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Some extensions of AUTOMATH: The AUT-4

family.

1. In AUTOMATH (see (1],12]) we have

typing operation that attaches to each

cf degree 1, and to each expression of

£

L

If thie typing operation takes P into (

¢

The lines in AUTOMATH are all of che

<context indicator> <identifier>

> 3

where the category part D has degree |

(if it is not the empty block opener

The substitutional mechanism and

of the degrees of the expressions invol

however, in the rules that express the

application. We shall not recapitulate

2, The extensions
following two features, and may or may

(i)

<definitional part>

symbol or the symbol PN) satiefies

expressions of degree 1,2,3 and a

2

expression of degree an expression

9

degree 3 an expression of degree 2

-
L

Q.

we shall write this here as P

STID

b,

, <category part>,
or 2 and where the definitional part C
C EoD.
the abbreviation system are independent
ved. The degrees do make a difference,

right to carry out abstraction and

these rules of AUTOMATH here.

to be considered in this note all have the first of the

not have the second one.

Alongside with expressions of degrees 1,2,3 we admit expressions of

degrce 4, and we consider formulas P E Q where P has degree 4 and Q

nas degree 3. Accordingly, we admit empty blockopener lines and PN-

lines with category part of degree 3.

(11} Definitional equivalence

" . y
Dis extended as follows: For expressions of

degree 4 we take the rules that directly correspond with the rules we

have in AUTOMATH for expressions
following rule in addition: if P}

P

[

fying Q1 Q then we have Pi

2’

of degrees 1,2,3, but we take the

D

P, are expressions ol degree 4, if

£ Ql’ P2 E QZ’ where Q] and QZ are expressions of degree 3 satis-

P,.

We shall refer to this feature as fourth degree identification.




The AUTOMATH-like languages for which (i) is required, will be called

AUT.4-languages.

3. In order to show the ideas behind AUT 4, we first denote some attention
to the intgrpretation of texts in languages of the AUTOMATH family. We necess-
arily have to be vague about this, zince "interpretation' will mean the system
of relations between an AUTOMATH book and the "mathematical world". This math-
matical world is not a real world, but the imaginary world of mathematics that
has developed in the mind of mathematicians. These mathematicians have been
able to discuss that world in ratural language, hardly ever getting .nto serious
permanent disagreement, and therefore they feel very confident about it. Never-—
theless, it is & strange patchwork of words, formulas and conventions, certainly
not easy to describe.

In the mathematical world we say things like "7 1s a matural number",
"2+ 2 =3 is a proposition'", and if T is some piece of text we can say
"T 1s a proof for 2 + 2 = 3", Tet us indicate the particular use of the word

is" in these sentences by means of the symbol

7 ¢ class of all natural numbers, (3.1)
2+ 2 =23 & class of all propositions, (3.2)
T ¢ class of all proofs for 2 + 2 = 4, (3.3)

Let us write N and 7 for the classes in (3.1) and (3.2), and let us simply

omit the words "class of all proofs" in (3.3). 50 we get

7 €N, (3.4)
2+2=3 € 1w, (3.5

T & 2+ 2 = 4. (3.6)



In previous reports on AUTOMATH we have recommended the following
system of interpretations: the 3, N, etc. of the mathematical world

correspond to AUTOMATH expressions that we shall abbreviate here by "3",

1T tr

"N, etc. Now 'N", "2+42 = 3", "2+42 = 4" have degree 2, "7" and have
degree 3. There is an extra symbol type of degree 1, and we Write
1f7rr E HN” : type, (3-7)
"2+2 = 3" B type, {(3.8)
fTpr F o400 = 4” £ type. &’3.9)

That is, the symbol type can be interpreted as m if we feel like it.

This system has both advantages and disadvantages.

An advantage is that we can reduce the number of primitive notions
of a book, since there are primitive notions that serve tle needs for
classes as well as for propositions {for exampnlie, the cartesian product of
two classes can be specialized to the conjunction of two propositions).
But this is also a disadvantage: there can be axioms we want to hold for
all propositicns and not for all classes. In particular we may wish to
phrase the axiom of rhe excluded third without being forced to accept its
equivalent “or classes (i.ec. Hilbert's universal operator that selects an
element from every non-empty set).

