
THE

LANGUAGE THEORY

OF

AUTOMATH

PROEFSCHRIFT
TER VERKRIJCINC VAN DE C R A A D VAN DOCTOR
IN DE TECHNISCHE WETENSCHAPPEN
AAN DE TECHNISCHE HOCESCHOOL EINDHOVEN,
O P C E Z A C VAN D E RECTOR MACNIFICUS, PROF. IR. J. ERKELENS,
VOOR EEN COMMISSIE AANCEWEZEN DOOR HET COLLEGE VAN DEKANEN
IN HET OPENBAAR TE VERDEDICEN
O P VRIJDAC 15 FEBRUARI 1980 TE 16.00 UUR
DOOR

DIEDERIK TON VAN DAALEN

GEBOREN T E BERCEYK

DRUK WlBRO HELMOND

Dit proefschrift is goedgekeurd

door de promotoren

Prof.dr. N.G. de Bruijn

en

Prof.dr. W. Peremans

ACKNOWLEDGEMENTS

To a l l my former col leagues i n the Automath p r o j e c t , f o r t h e

f i n e cooperation. Espec ia l ly t o Ber t J u t t i n g , Rob Nederpelt and

Roe1 de V r i j e r , f o r t h e i r he lp dur ing t h e l a s t s t a g e of t h e pre-

p a r a t i o n of t h e manuscript.

To Marlgne Beunis, f o r her h o s p i t a l i t y .

ToLiekeJanson, Janna Blotwijk and Adele Hendriks, f o r t h e

typing, and t o Franka van Neerven, f o r h e r kind assistant-e.
To P r o f . I r . W. Baarda, who s o generously o f fe red t h e f a c i l i t i e s

t o f i n i s h t h e t h e s i s .

To t h e Netherlands Organization f o r t h e Advancement of Pure

Science (Z . W . O .) , f o r f i n a n c i a l support dur ing my work i n the

Automath p r o j e c t .

CONTENTS

Chapter I Introduction and summary

1.1 Preliminary remarks

I -2 A survey of the Automath project

1.3 Something on bound variables

1.4, The Automath languages

1.5 Mathematics in Automath

1.6 The contents o'f this thesis

Chapter I1 Miscellanea

11.0 Preliminaries

11.1 Expressions

11.2 Syntactic identity, a-equality and substitution

Elementary and one-step reduction

Reduction and definitional equality

Some important properties

CR continued

Combined reductions

An informal analysis of CR1

An informal analysis of postponement

Multiple substitution

Reduction under substitution; Barendregt's lemma

Chapter I11 The theory of abbreviations; LSP
111.1 Introduction

111.2 The definition of LSP
111.3 Some prpperties

111.4 Normalization

111.5 Strong normalization

111.6 Decidability

Chapter IV Strong normalization for first order pure

typed A-calculus with application to AUT-QE

IV .I Introduction

IV.2 Normalization and strong normalization

for normable expressions

IV.3 The strictly normable expressions

TV.4 The normability of AUT-QE

Chapter V The E-def in i t ion and t h e c losure p roper ty

f o r pure regu la r Autornath Languages

V.l In t roduc t ion

v.2 On the E-def in i t ion

V.3 The a c t u a l c losure proof

V.3.1 H e u r i s t i c s

V.3.2 Closure f o r 8r1-AUT-QE

V.3.3 Extension t o Bn6-AUT-QE+

V.3.4 Some e a s i e r c losure proofs

V.4 The equivalence of t h e E-def in i t ion wi th

the a lgor i thmic d e f i n i t i o n

V . 4.1 In t roduc t ion

V.4.2 The a lgor i thmic d e f i n i t i o n

V.4.3 The equivalence proof

V.4.4 The a c t u a l v e r i f i c a t i o n

Chapter V I The Bq-Church-Rosser problem f o r

genera l i zed typed A-calculus

V I . l I n t roduc t ion

v1.2 A f i r s t r e s u l t concerning m - C R f o r r e g u l a r languages

V1.3 A proof of C R f o r f u l l Bq-reduction

from c l o s u r e and s t rong normal iza t ion

Chapter V I I The a lgor i thmic d e f i n i t i o n and t h e

theory of Nederpel t ' s A : t h e b i g t r e e

theorem, c losure and Church-Rosser

V I I . l In t roduc t ion and summary

VII.2 The d e f i n i t i o n of and Aq

V I I .3 The c losure proof f o r A

V I I .4 The b i g t r e e theorem

VII.5 Closure and Church-Rosser f o r Aq

VII.6 Various equivalence r e s u l t s

Chapter V I I I Some r e s u l t s on AUT-Pi

V I I I . l I n t roduc t ion and summary

VIII .2 A s h o r t d e f i n i t i o n of AUT-Pi

VIII .3 A s h o r t proof of c losure f o r AUT-Pi

VIII .4 A f i r s t SN-result f o r an extended system

V111.5 Three proofs of Bn+-SN,?with

appl icat ion t o A U T - P i

V I I I . 6 Some addi t iona l remarks on AUT-Pi

References

Samenvatting

Curriculum v i t a e

I INTRODUCTION AND SUMMARY

This thesis gives an account of the author's language theoretical

studies on the Automath languages, during his work in the project

Mathematical Language AUTOMATH (under supervision of Prof. De Bruijn)

at the Eindhoven University of Technology. These studies can be con-

sidered as a continuation and completion to previously published work

of Nederpelt [5i 1 and De Vrijer [701.*)
Actually, an introduction to the remaining chapters of the thesis

is hardly necessary because they are formally self-contained and pro-

vided with lengthy introductions themselves. However, we like to make

some general remarks on the Automath project, hoping to clarify some

points which have sometimes given rise to misunderstanding. Most views

expressed are common in the Automath project, but some are personal

views, not necessarily shared by other workers in the project.

We start with preliminary remarks, followed by a survey of the

Automath project. We discuss the Language theory and its role in the

project. We give an informal introduction to the various Automath

Languages and explain how mathematical reasoning can be represented.

Finally we smarize the contents of this thesis. Occasionally we make

a comparison with related logical systems and related enterprises else-

where. For more information on the subjects of this chapter we refer to

De Brui jn [13,20], Jutting [3 71, Zucker [77 1 and Van Daalen [27 I.

1.1 Preliminary remarks

1.1 'Reliability and formal rigour

The Automath project originally arose (around 1966) from the idea

that it was desirable to increase the dependability of pieces of mathe-

matics by having them checked by a computer. To this end the mathematics

involved was to be formalized in a mathematical Language allowing

computer verification.

First something about this part of the motivation. One might wonder

whether greater dependability is desirable at all - and if so, in what
parts of mathematics -, and whether formal rigour (as imposed by the

*) Numbers in brackets refer to items on the list of references.

computer) c o n t r i b u t e s a t a l l t o dependabi l i ty . C r i t i c s sometimes argue

t h a t c o r r e c t n e s s of a mathematical t e x t , o r of a proof, a f t e r a l l depends

on human i n s i g h t i n t h e s i t u a t i o n and understanding of t h e concepts in -

volved. And, consequently, they sometimes suggest t h a t formal r igour

can be opposed t o r e l i a b i l i t y , because t h e presence of too many formal

d e t a i l s may s p o i l t h e understanding.

There is , genera l ly , some p o i n t i n t h i s c r i t i c i s m , but a l l t h e same,

many mathematicians sometimes produce f a u l t y proofs and, even, f a l s e

theorems. Th is j u s t means t h a t they have been cheated by t h e i r i n t u i t i o n .

Such mistakes cannot be s a i d t o be caused by l ack of r igour b u t , r a t h e r ,

would have been prevented by being more r igorous . E.g. by formal iz ing

t h e s u b j e c t mat ter i n a well-chosen formalism. I n genera l , t h e p o s s i b i l -

i t y of computer v e r i f i c a t i o n p lays a minor r o l e here and, a s De Brui jn

p u t s it, t h e computer i s j u s t t h e r e t o s e t t h e s tandards . Ser ious e r r o r s

won't survive t h e process of fo rmal iza t ion and w i l l never be fed i n t o

t h e machine. However, a f t e r having taken t h e t roub le t o produce a

" f u l l y formal" proof with poss ib ly l o t s of t echn ica l d e t a i l s it i s n i c e

t o have a p a t i e n t computer a c t u a l l y wai t ing t o read it and r e l i s h t h e

d e t a i l s . I n p a r t i c u l a r , because on rereading, t h e d e t a i l s indeed may

s p o i l one ' s own understanding.

Besides (t h i s i s our second p o i n t a g a i n s t t h e c r i t i c i s m) , we th ink

t h a t t h e l a t t e r s i t u a t i o n can be avoided by using a good formalism,

which a l lows a formal izat ion f a i t h f u l t o t h e informal ideas one had i n

mind (s e e a l s o 1.4) . *
I t has , of course , never been intended t h a t computer v e r i f i c a t i o n

might replace human understanding, and t h a t formal izat ion might cover

a l l of mathematics. We j u s t note t h a t formal izat ion sometimes can

support our understanding and guide our i n t u i t i o n .

1 . 2 The "data bank" aspec t

According t o t h e above c r i t i c i s m one never can r e l y on r e s u l t s one

does n o t f u l l y understand. Such an orthodox p o i n t of view we think un-

satisfactory; one sometimes wants t o use what might be c a l l e d "more o r

l e s s b lack boxes", e.g. one sometimes wants t o be l i eve a theorem without

knowing, o r without q u i t e understanding, i t s proof (e.9.- one does not

understand t h e proof any more).

*) Numbers n o t i n b racke t s r e f e r t o s e c t i o n s i n the p resen t volume; i f
n o t s t a r t i n g with a Roman numeral they i n d i c a t e sec t ions i n s i d e the
c u r r e n t chapter .

Here we touch a certain "data bank" aspect (as opposed to the

checking aspect) of such a formalization project: the codification and

storing of a large amount of dependable and unambigous mathematics.

1.3 The experimental character of the project

Thus far about the original motivation. The present author likes

to consider the Automath project as an experiment in order to answer

the question: can we develop formalisms (mathematical languages), in

which mathematical texts actuazzy can be formulated in such a way that

mechanical verification (by a computer) is ~ctuazzy possible. Apart

from the emphasis on computer verification there is another difference

as compared with earlier formalization projects: it is required that

both writing (i.e. translating mathematics into Automath) and checking

are practically feasible (and it would be nice if it were readabZe

too), and that the formalism is kind of Unive~saZ, i.e. suitable for

large parts of mathematics.

1.4 The correspondence with ordinary reasoning

In Automath it is attempted to achieve the feasibility of the

writing stage by keeping as close as possible to ordinary informal

mathematical reasoning, and to existing good mathematical habits. This

then was to result in the possibility of a fully formal proof not

blurring the understanding - compare a well-structured computer pro-

gram -.
Keeping close to ordinary reasoning also serves the feasibility

of the checking process: in principle we do not expect more from the

machine than we would expect from a human checker - though of course
we expect the machine to be much faster and more accurate than a

human -. The feasibility of the checking requires that aZZ of the rea-
soning is formalized in the language, whereas usual logical systems

generally formalize only part of it and leave the rest to informal meta-

language. In particular we mention the handling of proofs, the handling

of vmiabZes and the handling of abbreviations (i.e. the introduction

of new defined constants, see 4.3) .

1.5 The didactical aspect

A side effect of the analysis of mathematical reasoning needed for

the development of a formalism meeting the above specifications might

be a better insight into ways of presenting and teaching mathematics.

This, didact ica l , aspect of Automath (beside the aforementioned check-

ing and storing aspects) proves indeed to be important: Nederpelt and

De Bruijn have used Automath-like systems to explain first-year mathe-

matical students and mathematics teachers-to-be some principles of

mathematical discipline. Research in this direction now falls under the

WOT project ("Wiskundige Omgangs Taal", this is Dutch for: mathematical

vernacular), which is going on in Eindhoven. One tries to codify ele-

ments of natural mathematical reasoning into a rather pr-ecise language

which is inspired by Automath but does not particularly aim at computer

verification.

1.6 The possible foundational contribution

From the modest statement of the aims of Automath, above, it will

be clear that Automath has no strong foundational claim - in the usual
logical sense - or philosophical position to defend like some of its
forerunners. ~ u t if one wants to hear such a claim it might be the

following one: that it is possible to present large parts of ordinary

mathematics in Automath in a natural way. In particular that large

parts of even c lass ica l reasoning fit quite well in the "minimaz logic"

of Automath (see 5.10) and that large parts of classical mathematics

can be founded on the typed A-caZcuZus frame work of Automath (see 5.3)

rather than on axiomatic set theory. (In fact this claim is a sine qua

non to the Automath project.)

Besides, the original, simple wish to increase the reliability of

mathematics can, from a practical point of view, also be considered as

a foundational contribution.

1.7 The nature of Automath

A more ambitious, less carefull phrasing of the aim of Automath,

viz. the development of a language in which all mathematics can be

expressed so meticulously t h a t syntacticaZ correctness would e n t a i l

mathematical correctness, has sometimes given r i s e t o confusion.

Logicians then argued t h a t such an enterprise was doomed t o f a i l u r e ,

f i r s t l y , because it would contradict the incomp'leteness theorems and,

secondly, because it would contradict the undecidabiZity: the computer

cer ta in ly would not be ab le t o check for correctness (t o decide, a s one

says) any subs tan t ia l p a r t of mathematics.

We w i l l explain t h a t such cr i t ic i sm is hardly t o the point . The

basic system of Automath ju s t covers a t iny p a r t of mathematics, so t o

say minimal predicate Logic. The Automath user himself has t o add t o

t h i s basic system a l l the axioms and constants necessary fo r h i s spec i f ic

area of i n t e r e s t , and he has t o supply more axioms and constants when-

ever he wants t o increase the expressive power of h i s language or the

s t rength of h i s theory. Further, the computer is cer ta in ly not supposed

t o decide the t r u t h of the axioms, it i s even not supposed t o decide

derivabi Z i ty from the axioms, but j u s t v e r i f i e s der ivat ions (i . e .
proofs) .

1.8 Some proof checking systems

In the Automath pro jec t the computer i s not expected t o check (e.g.

t o prove) theorems but, r a the r , i s expected t o check whether something

i s a proof and whether it proves a cer ta in theorem. Thus, the project

can be compared with two other major proof-checking projects : the FOL

(F i r s t Order Logic) pro jec t of Weyhrauch C.S. i n Stanford [2 1 , 7 3 1 , and

the LCF (Logic Of ComputabZe Functions) of Milner c .s . i n Edinburgh

[3 2 1 .

FOL i s based on c l a s s i ca l f i r s t order logic , i n na tura l deduction

s ty l e , and i s intended t o be universal l i ke Automath. However, according

t o Bulnes [21] , the system (s t i l l) has some d i f f i c u l t i e s i n asping

with s o r t s (or types) which seems t o make the system l e s s appropriate

fo r p a r t s of mathematics not based on c l a s s i ca l s e t theory.

The kernel of LCF i s a system cal led PPX (poZymorphic predicate

A-cakuZus) a system of typed A-calculus plus fixed poin t induction

plus logic , a l so i n na tura l deduction s ty l e , based on S c o t t ' s work i n

the theory of computations. I t i s especially intended fo r problems con-

cerning algorithms and programming languages.

In p r inc ip l e , these two systems are not more in t e rac t ive than

Automath, s ince i n Automath a s well l i n e a f t e r l i n e can be fed i n t o the

machine, thus incrementally constructing pieces of cor rec t mathematics.

However, recent ly both systems have been enriched by a strong heu r i s t i c

mechanism allowing socalled top-dom proof (i . e . working from the r e s u l t s

backwards t o the assumptions). In f a c t , by these mechanics, ca l led

GOAL (f o r FOL) and ML (fo r LCF) respect ively, a kind of clever mixture

between a proof-checker and a theorem-prover has been created (i n f a c t

the "top-down t a c t i c a l s " a r e j u s t a p a r t of ML, which a l so contains

some other useful mechanisms).

The bas ic elements of Automath j u s t include what may be cal led

"construct ive reasoning", a s borrowed from ordinary, informal, sound

mathematical p rac t ice . Of these we mention the " l inear" natural deduct-

ion system (see 4.5 ,p.23)used i n the construction of both proof s and

objec ts , the f a c i l i t y t o abbreviate expressions by a new name (with para-

meters) a t any desired moment (see 4 . 3 , and the introduction t o

Ch. III) , and the suppression mechanism f o r "fixed" parameters (see,

e .g . , [27 , sec. 2.151). A consequence of the log ica l weakness of the

basic system i s the required universal i ty: the Automath user i s even

f r e e i n the use of h i s ZogicaZ axioms.

1.9 Proof checking vs. theorem proving

When constructing a proof-checking or theorem-proving system one

has t o decide how t o devide the t o t a l amount of work between the human

wr i te r and the machine. In general it i s assumed t h a t eas ie r writing

makes more d i f f i c u l t checking and vice-versa. A d i s t i nc t ive pr inc ip le

of Automath languages always has been t h a t the computer actuaZZy must

be ab le to cope with i t s task. So, a t l e a s t , the system the machine i s

' supposed t o decide must be formally decidable. In f a c t we want feasibZe

decidabi l i ty (c f . 2.10). On the other hand it i s required t h a t the

w r i t e r ' s burden i s a s l i g h t a s possible.

A nice poin t i s t h a t , i n cont ras t with the above s ta ted general

view, ea s i e r wri t ing sometimes makes checking eas ie r too. Viz. i f the

system allows the wr i te r t o omit p a r t s of the argumentation these p a r t s ,

of course, do not need t o be checked: But, on the other hand, a cer ta in

redundancy w i l l help the machine t o de t ec t the , almost inevi table , minor

e r r o r s a t an ea r ly stage.

I n view of f e a s i b l e d e c i d a b i l i t y general theorem proving i s o u t of

t h e quest ion. But it i s i n t h e s p i r i t of t h e Automath p r o j e c t t o success-

i v e l y extend an e x i s t i n g , working, v e r i f i c a t i o n system with new t o o l s

t h a t handle a d d i t i o n a l , f e a s i b l e t a sks . I n such a way one might t u r n

o n e ' s proof-checking system i n t o a p a r t i a l truth-checking (i . e . theorem

proving) system, notably i n well-defined r e s t r i c t e d domains. Put d i f f e r -

e n t l y , t h e machine might be allowed sometimes t o calcuzate f a c t s , r a t h e r

than proving them. Although, i f one would allow t h e use r of t h e system

t o program such a t tached mechanisms himself , i t would be p re fe rab le ,

i f a l s o a proof would be generated and checked (c f . 2 . 3) .

I n f a c t , t h e Automath proof-checking system has always contained

such a p a r t i a l truth-checker, v iz . a dec i s ion procedure f o r t h e formulae

(d z f i n i tiona 2 equations and typing formulae) of t h e under ly ing typed

A-calculus (s e e 4.1) .

