\{\mathrm{A}\} \mathrm{D}$ by (VI).
case 2: $E \geq_{\beta} F$ is $Q A \geq_{\beta} Q B, E^{\prime} \equiv Q[x, A] C \in \Lambda$ and $E^{\prime} \geq_{\beta} F^{\prime} \equiv Q[x, B] C$. We prove co-legality for $Q[x, A] C$ and $Q[x, B] C$.
(1) From $(X X I): Q[x, B] C \in \Lambda$.
(2) We now prove the
"lemma: If $Q[x, A] C \in \Lambda$ then $T^{k}{ }^{k} Q[x, A] C \sim \operatorname{Typ}^{k} Q[x, B] C$ (for all valid k) and $C 1 Q[x, A] C=C 1 Q[x, B] C^{\prime \prime}$
by induction on $C 1 Q[x, A] C$. If $C 1 Q[x, A] C=1$ then this is trivial. So assume $\mathrm{Typ}^{k} \mathrm{Q}[\mathrm{x}, \mathrm{A}] \mathrm{H} \sim \operatorname{Typ}^{\mathrm{k}} \mathrm{Q}[\mathrm{x}, \mathrm{B}] \mathrm{H}$ (for all valid k) and $\mathrm{Cl} \mathrm{Q}[\mathrm{x}, \mathrm{A}] \mathrm{H}=\mathrm{Cl} \mathrm{Q}[\mathrm{x}, \mathrm{B}] \mathrm{H}$ for all H such that $Q[x, A] H \in \Lambda$ and $C 1 Q[x, A] H<C l Q[x, A] C$.
subcase 2.1: Assume $Q[x, A] C \equiv Q[x, A] P y$ where $y \not \equiv x$. Then the final y 's in $Q[x, A] C$ and $Q[x, B] C$ are bound by binding $y^{\prime} s$ of the same abstractors $[y, E]$, so Typ $Q[x, A] C \equiv Q[x, A] P$ Ref $E \in \Lambda(b y(X V I))$ and Typ $Q[x, B] C q Q[x, B] P \operatorname{Ref}_{2} E$ and $C 1 Q[x, A] P \operatorname{Ref} E=C 1 Q[x, A] C-1$.
 for all valid $\ell \geq 0$. Hence $T_{y p}{ }^{k} Q[x, A] C \sim \operatorname{Typ}^{k} Q[x, B] C$ for all valid $k \geq 1$.
(相)

But for $k=0$ the last equivalence also holds. By induction, too:
$C 1 Q[x, A] P \operatorname{Ref} E=C 1 Q[x, B] P \operatorname{Ref} E=C 1 Q[x, B] P \operatorname{Ref}_{2} E$ (the last equality by (VII)), so also CI $Q[x, A] C=C l Q[x, B] C$.
₹ubcase 2.2: Assume $Q[x, A] C \equiv Q[x, A] P x$. Then Typ $Q[x, A] C \equiv$
$Q[x, A] P \operatorname{Ref} A \in \Lambda(b y X V I)$) and Typ $Q[x, B] C \equiv Q[x, B] P \operatorname{Ref} B$. Now $C l Q[x, A] P \operatorname{Ref} A=C 1 Q[x, A] C-1$, so by induction: Typ ${ }^{\ell}[x, A] P$ Ref $A \sim$ $T_{y p}{ }^{\ell} \mathrm{Q}[\mathrm{x}, \mathrm{B}] \mathrm{P}$ Ref A for all valid $\ell \geq 0$. By lemma $A: Q \operatorname{Ref} A$ and Q Ref B are co-legal, xo Typ ${ }^{\ell} Q \operatorname{Ref} A \sim T y p^{\ell} Q \operatorname{Ref} B$.
(XI) then implies that $T_{y p}^{\ell} Q[x, B] P \operatorname{Ref} A \sim T^{\ell} p^{\ell} Q[x, B] P \operatorname{Ref} B$ for all valid 2. It follows that $\operatorname{Typ}^{k} \mathrm{Q}[\mathrm{x}, \mathrm{A}] \mathrm{C} \sim \operatorname{Typ}^{k} \mathrm{Q}[\mathrm{x}, \mathrm{B}] \mathrm{C}$ for all valid $\mathrm{k} \geq 1$. For $k=0$ the last equivalence also holds.