This disadvantage can be overcome if we introduce in the AUTOMATH
text a primitive "bool' of degree 2, and a function "TRUE" that attaches
to every b with b £ bool a value TRUE(b) of degree 2 (see [1]1,[2]). In the
interpretation the TRUE(p) corresponds to a proposition, and the things
which are F TRUE(b) corresponds to proofs of that proposition. A minor
disadvantage is that we have to pass from b's to TRUE(b)'s all the time.

There is also the matter of "type reduction", which we shall briefly

discuss presently. Let 7 be an expression of degree 2 and assume that for



all x with x ¢ I we have derived A(x) t type. Then we may infer in AUT-QE
(see [ 1], section 12.7, [21 p.54) that [x,2]A(x) £ (x,Z]type, and it is

optional to replace this [x,Z]type by type (whence [x,2JA(x) E type). This

is called type reduction, it violates the AUTOMATH law that in A E B the B
the B 1s uniquel § determined by A, up to definitional equivalence. In
AUTOMATH type reduction is compulso- 7.

So the feature of AUT-QE is that tvoo veduction can be left undone;

T

at the same time 1t opens the possibility to start with "let u be a thing
with u £ Ix,% ] type", which makes it possible to express something with rhe
interpretation "let u be a predicate on I".

Experiences with writing AUT~QE seem to have pointed out that type
reduction is uice for the cases of class iInterpretation, and that the
possibiiity to leave type reduction undone 1s attractive for the cases

with propositional interpretation. We might say that we wish type reduction

to be effective for classes and not for propositions.

Iuw AUT .4 we have a possibility of an Iinterpretational system that geems
te ho dofinitely better than the system described above. Referving to the
examples (2.4), (3.5), (3.6), we let "T" have degree 4, "2+2 = 4", "2+2 = 3",
"7" get degree 3, '"N" and "r" get degree "2", and we admit only a single

expression of Jdegree 1, viz. type.

So instead of (3.7) , (3.8) , (3.9) we get

y77n E ITNII E t:zpe 5 (3.]0)
"242 = 3" E "r" E type , (3.11)
"TUE M2+42 = 4" B Mn" B type. (3.12)

Propositions and classes now show a difference on the syntactic level:
they get different degrees. If we require rype reduction, it works for classes

and not for propositions.



.

here is a second syntactic difference with the old system: proofs
now get degree 4, and are thus syntactically distinct from things like
numbers. The fourth degree identification as described in section 2 (ii)
seems to be quite attractive for the case of proofs; it has no consequences
for objects like numbers, where the corresponding identification would be
utterly unacceptable.

The interpretation of fourth degree identification is what we call

irrelevance of proofs, The idea is connected with the gensral idea of

proots in classical mathematics. In the use of AUTUMATH as described im

-

1,121), objects may depend on proofs. For example, the

previous reports ([]
logaritim of a real number is defined for positive numbers only. So actually
the log is a function of two variables; and if we use the expression log {(p,q),

we have to check that p is a real number and q is a procf for the proposition

1

p » 0". If q, and g, are different proofs for p » 0, the expressions log (p,ql)
and log (p,qz) are not definitionally equivalent in AUTOMATH. Yet the classical
mathematician wants them to be equal (though not necessarely definitionally
equal). Lt causes quite some trouble to achi;e this, and at every instant

where si:c . a thing appears we have to appeal to a place in the book where this
kind of equaiity is expressed. And the text checking computer has to do quite

a lot ot worx, too. Yet 1t seems so simple: 1f we are not interested in the
difference between q, and a5 » then we just don't look at them, look only at

what they prove. This is what fourth degree identification in AUT.4 can do

for us.

4. Let us inspect the varicus possibilities for language definitions in
the AUT.4 family.

(1) There is the possibility to admit quasi-expressions (things like

[x,Adtype) as expression of degree 1, and to admit or to forbid type reduction.



In connection with what we said in section 3, 1t seems not necessary to use
quasi-expressions. In order to simplify the subsequent discussion we shall
restrict ourselves to the case without quasi-expressions. That is, type 1is

only expression of degree |, and type reduction is compulsory.