1.10 Some c h a r a c t e r i s t i c f e a t u r e s of Automath

We j u s t mention here (bu t w i l l come back t o it) t h a t t h e p a r a l l e l

n a t u r a l deduction treatment of o b j e c t s and proofs , which we think q u i t e

n a t u r a l , and c h a r a c t e r i s t i c f o r Automath, g ives r i s e t o a generalized

typed X-caZcuZus. By "generalized" we mean t h a t t h e types a r e no t given

beforehand, bu t a r e r a t h e r const ructed along with t h e terms and can

have complicated form (c f . 4 . 1) . I n I V . l t h e r e i s given a f u r t h e r

c l a s s i f i c a t i o n of such systems, i n t o pure, extended and arithmetical

systems. The pure systems have t h e ordinary A-calculus operat ions only,

the extended ones have a d d i t i o n a l l o g i c a l operat ions , and t h e a r i t h -

met ica l systems have a r i thmet ic b u i l t i n i n t h e form of a recurs ion

operat ion. The pure and extended systems a r e the sub jec t of t h i s t h e s i s .

The Automath languages AUT-68 and AUT-QE (4.5-4.7) belong t o t h e

pure , t h e language AIIT-Pi (i n Ch. V I I I) belongs t o t h e extended systems

and t h e r e a r e no arithmetical Automath languages. This i s a fundamental

choice: the add i t ion of a b u i l t - i n recursor might g ive r i s e t o d e f i n i t -

i o n a l equations which a r e n o t f e a s i b l y decidable and, bes ides , we d o n ' t

th ink t h a t t h e presence of a recurs ion would make t h e representa t ion

of ordinary mathematical reasoning any e a s i e r . Consequently, the n a t u r a l

number s t r u c t u r e i s n o t b u i l t i n , bu t has t o be introduced axiomatically,

j u s t l i k e any o ther mathematical s t r u c t u r e . Needless t o say t h a t t h e

Church (o r , any o t h e r) r epresen ta t ion of numbers i n A-calculus does n o t

come i n .

1.11 Propos i t ions a s types

The p a r a l l e l i s m between o b j e c t s and proofs , types and p ropos i t ions ,

d e f i n i t i o n a l e q u a l i t y and proof t h e o r e t i c conversion, f o r shor t : t h e

propositions-as-types not ion of cons t ruc t ion , was f i r s t h in ted a t by

Curry and Feys 1251. Later on it was developed f u r t h e r by Howard [34]

and employed by him and o ther log ic ians (~ c o t t [6 2] , Prawitz [60], Martin-

LBf [45], Girard 1311) i n founding a theory of cons t ruc t ions , i n proof

theory , and i n cons t ruc t ing an i n t u i t i o n i s t i c theory of types. In t h e

meantime, it was independently discovered by De Brui jn (he a l s o insp i red

S c o t t [62]) and used i n t h e Automath p r o j e c t .

1.2 A survey of t h e Automath p ro jec t

2.1 The AUT-QE s t a g e

The experimental , p r a c t i c a l charac te r of t h e p r o j e c t c l e a r l y re -

qu i red : (i) t h e development of appropr ia te languages, (ii) t h e const ruct -

ion of programs f o r v e r i f y i n g these languages, (iii) t h e a c t u a l wr i t ing

and checking of l a r g e p ieces of mathematics.

There e x i s t s n o t j u s t one Automath language, bu t a whole family of

Automath languages. The f i r s t language (around 1968) which had t h e

c h a r a c t e r i s t i c typed A-calculus s t r u c t u r e was AUT-68. Before 1968 t h e r e

were j u s t some sub-languages: LSP (see C h . 111) which cod i f i ed t h e

abbrev ia t ion device , PAL which a l ready had type s t r u c t u r e b u t s t i l l

lacked A-calculus (s e e [i l l) . Experience wi th AUT-68 l e d almost imme-

d i a t e l y t o t h e cons t ruc t ion of AUT-QE, which proved t o be q u i t e s u i t a b l e

f o r t h e then adopted proposit ions-as-types s t y l e of wr i t ing mathematics.

So t h e f i r s t language around which t h e p r o j e c t was centered was

AUT-QE. De B r u i j n ' s sketch of a ve r i fy ing program was e laborated and

implemented by Zandleven [75]. J u t t i n g t r a n s l a t e d Landau's "Grundlagen

d e r Analysis", and h i s t r a n s l a t i o n was completely checked by t h e v e r i -

f y ing program. This e n t e r p r i s e has been ex tens ive ly documented i n [37 1.
The Chapters V , V I of t h i s t h e s i s a r e mainly devoted t o AUT-QE.

2.2 The AUT-Pi stage

I t was always foreseen t h a t , on the bas i s of the experience with

AUT-QE, higher-level, easier-to-write, so ca l led super-languages were

t o be developed, possibly fo r "special purposes", i . e . spec i f ic areas

of mathematics. The second language playing a cen t r a l ro l e i n the pro jec t

was AUT-Pi , developed by Zucker.

This is indeed a kind of super-language extending AUT-QE i n two

respects. F i r s t l y , the mathematical basis of AUT-Pi i s somewhat stronger

(it is an extended system, i . e . there i s s l i g h t l y more log ic b u i l t i n) .

This answered, e.g. , i n combination with the pr inc ip le of irrezevance

of proofs (see 5.2, and [2 0]) Ju t t i ng t s need f o r ea s i e r embedding

and "exbedding" f a c i l i t i e s (see [37]) . Secondly it contains some handy

"syntac t ica l fea tures" which make l i f e for the Automath user somewhat

more comfortable. We mention the ~ y t l t - f a c i l i t y f o r syntac t ica l operat-

ions on expressions (which, i . a . , allows t o omit redundant parameters

(but see 1 . 3)) , and the presence of str ings and telescopes. More about

t h i s can be found i n [37, 771.

However, the use of these syntac t ica l mechanisms i s not res tr ic ted

t o AUT-Pi, they can a s well be added t o AUT-68 and AUT-QE. This seems

t o be pa r t i cu l a r ly worthwile, because the strings-and-telescopes i n

some sense duplicate the pairs-and-products of AUT-Pi (see VIII.1.5).

Zucker (a s s i s t ed by A . Kornaat) employed the new language fo r a

modern, thoroughly c l a s s i ca l (i n the sense of " c l a s s i ca l logic")

t r e a t i s e on the pr inc ip les of r e a l analysis , thus contributing t o the

foundational claim mentioned above. A survey of the AUT-Pi p a r t of the

pro jec t i s t o be found i n 1771.

A new verifying program was designed by Zandleven, developed by

him and Kornaat, and i s now being finished by Ju t t ing . Apart from the

f a c t t h a t t h i s new verifying program accepts AUT-Pi a s well a s the older

languages, it a l so contains improved f a c i l i t i e s fo r handling bound

~ a r i a b l e s (see 3.4) and fo r storage manipuzation. The l a t t e r proved

necessary because with the f i r s t ve r i f i ca to r , which l e f t the handling

of the extensive storage requirements t o the computer system, working

i n in te rac t ive mode turned out t o be cumbersome.

Apart from the two major Automath t e x t s produced by Ju t t i ng , Zucker

and Kornaat there have been formalized many smaller pieces of mathematics

into Automath by a variety of authors, mostly students. In Bulnes

it has been suggested that the size and scope of the proof checking

projects performed in FOL were comparable with size and seope of e.g.

Jutting's opus. The present author disagrees: The amount of material

handled in FOL is in no way comparable to what has been done in Auto-

math.

2.3 The multi-level approach

The words "higher-level languages" suggest a separation between an

object language, and a formal super-language which provides easier

writing. Texts in the latter language may then be mechanically trans-

lated into object-language, which in turn is to be verified by the

machine. In AUT-Pi, contrarily, there is, in principle, no such separat-

ion of levels: all the additional features are incorporated into the

language. We write "in principle", because the ~ynt-facility is indeed

somewhat related to this multi-level approach.

There have also been certain proposals actually directed towards this

multi-level framework. E.g. Wieringa (now working on the application of

Automath to programming language theory), has once constructed a system

that answers simple arithmetical questions (n * m = ?) and provides the

resulting equation with a proof in AUT-QE. This AUT-QE proof turns out

to be correct, of course! Similarly, there has been constructed a mecha-

nism that decides propositional formulas and provides the true ones

with an AUT-QE proof [53,74]. Compare also the discussion in 1.8 about

partial theorem-proving mechanisms.

In FOL and LCF partial theoremproversand multi-level approach are

present too. We mention the FOL procedure MONADIC, which decides formulas

of monadic predicate calculus, and the ATTACH facility, allowing the

machine to establish combinatorial facts by actual calculation. As for

LCF, the meta-language ML is presented as a kind of programming language

for manipulating the objects of the PPh system.

2.4 The theoretical aspects

Of course the development task in the project, viz. of developing

languages and verifying programs, and of writing mathematics in Automath,

also gave rise to theoretical studies. Here we distinguish:

(1) language theoretical studies,

(2) studies concerning the way mathematics is formalized in Auto-

math.

This thesis deals with the language theory (I) , which we define as

the theory of the underlying typed A-calculus of the Automath languages.

Object of study is the syntactical structure consisting of the Automath

expressions, provided with the relations reduction, definitional equality

and the typing relation (or typing function) . See
As regards (2), we mention some typical logical questions: what do

we gain and loose by such formalizations, and: what is the relation

between the Automath formalization and, say, some standard formulation

of a piece of mathematics. Such questions are interesting, mostly be-

cause of the unconventional way in which mathematics is formulated in

Automath. In particular, the fact that the proofs explicitly enter the

Automath formalization is important. E.g. it allows detailed analysis

of proofs, and of reasoning, and it gives rise to, as we say, generalized

logic (see 5.10,[201 or [771).

Then the studies (2) can, i.a., indicate what Automath language is

suitable for what kind of mathematics. Roughly speaking, we might say

that (2) concerns sernrmtical questions, in contrast with the basically

syntactic questions of the language theory, treated below.

2.5 What is language theory?

The results of the language theory are important for the construct-

ion of the verifying program and for proving its correctness. Further

they serve as a foundation for the study of mathematics in Automath,

i.e. the studies (2) mentioned above. E.g. the consistency of the under-

lying typed A-calculus (as provided by Church-Rosser theorems and the

like, see below) is clearly a prerequisite for the consistency of mathe-

matics formalized in Automath.

Nevertheless, the language theory concerns the expressions and

formulas as mere syntactica2 constructs, thus abstracting from possible

mathematical content. Hence, the language theory also abstracts from

particular sets of constants and axioms (socalled books) belonging to

a particular piece of mathematics.

We take t h e p o i n t of view t h a t the Zanguages of t h e Automath family

a r e charac te r ized by t h e i r s e t of correct (i . e . well-formed according

t o the r u l e s and r e s t r i c t i o n s of t h e var ious languages) books, f o m z a s

and express ions , r a t h e r than by a c e r t a i n s p e c i f i c d e f i n i t i o n , i . e . a

s p e c i f i c set of r u l e s . Two d e f i n i t i o n s a r e s a i d t o be equivalent i f they

def ine t h e same-language. One language i s s a i d t o be an extension of

another language i f i ts s e t of c o r r e c t express ions , books e t c . con ta ins

the s e t of c o r r e c t express ions , books e t c . of t h e o ther one.

2 . 6 The aims of t h e language theory

Now we mention some t y p i c a l t h e o r e t i c a l aims. On the one hand, t h e

design and comparison of language def in i t ions , i n p a r t i c u l a r t h e compa-

r i s o n of soca l l ed E-definitions, which generate the language i n quest ion

by a s e t of production r u l e s , with t h e a lgor i thmic d e f i n i t i o n s which

desc r ibe t h e language by g iv ing i t s verifying program.

O n the o ther hand t h e r e i s t h e comparison of t h e d i s t i n c t languages,

leading t o conserva t iv i ty and unessent ia l - o r d e f i n i t i o n a l extension

r e s u l t s (s e e V . 3.3 f o r t h e terminology) .
Las t bu t n o t l e a s t we mention t h e decidabiz i ty of t h e Automath

languages, which i s , i n p r i n ~ i p l e ~ e s s e n t i a l for t h e aim of t h e p r o j e c t ,

mechanical proof-checking. The l a t t e r goa l (t o prove t h e d e c i d a b i l i t y)

c o n s i s t s o f : (1) i n d i c a t i n g a dec i s ion procedure, (2) proving i t s equi-

valence wi th a given language d e f i n i t i o n (these p a r t s can be skipped i f

t h e language i n ques t ion i s given by a d e f i n i t i o n of t h e a lgor i thmic

t y p e) , (3) proving t h e terminat ion of t h e ind ica ted procedure.

2.7 Three d e s i r a b l e p r o p e r t i e s

The main t o o l of t h e language theory is t h e d e t a i l e d study of t h e

soca l l ed reduc t ion r e l a t i o n s involved. Roughly speaking, reduct ion of

expressions amounts t o s t e p by s t e p evaluat ing, s t e p by s t e p transforming

t h e express ion (c f . 4 .3) , u n t i l poss ib ly an i r r e d u c i b l e (o r : normal)

express ion is reached. DefinitionuZ equa l i ty i s t h e equivalence r e l a t i o n

generated by reduct ion (t h e p r e c i s e d e f i n i t i o n s a r e i n 11.3-4).

Now t h r e e important d e s i r a b l e p r o p e r t i e s of t h e systems, i n con-

nect ion with reduct ion and d e f i n i t i o n a l e q u a l i t y , a r e : (1) normalization

and strong normalization, (2) the cz0SUre property, (3) the Church-

Rosser property.

Normalization states that all the correct expressions indeed reduce

into a normal expression, i.e. there is a reduction sequence, a sequence

of expressions produced by successive evaluation steps (reduction

steps), ending in an irreducible expression. Strong normaZization says

that all the reduction sequences of correct expressions terminate. The

cZosure property (this term is due to Nederpelt) says that correct ex-

pressions remain correct under reduction. Finally the Church-Rosser

theorem (a corollary of the Church-Rosser property) states that two de-

finitionally equal expressions have a common reduct, i.e. an expression

to which they both reduce. For precise definitions see 11.5.

2.8 Formal vs. feasible decidability

A typical application of Church-Rosser theorem and normalization

is the decidability of the definitional equality on the set of correct

expressions. First, by the Church-Rosser theorem we have socalled

uniqueness of normal forms: An expression has at most one normal reduct.

So by combining this with normalization we can define the normaz form

of an expression. Then, thanks to these properties, two expressions are

definitionally equal iff they have the same normal form. These can be

effectively computed, thus yielding decidability (of definitional

equality, from which the decidability of the typing relation follows).

However, computing normal forms is not a very practical way of de-

ciding definitional equality, because normal forms can be very long and

complicated expressions, and the reduction sequences leading to them

often require many reduction steps. A more practical decision procedure

rather relies on strong normalization. Namely, when confronted with two

expressions A and B we can try to successively apply well-chosen re-

duction steps on either A or B until we possibly arrive in a common reduct

(thus establishing definitional equality) or we arrive in reducts

A' (of A) and B' (of B) which can be recognized not to be definitionally

equal. Strong normalization warrants that this process anyhow terminates,

no matter what reduction strategy has been chosen. Although, in the

worst case it might end in normal forms A' and B', in particular this

might happen if A and B are not definitionally equal.

Since reducing to normal forms is simply not acceptable in feasible

verification procedures, the importance of the formal decidability result

and of the c0mpZetenes.s of the indicated more practical decision proce-

dure must not be overemphasized (as observed by De Vrijer in [79]) -
though these facts are, of course, important for a good understanding

of the procedure -. In practice, in the Automath project, the action of
the verifier can be explicitly bounded by giving a suitable upper limit

to the amount of work (e.g. number of steps) it is allowed to perform

when trying to establish a definitional equation. If, within this bound

no common reduct is reached the equality of the two expressions is pro-

visionally refused and the verifier will ask for further information.

This, we think, is in full accordance with the fact that, in principle,

the verifier is not expected to do more than a human checker. For more

comment on actual verification see 111.6, V.4.4 and VIII.6.

Strong normalization has, apart from this, more or less practical

application, some theoretically useful consequences. E.g. it simplifies

the Church-Rosser proof in any case, and it seems indispensable for the

case where surjective pairing is present. Besides, certain proofs of

closure (for Nederpelt's A) depend on strong normalization (in fact on

an even stronger termination property, the big tree theorem).

Cf. VII.1.2, VII.3, VII.5.

2.9 The consequences of closure

As an application of closure it is sometimes mentioned that it

saves time for the verifier. Namely that the verifier does not need to

check for correctness again and again when reducing an expression.

More specific, the combination of closure and Church-Rosser is

important in the verification procedure. First, the Church-Rosser

theorem says that definitional equality (via any sequence of correct

expressions) can be replaced by definitional equality established via

a common reduct. Secondly the closure property states that the latter

equality passes through correct expressions only.

Besides, closure is connected with many other interesting properties,

which are in fact characteristic for the Automath languages, like pre-

servation of types (under reduction ; this property is elsewhere some-

times called cZosw'e of the types under reduction), uniqueness of types

(this means that proper inclusion of types is impossible), uniqueness

of domains, and soundness of (definitional) equality with respect to

expression formation and typing relation. See 4.1, 5.4 and V.1.3.

Further, closure is necessary in the Bn-Church-Rosser proofs

(see VI), for showing the equivalence of various language definitions,

and for showing the connections between the various languages.

2.10 The "unstability" of the difficulties of language theory

When proving the nice properties connected with closure one often

uses induction on the definition of correctness (for terminology about

induction see 11.0). This means that the choice of definition, i.e. the

order in which the expressions are generated, can be important.

In fact, the present author thinks it surprising how important the

choice of definition can be in this respect. Example: A proof of closure

directly from the algorithmic definition turns out to be rather involved

(see VII .3.3), whereas De Vrijer [701 formulated his system XA-9,

(essentially AUT-QE+, see 4.9) in such a way that closure was straight-

forward. (On the other hand, De Vrijer had to prove his big tree theorem

in order to get decidability, whereas decidability for the algorithmic

system just follows from normalization).

Similarly, there is much difference between closely related

languages, as regards the difficulties they pose in proving their nice

properties: Seemingly harmless modifications of the languages - hardly
increasing their expressive power - can make some parts of their

language theory considerably more difficult. We mention the transition

from AUT-68 to AUT-QE, from AUT-QE to AUT-QE+, or the extension from

AUT-QE+ (even without type-inclusion) to Nederpelt's system h . See sec.

4 for the characteristics of these Languages. And there is the addition

of the "extensionaZ" reductions n , o and E (11.3) which essentially

complicate the Church-Rosser proof (E even spoils the property) without

contributing much to the expressive power (see e.g.[37, p. 4 2 3) . By the

way, the phenomenon that hardly impressive modifications can give rise

to considerable extra difficulties is itself the raison d'gtre of a

large part of the Automath language theory: Some properties (closure,

Bq-Church-Rosser) are interesting properties in Automath, but in ordinary

typed A-calculus just trivialities, though the Automath languages can

be considered as mere generalizations of the latter system!

Returning to the Automath languages: generally, we have chosen the

strategy of first proving the nice properties for a - in this respect -
simple system, and then trying to extend these results to more compli-

cated languages. See V. 3, VII. 6.

1.3 Something on bound variables

3.1 In this thesis we consider expressions modulo a-conversion (re-

naming of bound variables), i.e. our relation of syntacticaZ identity 5

actually stands for a-convertibility (11.2.2). So, in the sequel, we

leave the complications concerning the handling of bound variables out

of the discussion. This can be accounted for, e.g., by referring to

Curry's classical exposition on substitution [25], to Nederpelt's notion

of distinctly bound expressions [51], or via the correspondence with

one of the proposals to eliminate the names of bound variables alto-

gether (De Bruijn [101, Staples [661) .