Moreover: CI $Q[x, A] P$ Ref $A=C l Q \operatorname{Ref} A(b y(V I))=C l Q \operatorname{Ref} B$ (by the co-legality of Q Ref A and $Q \operatorname{Ref} B$) $=C 1 Q[x, B] P \operatorname{Ref} B$ (by (VI) again), so also $C 1 Q[x, A] C=C 1 Q[x, B] C$.

```
case 3: \(E \geq_{B} F\) is \(Q A \geq_{\beta} Q B, E^{\prime} \equiv Q\{A\} C \in A\) and \(E^{\prime} \geq_{\beta} F \equiv Q\{B\} C\).
```

We prove co-legality for $Q\{A\} C$ and $Q\{B\} C$.
(1) Since $Q\{A\} C \in \Lambda: Q A \in \Lambda$, $\operatorname{Typ}^{*} \mathrm{QC} \geq \mathrm{Q}[x, M] N$ and Typ $Q A \geq Q M$. Also

Typ QA ~ Typ $Q B$, so Typ $Q B \sim Q M$. From (XIV): $Q\{B\} C \in \Lambda$.
(2) Assume Typ ${ }^{\mathrm{k}} \mathrm{QC} \equiv \mathrm{QC} C^{\prime}$ (cf. (VIII)). Then Typ ${ }^{\mathrm{k}} \mathrm{Q}\{\mathrm{A}\} \mathrm{C} \geq_{\alpha} \mathrm{Q}\{\mathrm{A}\} \mathrm{C}^{\prime}(\mathrm{by}(\mathrm{IX})) \in \Lambda$ (by (XVI)) and $T y p^{k} Q\{B\} C \geq_{\alpha} Q\{B\} C^{\prime}$ (by (IX)).。
From $Q A \geq Q B$ follows $Q\{A\} C^{\prime} \geq Q\{B\} C^{\prime}$, so $T^{\prime}{ }^{k} Q\{A\} C \geq \operatorname{Typ}^{k} Q\{B\} C$.
Moreover $\mathrm{Cl} \mathrm{Q}\{\mathrm{A}\} \mathrm{C}=\mathrm{Cl} \mathrm{QC}=\mathrm{Cl} \mathrm{Q}\{\mathrm{B}\} \mathrm{C}$ by (VI).
4.3 Main theorem: If $K \in \Lambda$ and $K \geq_{\beta} L$ then K and L are co-1egal.

Proof: We regard the theorem as a proposition about K and refer to it as Prop (K). We prove the theorem by induction on the length of $V(K)$. If $K \equiv \tau$ then the theorem is trivial. So assume that Prop (H) is true for all H with $\nu(H)$ shorter than $\nu(K)$ (induction hypothesis 1). Under this assumption we first prove:
central lemma: If $K \equiv Q\{A\}[x, B] C \geq_{\beta} L \equiv Q(x:=A) C$ and $C 1 K=C 1$ L then $L \in \Lambda$.
proof of the central lemma: Assume $C \not \square\left[y_{1}, C_{1}\right] \ldots\left[y_{k}, C_{k}\right] P^{\prime} s$, where $\mathrm{P}^{\prime} \not \equiv[z, E] F$ and $s \equiv \tau, s \equiv \mathrm{y}(\not \equiv \mathrm{x})$ or $\mathrm{s} \equiv \mathrm{x}$ 。
case 1: $\mathrm{P}^{\prime} \equiv \phi, \mathrm{k}=0$. Then $\mathrm{C} \equiv \mathrm{s}$ and L Q Q if $\mathrm{s} \not \equiv \mathrm{x}$ or
$L \equiv Q \operatorname{Ref} A$ if $s \equiv x$. From $K \in \Lambda$ follows by (XVIII): $Q A \in \Lambda$, so also
Q Ref $A \in \Lambda$ (by (XV)). Also from $K \in \Lambda$ follows by (XVIII): $Q[x, B] s \in \Lambda$, so if $s \not \equiv x$ then (I) and (XX) imply $Q s \in \Lambda$. Hence always $L \in \Lambda$.
case 2: $\mathrm{p}^{\prime} \equiv \phi, \mathrm{k}>0$. Now $K \equiv \mathrm{Q}\{\mathrm{A}\}[\mathrm{x}, \mathrm{B}]\left[\mathrm{y}_{1}, \mathrm{C}_{1}\right] \ldots\left[\mathrm{y}_{\mathrm{k}}, \mathrm{C}_{\mathrm{k}}\right] \mathrm{s}$
$L \equiv Q\left[y_{1},(x:=A) C_{1}\right] \ldots\left[y_{k},(x:=A) C_{k}\right](x:=A) s$. From $K \in A$ follows by (XVIII): $\mathrm{Q}[\mathrm{x}, \mathrm{B}] \mathrm{C} \in \Lambda$, so by (XIX): $\mathrm{Q}[\mathrm{x}, \mathrm{B}]\left[\mathrm{y}_{1}, C_{1}\right] \ldots\left[\mathrm{y}_{\mathrm{k}-1}, C_{k-1}\right] C_{k} \in \Lambda$.