(i1} Various things are possible with abstraction. Let A be an expression

of degrce 1 (i = 1,2,3) and assume ¢l. ¢ we have in our book with the context

x [ A that B(x) E C(x), where B(x) and C(x) have degree j+! and j, respectively
(] = 1,2,3). Then we wish to be allowed to write outside the context x £ A,

that

¥

\ ~ ’ 3!

[x,A] B(x) E fx,Al C(x) (4.1)
if 3 > 1, and

[x,A] B(x) E type (4.2)
if ] = 1 (whence C(x) = type). Let us call this (i,j)-abstraction and refer to

it as "abstraction from A'.

e can choose for which pairs (i,]) we shall admit this in the language
definitvor. It seems to be reasonaible to admit all pairs with i # i. (One
might hedta. e about 1 = 3, but if we do not admit i = 3 here, the passage
from the interpretational system (3.4)-(3.6) to the system (3.i0)-(3.12)
would have a serious drawback.

Entirely independent of the question whether (4.1) and (4.2) are
admitted, we agree that the 'abstractive exprehbioﬁ [x,AlB(x) has the same
degree as B(x) (and [x,A] C(x) has the same degree as C(x)).

(iii) Let, in a certain context, g and f he expressions of degree i+l and

J*1, and assume that

‘q EA, fE [X,A]C(x) (4.3)

where A has degree 1 and C(x) has degree j. Then we can wish to be allowed



to write
gt £ C(q) (4.4)

(which is called (i,j)-application, in this particular case application of
f to g). We can choese for which pairs (1,j) (1 < 1 £ 3, 1 <] < 3) we shall
admit this in the language defiuniti.. Tt seems reasonable to admit it for
all pairs with 2 = 1 < 2, 2 < J < 3,

Entirely independent of the question whether (4.4) 1s admitted, we agree
the "applicative expression' {glf has the same degree as [.
(iv) TIf j = 3 chere 1s 2 rule slightly stronger than (ji;), if q and i have

degree 1+] and 4, respectively, and if

Qs

o b A, T Eh h E I x,AID(x)
then
{q}f E {qlh.
[iiis rule probably has not much use. It 1s certainly superfluous if we
nave bool 0 and n-reduction, for then we can write h as Ix,Al{x}h., But even

1f it is not superfluous (t is questionable whether we shall ever need it
bhaaiy,
(v} Let in a certain context g have degree i+l, and let [x,A]B(x) be an ex-

pression of degree j¥! ‘where A has degree i. Tlien we wish to reduce
fq} [x,A] B x) co 8(q),

which 1s called s-reduction. We have to state for which pairs (i,i) this
will be taken as definitional egquivalence. It seems reasonable to admit all

1 and j with 2 =« 1 « 3 , 2 < j « &,



Instead of this ordinary f-reduction, we can take type-restricted

9—reduction. Ip that case, the above reduction is allowed only if we can

show that q £ A,

(vi) If A and B have degrees 1 and ], we wish to reduce

[x,A] {x} B to B

(n -reduction). It is reasonable to admit it for 2 = 1 < 3, 2 < ] < 4,

(vii) In the interpretations we discussed i1n scction 3 we had use for
expressions p of degree 4 only if p £ A E prop. Let us refer to all other
expressions of degree 4 as extras.

One might think it better to ban all extras as long as no interpre-

tacion has been agreed upon. On the other hand one may hope to be able to

show that that extras do no harm, in the following sense:

o

Let B be a correct book, and let 2 be a line we wish to add to B.
LB . . oy
Ler B bhe a book with exactly the same FN's as B has, and no others.

L* . . . . .
Assume that B contains the line £, and that neither B nor 2 contain

. . *k - ok
ras. Then there 1s a correct extension B of B such that B \ B

[#9]
v
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containg & but no PN's and no extras. If this is true, we may say that

the language that allows extras is conservative over the one that does not.
Neveriheless there can be ccite use for extras. Assume we are inte-

rested in constructibility of real numbers. Lec C be a construction for

the real number r, and if "C" and "'r" are the expressions corresponding to

C and r, we want to have "C" E "r'. By means of ?axioms we can describe

primitive constructions, and primitive ways to obtain new constructions

from constructions already known. In that way we can get a theory of

constructions in our book., If our language nas fourth degree identification

then we have construction irrelevance: 1f scomething depends on a construction

only depends on the constructed objecr snd on the fact that a construction

-
rr
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