3.2 Both these proposals for nameless dummies reflect the idea that a

bound variable occurrence is just an open position in an expression,

which has to be uniquely linkable to its binding A. De Bruijn performs

this unique linking by replacing such an open position with a positive

number, the reference depth, viz. the distance to its binding A. 1.e.

the number of A's one encounters scanning the expression from within

until one arives at the binding A (the latter included). E.g. the bound

occurrence x in Axy0y(yx) has depth 2, the two bound y's have depth 1.

Of course the binding variables going with a A can be skipped in this

notation. Staples, on the other hand, replaces all such open positions

with one and the same standard symbol (one might as well leave them

open) and provides the linking information by attaching a list of posit-

ions to every A. These positions are coded in the form of binary strings,

with 0 standing for left part and 1 for right part of the expression.

E.g. the position x in Ay*y(yx) is coded 111, and the y 's in y(yx) have

codes 0,10 respectively.

In other words, in De Bruijn's notation one counts backwards from

a bound position to its binding A , in Staples' notation one counts for-

wards from a binding A to the positions it binds. Example: the name-

car ry ing expression Axy-y (y d becomes A (A (1 (12))) and X (111) (A (0, lO) (x(xz)))

r e s p e c t i v e l y , where we have taken X f o r S t a p l e s ' s tandard symbol.

3.3 De Brui jn admits t h a t h i s system i s no t p a r t i c u l a r l y s u i t a b l e f o r

(i) easy reading and wr i t ing , b u t claims it t o be good f o r both (ii)

metal ingual d i scuss ion and (iii) mechanical manipulation - what is was

invented f o r , i n t h e context of t h e Automath p r o j e c t -. I n f a c t , De

B r u i j n ' s system i s j u s t the symbolic r e p r e s e n t a t i o n of the most s t r a i g h t -

forward computer implementation of A-expressions.

S t a p l e s t h i n k s h i s system is b e t t e r than De B r u i j n ' s f o r purposes

(i) and (ii) and does not know about (iii). The p r e s e n t author th inks

t h e r e i s no t much d i f f e r e n c e between t h e two systems a s regards (i)

and (ii) (probably De B r u i j n ' s i s somewhat b e t t e r f o r (i)) , b u t th inks

t h a t De B r u i j n ' s i s d e f i n i t e l y super ior f o r (iii). He th inks f u r t h e r

t h a t both systems, when compared t o ordinary name-carrying A-calculus,

a r e b e t t e r f o r (ii) - unless , of course, one wants t o study a-conversion -
b u t so much i n f e r i o r f o r (i) - a t l e a s t t o people accustomed t o ordinary

no ta t ion bu t probably t o o t h e r s a s we l l - t h a t he has p re fe r red t h e

o rd ina ry approach i n t h i s t h e s i s .

3 . 4 Zandleven has a c t u a l l y used De B r u i j n ' s system i n the implementation

of Automath, extending it t o a system of soca l l ed postponed subst i tut ion:

s u b s t i t u t i o n i n s t r u c t i o n s a r e incorporated i n t o t h e syntax of t h e sys-

tem, and so , they can be postponed u n t i l needed (e.g. f o r e s t a b l i s h i n g

d e f i n i t i o n a l e q u a l i t y) . Since t h e s u b s t i t u t i o n i n s t r u c t i o n s a r e a l s o

coded by means of r e fe rence depths , we c a l l t h e system a system of

i t era ted references (documented i n [38]) . Closely r e l a t e d a r e De B r u i j n ' s

system of reference transforming mappings [l61 and Wadworth's system of

graph reduction [72]. Wadsworth's system i s n o t namefree, b u t he s u r e l y

h i n t s a t namefree implementation. De Bru i j n and Wieringa [l9,80] have a l s o

s tud ied even more genera l namefree A-calculuses.

3.5 I n a review 1631 of De B r u i j n ' s a r t i c l e [10], Seldin suggested t h a t

cornbinatory l o g i c i s a s good a s any o the r system f o r nameless represent-

a t i o n of bound v a r i a b l e s . Since most A-calculus t h e o r i e s can only p a r t i -

a l l y be represented i n combinatory l o g i c (see , e .g. , Hindley [33]), and

s i n c e t h e usua l t r a n s l a t i o n s a r e r a t h e r clumsy (though perhaps Turner ' s

recent proposal [78] might be satisfactory) we think that Seldin's

remark is not quite correct. (Lately (Swansea, 1979, oral communication)

Seldin seemed to agree with this view himself.)

1.4 The Automath languages

4.1 General language rules

We give a tutorial survey of the characteristics of the several

Automath languages. Other introductory references on AUT-68 and AUT-QE

are [27,11], for AUT-SL see VII.l or [sI], for AUT-Pi see VIII.1 or [773.

See also the discussion in IV.1.

We have already announced the generalized type-structure of Auto-

math: the types can be complicated expressions themselves (e.g. they

can depend on variables), they are constructed along with the terms and

hence, the typestructure cannot be given beforehand - as is usual in
ordinary typed A-calculus -.

So the type-assignment is itself part of the system and does not

belong to metalanguage. Consequently the system has besides formulas

expressing the def in i t ional equality of the expressions A and B, also

formulas

standing for A has type B. An alternative notation for Q is g or just =

(e.g. in[ll, 37 ,701) , for A E B one sometimes writes A : B (in EO ,771 I .

In fact, in accordance with the implicit character of definitional

equality (see below), the Q-formulas are not written down, when actually

using the Automath system, but are just introduced in the language

theory for formal purposes.

~ l l Automath languages have the r igh t hand equali ty ru le (or rule

of type conversion)

A E B , B Q C * A E C

~ o s t languages a l s o have t h e Zeft hand equaZity mZe LQ

a s a derived r u l e (c o n t r a r i l y t o t h e r i g h t hand r u l e , which i s p a r t of

t h e language d e f i n i t i o n) . Fa r the r , most languages s a t i s f y uniqueness

o f types

i . e . t h e "converse" of type conversion. I n such languages t h e r e can be

def ined an opera t ion typ, such t h a t , f o r a l l c o r r e c t A ,

A E typ(A) , and

A E B * B Q typ(A)

(th i s . exp la ins why t h e d e c i d a b i l i t y of Q e n t a i l s t h e d e c i d a b i l i t y of E) .

The express ions a r e formed from v a r i a b l e s x, y e t c . and constant-

expressions c (A * - - ,A) by t h e operat ions of A-abstraction and app Zicat-
1' k

i o n (i n t h e soca l l ed pure languages AUT-68, AUT-QE, AUT-SL) and poss ibly

o ther opera t ions (i n t h e extended system AUT-Pi). Expressions formed

according t o t h e r u l e s and t h e r e s t r i c t i o n s (i n p a r t i c u l a r the type

r e s t r i c t i o n s) o f t h e va r ious languages a r e s a i d t o be the c o r r e c t express-

ions of those languages, i n c o n t r a s t wi th t h e (general) expressions j u s t

r e s u l t i n g from u n r e s t r i c t e d use of the formation operat ions .

4.2 Abstract ion and app l ica t ion

The operat ion A-abstraction leads t o abstraction-expressions

[x:A]B. Generally such an expression can be i n t e r p r e t e d a s t h e function

l x : ~ -B, with domain A and producing values BUD] when appl ied t o argu-

ments D E A . Here t h e p o s t f i x [D l belongs t o t h e metalanguage; it i s

s h o r t f o r [x/D], i . e . s u b s t i t u t i o n of D f o r t h e v a r i a b l e x.

The appZication operat ion cons t ruc t s the appZication eXpressi0n

{A)B. This expression must be i n t e r p r e t e d a s t h e r e s u l t of applying t h e

function B t o t h e argwnent A , i . e . the ob jec t usua l ly denoted B(A) o r

BA. The choice of p u t t i n g t h e argument i n f r o n t , between brackets ,

combines n i c e l y wi th t h e no ta t iona l h a b i t of p u t t i n g t h e binding var iab le

x:A i n f r o n t too, between a d i f f e r e n t kind of brackets , and i s general ly

preferred in the Automath project. Of course, people grown up with the

usual X-calculus conventions find it difficult to get used to such a

new notation. (Admittedly, it would have been consistent with our notat-

ion for application to put the substitution operator in front too. How-

ever we do not find this too important because substitution just belongs

to metalanguage.)

4.3 Reduction and definitional equality

The definitional equality is a restricted form of equality, just

covering certain identifications which in ordinary mathematics are

understood without any explicit justification. It is defined in a com-

binatorial, syntactical way, viz. as the equivalence relation generated

by socalled reduction steps. Each reduction step replaces a part of an

expression, a redex, by another expression, a socalled contractwn. This

is the usual terminology in A-calculus, where definitional equality is

often called convertibiZity. In order that the so-defined relation is

acceptable as definitional equality, it must clearly be required that

redex and contractum are intuitively equal. Our notation for reduction

is 2 . The reductions associated with abstraction and application are

B- and n-reduction:

B-reduction: {A)[x: B I C 2 CIA1

n-reduction: Cx:B]{x)C 2 C if C does not depend on x.

There is also associated a reduction (called 6-reduction) to the

expressions d (Al, ,Ak) where d is a defined constant. For such defined

constants defining axioms (abbreviations, with parameters)

are given. Here the postfix [[xi, ,xk] is to indicate that D may depend

on the variables shown.

The 6-reduction reads

where (A1, - * - ,Ak] stands for [xl , ,X /A ,A the simultaneous
k 1' k

subs t i tu t ion of A - - * , A f o r xl , -* ,Xk. Our 6-reduction i s d i s t i n c t from
1' k

other 6-reductions i n the l i t e r a t u r e (cf . 11.3.2.4) .
The equal i ty generated by B , q and 6 indeed corresponds t o the in-

t u i t i v e in te rpre ta t ion of abstract ion and appl icat ion, and t o the idea

of abbreviation. However, cer ta in r e s t r i c t i o n s have t o be f u l f i l l e d . In

pa r t i cu l a r , q-equality is only acceptable i f the C (i n the q-redex,

above) is a l so a function, with domain B . Since i n the general, unre-

s t r i c t e d expressions such provisions a r e not necessarily s a t i s f i ed , we

define Q between correct expressions A and B only, and a l so require

t h a t the expressions " in between" A and B (i . e . v ia which the conversion

from A t o B can be establ ished) a r e correct a s well. For precise def i -

n i t i ons of reduction and equal i ty see 11.3-4, f o r Q see V . 2 . For the

addi t ional operations (with associated reductions) of AUT-Pi see V I I I . l .

4 .4 Type assignment

Type assignment takes place together with expression formation.

The variables ge t a type by ~sswnption (of the form x E A) . Formulas

a r e derived and expressions a re constructed i n natural deduction s t y l e ,

i . e . r e l a t i v e t o a s e t (i n our case: a s t r i ng) of assumptions, cal led

the context of the formula, resp. the expression. Such a context has the

form

where a l l the x are d i s t i n c t . (This notion of context i s only vaguely
i

re la ted t o the notion of context nowadays used i n A-calculus theory.)

I f 5 i s a context we sometimes write

t o indicate t h a t an expression o r formula i s correct , resp. derivable,

with respect t o 5. Here 5 contains so t o say the type declarations of

the variables on which A (resp. A E B, A Q B) depends.

The constant expressions obtain a type by instantiating of (i . e .

substitution i n) a scheme. A scheme cons is t s of an axiomatic type

assignment with parameters

relative to a context

Only such instantiations c(A . * * , A) are admitted, where the A meet
1 k i

the type requirements of the context, i.e.

Then the type assignment to the constant expression becomes

A list of constant schemes is called a book and the constants c

are called book constants (to distinguish them from the language con-

stants). here are two kinds of constants, viz. pr-imitive constants,

having a type-assignment only, and defined constants, having a defining

axiom (as mentioned in 4.3) and a corresponding type-assignment (see

below). All constants in the book are distinct so each book constant

has a unique type-assignment (resp. unique defining axiom). If d has

defining axiom d(xl,-*-,xk) := D and typing ~ (X ~ , - - ~ X ~) E C then, for
the sake ofthe intuitive interpretation, it must be required that

D E C w.r.t. the context of the scheme. This is the compatibiZity COB-

d i t i o n of de f and t y p . For more precise definitions see IV.3.2,1V.3.3,

v.2 .l.

4.5 The rules of AUT-68

As for the application and abstraction rules, we first describe

the simplest language, now named AUT-68. This language has three kinds

of expressions: terms (also called expressions of degree 3, or: 3-ex-

pressions), types (with degree 2, or: 2-expressions) and a single un-

typed constant t y p e (also denoted T, and called a supertype or l-ex-

pression, of degree 1). Languages with expressions of degree 1, 2 and

3 only are said to be reguzar.

The 1-expressions generally serve as types for the 2-expressions,

but do not have a type themselves. Notice that the word "type" is used

ambiguously here, viz. to name the 2-expressions and in the sense of:

"being the type of". Typically, the types are the types of the terms

and (in AUT-68) type is the type of the types.

So, i n AUT-68 there a r e two cases A E B: e i t h e r A i s a term and

B is a type, o r A i s a type and B type (5 means syntac t ica l i d e n t i t y) .

In terms of degrees: i f A E B, B has degree i then A has degree i + l .

This property holds generally, a l so i n the i r r e g u h r languages, l i k e

AUT-SL, where expressions of a l l posi t ive degrees a r e admitted.

Now we give the term formation ru les f o r AUT-68. F i r s t notice t h a t

a l l var iables have a type, so must be a type variable (of degree 2) or

a term variable (of degree 3) . The abstract ion ru l e reads: i f from an

assumption x E A , and possibly other assumptions not depending on X , it

can be derived t h a t B E C, where x is a teMn ~U.ricrbZe and B is a term,

then one can conclude t h a t [x:AIB E [x:AIC and discharge the assumption

x E A . In na tura l deduction notation

term abstract ion r u l e degree (XI = degree (B) = 3

Actually, i n Automath only the l a s t assumption i n the context i s allowed

t o be discharged. The remaining assumptionsclearly s a t i s f y the above

mentioned r e s t r i c t i o n (of not depending on x) . We r e f e r t o the f a c t t h a t

the context i s a s t r i ng ra ther a s e t (and consequently, t h a t the assumpt-

ions can be removed according t o the las t - in f i r s t -ou t pr inc ip le) by

speaking of the linear natural deduction character of Automath. In the

notation of t h i s t hes i s the ru l e becomes:

with standing fo r correctness, resp. de r ivab i l i t y , with the super-

s c r ip t s indicat ing the degrees (fo r the precise conventions see V.2.1.1).

In order t o guarantee t h a t the type of cor rec t expressions are

cor rec t too, there must be an abstract ion ru l e f o r types a s well. This

one reads

type a b s t r a c t i o n

r u l e AUT-68

Cx E A 1

C E type

degree (x) = 3

Cx:AIC E type

I n our n o t a t i o n

t 2 ~ , (x E A ~ C E type) * CZ:AIC E type

Then t h e r e i s t h e app l ica t ion r u l e f o r AUT-68:

a p p l i c a t i o n

r u l e AUT-68

D E A BECx:AIC

4.6 I n t e r p r e t a t i o n

Now something about i n t e r p r e t a t i o n . With t h e 3-expressions [x:A]B

and IDIB const ructed above t h e r e i s no problem: [x:AIB i s t h e funct ion

Xx:A*B, {D)B i s t h e r e s u l t of applying funct ion B t o argument D. But

consider t h e 2-expression [x:A]C occurr ing i n t h e r u l e s above. Under

t h e most convenient i n t e r p r e t a t i o n , maintaining t h a t a type i s a kind

of s e t o r cZass, and t h a t t h e E-relation i s a kind of element r e l a t i o n ,

[x:A]C must s t and f o r t h e o b j e c t u s u a l l y denoted C o r n(Ax:A*C) .
x:A

I .e. t h e c a r t e s i a n product of a l l t h e CUD] , f o r D E A. I n case C does

n o t depend on x , t h i s product reduces t o t h e funct ion space A + C which

i n type theory would be denoted (AC) o r t h e l i k e . I n o ther words, Ix :A]C

i s t h e " s e t " (c l a s s , aggregate) cons i s t ing of a l l t h e func t ions B with

domain A which, when appl ied t o arguments D i n A , produce values be-

longing t o c U D B . This i s p r e c i s e l y what t h e appZ r u l e says. So i n t h i s

i n t e r p r e t a t i o n t h e a b s t r a c t o r [x:A] has two d i f f e r e n t meanings: when

used with a term it g ives a func t ion , when used wi th a type it gives a

kind of s e t . O r , we can say t h a t [x:A] has j u s t one meaning, viz. l x : A ,

but t h a t t h e n has been omitted, f o r b r e v i t y , i n a s i t u a t i o n where no

confusion i s reasonably poss ib le . This is t h e standard i n t e r p r e t a t i o n

corresponding with t h e no ta t ion i n r e l a t e d typed A-calculus systems and

i n AUT-Pi (s e e V I I I .1) .

However there i s a second, a l te rna t ive , in te rpre ta t ion , too. It i s

not necessary t o s t i c k t o the idea t h a t types a r e s e t s and t h a t E i s a

kind of element r e l a t i on . Namely, we can very well i n t e rp re t Cx:AIC a s

the function)ix,A*C, i f only we accept t h a t a function can a c t a type.

Then, the term abstr ru l e says (i .a.1 t h a t the type of a function i s

again a function, with the same domain, and, conversely, the appl r u l e

says (i - a .) t h a t the functions of degree 3 a r e characterized by having

a function f o r t h e i r type, from which t h e i r domain can be read o f f . In

t h i s in te rpre ta t ion the conclusion of the term abstract ion r u l e

(Cz:AIB E Cx:A]C) j u s t mean V D E A
(BUD] E CUD]), i . e . the ru l e abs t rac ts

the formula B E C ra ther than the expressions involved. In algebraic

terms: the r u l e can be considered a s a dis t r ibut ion ruZe of the ab-

s t r a c t o r Cx:Al w . r . t. the E-relation.

This, second, in te rpre ta t ion has given r i s e t o several extensions

of the language, v iz . t o AUT-QE, t o socalled +-languages (AUT-68+ and

AUT-QE+), and even t o AUT-SL (i . e . Nederpelt 's A) .

4.7 AUT-QE

F i r s t the extension t o AUT-QE. Since we i n t e r p r e t the 2-expression

[x:A]C as a (type valued) function, and s ince we want a uniform method of

type assignment f o r both term valued and type valued functions, we

drop the r e s t r i c t i o n t o B of degree 3 i n the term abstract ion r u l e of

AUT-68, thus ge t t ing the

general abstract ion ru le : t 2 ~ , (X E A ~ B (E C)) * ~ C X : A I B (E CX:A]C)

So the degree r e s t r i c t i o n fo r the variable x is maintained. In the new

r u l e there is included (skip the two E-parts between parentheses) the

abstract ion ru l e f o r 1-expressions, t o guarantee t h a t the types of

cor rec t expressions a r e correct again:

So i n AUT-QE there are other supertypes than jus t type, of the

f orm

Cx :A I---Cxk:Akltype.
1 1

These expressions have originally been named quasi-express<ons, whence

the name of the language AUT-QE.