From (XXII) follows that also $Q\{A\}[x, B]\left[y_{1}, C_{1}\right] \ldots\left[y_{k-1}, C_{k-1}\right] C_{k} \in \Lambda$. Since the last expression has a shorter v than K by (XII) we can apply ind. hyp. 1 to find:

$$
\begin{equation*}
Q\left[y_{1},(x:=A) C_{1}\right] \ldots\left[y_{k-1},(x:=A) C_{k-1}\right](x:=A) C_{k} \in \Lambda \tag{1}
\end{equation*}
$$

subcase 2.1: If $s \equiv y_{k}$ then $L \equiv$
$Q\left[y_{1},(x:=A) C_{1}\right] \ldots\left[y_{k-1},(x:=A) C_{k-1}\right]\left[y_{k},(x:=A) C_{k}\right] y_{k} \in \Lambda$.
subcase 2.2: Let $s \not \equiv y_{k} . Q[x, B] C \in \Lambda$, so if $s \neq y_{k}$ then (I) and (XX) imply that $Q[x, B]\left[y_{1}, C_{1}\right] \ldots\left[y_{k-1}, C_{k-1}\right] s \in \Lambda$, so from (XXII): $Q\{A\}[x, B]\left[y_{1}, C_{1}\right] \ldots\left[y_{k-1}, C_{k-1}\right] s \in \Lambda$. The last expression has a shorter v than K by (XII), so $Q\left[y_{1},(x:=A) C_{1}\right] \ldots\left[y_{k-1},(x:=A) C_{k-1}\right](x:=A) s \in \Lambda$ Now (1) and (2) imply that $L \in \Lambda$ (by (XVII)).
case 3: $P^{\prime} \equiv\{E\} p^{\prime \prime}$. Abbreviate $\left[y_{1}, C_{1}\right] \ldots\left[y_{k}, C_{k}\right] \equiv Q^{\prime}$ and $\left[y_{1},(x:=A) C_{1}\right] \ldots\left[y_{k},(x:=A) C_{k}\right] \equiv(x:=A) Q^{\prime}$. Then $K \equiv Q\{A\}[x, B] Q^{\prime}\{E\} P^{\prime \prime} s \geq$ $L \equiv Q(x:=A) Q^{\prime}\{(x:=A) E\}(x:=A)\left(P^{\prime \prime} s\right)$. Since $K \in \Lambda: Q[x, B] Q^{\prime}\{E\} P^{\prime \prime} s \in \Lambda$, so also $Q[x, B] Q^{\prime} E \in \Lambda, Q[x, B] Q^{\prime} P^{\prime \prime} s \in \Lambda, T y p{ }^{*} Q[x, B] Q^{\prime} P^{\prime \prime} s \geq Q[x, B] Q^{\prime}\left[z, M^{\prime}\right] N^{\prime}$ and Typ $Q[x, B] Q^{\prime} E \geq Q[x, B] Q^{\prime} M^{\prime}$.

By (XXII): $Q\{A\}[x, B] Q^{\prime} P^{\prime \prime} s$ and $Q\{A\}[x, B] Q^{\prime} E \in \Lambda$, Both a shorter v than K by (XII), so $Q(x:=A) Q^{\prime}(x:=A)\left(P^{\prime \prime} s\right)$ and $Q(x:=A) Q^{\prime}(x:=A) E \in \Lambda$. Moreover by (VI) and (X): Typ ${ }^{*} Q\{A\}[x, B] Q^{\prime} P^{\prime \prime} s \geq Q\{A\}[x, B] Q^{\prime}\left[z, M^{\prime}\right] N^{\prime} \geq$ $Q(x:=A) Q^{\prime}\left[z,(x:=A) M^{\prime}\right](x:=A) N^{\prime}$ and $T y p Q\{A\}[x, B] Q^{\prime} E \geq Q\{A\}[x, B] Q^{\prime} M^{\prime} \geq$ $Q(x:=A) Q^{\prime}(x:=A) M^{\prime}$. Combining these results with ind. hyp. 1 we get: $Q(x:=A) Q^{\prime}(x:=A) M^{\prime} \sim \operatorname{Typ} Q\{A\}[x, B] Q^{\prime} E \sim \operatorname{Typ} Q(x:=A) Q^{\prime}(x:=A) E$ and
 Typ $\mathrm{Q}(\mathrm{x}:=\mathrm{A}) \mathrm{Q}^{\prime}(\mathrm{x}:=\mathrm{A})\left(\mathrm{P}^{\prime \prime} \mathrm{s}\right)$. EOT this last equivalence we that $C 1 \mathrm{~K}=\mathrm{Cl} \mathrm{L}$, so Cl $Q\{A\}[x, B] Q^{\prime} P^{\prime \prime} s=C 1 Q(x:=A) Q^{\prime}(x:=A)\left(P^{\prime \prime} s\right)$ by (VI).