The application rule of AUT-68 is maintained in AUT-QE:

application rule 1 D E A, B E [x:AlC* {DIB E CUD]

but is more general here, because it can be used with B of degree 3 and

2 now (in AUT-68 only with B of degree 3). Besides, AUT-QE has, in

accordance with the proposed interpretation, another appl rule:

application rule 11 E E A, B E C E [x:AID * {E)B E {EIC

Namely, [x:A]D is a function with domain A, so C is a function with

domain A , so B is a function with domain A and can be applied to the

argument E E A. (In fact, this rule can be derived from appl rule I by

n-equality, which confirms the agreement with the interpretation.)

Just like a degree 2 abstr expression of AUT-68 allows different

interpretation~~viz. as a set or as a function, a degree 1 abstr ex-

pression of AUT-QE has such different interpretations too. Under the

first interpretation the expression CX~:A~I***[X k* -A k]type stands for

the object

n (n (- 0 - (n type)...))
x :A x2:A2
1

x .A
k- k

This corresponds with the notation of AUT-Pi, see VIII.l. Under the

second interpretation it stands for the object

4.8 Type inclusion

Now let x E A ~ C E type. Two rules of type assignment are applicable,

viz. the type abstr rule of AUT-68 and the general abstr rule, giving

rise to

[x:AIC E type, resp. Cx:AlC E [x:Altype

Generally a 2-expression C X 1' -A 1 I*.-[x k' -A k 1C of AUT-QE has as its

possible types

up to, at least Cx :A l - * * [x -A] t ype .
1 1 k' k

This ambiguity of types, which is typical for AUT-QE, is usually imple-

mented by adding a ruze of type inclusion

and dropping the type abstraction rule of AUT-68, which now becomes a

derived rule. In fact, the type inclusion rule is somewhat stronger

than the type abstraction rule of AUT-68 (or, similarly, the product

rule of AUT-Pi). See VIII.1.5 and VIII.6.1.

Clearly the property of uniqueness of types

is, for 2-expressions A, not valid any more in AUT-QE. This is,however,

the only case of proper type-inclusion in Automath languages. We intro-

duce to denote type-inclusion, i.e.

B E C:-VA(A E B * A E C).

For the precise definition see V.2.13 or V.3.2. The possible types of

a 2-expression appear to be linearZy ordered under IT, so

A E B , A E C * B C C or C C B

and it is still possible to define a canonicaz type which is minimal,

w.r.t. C, among the possible types (and hence gives maximal information),

i.e. such that

Now the extension to +-languages. Recall that in AUT-68 there were

abstr expressions of degree 3 and 2, but appl expressions of degree 3

only. We say the value degrees are 2 and 3, and the function degree

is 3. Here we use the terminology of v.2.7: B is called the value part

of [x : A] B and the function part of {A)B. Similarly AUT-QE has value

degrees 1 , 2 and 3 and funct ion degrees 2 and 3. Such languages, where

t h e minimal value degree is no t a funct ion degree a r e named non-+-

languages.

However, i f t h e a b s t r a c t i o n express ions of minimal value degree

a r e f u n c t i o n s , it i s reasonable t o have an appl r u l e f o r them too:

app l r u l e
+-languages

D E A, B Q C X : A I C =, ~ { D I B

I n p a r t i c u l a r , if D E A , ~ [x : A] c then ~ { D } [x : A I c . Indeed, by adding t h e

above r u l e f o r B of degree 2 t o AUT-68 we a r i v e a t t h e +-language

AUT-68+. And by adding it t o AUT-QE f o r B of degree 1 we a r i v e a t

AUT-QE+ (which i s e s s e n t i a l l y A X - R , t h e bgit imate fragment of De

V r i j e r ' s Ah [7 0]) . I n p r i n c i p l e , t h e new r u l e is a der ived r u l e f o r E

n o t having minimal value degree. The words " i n p r i n c i p l e " here r e f e r t o

c e r t a i n problems with type inc lus ion and def ined cons tan t s , explained

a t l eng th i n V.1.7, V.3.3 and V.4.2.

It w i l l be shown (V.3.3 , V.3.4) t h a t a +-language i s an un-

essen t iaZ (and even, d e f i n i t i o n a l) extension of t h e corresponding

non-+-language (s e e V .3.3) :

i.e. t o each A i n t h e +-system t h e r e corresponds a d e f i n i t i o n a l l y equal

A' c o r r e c t i n t h e smaller system.

I n a l l t h e languages now def ined, t h e r u l e

genera l a p p l i c a t i o n
r u l e

B E C, ~ { A I C =, (A I B E { A I C

is a der ived r u l e . Al te rna t ive ly , t h i s r u l e can be adopted i n t h e

language d e f i n i t i o n , e i t h e r with t h e a p p l i c a t i o n r u l e I (i n the non-

+-languages), o r with t h e app l ica t ion r u l e f o r +-languages, t o generate

a l l t h e app l express ions of t h e va r ious languages. The n i c e p o i n t about

t h e genera l a p p l i c a t i o n r u l e i s t h a t it (s i m i l a r t o the general ab-

s t r a c t i o n r u l e) can be considered a s a k ind of d i s t r i b u t i o n r u l e , viz.

of t h e a p p l i c a t o r { A) w . r . t. the E-relation.

Though i n AUT-QE+ we have achieved a f a i r l y uniform t reatment of

express ions of a l l degrees , we still have maintained t h e r e s t r i c t i o n

t h a t only a b s t r a c t o r s [x : A] with degree (z) = 3, degree(A1 = 2 a r e

formed. In other words, only term variables are quantified. So there

is no quantification over type variables and we say that our systems are

first-order (this term refers to the fact that in the propositions-as-

types interpretation quantification over types gives rise to higher-

order logic). Consequently only applicators {A) with degree(A) = 3

are admitted. We say that the only domain degree is 2, and the only

argument degree is 3 (A is said to be the domain part of [x:A]B and the

argument part of {A)B). Apparently there is a certain duplication in

having both instantiation and application in the system. However,

because of the aforementioned application restriction instantiation

cannot be missed: substitution of 2-expressions (for type-variables)

cannot be performed by means of application so has to take place by

means of instantiation. (See also 5.6)

4.10 AUT-SL

Now we explain how AUT-SL (i.e. Nederpelt's A) can also be con-

sidered a result of our extended interpretation of the E-symbol. Namely,

now that we have accepted that functions can be inhabitabZe, i.e. can

be the type of other expressions, there seems to be no principal ob-

jection against allowing each expression to be inhabitable. This is

indeed the most striking characteristic of A : there are expressions of

all positive degrees admitted, so I\ is iPYegulaP (sec. 4.5). (Here is

an analogy with the Zanguage of set theory where a priori no term is

excluded from being inhabitable, i.e. from being a set).

Further, in A all degrees are domain degrees, so all degrees but

1 are argument degrees, so instantiation can be missed and, indeed,

has been dropped. Still, we shall not call A a higher-order language

(IV.1.5.3, VII.l) because any form of type inclusion has been omitted.

So, AUT-68 and AUT-QE which are based on type-inclusion, are not in-

cluded in A, and uniqueness of types holds in A. For more information

about the background of A see VII.1.

The definition of A either must contain the general application

rule, above, or for B of degree k, k 2 2,

In fact, Nederpelt gives an azgorithmic de f in i t i on of A , in terms

of a type function ~ Y P , and in terms of unrestricted reduction 2, in-

stead of a socalled E-definition in terms of E- and Q-formulas, such

as the definitions given above. For a discussion of algorithmic definit-

ion vs. E-definition see V.1.2 and for the equivalence of both definit-

ions see V . 4 .

Because of the simple form of the general abstraction and applicat-

ion rule, the function typ has a very simple definition too, in partic-

ular

Nederpelt gives a socalled appzication condition which in our

notation, for B of degree k would read

D E A, typk-I (B) Q IX:AIE => ~ C D I B

k- 1
(where typ stands for k-1 successive applications of the function

typ), completely in accordance with our application rule for B of degree
k-1 k, above. By the way, we write, like Nederpelt, typ* for the typ of

expressions of degree k.

The language A was invented for theoretical purposes. It is in-

teresting because it has a very simple and elegant definition and exhi-

bits some typical Automath features. However, because it is in some

sense weaker (no type inclusion) than AUT-68 and AUT-QE, results valid

for A cannot directly be transferred to these, from a practical point

of view, more important languages. In particular, the " s t r i c t " norma-

b i t i t y of A (proved by Nederpelt) is easier to prove than the "weak"

normabiZity of AUT-QE (see IV. 3-4) because of the weak second order

aspect AUT-68 and AUT-QE. See IV.1.5 See also VIII.4.2.2 for an in-

teresting interpretation of these normability results (inspired by

Ben-Yelles [6]) .
Conversely, the facts that A is a +-language, is irregular, and

has no abstraction restrictions, pose certain difficulties which in

the theory of AUT-68 and AUT-QE can be avoided.

The present author has mainly devoted his language theoretical

attention directly towards the languages actually being in use:

AUT-68, AUT-QE and AUT-Pi. In this theses we have indeed at some places

introduced new languages (for technical or expository reasons), but we

have t r i e d t o exhib i t the precise connections with ex is t ing languages.

Also, we have devoted a chapter (V I I) t o A , which deserves some in t e re s t

of i t s own.

For an informal introduction t o AUT-Pi see V I I I . l . In AUT-Pi the

standard mathematical d i s t i nc t ion between types (being inhabitable) and

functions (not being so) i s made by put t ing i n n ' s a t the proper places

(whence the name AUT-Pi). In VIII.6 the difference has been indicated

between the r u l e f o r inser t ing n ' s (the product mZe) and the ru l e of

type-inclusion of AUT-QE.

4.12 Two higher-order languages

For completeness reasons we mention two proposals f o r higher order

languages. F i r s t , De Bruijn once proposed a language AUT-4 [141, where

the proofs come i n a s degree 4 expressions (whence AUT-4), instead o f ,

a s usual (5.9, 5 .2) , a s degree 3 expressions. AUT-4 would have provided

an appl icat ion of the higher degrees of i r regular languages, but has

never been used o r implemented. Secondly, the author has introduced a

language (l e t us name it AUT-2) which has expressions of degree 1 and

2 only, with unres t r ic ted type-inclusion ru l e (sec. 4.8) and without

abstract ion r e s t r i c t i o n s . This language proved t o be essent ia l ly

i den t i ca l t o a system of type-assignment t o A-calculus terms invented

by Dezani and Coppo[22,23] f o r qu i te d i f f e r en t purposes. These two

languages a re not discussed i n t h i s thesis . I t seems t h a t (strong)

normalization f o r AUT-4 can only be proved by Girard-like methods 8 0 ,

311,whereas fo r AUT-2 we have a strong normali'zation proof i n the s ty l e

of t h i s thes i s .

32

1.5 Mathematics i n Automath

5.1 Survey of t h i s section

Because of the presence of a type (type) of types, the presence

of type-variables and the generalized type-structure, people of ten tend

t o overestimate the expressive power of (i . e . what can be said i n) the

Automath languages. Here we r e fe r t o the expressive power of the

languages a s such, i . e . t o what can be said d i r ec t ly i n the basic

system, without any constants added. (~ e c a u s e , w i t h addi t ional constants,

a s we s h a l l see, almost anything can be expressed, j u s t l i k e i n the

language of f i r s t order predicate logic.)

Below we sketch what has become the standard development of mathe-

matics i n Automath. The emphasis w i l l be on the inherent l imi ta t ions

of Automath. Occasionally we make a comparison with closely re la ted

systems: Se ld in ' s system of generalized finctionaZity [64] , Sco t t ' s

system of construct ive va l id i ty [62] and Martin-L6f's systems of in-

t u i t i o n i s t i c type theory [45,46] , and Girard' s systems fo r analysis [31].

Throughout we comment on the typ ica l Automath features .

5.2 The t -pa r t and the p-part of Automath

Let us , f o r the sake of the exposition, divide mathematics i n two

par t s : one p a r t , l e t us say the object p a r t , dealing with the construct-

ion of mathematical objects (resp. types) , and one p a r t , the ZogicaZ

p a r t , f o r reasoning about these objects . Our framework of Automath

languages, above, i s formulated i n terms of ob jec ts and types, ra ther

than i n l og ica l terms: there a re , indeed, Q- and E-formulas expressing

f a c t s about the objec ts , but they ju s t play an auxi l ia ry ro l e , viz. t o

control the construction of the cor rec t (sec. 2.6) objects .

~ol lowing[37,77] we name the fragment of Automath t h a t deals with

the object p a r t the t-fragment (f o r t e r m s , types and type-valued funct-

i o n s) , and the fragment of Automath representing the log ica l p a r t the

p-fragment (fo r proofs, propositions, p red ica tes) . Degree i (sec. 4.51

expressions of the t-fragment and the p-fragment a r e said t o be i-t-

expressions and i-p-expressions respect ively.

So, whereas the preceding sections suggest how the t-fragment can

be developed (3t-expressions for objects, 2t-expressions for types), it

is a priori not clear how the p-fragment will express the logical part.

Essential is that the E-formula A E B, of the p-fragment, with A a 3p-

expression and B a 2p-expression, is interpreted as expressing the t ru th

of the proposition B (i.e. as expressing B itself). So, a proposition

is true (asserted) if "we have something in it", i.e. if we have a (3p-)

expression having the proposition for its type.

There are several ways of interpreting the reazizer A (we borrow

this term from Pottinger [5 8] who borrowed it from Helman), i.e. the

expression we have in the proposition B: as an abstract proof construct-

ion proving B, as a symbolic translation of a natural deduction proof

figure (with B as its end formula), or as just some indication (some

reference to the fact) that B holds. If we are interested in constructive

foundations the first interpretation is appropriate. If we want to study

proof figures (e.g. in view of normalization properties) the second

interpretation is the best one. If we just want classical logic the

third point of view seems to be right, and it also seems justified to

identify (in the sense of definitional equality) all the realizers of

one and the same proposition. This identification principle is called

i r r e Zevance of proofs [7 7,3 7,20] .
We will explain that the propositions-as-types way, as sketched

above, of fitting the logical part of mathematics into a typed A-calculus

framework arises quite naturally from the idea of mechanical proof-

checking (and, on the other hand, that it is the only way of expressing

actual reasoning in terms of the E- and Q-formulasl.

5.3 The t-fragment

Generally speaking, the systems introduced in sec. 4 are as yet

still empty because we have not introduced any constants. Here we adopt

the common point of view that the meaningful objects (resp. types) of

a theory correspond to its closed expressions (i.e. those not depending

on variables). One way to construct closed terms is from constants,

another way is by binding the variables in an expression, i.e. by X-

abstraction. Since in most Automath languages abstraction over type-

variables is forbidden we need at least one primitive type-constant

before we can s t a r t generating closed expressions. 5. ere h i s an ex-

ception: In A the basic constant T (t h i s i s j u s t an a l t e rna t ive notation

f o r type) can be used a s a ground type and we can d i r e c t l y s t a r t con-

s t ruc t ing functions of type T + T e t c .)

In the Automath pro jec t it has sometimes been s t a t ed , t h a t there

is no e s sen t i a l difference between a constant without parameters - i . e .

introduced i n an empty context - and a var iable . This i s formally r i g h t :

a constant can be conceived a s a var iable one does not want t o g e t r i d

o f , and f o r which no subs t i tu t ion i s possible. Conceptually however,

it seems b e t t e r t o maintain the d is t inc t ion .

We j u s t sketch very b r i e f l y how the typed A-calculus framework of

Automath can be used t o construct the objects (numbers, functions,

funct ionals) forming the universe of discourse of ordinary mathematics

(say, ana lys i s) . One f i r s t introduces some primit ive type constants

(2t-expressions) fo r the types, the natural and the reaZ numbers,

say, by s t a t i n g a s an axiom (i . e . an axiom scheme i n an empty context) :

n t E type, r l E type. (of course, i f one knows a b i t more one can a l so

define the r e a l s i n terms of the na tura l numbers, but t h a t does not

concern us here.) Secondly, one introduces some primit ive term constants

(3t-expressions) fo r generating the objects of these types. E.g. i n

order t o construct the natural numbers one s t a t e s axioms One E n t ,

S U C ~ U ~ E n t + n t (the successor function, which can a l t e rna t ive ly be

introduced by a scheme, see below). From these constants we g e t the

na tura l numbers, which we can give a new name by introducing defining

constants: two := {one)sucfun, three := {two)sucfun(Q~~onelsucfun~sucfun)

e t c . If one l i k e s , one can a l so introduce primitive constants

plusfun E n t + (n t + n t) and timesfun E n t -t (n t -+ n t) f o r p lus and

times on the naturals . Additional (equal i ty) axioms w i l l be needed t o

f i x the proper t ies of the thus constructed objects , but these ra ther

belong t o the log ica l pa r t . Similarly, constants can be introduced

(with the addi t ional axioms) t o generate the objects of type r l .

By A-abstraction closed expressions of higher type a r e constructed.

These higher types themselves (we already used some of them) a re a l so

constructed by A-abstraction (i n AUT-QE e t c .) o r by A-abstraction and

product formation (i n A U T - P i) . E.g. we g e t n t -+ r l , the type of r e a l

number sequences, (r l -+ r l) + r l the type of r e a l funct ionals e t c .

We see t h a t up t o now there seems t o be no p o s s i b i l i t y t o introduce

m n - t r i v i a z type-valued funct ions: t h e higher types shown a r e j u s t

(products o f) t h e cons tan t type-valued func t ions

Cx:ntlnt, Cx:n t l (n t -+ n t) e t c .

I n f a c t , t h e type-valued funct ions do no t become e s s e n t i a l before

we a r r i v e a t t h e p-part . However, we give an example of a t y p i c a l type-

valued func t ion i n t h e t - p a r t (see [3 7]) : I n t h e context X E n t we can

in t roduce t h e p r i m i t i v e 2t-constant I t 0 (x) intended t o conta in the

n a t u r a l numbers up t o x, a s follows

x E n t t l t o (x) E type

(This cannot become an a c t u a l subtype of n t (c f . 5 .4) , i n j e c t i o n funct-

i o n s and e q u a l i t y axioms w i l l be needed.) From t h i s scheme we can con-

s t r u c t t h e n o n - t r i v i a l type-valued funct ion [x:nt11to(x) (a 2t-express-

i o n) . I t depends of course on the add i t iona l axioms what ob jec t s w i l l

belong t o t h i s type.

It i s an i n t e r e s t i n g quest ion what higher type o b j e c t s (funct ions

and f u n c t i o n a l s) can a c t u a l l y be defined by mere A-abstraction (e i t h e r

from o b j e c t cons tan t s , o r j u s t from v a r i a b l e s) : of course we have

cons tan t func t ions and seZectors A x l - - * X n . X j , and we can def ine composit-

ion of func t ions , b u t what e l s e ? For an answer see P lo tk in 1541.

5.4 Some comment on t h e t - p a r t

From t h e examples, above, severa l c h a r a c t e r i s t i c f e a t u r e s and l i m i t -

a t i o n s of Automath become c l e a r . F i r s t , t h a t t h e whole development i s

based on typed A-calculus r a t h e r than on s e t theory. More about t h i s

i n the nex t sec t ion . Then a p o i n t on defined cons tan t s : from our present

p o i n t of view (What o b j e c t s a r e a c t u a l l y const ructed?) they a r e i r r e l e -

van t , because they j u s t serve a s new names f o r o b j e c t s already present .

From a p r a c t i c a l p o i n t of view, however, they form an indispensable

f e a t u r e of Automath.

Another c h a r a c t e r i s t i c f a c i l i t y of most Automath languages is t h a t

a funct ion can be introduced i n two ways, v iz . e i t h e r a s a s i n g l e higher

type cons tan t o r , by a scheme, a s a constant depending on parameters

(i n t h i s case t h e constant r a t h e r s tands f o r t h e funct ion va lue) . Above,

S U C ~ U ~ , plusfun and timesfun were introduced by t h e f i r s t method. Alter-

n a t i v e l y , one might introduce SUC, PIUS and times by an axiomatic typing

scheme, i .e . depending on variables of type n t :

z E n t , y E nt tp lus(x ,y) E n t e t c .

That these mechanisms r e a l l y form a duplication i s shown by the f a c t

t h a t they can be defined i n terms of each other , e.g.

sucfun := Cx:ntlsuc(x), resp.

x E nt/-suc(x) := {x)sucfun e t c .

More about schemes can be found i n sect ion 5.6.

Now we a r r ive a t some mutually r e l a t ed cha rac t e r i s t i c l imi ta t -

ions of the Automath languages (fur ther elaborated i n 5.7). F i r s t t h a t

hardly any mathematical s t ruc ture is given beforehand: even the natural

numbers have t o be introduced by a s e r i e s of constants and axioms (t h i s

po in t we have mentioned before) .

Secondly t h a t a type must be present before it can be postulated

t o be inhabited, i . e . a type must be introduced before the objects of

t h a t type. This cont ras t s with the common ideas about the se t theoretic

hierarchy where s e t s cannot be constructed unless t h e i r elements a re

given (and grasped, a s one says) . In f a c t , t h i s d i s t r i c t i o n between

types and s e t s suggests t h a t , a f t e r a l l , the ground types must be

understood a s syntac t ic l i ngu i s t i c categories ra ther than as ac tua l

mathematical objects themselves ~~~~~~~e [461) . Then, the higher types

can be understood i n terms of the ground types.

A t h i rd l imi ta t ion of Automath (re la ted t o the second one, though)

i s the uniqueness of types. In the above development one might think

it handy i f the number one of type n t would be of type r l a s well and,

more general, i f n t would be an ac tua l subtype of rl (i n the sense of

t, see 4 .8) . such proper inclusion of types i s not expressibZe i n

Automath, and mn-tr iv ia l intersections of types a r e mt present e i ther

(Whether the iden t i f i ca t ion of the na tura l number One with the corres-

ponding r e a l number would be just i f ied i s another question. See De

Bruijn .)

5.5 The typed A-calculus framework

Th i s s e c t i o n t r i e s t o support t h e choice of basing Automath on t h e

concept of f ~ n C t i 0 n r a t h e r than on t h e concept of s e t . The f i r s t p o i n t

i s , t h a t i n almost any i n t e r e s t i n g p a r t of mathematics some form of

a b s t r a c t i o n i s needed, e i t h e r a s A-abstraction, o r a s a comprehension

miom. (The a l t e r n a t i v e t o a b s t r a c t i o n i s a development i n t h e s t y l e of

combinatory l o g i c , a s i n von Neumann-Bernays-GBde1 s e t theory.) A s

s t i p u l a t e d by De Brui jn [lo] , A can be considered a s the, n e u t r a l binding

opera to r , n o t t o be explained i n more p r i m i t i v e terms. E.g.the comprehens-

i o n s e t I x ~ A) can be def ined i n terms of A by, say, se tof (1x.A).

The second p o i n t i s , t h a t t h e primitive concept of func t ion i s

b a s i c i n ordinary mathematics (a n a l y s i s , say) . I t is, of course , well-

known t h a t the graph of a func t ion can be coded (implemented, say) a s

a s e t - and we d o n ' t deny t h a t the graph concept i t s e l f can be c l a r i -

fy ing -, but i n ordinary mathematics the re i s usua l ly no p o i n t i n t h i s

impzementation. I n f a c t it j u s t shows the well-definedness of t h e

funct ion concept (i . e . of a func t ion on a given domain) i n terms of t h e

commonly accepted formal development of axiomatic s e t theory - which f o r

a p r a c t i c a l mathematician i s ha rd ly doubtful and probably un in te res t ing- .

Compare [1 2] . Simi la r ly t h e p o s s i b i l i t y of implementing o the r f a m i l i a r

concepts (t h e n a t u r a l numbers, t h e r e a l s , the complex numbers) i n axio-

mat ic s e t theory, o r i n any o t h e r form, is usua l ly of no p r a c t i c a l i m -

portance.

By basing o n e ' s func t ion concept on Brl-A-calculus one g e t s the

p o s s i b i l i t y of making explici t d e f i n i t i o n s of func t ions (by X-abstract-

i o n) , and of making those i d e n t i f i c a t i o n s (by d e f i n i t i o n a l e q u a l i t y)

t h a t follow from these e x p l i c i t d e f i n i t i o n s . C lea r ly , t h e graph concept

of funct ions g ives more, v i z . e x t e n s i o n a l i t y , whereas Bq-equality j u s t

p i n s down the func t ion i n t e n s i o n a l l y , i . e . a s a r u l e . Addit ional equal-

i t y axioms (n o t f o r d e f i n i t i o n a l , bu t f o r book e q u a l i t y) a r e needed

f o r ex tens iona l i ty . We s t r e s s t h a t q j u s t g ives a very weak form of

ex tens iona l i ty . According t o S c o t t , the n-equali ty 1x . f~ = f (i n ordinary

1-calculus no ta t ion) must n o t be understood a s e x t e n s i o n a l i t y b u t r a t h e r

a s s t a t i n g t h a t f i s a func t ion . So, i n a typed s e t t i n g rl seems t o be

anyhow j u s t i f i e d : the mere cor rec tness of [x:aI(x}f (i n Automath no-

t a t i o n) warrants t h a t f is a funct ion. However, n-equali ty presupposes

uniqueness of types!

Above we have taken for granted that the appropriate practical

function concept is a typed one. Indeed, free, untyped A-calculus is a

farreachingla priori just formal, extension of this concept (compare,

e.g., the notations for limits and formal series, in analysis). It is

an extension useful for studying computations but which does not seem

very well applicable to "ordinary" mathematics. Compare LCF, being in-

tended for the former purpose and actually based on the poZymorphic

typed A-calculus PPA, where the type conventions are not quite as strict

as in ordinary typed A-calculus.

We note that these two restrictions of the definitional equality

(that it just covers intensionaZ equality, between ordinary typed A-

calculus objects) are essential for its being decidable (in contrast

with, e .g . , the convertibility in PPA) .

5.6 Axioms vs. schemes, abstraction vs. abbreviation

In 5.4 we saw that there are two possibilities to introduce primi-

tive constants for the construction of functions, either at low type

level (example: SUC) in a scheme, or in a higher type by an axiom

(example: S U C ~ U ~) . The difference between the two approaches is that

from a scheme objects are constructed by instantiation (example:

SUC(One)), and from the corresponding higher type axiom by appZication

(example: (0ne)~~cfun). In most logical formalisms the distinction

between instantiation and application cannot be stated in such an ex-

plicit form, since their instantiation mechanisms belong to meta-

language.

Similarly there are in Automath (usually) two possibilities for

making expZicit definitions of functions: by A-abstraction and by a

definitional axiom scherne.These definitions are respectively eliminated

by application plus B-reduction and instantiation plus &-reduction

(this duplication is eliminated in Nederpeltfs A) .

Apart from the fact that writing schemes allows a form of (sub-

stitutionaZ) quantification of variables not quantifiable by A (viz.

type variables), it also allows quantification of more variables at a

time. However, as one knows, this simultaneous quantification can be

simulated by successively quantifying one variable at a time.

So, roughly speaking, what can be done byschemescan also be done

by A-abstraction. I n some sense schemes a r e simpler than a b s t r a c t i o n :

h igher type o b j e c t s a r e avoided. Indeed, i n t h e Automath p r o j e c t a

schematic in t roduc t ion of cons tan t s (i . e . SUC i n s t e a d of S U C ~ U ~ e t c .)

would g e n e r a l l y be p re fe r red . And, r a t h e r than asking how i n s t a n t i a t i o n

can be dismissed i n favour of a p p l i c a t i o n , one should ask what a b s t r a c t -

ion , a p p l i c a t i o n and higher type o b j e c t s a c t u a l l y con t r ibu te . We th ink

t h a t A-calculus only comes i n when one wants t o express nested quant i -

f i c a t i o n s (e i t h e r subst i tut ional o r by A-abstraction) such a s , e .g . ,

needed when quan t i fy ing over func t ions o r d e f i n i n g func t iona l s . Example:

t h e p r o p o s i t i o n ~ 0 n t (f) expressing t h e c o n t i n u i t y of f depends on the

h igher type v a r i a b l e f . I f one wants t o use t h i s p ropos i t ion (by in-

s t a n t i a t i o n) , higher type o b j e c t s (l i k e EX: r l I F) must be s u b s t i t u t e d .

De Bru i jn has , accordingly , conjectured t h a t up t o 18th century mathe-

mat ics i s express ib le without A-calculus and, hence, t h a t t h e p r i m i t i v e

Automath language PAL would do f o r t h a t sub jec t .

5.7 More on t h e language r e s t r i c t i o n s (a s mentioned i n 5.4)

The f a c t t h a t no a r i thmet ic is b u i l t i n , d i s t i n g u i s h e s Automath

from systems meant t o g ive a foundation f o r cons t ruc t ive mathematics.

In p a r t i c u l a r , we want t o make a comparison wi th t h e system of S c o t t

[62] and Martin-LBf [45] because these two systems have the same gene-

r a l i z e d type-s t ruc tu re a s Automath, and t h e same way t o represen t

reasoning, v i z . a proposit ions-as-types way.

S c o t t sketches a genera l r ecurs ive cons t ruc t ion mechanism t h a t

a l lows t h e d e f i n i t i o n of t h e n a t u r a l numbers from a f i n i t e s e t of given

ground o b j e c t s . Martin-Lbf's in t roduc t ion of t h e n a t u r a l numbers is

more l i k e ours : he in t roduces zero and successor b u t a d d i t i o n a l l y he

has recursion over t h e n a t u r a l numbers b u i l t - i n i n h i s language.

The main d i f f e r e n c e between b u i l t - i n a r i t h m e t i c and a r i thmet ic

introduced axiomat ica l ly (a s i n Automath) i s t h a t i n the case of b u i l t -

i n a r i t h m e t i c one g e t s the equat ions following from the recurs ive

d e f i n i t i o n of a func t ion f o r f r e e , i . e . a s def in i t ional equality. In

Automath one can a l s o in t roduce a constant intended f o r p r imi t ive recurs-

i o n b u t t h e p o i n t i s t h a t the a d d i t i o n a l e q u a l i t y axioms, needed t o g ive

such a cons tan t i t s meaning, concern book equal i ty , not d e f i n i t i o n a l

e q u a l i t y . Th i s l i m i t a t i o n a l s o d i s t i n g u i s h e s Automath from LCF, where

r e c u r s i v e d e f i n i t i o n s of func t ions is indeed poss ib le .

Now we come back t o t h e second and t h e t h i r d l i m i t a t i o n : t h a t a

type must be p resen t before i t s i n h a b i t a n t s and, t h a t i n Automath unique-

ness of types holds. These l i m i t a t i o n s prevent any induc t ive cons t ruc t ion

of a type, i n a genera l sense: both t h e recurs ive d e f i n i t i o n of a type,

and, even, t h e cons t ruc t ion of a new type cons i s t ing o f , e.g. , a f i n i t e

number of p rev ious ly given o b j e c t s , a r e impossible. Such previously

given o b j e c t s have a type already and it i s simply no t p o s s i b l e t o s t a t e

a s an axiom (n e i t h e r a s an assumption) t h a t such an o b j e c t also belongs

t o a d i f f e r e n t type. I n AUT-Pi (and i n S c o t t ' s and Martin-Lbf's system

a s we l l) t h e r e i s t h e p o s s i b i l i t y t o cons t ruc t binary d i s jo in t unions

of previously given types b u t , even the re , t h e o b j e c t s of t h e o l d types

cannot be i d e n t i f i e d wi th t h e o b j e c t of t h e new types: i n j ec t ion funct-

ions a r e neeaed.

5 . 8 A comparison with general ized f u n c t i o n a l i t y

Uniqueness of types seems a good s t a r t i n g p o i n t f o r a comparison

wi th S e l d i n ' s system of generalized funetionaZity [6 4] . This i s a gene-

r a l i z a t i o n of Cur ry ' s systems of basic functionality [2 5 , 261. Basic

f u n c t i o n a l i t y has t h e u s u a l funct ion types a + B (t h e r e denoted FaB),

bu t general ized f u n c t i o n a l i t y has the generalized type-s t~ucture of

Automath and t h e o ther two systems, above. Actual ly we took t h e word

"generalized" from Seldin . The product types denoted above a s [x:a]6

o r n([x:a]B) o r I7 B a r e i n S e l d i n ' s system w r i t t e n a s Ga(Ax.6). T h i s
x: a

is, including t h e in t roduc t ion and e l iminat ion r u l e s f o r G (i . e . our

a b s t r a c t i o n r u l e s) a l l q u i t e s imi la r t o t h e product types of Automath.

However, an important d i f f e r e n c e i s t h a t i n S e l d i n ' s system t h e

v a r i a b l e s do n o t g e t a f i x e d type and consequently, the system r a t h e r

must be viewed upon a s a system of type assignment t o (c e r t a i n) terms

of t h e type f r e e A-calculus. E.g. the i d e n t i t y I belongs t o every type

a -t a (where a i s a t y p e) , whereas i n Automath we have d i f f e r e n t I 's , a
denoted [x:a]x, a t every type a. Consequently, a term can indeed belong

t o d i f f e r e n t types.

I n f u n c t i o n a l i t y theory t h e statement A has a type B i s denoted

BA (t h e predicate B a p p l i e s a t t h e subject A , as one says) and i s it-

s e l f an o b j e c t (ob) of t h e system. I n p r i n c i p l e , i n t e r f e r e n c e of B and

A (by reduction, where B a c t s a s a function, with argument A) i s not ex-

cluded. However, i n the separated systems, where the equal i ty ru l e s

operate on subject and predicate separately, the interference i s for-

bidden and BA i s j u s t an a l te rna t ive notation of our A E B. (Notice t h a t

t h i s kind of interference i n the case of Automath, where (except i n

A U T - P i) [x:A]B can be both a function and a type, would be disastrous.)

A point of difference between Se ld in ' s system [64] and our systems i s

t h a t the type formation ra ther belongs t o h i s meta-language (and i s l e s s

r e s t r i c t e d then ours: he ju s t respects the a r i t y (i . e . number of argu-

ments) of the type valued funct ions) . Seldin proves fo r h i s system the

subject reduction theorem (our closure theorem) and the normal form

theorem (our normalization theorem) .
The systems of func t iona l i ty a r e said t o be systems of i l l a t i v e

(combinatory) logic. The word " i l l a t i v e " now r e f e r s t o the presence of

other basic constants (viz . F and G) than j u s t the combinators (or ,

a l te rna t ive ly , than ju s t A-abstraction). Originally, Curry ra ther meant

the word " i l l a t i v e " t o stand fo r in feren t ia l , i . e . a l so dealing with

the log ica l p a r t (c f . 5.2) of mathematics. In view of the f a c t s , t h a t

the Automath languages a r e qui te similar t o func t iona l i ty systems, and

t h a t Automath i s indeed intended t o represent both the object p a r t and

the log ica l p a r t of mathematics, it seems ju s t i f i ed t o c a l l Automath

a system of i l l a t i ve combinatory logic (or ra ther iZZative A-caZcuZus).

5.9 The p-fragment

Recall t h a t the log ica l p a r t of mathematics (the reasoning) is

represented i n Automath by a propositions-as-types method. The standard

way of developing propositions-as-types i n the p-fragment of Automath

is a s follows. The propositions enter a s special types (2p-expressions

of type prop , where prop is another basic constant, a Ip-expression,

t h a t behaves ju s t l i k e type).

We saw t h a t a proposition is t rue i f we have a reaZizer, a 3p-

expression i n it. A proposition B i s assumed by introducing a var iable

rea l iz ing (i . e . of type) B, and a proposition B i s s ta ted a s an axiom

(resp . axiom scheme) by introducing a primitive constant (resp . primit ive

constant depending on parameters) rea l iz ing B. The implication B * C

i s represented by the function type B + C (i n AUT-68- and AUT-QE-notation

[x:B]C). Introduction- and elimination rules for - correspond with the
abstraction and application rules of Automath.

The standard development of (classical) logic in Automath starts

with the introduction of a primitive 2p-constant Con E prop, to repre-
sent the contradictory proposition, i.e. fahfm. Clearly Con is intended

to remain empty. So, the negation of a proposition a (i.e. a - fakW'?)
can be represented by [x:~]co~, which we abbreviate by nOn(a). Hence

the double negation of a becomes non (non (a)) (Q Cx: Cy : ~ I C O ~ I C O ~) . Then,
for classical logic, a primitive realizer, called dnl, for the double

negation law is introduced by a scheme

a E prop, a E non(non(a))tdnl (a,x) E a

We also promised some book equaZidy axioms for giving the express-

ions of the t-part their meaning. To this end a primitive proposition

eq, for book equality between objects of the same type, is introduced

by a scheme

a E type, Q E a, b E +eq(a,a,b) E prop

together with, e.g., primitive realizers for reflexivity (i.e. in

eq(a,a,a)), symmetry (i.e. to infer eq(a,b,a) from eq(a,a,b)) etc.

Predicates are special type-valued, viz. proposition-valued funct-

ions, formed from propositions by A-abstraction. In constant with the

type-valued functions of the t-fragment (cf. 5 . 3) , predicates are

usually non-trivial type-valued functions. E.g. the property "being

equal to one" on type nt is expressed by the predicate

[x: ntleq (nt,one,~) . The (minimal) type (cf. 2.10) of this predicate is
nt -+ prop, in AUT-QE written [z:nt]prop and in AUT-Pi written

n(Cx:ntlprop) .
These typical lp-expressions of AUT-QE and AUT-Pi allow the intro-

duction of predicate variabZes and, hence, the formulation of schemes

depending on predicate parameters. An important scheme containing a

predicate parameter is the axiom scheme forinduction over the natural

numbers.

I£ p is a predicate on type cl (having type a -+ prop) then the

product P(x) (in AUT-Pi this is written n(P), in AUT-QE it is just
x:a

P itself) stands for the proposition 'd P(x). Introduction and elimin- x:a

ation rules for V correspond with the abstraction and application rules

of Automath.

5.10 Some comment on the

The above examples i

type-variables (and prop-

wise we would have needed

p-par t

llustrate why the formulation of schemes with

and predicate-variables) are useful. Other-

e.g. separate dnlls for every proposition,

separate book-equalities at every type, and a separate induction axiom

for each predicate on type nt. And it also becomes evident why abstract-
ion over degree 2 variables is called higher order quantification:

proposition and predicate variables are 2-variables and abstraction

corresponds to universal quantification. See further sec. 5.12.