It follows that $Q(x:=A) Q^{\prime}\{(x:=A) E\}(x:=A)\left(P^{\prime \prime} s\right) \equiv L \in \Lambda$ by (XIV).
End of the proof of the central lemma.

We shall now prove the main theorem (still assuming ind. hyp. 1):
case $1: K \geq_{\beta} L$ is $Q\{A\}[x, B] C \geq_{\beta} Q(x:=A) C$.
We proceed by induction on CI K. If CI $K=1$ then CI $L=1$ so $L \in A$ by the central lemma. Moreover Typ $k \sim \operatorname{Typ}^{k} \mathrm{~L}$ since k can only be zero. So in that case K and I. are co-legal.

So assume (ind. hyp. 2): K^{\prime} and L^{\prime} are co-legal if $\mathrm{Cl}\left(\mathrm{K}^{\prime}\right)<\mathrm{Cl}(\mathrm{K})$ and if $K^{\prime} \geq L^{\prime}$ is $Q^{\prime}\left\{A^{\prime}\right\}\left[x, B^{\prime}\right] C^{\prime} \geq_{\beta} Q^{\prime}\left(x:=A^{\prime}\right) C^{\prime}$.
subcase 1.1: Let $K \equiv Q\{A\}[x, B] P y$, where $y \not \equiv x$. Then $L \equiv Q((x:=A) P) y$. If the final y in K is bound by the binding y in the abstractor [y, D], then Typ $K \equiv \mathrm{Q}\{\mathrm{A}\}[\mathrm{x}, \mathrm{B}] \mathrm{P}$ Ref D . Also: the final y in L is bound by the binding y in the abstractor $[y,(x:=A) D]$, where the substitutor $(x:=A)$ is perhaps superfluous, so Typ $\left.L \equiv Q((x:=A) P) \operatorname{Ref}(x:=A) D \geq_{\alpha} Q((x:=A) P)(x:=A) \operatorname{Ref}, I\right)$ by (IV). Hence Typ $K \geq_{\alpha} Q\{A\}[x, B] P \operatorname{Ref} f_{1} D \geq_{\beta} Q((x:=A) P)(x:=A) \operatorname{Ref}{ }_{1} D \geq_{\alpha} T y p L$.

Since CI Typ $K=C 1 K-1$ it follows from ind. hyp. 2 and lema A that Typ K and Typ L are co-legal. So Typ $k \sim$ Typ k for all $k \geq 1$, but this equiva-
 But the central lemma then implies that $L \in \Lambda$. So K and L are co-legal.
subcase 1.2: Let $K \equiv Q\{A\}[x, B] P x$. Then $L \equiv Q((x:=A) P)$ Ref A and
Typ $K \equiv Q\{A\}[x, B] P$ Ref B. Since $K \in \Lambda: Q A \in A, Q[x, B] P x \in A, T y p{ }^{*} Q[x, B] P x \geq$ $Q[x, M] E$ (so $Q B \geq Q M$ by (III) and (VIII)) and Typ $Q A \geq Q M$.

Since also Q Ref $B \geq Q M: T y p K \geq Q\{A\}[x, B] P M$ (by (II)) \geq
$Q((x:=A) P)(x:=A) M \equiv Q((x:=A) P) M$. The last identity holds because x does not occur in B, and consequently not in M. Put Typ Q Ref $A \equiv Q D$, then also $Q D \geq Q M$ by (V), so Typ $L \geq_{\alpha} Q((x:=A) P) D$ (by (IX)) $\geq Q((x:=A) F) M$ by (II).

Now $\nu(Q$ Ref $B)$ is shorter than $\nu(K)$ by (XII) and $\nu(Q \operatorname{Ref} A)=\nu(Q D)$ (by (XIII)) which is shorter than $v(K)$, so by ind. hyp. I: Typ $^{\ell} Q \operatorname{Ref} B \sim \operatorname{TyP}^{\ell} Q M \sim$ Typ $^{\ell}$ QD.