By using Automath in this propositions-as-types fashion we get an

almost ordinary many sorted first-order predicate logic, viz. ooer a

pure (or extended) typed A-calculus. It depends mainly on the axioms

concerning falsum what kind of logic we get: TninimaZ logic (without

axioms), intuitionistic logic (with absurdity rule), or cZassicaZ logic

(as above, with the double negation law, or the like). Additional

constants and axioms can be added for the introduction of further mathe-

matical structures (see, e.g. Jutting [37]) .
We wrote that Automath is an ah0st ordinary predicate logic,

"almost" because there is one unconventional feature: Expressions for

proofs (i.e. realizers) can occur inside the expressions for mathematical

objects and for propositions, i.e. mathematical objects and propositions

can become dependent on the truth of (other) propositions. Example: Let

P be -a predicate on type a, let ~!x.P(x) (how this is defined does not

matter here). Then the miom of individuals [37], which is usual in the

standard development, introduces a constant (a iota-symbol) ind(a,P,t)

together with the appropriate axioms, for the unique object satisfying

P; here t realizes 3:x.P(x). Of course, ind(a,P,tl) and ind(a,P,t2)

are book-equal. However, irrelevance of proofs is needed to make these

expressions definitionally equal (cf. 5.2).

In this way implications a * B (generalized implications, as we

say) are formed where f3 cannot be stated unless a holds, and similarly

we can get generalized conjunctions. such propositions are said to

)elong to generalized logic (see [20,37,77]) .

The propositions-as-types development of sec. 5.9 is not the only

one possible. Alternatively, the propositions can be introduced as

ordinary types (of type type), or as 3-expressions of a new type b001.

Since in the first alternative no distinction is made between proposit-

ions and ordinary types (in fact there is no p-fragment, only a t-

fragment) the realizers enter the discussion as ordinary objects (con-

structions) too. This seems to be the proper choice if we want to study

constructive foundations. Of course, irrelevance of proofs is out of

the question here. The second implementation, where the propositions

enter as degree 3 expressions, gives rise to higher order logic. In

this case the truth of a proposition B is expressed by a formula

t E B ' , where B' is an ordinary type (the "proof-type" of B) associated

with the proposition B. This "proof-type" of B (usually denoted TRUE(B),

or (B) or proof (B)) has to be introduced because B itself is not in-

habitable (unless we use AUT-4, see 4.12). In Jutting [3 7] there is also

a development in the b001 -style.

5.11 On propositions-as-types

In fact, Automath is not just a predicate logic but rather the

proof system of a predicate logic, because a formula A of the logic is

not expressed d i r e c t l y but via a statement of the underlying typed A-

calculus, of the form t E A. So it is reasonable to ask for the decida-

bility of the system: proof systems haoe to be decidable. One might

wonder, though, why we took such a peculiar proof system, this formulae-

as-types kind of formalization.

Our main point is that the formulae-as-types way of implementing

a proof system is a straightforward one. The classical notion of formal

proof is: a finite sequence of formulae, each of which is either an

axiom or follows from the preceding ones by application of an inference

rule. This meagre notion of proof is already decidable but useless for

our purposes because the decidability is not feasible. For other pur-

poses as well (proof theory) this notion of proof is considered too

uninformative .
The first improvement coming to mind is to provide each formula

(let us say: l i n e) in the sequence with additional information: (1)

a label (e.g. a mere line number, or a more expressive identification),

for later reference, (2) some reason, some justification for that line.

The information (2) has to indicate: (a) what inference rule is used

for establishing that line, (b) on which previous formulas (indicated

by their labels) that inference rule has to operate. The axioms in the

sequence do not get a justification but just a flag AXIOM, say. Notice

that the justification part of a line can also be conceived as an in-

struction to operate with the indicated inference rule on the indicated

preceding lines. If the proof is correct, the formula part of the line

will be the result of this operation.

Another, independent, improvement is to allow proofs from asswnpt-

ions, in natural deduction style. In this case additional information

must be given with each line to indicate the context in which it is

valid (i.e. the assumptions on which it depends).

The proof system we have now arrived at seems to be a natural one

for mechanical proof-checking: each line consists of four parts, a con-

text part, an identifier part, a justification part and a fomuZa part.

Just a slight generalization leads us to Automath. First, we allow the

justification part to be a compound expression coding iterated use of

inference rules. This will save a lot of lines in the proof. Secondly

we allow each theorem from assumptions and depending on propositional

or predicate variables to be used in subsequent lines as a new derived,

inference rule. This gives the system on the flexibility and generality

of ordinary mathematical reasoning.

Still one step has to be made: to recognize that what happens in

our proof system is completely parallel with what happens in our typed

A-calculus framework. That making assumptions amounts to introducing

variables, that stating axioms amounts to introducing primitive con-

stants, and that deriving theorems can be conceived as introducing de-

fined constants. Finally, the abstraction and application rules of the

typed A-calculus amount to the introduction and elimination rules for

implication and universal quantification. Then the abbreviation line

(this is the proper book-and-line format, we would rather write

x E A, y E ~td(x,~) := D E C or the like) can be understood as "from

the assumptions A, B the formula C can be derived by using the compound

instruction D; this theorem can be referred to as line d".

So, we can explain formulae-as-types as just a practical way of

implementing a proof-checking system. Fitting the proof system into

typed A-calculus gives rise to an unusual interpretation of the E-symbol

but there is no harm in that (compare 4.6). The third interpretation

of realizers (cf. 5.2) seems appropriate to the above explanation: a

realizer is a mere indication that its formula holds.

A completely different question is: would there be any more direct

way of representing reasoning via the E- and Q-formulas of the under-
lying typed A-calculus of Automath? The answer to this question (no)

sheds some light on the particular limitations (see 5.7) of Automath.

The first point is that the E- and Q-formulas themselves do not allow
any reasoning. The only E-ass~nptions we can make are the typing assumpt-

ions for variables, and the only E-axioms we can make are the typing

axioms for the primitive constants. The Q-formulas are even more im-

plicit: Q-assumptions are not allowed at all, and the only Q-axioms are

the abbreviations. (Scott [62] indicates that allowing Q-formulas for

assumptions would spoil the decidability). For the rest, E- and Q-formu-

las just hold or not: if they do not hold they cannot even be stated as

an axiom or as an assumption. Consequently they cannot be negated

or used in a reasoning ad absurdum. Then, we might look for another trick

(different from propositions-as-types) to represent reasoning. One idea

might be to introduce a type of truth-values and to see to it that

each proposition (or some object associated to it) would be definition-

ally equal to a truth value. Another idea might be to introduce a type

for the true propositions (or objects associated to them) and a type

for the false ones(or objects associated to them). Apart from the fact

that these proposals simply are not feasible (just try) they would

imply that all propositions would become decidable (because E and Q are

SO) and that is not what we want.

5.12 A comparison with higher order systems

We have mentioned before that abstraction over type-variables is

not allowed in Automath. In this respect Automath is distinct from

both Martin-L6f1s system and Girard's systems. Martin-Lbf distinguishes

s?TKZ~Z t y p e s and large types. An example of a small type is the type of

the natural numbers, examples of large types are: the type V of small

types (like our type) and the types which represent propositions (in

t h e proposi t ions-as- types s e n s e) . Now v a r i a b l e s ranging over smal l types

can be q u a n t i f i e d , bu t q u a n t i f i c a t i o n over, e -g . , p ropos i t iona l v a r i a b l e s

i s s t i l l not permit ted , s o Martin-LBf's system does no t have higher order

l o g i c .

However, Martin-Lbf's system is higher-order i n our t e c h n i c a l sense

(see I V . 1 . 5) because, by h i s b u i l t - i n r ecurs ion mechanism, a type-valued

func t ion , 2' say, can be def ined such t h a t e.g. T(0) = n t , T (n + l) =

T (n) -+ n t (where n t i s the type of n a t u r a l numbers) . Then the product

l l (T) c o n s i s t s of func t ions wi th va lues (numbers, func t ions , f u n c t i o n a l s)

of a r b i t r a r y high compzexity (Seldin would say r a n k) . Note t h a t i n

Automath such func t ions of unbounded f u n c t i o n a l complexity cannot be

def ined: c r u c i a l i n the recurs ive d e f i n i t i o n of T i s the presence of

t h e funct ion Xy:V. (ZJ -+ n t) (with y a type-variable!) which t akes T(n)

t o T (n+l) .
G i r a r d ' s systems a c t u a l l y conta in higher-order l o g i c , because

q u a n t i f i c a t i o n over a l l type-var iables i s admitted. E.g. (we use Auto-

math no ta t ion) the o b j e c t [a : t y p e l [x : a b of type [a : t y p e l [~ : a l a can be
a a

const ructed. I n f a c t Girard would w r i t e t h a t DTa.12 .x is of type

Aa. (a -+ a) .

1 .6 The contents of this thesis

6.1 Th i s t h e s i s has become a comprehensive volume on r e s u l t s and

methods i n the language theory of Automath: most of t h e language theo-

r e t i c a l ques t ions , a s they a r e s t a t e d above, a r e t r e a t e d f o r most of

t h e c u r r e n t Automath languages.

Since many r e s u l t s a r e q u i t e t e c h n i c a l we o f t en , f o r b e t t e r access-

i b i l i t y , g ive a double exposi t ion. F i r s t an informal, h e u r i s t i c one, t o

exp la in the i d e a s , followed by a more r igorous one wi th some (sometimes

many) t e c h n i c a l d e t a i l s . I f one l i k e s , one can sk ip the l a t t e r .

Most chap te r s a r e almost independent and se l f -conta ined: they have

t h e i r own in t roduc t ions , d e f i n i t i o n s a r e repeated e t c . For many r e s u l t s

some d i f f e r e n t proofs a r e g iven, and some known theorems from [51] and

[7 0] g e t new proofs .

The discuss ion i s mainly d i r e c t e d towards the Automath languages

-and the Automath p r o j e c t . However we th ink t h a t some r e s u l t s may be of

more genera l i n t e r e s t : t o A-calculus and, by the proposit ions-as-types

isomorphism, t o proof-theory.

6.2 This t h e s i s (a p a r t from t h e in t roduc t ion) can be divided i n t o th ree

p a r t s : (1) a g e n e r a l , preparatory p a r t i n a t y p e - f ~ e e s e t t i n g (Chs. I1

and I I I) , (2) a p a r t on pure (see 1.10) typed systems, with a p p l i c a t i o n

t o AUT-68, AUT-QE and AUT-SL (Chs. I V - V I I) , (3) a p a r t on t h e extended

(1.10) language AUT-Pi (Ch. V I I I) .
Ch. I1 d e a l s with t h e pre l iminary d e f i n i t i o n s : eXpPes-Sion-S, sub-

s t i t u t i o n , reductions, de f in i t ional equali ty . The express ions a r e a l -

ready i n t e r n a l l y decorated wi th type l a b e l s , bu t a typing r e l a t i o n i s

n o t y e t de f ined and, hence, t h e types do not r e s t r i c t t h e expression

formation. Various p r o p e r t i e s a r e introduced and discussed i n a gene-

r a l s e t t i n g : normalization and strong normazization, cZosure, Church-

Rosser and postponement. The poss ib le in te r fe rence of t h e va r ious kinds

of reduc t ion i s analyzed, i n connection with t h e l a t t e r two p r o p e r t i e s .

F i n a l l y t h e important reduction-under-substitution lemma of type-free

A-calculus i s proved.

I t is advised not t o miss 11.0.4.2: we in t roduce some handy bu t

s l i g h t l y unusual n o t a t i o n a l conventions (i n p a r t i c u l a r on t a c i t ex i s t -

e n t i a l q u a n t i f i c a t i o n) .

ch. 111 d e a l s wi th t h e i s o l a t e d study of one s p e c i f i c kind of re -

duc t ion , v i z . &-reduction (s e e 4 .3) . A Church-Rosser proof i s given,

and var ious ways of proving s t rong normalization a r e ind ica ted . P a r t i c -

u l a r l y i n t e r e s t i n g i s De B r u i j n ' s s t rong normalization proof f o r 6-re-

duc t ion , which simply c a l c u l a t e s t h e m m i m m length of a reduc t ion

sequence.

6.3 Each of t h e chapters I V , V , V I i s devoted t o one s p e c i f i c aspect

of t h e pure typed systems: (s t rong) normalization, c losure and Church-

Rosser (c f . 2.7) r espec t ive ly . Ch. I V s t a r t s with an in t roduc t ion on

typed A-calculus systems i n general . Like Nederpelt i n [51] we use t h e

following s t r a t e g y t o prove (s t rong) normalization f o r our languages:

f i r s t we in t roduce a genera l system of normabZe express ions (f o r s h o r t :

a normable system) then we prove (s trong) normazization f o r t h i s system;

f i n a l l y we prove t h a t both AUT-SL (i . e . A) and a l i b e r a l , comprehensive

ve rs ion of AUT-QE (inc lud ing a l l t h e cur ren t ve rs ions of AUT-QE and

AUT-68) a r e normable.

There a r e given t h r e e new proofs of strong B-normaZizati0n fo r

normable systems. Because t h e usual pure f i r s t - o r d e r (see p. 29) typed

systems a r e c l e a r l y normable, these proofs a r e q u i t e genera l ly appl icable .

Like Nederpe l t ' s proof of s t rong normalization i n [5 1] , these proofs

a r e no t based on a not ion of computabil i ty.

Ch. I V a l s o con ta ins the p r e c i s e d e f i n i t i o n s of book, con tex t and

degree , and t h e r e is def ined a typing r e l a t i o n (o r r a t h e r : a typing

f u n c t i o n) . However, i n t h e normable express ions the typing r e s t r i c t i o n s

on t h e express ion formation a r e no t f u l l y respected, bu t only a weak

form of them.

6.4 ~ h . V g i v e s a framework (t h e E-definition) f o r genera t ing t h e

c o r r e c t express ions and formulas of the var ious Automath languages. I t

mainly concen t ra tes on the r e g u h r languages (s e e 4.5) AUT-QE, AUT-68

and t h e i r v a r i a n t s .

Then the cZosure proofs a r e given: f i r s t of AUT-QE with Bq-reduct-

ion (s o without 6) then of some more l i b e r a l v e r s i o n s AUT-QE+, AUT-QE*

with f u l l reduct ion. Severa l unessential-extension r e s u l t s a r e presented.

Since the c l o s u r e proofs of Bq(6)-AUT-QE a r e t e c h n i c a l l y somewhat com-

p l i c a t e d , we a l s o i n d i c a t e how, e.g. , 6-AUT-QE and Bqb-AUT-68 allow a

simp Zer c l o s u r e proof .

I n t h e l a s t s e c t i o n of Ch. V we prove - a n t i c i p a t i n g the Church-

Rosser r e s u l t of Ch. V I - the equivalence of t h e E-definition with the

a lgor i thmic d e f i n i t i o n (see 2 .6) . Quite some a t t e n t i o n i s pa id t o the

choice of a typing funct ion and a domain funct ion f o r t h e va r ious

languages. F i n a l l y we make a few remarks on practical v e r i f i c a t i o n of

Automath languages.

6 .5 In Ch. V I we prove the Church-Rosser proper ty f o r the pure Automath

languages. In p a r t i c u l a r we solve the BQ-Church-ROSS~P problem caused

by the presence of t h e type-labels (which a r e themselves express ions)

i n s i d e the a b s t r a c t i o n express ions i n Automath. Nederpelt [51] f i r s t

ind ica ted t h i s BQ-problem and c o r r e c t l y conjectured t h a t Bn-Church-

Rosser holds i n t h e c o r r e c t expressions. Except f o r the Bn-case, t h e

Church-Rosser p roper ty f o r pure systems can be proved i n t h e genera l ,

u n r e s t r i c t e d express ions (a s ind ica ted i n Ch. 11.6) .

In f a c t , we f i r s t prove Bq-Church-Rosser f o r a weak form of n-re-

duc t ion , j u s t s u f f i c i e n t t o cover the q-reductions needed i n t h e v e r i -

f i c a t i o n of J u t t i n g ' s Landau-translat ion. Afterwards we t a c k l e f u l l

n-reduction.

Resuming, chs . IV-VI show tha t the pure Automath languages s a t i s f y

the three desirable properties (c f . 2 . 7) .

6 . 6 Ch. V I I d e a l s exc lus ive ly with t h e language theory of Nederpel t ' s

A (o r : AUT-SL) . Here our p o i n t of depar tu re (i n c o n t r a s t with Ch. V) i s

t h e algorithmic definition.we in t roduce t h e soca l l ed degree-norm correct

expressions. We show t h a t closure and Church-Rosser can d i r e c t l y be

proved from t h e a lgor i thmic d e f i n i t i o n , with t h e he lp of t h e big t ree

theorem. W e give two new proofs of t h i s theorem, t h e f i r s t one being a

mere extension of the second s t rong normalization proof of Ch. I V , t h e

second one r a t h e r based on t h e f i r s t s t rong normalization proof i n I V

and making use of t h e book-keeping pairs from de V r i j e r ' s proof of t h e

big t r e e theorem f o r h i s system X A [7 0] .

F i n a l l y we compare var ious ve rs ions of A : with and without constants

(resp. defined cons tants) , t h e single-line version and t h e book-and-

context version e t c .

A s regards t h e t h r e e ce lebra ted d e s i r a b l e p r o p e r t i e s f o r A , Ch. V I I

j u s t d u p l i c a t e s t h e Chs. I V - V I .

6.7 Chapter V I I I d i scusses extended systems, i n p a r t i c u l a r AUT-Pi . I n

t h e f i r s t s e c t i o n t h e a d d i t i o n a l type forming operations: binary union

(e), d i s j o i n t sun (Z) , cartesian product (n) , t h e a d d i t i o n a l term

forming operations: i n j ec t ion (i and i2) , plus (e) and pairs (<- ,->) ,
1

and t h e a d d i t i o n a l reductions: +, E , T, a a r e introduced i,nformally,

and t h e connection with f u l l i n t u i s t i o n i s t i c predicate logic i s ex-

h i b i t e d .

We generate AUT-Pi by an E-definition and prove t h e closure prope17z$.

we t a c k l e strong normalization a s i n I V (and V I I) : we extend t h e notion

of form and def ine two systems AUT-Pi* and AUT-Pi1 which a r e extended

normable. For t h e s e systems we prove a v a r i e t y of s t rong normalization

r e s u l t s . F i r s t we show t h a t the methods of I V immediately covex t h e

f3m-p-case, but t h a t t h e presence of +-reduction r e q u i r e s add i t iona l

a t t e n t i o n (t h e soca l l ed dead end s e t becomes unmanageable).

Three new proofs f o r s t rong ~r+qu-normalization a r e presented, two

of them making use of some a d d i t i o n a l t echn ica l reduct ions (perT??Z.itati~e

and improper reduct ions) , t h e t h i r d one us ing computability. Then these

s t r o n g normal izat ion r e s u l t s a r e t r a n s f e r r e d t o AUT-Pi.

However, f o r fuzz (i . e . Bn+nUE-) AUT-Pi t h e language theory i s not

ye t f inished, f u l l Church-Rosser i s simply fa lse , and f u l l strong normaZ-

i za t ion we have not been able t o s e t t l e (though we s t r o n g l y be l i eve i n

i t) .

6.8 The r e s u l t s of t h i s t h e s i s , even when p e r t a i n i n g t o type-f ree X -

c a l c u l u s , a r e der ived by syntac t ic , combinatorial methods (i n c o n t r a s t

wi th the model t h e o r e t i c and recurs ion t h e o r e t i c reasoning o f t e n used

i n X-calculus nowadays).

Another p o i n t about methods is , t h a t we have been ab le t o avoid

t h e not ion of residual (and we d o n ' t employ t h e underlining method of

Barendregt [2] e i t h e r) . Cf. t h e reduct ion-under-subst i tu t ion lemma i n

11.11.

F i n a l l y we mention t h a t (except i n V I I I , t he l a s t proof) we have

not used any not ion of computability o r t h e l i k e i n our s t rong normal-

i z a t i o n p roofs , bu t have r e s t r i c t e d ourse lves t o a p r i o r i elementary

methods (c f . IV.1.6.3).

6.9 Now we l i s t some language t h e o r e t i c a l s u b j e c t s which we th ink t o

r e q u i r e f u r t h e r a t t e n t i o n .

In view of 6.7 a f u r t h e r a n a l y s i s of t h e d e f i n i t i o n a l e q u a l i t y i n

AUT-Pi i s needed. I n p a r t i c u l a r a dec i s ion procedure i s wanted (though

n o t abso lu te ly necessary, s e e 2.8) t h a t does no t r e l y on Church-Rosser

(a suggestion i s made i n VIII .6 .2) . O r , a l t e r n a t i v e l y , a new reduct ion

r e l a t i o n may be ind ica ted t h a t genera tes &-equal i ty and does s a t i s f y

Church-Rosser.

Secondly, some more work on the comparison of languages would be

welcome. E.g. t h e precise connections between AUT-68 and AUT-QE have

never been made e x p l i c i t . Here we do not mean t h e connections between

t h e i r r u l e s , bu t r a t h e r between what can be said i n t h e s e languages.

To be s p e c i f i c , we th ink t h a t AUT-QE books can be t r a n s l a t e d i n t o

AUT-68 books, and t h a t AUT-synt might p lay a r o l e i n t h i s r e s p e c t a s

well .

Another p o i n t deserving i n t e r e s t i s t h e r o l e of t h e "extensionaZ"

reduct ions q, o and E. Notably, we th ink t h a t these reduct ions can be

avoided by f i r s t translating (performing rl-expansion e tc .) and a f t e r -

wards performing t h e corresponding introduction-elimination reduct ions

6, n and + (compare [37, sec . 4.1 . I]) . Actual ly we have. t r i e d t h e q-

case b u t g o t s t u c k i n t e c h n i c a l d i f f i c u l t i e s with t h e type- labels .

I n '6111.2.7 we desc r ibe a natural extension of AUT-Pi, which never-

t h e l e s s causes our t reatment of s t rong normalization t o f a i l hopeless ly .

This i s an i n t e r e s t i n g p o i n t of study too.

F i n a l l y we mention some s u b j e c t s t h a t f a l l somewhat ou t s ide t h e

scope of t h i s t h e s i s b u t a r e very important f o r t h e a c t u a l implementat-

ion: (1) i terated references e t c . (s e e 3.4), (2) AUT-synt, (3) strings-

and-telescopes. Work i n t h i s d i r e c t i o n has been done by Zandleven, De

Brui jn , J u t t i n g and Wieringa (s e e 3 . 4) but we th ink t h a t f u r t h e r study

is required.

CHAPTER 11. MISCELLANEA

Section 0 of this chapter gives some comment on methods (inductive

definition and inductive proof) andintroduces somenotationalconventions.

The sections 1-4 form a brief introduction to the various A-cal-

culus systems considered in this thesis. The sections 5-7 contain some

general considerations on the closure property, the Church-Rosser prop-

erty, (strong) normalization and postponement (for a combination of

reductions). Also some results of this kind are stated, and a proof of

the Bq-Church-Rosser property for untyped A-calculus is included.

In the sections 8 and 9 the Church-Rosser property and post2onement

are discussed for the specific reduction relations considered.

Section 10 defines the concept of multiple substitution, and

section 11 proves a lemma (the reduction-under-substitution lemma)

which has interesting applications in untyped A-calculus.

11. 0. Preliminaries

0.1. Inductive definitions

Throughout this thesis many notions (predicates and relations) are

given by so-called ordinary inductive definitions. An ordinary inductive

definition of, e.g., the predicate P consists of a finite set of induc-

tive cZauses or rules of the form:

"if P (al and P (a2) . . . and P (ak) then P ($(al, . . . ,ak)) " ,
where k 2 0, $ is a k-ary operation and al , . . . ,a are variables. *)

k
In such an inductive definition it is, without further notice,

intended that P(a) holds, only if this follows from iterated applica-

tion of the rules. We may assume that there is at least one clause

with k = 0 and $ a constant - a starting clause -. We say that P is
inductively generated from the starting clauses by closure under the

other clauses.

It will be clear how inductive definitions of binary relations,

or of several notions simultaneously have to be interpreted. With in-

ductive definitions of (partial) functions, we have to be more care-

ful, of course.

*) In fact, the definition of computabiZity in VIII. 5.3 is of a more
general nature.

0.2. Inductive proofs

Let < be a partial order and let < be well-founded, i.e. there are

no infinite (strictly) descending sequences a > a2 > Call b a
2escendant of a if a > b; b is a direct descendant of a if a > b and

there is no c in between. If we can show, for all b,

(Va<bP (a) * ~ (b)

then we can conclude V P(a). This is called proof by induction on <. a
If there are no infinite (strictly) increasing, bounded above,

sequences a1 < a2 < ... < b either, then for all b, b is either an

endpoint - i.e. minimal with respect to < - or b has a direct descendant.
So, in this case, if for all b, c,

b endpoint * ~ (b) ,
and

(~ (b) A b direct descendant of c) * P(C)
then Va P(a). This principle of proof is also induction on <.

Call < finitary, if each a has only a finite number (possibly zerc!

of direct descendants. If < is finitary and well-founded and has no in-

finite increasing, bounded above, sequences, then by the lemma of

Brouwer-Konig, for each a there is a maximum to the length of descending

sequences starting in a. Call this maximum B(a). Then the various in-

ductive proofs of P(a) can simply be reduced to mathematical induction,

viz. to induction on B(a).

0.3. Induction on definitions

Let P be given by an ordinary inductive definition. If, for each

clause in the definition of PI as above,

then, clearly, P (a) * Q (a) for arbitrary a.
This kind of inductive proofs can be considered as proofs by in-

duction on the finitary, well-founded partial order generated by the

definition of P (in fact, this order pertains to the objects a ZabeZZed

Wfth a derivation of P(a). The a (with labels) are the direct descen- i
dants of $ (a . . ,a) (with its label)) .

1'' n
We shall speak about proofs by hhction on P I or over P or on the

length of proof of P (a) .

0.4. Notational conv~ntions

0.4.1. Syntactic variables

Syntactic variables are the variables of our meta-language, denoting

syntactical objects such as, e.g., the expressions of an Automath language.

Often we reserve some specific syntactic variables (possibly indexed

or primed) to denote exclusively objects of a specific syntactic cate-

gory. E.g. C, r denote expressions, x, y denote variables, 8 denotes

books etc.

0.4.2. Logical symbolism

We freely include logical symbols in our meta-language, to shorten

and to clarify the discussion. As an example of our notational conventions

concerning the logical symbolism consider:

A 2 B , A 2 C - B 2 D , C 2 D

the so-called Church-Rosser property. Written out in full, it would

read

VA VB Vc((A 2 B A A 2 C) * 3 (B2D A C > D)) .
D

So, the conventions are:

(i) * binds loosely, the comma denotes A
(ii) free variables are tacitly quantified: by an existential quanti-

fier if their first occurrence shows up after the main =+symbol,

otherwise by a universal quantifier.

0.4.3. Reasoning about inductive definitions

Let P be a predicate given by an ordinary inductive definition. Let

>l,...,4m and Y1,...,Y be additional inductive clauses for P. Let P' n
be generated by adjoining @ to the definition of P (so clearly 1'
V (P (a) * P' (a))) . we say that Ql , .. . ,am are derived rules of P if

G

V_ (P (a) - P' (a) . -..
Let P" be generated by adjoining Y ..., Y to the definition of P. 1 ' n

Then, the rules Y ..., Y are derived rules of P' if and only if
1' n

Va (PW(a) * P1(a)). As an easy shorthand notation for this situation we
write (sic)

4 Yl,...,Y
m n

(ie, by adjoining @ l,...,@m, the rules Y1,...,Y become derived rules)
n

I I. 1. E x p r e s s i o n s

1.1. Here we d e f i n e our universe of d iscourse , t h e expressions of ge-

ne ra l i zed typed A-calculus. The express ions a r e formed from variabZes

and cons tan t s us ing var ious opera t ions such a s a b s t r a c t i o n , a p p l i c a t i o n

e t c . We take (a s i n de Brui jn [l o]) X a s our only v a r i a b l e binding

opera t ion and denote t h e o ther opera t ions by so-called b a s i c cons tan t s ,

such a s a b s t r , a p p l e t c .

1 .2 . Var iables and cons tan t s

The cons tan t s a r e d i s t ingu i shed i n b a s i c o r language cons tan t s

and t h e book cons tan t s . The l a t t e r f a l l a p a r t i n p r imi t ive and defined

constants . A l l cons tan t s have a c e r t a i n a r i t y , t h e number of arguments

going with them. The a r i t y of a cons tan t $ i s denoted I f I .
There is only a small number of b a s i c cons tan t s , a s l i s t e d below

a r i t y 0 : t y p e , p r o p

a r i t y 1 : p r o d , sum, p r o j l , p r o j 2

a r i t y 2 : a p p l , a b s t r , p l u s , i n j l , i n j 2

a r i t y 3 : p a i r

I n c o n t r a s t with t h i s , any alphanumeric s t r i n g can se rve a s a

v a r i a b l e o r a book cons tan t . The s y n t a c t i c ca tegor ies : v a r i a b l e s ,

p r i m i t i v e cons tan t s , def ined cons tan t s , and b a s i c cons tan t s , a r e

assumed t o be mutually d i s j o i n t .

We use x , y , z , u , v a s s y n t a c t i c v a r i a b l e s f o r v a r i a b l e s , f f o r con-

s t a n t s , c f o r book cons tan t s , p , 4 f o r p r imi t ive constants , d f o r de-

f i n e d cons tan t s and C, r , A , . . ,A,B,C,. . , a, B,y,. . . a s s y n t a c t i c v a r i a b l e s

f o r expressions.

1.3. The express ions a r e induc t ive ly defined:

(i) var iab les : X i s an expression

(ii) A-expressions: Ax*C i s an expression

(iii) cons tan t expressions: 1. I f (= 0 * f i s an expression

2 . I f 1 = k f (X I , . . . ,I) i s an expressior.
k

1.4. Various systems of express ions can be def ined i n s i d e t h i s franie-

work by specifying t h e s e t of (b a s i c) constants . Thus we have free,

i . e . untyped A-calculus with appl a s i t s only cons tan t , t h e abbreviatSor.

salcuZus LSP (Ch. 111) with book cons tan t s only and, of course, the

Automath languages.

I n t h e l a t t e r languages, t h e A-expressions a r e not p r e s e n t a s such,

bu t on ly i n s i d e a b s t r a c t i o n express ions: a b s t r (Z 1 ,Ax-C) . And only
2

such a b s t r a c t i o n express ions abs t r (1 C) a r e al lowedwherez i s a
1' 2 2

A-expression.

The Automath languages A U T - 6 8 , AUT-QE and A have type (and

poss ib ly p r o p) , a b s t r and appl a s t h e i r only b a s i c constants , and a r e

c a l l e d t h e pure Automath languages. Besides t h e s e b a s i c constants , AUT-Pi

has a l l t h e a d d i t i o n a l opera t ions mentioned, such a s p r o d , S U M , plus,

i n j l e t c .

: .5 . We use t h e o rd ina ry Automath no ta t ions :

T f o r type, IT f o r p rop , 'l7 f o r prod and 1 f o r sum

{AIB f o r appl (B,Aj , [x:AIB f o r a b s t r (A , x z * B) ,

A (l)
f o r pro j 1 (A) , A (2) f o r projZ(A), el,B,C> f o r pa i r !A ,B ,C)

9' (A,B) f o r i n j l (A , B) , i2(A,B) f o r i n j Z (A , B)
" 1

and A @ B f o r plUS(A,B)

I n f r e e A-calculus simple jux tapos i t ion i s used t o denote app l i ca t ion :

2.4 f o r {AIB.

1.6. I n {A)B we c a l l A t h e argument p a r t and B t h e funct ion p a r t .

I n [~:Alz we c a l l A t h e domain p a r t and B t h e value part.

The domain p a r t A of [x:AIB and f u r t h e r : t h e A of <A, B,C>, t h e

B of il (A,B) and t h e B of i2(A,B) a r e j u s t type-labels, p r e s e n t i n

o rde r t o f i x t h e type of the expression. For an explanat ion we r e f e r

t o 1.4.2 and VIII.1.3.In case we a r e not i n t e r e s t e d i n t h e type of t h e

express ion, we simply leave o u t t h e type- labels , w r i t i n g CXIB, <BIZ>

- (A) , i (A) r e spec t ive ly .
2

The symbol @ i s assumed t o have l e s s binding power than t h e

o t h e r symbols f o r express ion formation. Addi t ional parentheses a r e in-

s e r t e d whenever u s e f u l t o avoid ambiguity.

1.7. S t r i n g s

-
Expression s t r i n g s C l , . . . , C a r e denoted by C , v a r i a b l e s t r i n g s

k
x . . . x by 2 . The empty s t r i n g i s n o t a p r i o r i excluded. The nutti-

k
p z i c i t y of a s t r i n g C . . . , E k i s k and i s denoted by / ? I . So we can

1
rephrase c l a u s e 1.3. (iii) 2 by

I f] = * f (C) i s an express ion

Fur the r , i f 121 = k , 121 = k then

{AIB i s shor thand f o r {Ak) ... {Al}B, BZ f o r t . . . (BA1) ... A) and k
[Z : ~ I B f o r Tz, :A, 1.. . Cxk:AklB.

Sometimes, by abuse of no ta t ion , we t r e a t v a r i a b l e s t r i n g s a s s e t s ,
-

w r i t i n g , e.g. y E x i n s t e a d of : y i s among X1 ,..., e t c .
k'

1.8. Length, subexpress ions

I n agreement wi th 0.3, induct ion on t h e d e f i n i t i o n 1.3 is c a l l e d

induc t ion onexpress ions o r , a l s o , on t h e s t r u c t u r e of express ions .

Counting v a r i a b l e s and cons tan t s a s s i n g l e atomic symbols, t h e lexgth

R (C) of an express ion C can be def ined by:

S i m i l a r l y , r i s s a i d t o be a subexpression of C, f o r s h o r t

r c C , according t o t h e following induc t ive d e f i n i t i o n :

(iii) r c C =+ r c f (C 1 , .. . , Z i t . . ., C k) (i = 1 , .. . , k) .
i

Clear ly , c i s a p a r t i a l o rde r . We say t h a t C i s a direct subexpress<ol;

of Xx*C and t h a t Ci i s a d i r e c t subexpression of f (C 1 , . . . , C k) .
We want t h a t t h e Automath express ions a r e c losed under t ak ing s ~ b -

express ions . So, when d i scuss ing these , i n s t e a d of (ii) we include (ii')

and we r e s t r i c t c l a u s e (iii) t o cons tan t s f d i f f e r e n t from abstr . I n

t h i s c a s e A and B a r e t h e d i r e c t subexpressions of [x:AIB.

1.9. Occurrences, suggestive dots

If C c r, then C can have several occurrences inside r . Such oc-
currences can be distinguished by their positions inside r , e.g. like

in Nederpelt [51, p.181.we shall treat occurrences in an informal way.

Two occurrences are disjoint if they have no occurrences of symbols in

common.

Often, to denote an arbitrary expression with one or possibly

more specific occurrences of a subexpression C we write:

... C... , resp. ... C...C...
The meaning of these suggestive dots will be clear from the context.

We formulate the fundamental property of subecrpressions in terms

of suggestive dots: if ... C...r... is an expression then one of the

following alternatives holds

(i) C and r disjoint, or (ii) C c r, or (iii) r c C.

Notice that these cases do not exclude each other.

11.2. S y n t a c t i c i d e n t i t y , a - e q u a l i t y and s u b s t i t u t i o n

2.1. Free and bound variables

The free variables and the binding variables of an expression can

be defined informally, as follows:

i i) the first occurrence of x in XX*C is called a binding occurrence;

C is called the scope of the binding x.

(ii) an occurrence of 2, not being a binding occurrence, is called

free if it does not fall inside the scope of a binding x.

(iii) a free occurrence of x in C is calledbound in Xx*C (by the bind-

ing x)

(iv) x is a free variable of C (resp. a binding variable of C) if there

is a free (resp. binding) occurrence of x in C.

The set of free variables of C is called FV(C). If we write

... x...~... , we intend an expression with some free occurrences of x.
For a string t , FV (i) = U FV (xi).

2 . 2 . S y n t a c t i c i d e n t i t y and a -equa l i ty

By E we denote s y n t a c t i c i d e n t i t y , i . e . symbol-for-symbol-equality,

of express ions , modulo a-equal i ty , i . e . renaming of boundvar iables .

So a name-carrying express ion i s considered t o represent a c e r t a i n

r m e free ske le ton - o r , a l t e r n a t i v e l y , an equivalence c l a s s of

a-equal name-carrying express ions -. Our p o i n t of view,*) v i z . of simply

i d e n t i f y i n g ... (X X * . . . X . . . ~ . . .) . . . and ... (Xy*. ..y...y... I . . . can be

j u s t i f i e d by r e f e r r i n g t o Curry [2 5 1, Nederpelt [51 1 o r de Bru i jn

[l o 1. The l a t t e r r e fe rence g i v e s a t r e a t m e n t of a formalism of

nameless dunpies (s e e I . 3) , which i s a c t u a l l y used i n t h e cur ren t -

l y implemented v e r i f i e r f o r Automath languages.
-

The n o t a t i o n a extends t o s t r i n g s : ? r , i f I C I = 17 1 and, f o r -
i = , , 1 , . Fur the r , C r means: not (C = r) , and s imi la r -

1 i'
l y f o r s t r i n g s .

2 .3 . Now t h a t we have in t roduced = we r e t u r n t o t h e not ion of subex-

p ress ion . We say t h a t C i s a proper subexpression of I', f o r s h o r t

C sub r , i f C c r and C f r . C l e a r l y , S U ~ i s t h e t r a n s i t i v e r e l a t i o n ,

i n d u c t i v e l y genera ted by t h e r e l a t i o n ... i s d i r e c t subexpression of

... . W e have such p r o p e r t i e s a s :

C c r , r a v a r i a b l e o r cons tan t * C E I'

And we can make t h e fundamental p roper ty of subexpressions mcre

p r e c i s e : i f C c A , r c A then p r e c i s e l y one of t h e following a l t e r n a -

t i v e s holds : (i) C and r d i s j o i n t , (ii) C and I' a r e t h e same occurrence

(SO C - r) , (iii) C S U ~ r , o r (i v) r sub C .