We shall now derive from this that $T^{\ell}{ }^{\ell} Q\{A\}[x, B] P \operatorname{Ref} B \sim T^{T} P^{\ell} Q((x:=A) P) D$, so Typ $^{\ell} \mathrm{K} \sim \operatorname{Typ}^{\ell} L$ for $\ell \geq 1$. We do this as follows: From Typ ${ }^{\ell} \mathrm{Q}$ Ref $\mathrm{B} \sim$ Typ ${ }^{\ell} \mathrm{QM}$ and (XI) follows: Typ ${ }^{\ell} Q[A\}[x, B] p$ Ref $B \sim T^{\prime} \operatorname{Typ}^{\ell} Q\{A\}[x, B] P M$.
Erom Typ ${ }^{\ell} \mathrm{QM} \sim \operatorname{TyP}^{\ell} \mathrm{QD}$ and (XI) follows: $\mathrm{TyP}^{\ell} \mathrm{Q}^{2}((\mathrm{x}:=\mathrm{A}) \mathrm{P}) \mathrm{M} \sim \mathrm{TyP}^{\ell} \mathrm{Q}((\mathrm{x}:=\mathrm{A}) \mathrm{P}) \mathrm{D}$. (2)
If we can now manage to show that $\operatorname{Typ}^{\ell} Q\{A\}[x, B] P M \sim T^{\ell} P^{\ell} Q((x:=A) P) M$ then we are ready.

Let $T^{2}{ }^{Q} Q M \equiv Q^{\prime}(C f .(V I I I))$, then $T^{\ell} Q\{A\}[x, B] P M \geq_{\alpha} Q[A][x, B] P M^{\prime}$ and $T y p{ }^{2} Q((x:=A) P) M \geq_{a} Q((x:=A) P) M^{\prime}$ (by (IX). Hence Typ $Q\{A\}[x, B] P M \geq$ $T_{y p}^{\ell} Q((x:=A) P) M$ (because x does not occur in $\left.M^{\prime}\right)$. From this, (l) and (2) follows:

Typ ${ }^{\ell}$ Q[A][x, B]P Ref $B \sim \operatorname{Typ}^{\ell} Q((x:=A) P) D$ for all valid $\ell \geq 0$, so Typ ${ }^{k} K \approx$ Typ $^{k} L$ for all valid $k \geq 1$, but also for $k=0$.

Since $v(Q B)$ is shorter than $v(K)$ and $Q B \geq Q M$ it follows from ind. hyp. 1 and (VII) that $C I Q B=C I Q M$. Also, since $v(T y P Q A)=v(Q A)$ is shorter than $\nu(K)$ and Typ QA $\geq \mathrm{QM}$: C1 Typ $\mathrm{QA}=\mathrm{Cl} \mathrm{QB}$. So also C1 Typ Q Ref $\mathrm{A}=\mathrm{Ql} \mathrm{QD}=$ CI Q Ref B by (VII)

By this and (VI): C1 Typ $K=C 1 Q$ Ref $B=C 1 Q D=C 1$ Typ L, so C1 $K=C 1 L$. From the central lema then follows that $L \in \Lambda$, so K and L are co-legal.
case 2 : Assume $K \geq_{\beta} L$ in one step as a direct consequence of $K^{\prime} \geq_{B} L^{\prime}$ and one of the monotony-rules. Then always $v\left(K^{\prime}\right)<v(K)$ so by ind. hyp. is K^{\prime} and L^{\prime} are co-legal. Lemma B then implies that K and L are co-legal.
case 3: Assume $K \geq_{\beta}$ L in more steps, then this reduction can be split up in one-step reductions $K \equiv K_{1} \geq_{\beta} K_{2} \geq_{\beta} \cdots \geq_{\beta} K_{p} \equiv L$. Then induction on p shows that K_{i} and K_{i+1} are co-legal for all $1 \leq i<p$, so by the transitivity of co-legality: K and L are co-legal.

Corollary: Closure theorem: If $K \in A$ and $K \geq_{\beta} L$ then $I_{A} \in A$.
5. References
[1] R.P. Nederpelt, Lambda-typed lambda-calculus, in preparation
[2] R.P. Nederpelt, Strong normalisation in a λ-calculus with λ-expressions as Eypes, Technological University, Eindhoven, Internal Report, Dept. of Math., Notitie 18 (27 April 1972).