2.4. S u b s t i t u t i o n

By C t x / A] we denote t h e r e s u l t of s u b s t i t u t i n g t h e express ion A

f o r a l l f r e e occurrences of x i n C. S i m i l a r l y by t h e opera tor [s/i]
we denote simuZtaneous s u b s t i t u t i o n of Ai f o r t h e f r e e occurrences of

- -
xi, f o r i = 1, . . . , k (where k = Ix 1 = 1 A 1 and a l l xi a r e mutually d i s -

t i n c t) . The n o t a t i o n extends t o s t r i n g s i n a s t r a igh t fo rward way. One

has t o t a k e c a r e t h a t no f r e e v a r i a b l e s of t h e s u b s t i t u t e d express ions

come under t h e "wrong inf luence" and become bound a f t e r s u b s t i t u t i o n .

For d e f i n i t e n e s s we g ive t h e d e f i n i t i o n of simultaneous s u b s t i -

t u t i o n . Let C* l o c a l l y abbrev ia te C[z/z]. Then by induct ion on C , we

*) Actual ly i n Chs. I V , "11 and V I I I t h e r e a r e used c e r t a i n methods
which a r e no t completely compatible wi th t h i s approach.

*
d e f i n e C , a s follows:

*
(i) a . y P xi 3 y :I Ai

b. y L z = s y * := y

-
(ii) Y ' x, v i=~ , . . . , [~ l - (xi E N (C) =s y P F V (A ~)) +

(Xy*Z) * :I h y * C X - otherwise rename y i n Xy-C -
(i i i) a . f* :E f

- *
b. f (f) * : = f (C) .

Sing le s u b s t i t u t i o n [x/A] amounts t o t h e c a s e (21 = 1 above.

Sometimes, i f t h e 2 a r e no t r e l e v a n t o r c l e a r from t h e context ,

then we w r i t e

C [l J i n s t ead of c [~ / ~ J .

2.5. Two fundamental s u b s t i t u t i o n p r o p e r t i e s

S u b s t i t u t i o n proper ty I: I f a l l f r e e v a r i a b l e s of C a r e among

S u b s t i t u t i o n proper ty 11: I f no f r e e v a r i a b l e s of 2 a r e among y
and 2 and y have no v a r i a b l e s i n common, then

~uij/^Bnui/;S~ = c ujF/Zinr~/Zj[~/;Snn

Both p roofs a r e by induct ion on C . To i l l u s t r a t e I (i n t h e

c a s e of s i n g l e s u b s t i t u t i o n) , l e t C r ...y... . Then

1[2/Bj E ... B.,, i ...(... s...)... and t h e r e a r e no f r e e v a r i a b l e occur-

rences o u t s i d e B. So CU~/B]UX/AD = ... (...A,..)... = Cuy/Bb/AJJ q.e.d.

And t o i l l u s t r a t e 11, (i n t h e ,case of s i n g l e s u b s t i t u t i o n the condi t ions

read: y FV (A) and y x) , l e t C I . . .y.. .X.. . . Then

ZIIy,/BI) e . . .B.. .x.. . = . . . (. . .x.. .) . . .x.. . ,
C[y,/B][x/AJ = ... (. . . A . . .) . . . A Further CUx/AD = . . .y . . . A. . . and

C[cc/AJl[y/B[x/A]] I . . . (. . .A. . .) . . .A.. . q.e.d.

2.6. S u b s t i t u t i o n and subexpressions

* - -
Let , again, C C[X/AD. Then of course , i f C E . . . r.. . then

*
i ... r* And about t h e "converse" quest ion: where do occurrences

of subexpressions i n C* a r i s e from? Le t C* = ... T Then p r e c i s e l y

one of t h e fo l lowing a l t e r n a t i v e s holds:

(i) 1 = . ..T . * = r , f o r some r0 c L , o r
0

(ii) c r . . . x , Z* ... A , (. . . T . . .) ..., T sub A . f o r some i.
1 1 1

(1.e. r occurs a s a proper subexpression i n s i d e one of t h e s u b s t i t u t e d

occurences A .) .
1

I f , e .g. , r = f (a) then (i) s p e c i a l i z e s t o :

I 1 - 3 . E l ementary and one-s t ep r e d u c t i o n s

3.1. The r e l a t i o n s of d e f i n i t i o n a l e q u a l i t y of express ions w i l l be

de f ined induc t ive ly . We s t a r t with elemefitary reduc t ions , then d e f i n e

o ~ g - s t e p r e d u c t i o n s , proceed t o more-step redue t io r sand f i n a l l y t o

d e f i n i t i o n a l e q u a l i t y . Since we only d i s c u s s pure ly s y n t a c t i c a l as-

p e c t s here , a l l t h e s e r e l a t i o n s a r e def ined on t h e f u l l un ive r se of

express ions .

3.2. Elementary reduc t ions

3 .2 .1 . 6- and n-reductions

These a r e t h e u s u a l A-calculus reduc t ions , a s s o c i a t e d with the

b a s i c cons tan t s a b s t r and a p p l .

B : IA1Cx:BIC elementary reduces t o CUA3

q: [x:B](x)C elementary reduces t o C , i f x # FV (33

I n f r e e A-calculus, with t h e a l t e r n a t i v e no ta t ions , these elementary

reduc t ions read

6: (AX-C)A elementary reduces t o CUA]

n : Ax*Cz elementary reduces t o C i f x 4 FV (c ')

3.2.2. T- and a-reductions

These reduc t ions a r e a ssoc ia ted with p a i r and p r ~ j l , ?r0j2 .

Here v i s intended t o suggest "project ion" and a s t ands f o r " s u r j e c t -

i v i t y of pa i r ing" , a f t e r Barendregt C31.

v: 4 , B >
(1

e l . red . t o A

d , B >
(2)

e l . red . t o B

o : y 1) t A (2) >
(o r f with type- label f <B,A

(1) (2)>)

e l . red. t o A (However, s e e VIII.2.5.1.)

3.2.3. +- and €-reductions

These reduc t ions a r e a ssoc ia ted with P I U S and i n j .

+: A B @ C e l ; red. t o {A)B

E: (Cx:A1{i1 (x,D)}B) Q (Cx:Cl{i2(x,E))B) e l . red . t o B ,
i f a: & FV(B).

A s an a l t e r n a t i v e ve r s ion of +, s u i t a b l e f o r t h e case where a l l

plus-expressions a r e of the form [x:AIB e Cy:C]D, we have (t h i s i s +
conbined with 6)

+' : { i l (E,F))(Cx:A]B Q Cx:ClD) e l . red. t o BIE], etc..

Ii. t h e chapter on AUT-Pi, some f u r t h e r reduct ions connected with Q

xi11 be introduced, t h e permutative reductions.

Here 6 i s intended t o suggest "definitionaZN. This r educ t ion i s

of course assoc ia ted >with def ined constants , f o r which a defining

c i o m i s given.

6: d (c) e l . red. t o A U ~ / ~ J ,
-

i f d i s a def ined cons tan t with de f in ing axiom d (z) F A - where F V (A) c x -.
This kind of 6- o r d e f i n i t i o n a l reduct ions must no t be confused

with Curry 's 6-reduction C251 , Church's 6 (i n Barendregt e t a l . C51) , o r

the &-reduction proposed i n S tap les C651.

3.3. I n a l l t h e d e f i n i t i o n s of elementary reduc t ions above, t h e l e f t

hand s i d e i s c a l l e d redez and t h e r i g h t hand s i d e i s c a l l e d the con-

;rac?fl of t h e reduction. Elementary reduc t ions a r e a l s o c a l l e d

c o n t r a c t i o ~ s .

We use some terminology l i k e i n Prawitz ' theory of n a t u r a l de-

duc t ion systems [591: a b s t r and p a i r a r e the negative, and i n j l , i n j 2

a r e t h e pos i t ive introduction operat ions . Fur ther a p p l , p r o j l and proj2

a r e t h e eZim%ation opera t ions .*'~orresponding-ly , B- , n- and +-reduct-

ions a r e c a l l e d t h e introduction-elimination (I .E.) reduct ions . The

reduc t ions 0 , a and E a r e c a l l e d t h e extensionaz (e x t) reduct ions .

3.4. One-step reduc t ions

We consider t h r e e k inds of one-step reduct ions >, generated ic-

d u c t i v e l y from t h e elementary reduc t ions by c e r t a i n monotonicity r u i e s .

A s u b s c r i p t o r a combination of s u b s c r i p t s i n d i c a t e s which of the

elementary reduc t ions a r e included. E.g. > is a one-step reduct ion
606

generated from elementary B-, q- and &-reduction. The t h r e e kinds of

one-step reduc t ions d i f f e r by t h e monotonicity r u l e s used i n t h e i r

def

t h e

i f

n i t i o n s .

For > , a n d t h e o t h e r r e l a t i o n s between express ions , def ined he re ,
- -

n o t a t i o n extends i n a s t r a igh t fo rward way t o s t r i n g s . E.g. 2 > r
-
C = 1 a n d f o r i = l . . . , Ci > Ti.

We d e f i n e C > C ' by induct ion on t h e s t r u c t u r e of C. F i r s t , or-

dinary one-step reduc t ion has t h e following c lauses

(i) i f C elementary reduces t o C ' then C > C'

(ii) i f C > C ' then Xx*C > A x - C '

(iii) i f C > r then f (C l r . . . , C i 1 ..., C k) > f(,.. , C i - l I r , C i + l , . . . I
i

(i = l,...,k).

Secondly, t h e d i s jo in t one-step reduc t ion has an a d d i t i o n a l c l ause

10) C ' C ,

and i n s t e a d of (iii)

(i i i t) i f > C ' then f (C) > f(i ')

F i n a l l y , t h e nested one-step reduc t ion has t h e c lause (0) - re-

f l e x i v i t y -, t h e monotonicity ru les (ii) and (iii') - j u s t l i k e t h e

d i s j o i n t one-step reduc t ion -, but i n s t e a d of (i) it has (i f) , with

i n d u c t i v e l y g iven elementary reduct ions:

5 e opera t ion P ~ U S f a l l s somewhat o u t of t h i s c l a s s i f i c a t i o n .

- and s i m i l a r l y i n f r e e A-calculus -
.rr: A > A ' , B > B ' * <A,B>

(1) > A ' , ~ I B (~)
> B'

a: A > A ' - 4
(1)' A (2) > > A '

+: A > A ' , B > B' , C > C' =+

6: i f d i s a defined cons tan t with de f in ing axiom d(z):=A

(F V (A) c;) then! > !' *d(C) > AU&/!'D

3 . 5 . I f C > r and a c t u a l l y some con t rac t ions t ake p lace i n the reduc-

t i o n s t e p (e.g. when it i s an ordinary one-step reduct ion) then I' is

a i 3 r e c t r educ t of C. By induct ion on C it appears t h a t : (1) the s e t

of d i r e c t r educ t s of C is f i n i t e (provided t h e r e a r e only f i n i t e l y

many de f in ing axioms f o r each def ined cons tan t) and e f f e c t i v e l y con-

s t r u c t i b l e , so c e r t a i n l y (2) C > I' i s decidable .

3.6. The d i s j o i n t and t h e nes ted one-step reduct ions a r e so-cal led

c,~r?~;ound (a f t e r Curry) o r special (Nederpelt [5 11) one-step reduct ions .

T r o e l s t r a [69] speaks about "c lever counting of con t rac t ions" .

The terminology can be explained a s follows: whereas ordinary one-

s re? reduct ion c o n t r a c t s p r e c i s e l y one redex, both s p e c i a l r educ t i cns

s l low t o c o n t r a c t several (poss ibly: none) r e d i c e s a t a time. I n t h e

" , 3 i s j o i n t case" these simultaneously contracted r e d i c e s have t o be

d i s j o i n t , bu t i n the "nested case" they may a l s o occur i n s i d e each

o t h e r , i . e . nested.

3 . 7 . Le t , i f p is a reduct ion r e l a t i o n , p denote t h e " d i s j o i n t vers ion" -
=f c , i . e . t h e c losure of p under (0) , (ii) and (iii') and l e t p denote

the nested ve r s ion of p , generated by (01, (i t) , (ii) and (iii') .
Let us w r i t e > f o r ordinary one-step reduct ion. Then d i s j o i n t on-

1 - -
s t e p reduct ion i s > and nes ted one-step reduct ion i s >,. Clear ly ,

1

i . e . if an induc t ive d e f i n i t i o n con ta ins t h e r u l e s (0) and (i ') , then

(i) i s a derived rule . And, under t h e same i n t e r p r e t a t i o n

SO, we have:

And, s i n c e c los ing once more under a r u l e has no e f f e c t

3.8. S u b s t i t u t i o n and one-step reduc t ion

The p o i n t of t h e s p e c i a l reduct ions l i e s i n t h e i r behaviour under

s u b s t i t u t i o n . For each of t h e one-step reduc t ions , we have proper ty I :

Proof: By induc t ion on B > B', using t h e s u b s t i t u t i o n p r o p e r t i e s I arid
-

I1 i n ' the case of 6- and B-contractions r e s p e c t i v e l y . i

And, p roper ty 11:

Proof: By induc t ion on B. Not ice t h a t poss ib ly severa l s u b s t i t u t e d

occurrences of A (which a r e d i s j o i n t) have t o be con t rac ted . - -
i

So, by 3.7, we have

Combining t h e reduc t ions i n B and 2, t h e r e is p roper ty

I V :

Proof: By induc t ion on B > B'. I n t h e case of c l ause (O) , use proper ty

I1 and 3.7. E

So, by 3.7 again , w e have

I I. 4. Reductions and definitional equality

4.1. Reduction sequences

Le t > be a one-step reduct ion. Then a (poss ib ly i n f i n i t e) sequence

of express ions C
1

> C 2 > ... > Ck > ... i s c a l l e d a reduction sequence

of C1 wi th r e s p e c t t o >. Reduction sequences with r e s p e c t t o a r e

ordirzary reduc t ion sequences. I f each C i n t h e sequence i s a d i r e c t
k+ 1

reduc t of C then t h e reduct ion sequence i s a s t r i c t o r proper re-
k

duct ion sequence. So, e.g., ordinary reduct ion sequences a r e s t r i c t .

4 .2 . Reduction t r e e s

The s t r i c t r educ t ion sequences of an express ion 1 can be arranged

i n a (poss ib ly i n f i n i t e) f i n i t a r y l a b e l l e d t r e e , t h e reduction t ree of

X . We th ink of r educ t ion t r e e s a s growing downward: l a b e l t h e r o o t

with Z , a t t h e f i r s t l e v e l below come a l l t h e d i r e c t r e d u c t s e t c .

4 . 3 . .'lore-step reduction (or j u s t : reduction) , denoted 2, i s def ined a s

the t r a n s i t i v e and r e f l e x i v e c losure of i . e . :

(i) C > C ' - C 2 C 1 ,
1

(ii) C ? C ,

(iii) C L C ' , C ' 2 Z" * C 2 C" .
Again, s u b s c r i p t s going with 2 i n d i c a t e which elementary reduct ions

a r e included.

I f C 2 r , r i s a reduct of C. Clear ly r i s a reduc t of C i f f e i t h e r

C - r o r t h e r e i s anord ina ry reduct ion sequence from C t o r. I n t h e

l a t t e r case r i s a proper reduc t of C .

*
4.4. Le t , i f p i s a r e l a t i o n , p be i ts r e f l e x i v e and t r a n s i t i v e c losure .

*
So, by d e f i n i t i o n 2 i s j u s t > Of course, 2 s a t i s f i e s a l l t h e mono- 1'
t o n i c i t y c lauses :

C 2 r I+ ... C . . . 1 ... r . . .

and

whence

4.5. We w r i t e r < C f o r C > r , C) r f o r no t (C > I?). S i m i l a r l y f o r 2.

We d e f i n e : C 4 r : C 2 A 5 r f o r some A .

So, C + r i f f C and r have a common reduct .

4 .6. As u s u a l , t h e r e l a t i o n = (poss ib ly wi th s u b s c r i p t s =
i3

, = B n e t c .)

of de f in i t i ona l equali ty (o r j u s t : equal i ty) i s t h e equivalence r e l a t i c c

i n d u c t i v e l y genera ted from 2 (resp .
> i 3 ~

e t c .) .
B r!

Again, = s a t i s f i e s a l l t h e monotonicity r u l e s :

C = r =s ... C... = ... r . . .
and

- - *
= u (=) u (=) w =

* -
C l e a r l y , = is j u s t t . 1.e . C = l7 i f f o r some k > 0 and some :,

4.7 . I n some cases we r a t h e r consider a r e s t r i c t e d form of =. Let k be

a s e t of express ions . Then, we d e f i n e , f o r C E A, r E A ,

C - r : u C C A 1 +...+ A + f o r some A l E A , . . . , L k E A .
A k

So , i f > and + a r e t h e r e s t r i c t i o n s of > and C t o A, r e s p e c t i v e l y ,
A A

then

4 . 8 . The r e l a t i o n s =, + and 2 (and, i f A i s recurs ive ly enumerable, -
A

and +) a r e , i n view of t h e r e c u r s i v i t y of >, by t h e i r d e f i n i t i o n s
A

r e c u r s i v e l y enumerable, and, ir, c o n t r a s t with >, not a p r i o r i de-

c idab le .

Indeed, i n f r e e A-calculus e q u a l i t y and reduct ion a r e no t r e -

c u r s i v e (S c o t t , i n Barendregt [4]) - Below we s h a l l in t roduce Some

p r o p e r t i e s which imply the d e c i d a b i l i t y of t h e va r ious not ions .

4 .9 . An ordinary reduct ion sequence C F AO > A1 >...> Ak r i s a

?a:?: reduction sequence i f a t l e a s t one of the s t e p s A > A i s an
i i + l

elementary reduct ion. We s a y - t h a t C main reduces t o r , f o r s h o r t

Z 2 r . I f f o r j < k , t h e reduc t ion sequence from C t o A i s no t main,
MR j

then r i s c a l l e d a f i r s t main reduct of C .

I t i s j u s t the main r e d u c t i o n s t h a t a f f e c t t h e "outs ide form" of

express ions: i f f and f 2 a r e d i s t i n c t cons tan t s and f (F) 2 f (F)
- 1 1 2

+. -nen f (Z) Z M R f 2 (T) .
Expressions (and t h e i r "leading" cons tan t s , such a s f i n f1 (E)) 1

a r e s a i d t o be imune i f they do no t main reduce. E.g., t h e p r i m i t i v e

cons tan t s , i n j l and i n j 2 a r e immune f o r a l l , and t h e defined cons tan t s

and i n t r o d u c t i o n cons tan t s (sec . 3.3.) a r e immune f o r I.E. reduct ions .

11.5. Some important properties

3.1. Below we in t roduce some important p r o p e r t i e s , such a s c losure (C L) ,

s t rong normalization (SN) and t h e Church-Rosser proper ty (C R) . ~ l l

these p r o p e r t i e s (and some connected concepts, such a s normal form,

Length of reduct ion t r e e (8)) a r e def ined r e l a t i v e t o a reduct ion re -

laZion 2 (and poss ibly a one-step reduct ion >) . Now, p r e f i x e s o r sub-

s c r i p t s going with t h e introduced not ions i n d i c a t e what elementary

z ~ 3 x t ~ o n s we included i n t h e intended reduct ion r e l a t i o n . So we speak

3 b 0 1 ~ t a-closure, 56-SN, f3q-CL, 8 e t c .
5176

5 . 2 . The c losure proper ty

- -
2. L . I . A s e t A cf ex2ressions i s closed w. r . t . 2 (o r j u s t : closed) , i f

i t s a t i s f i e s C L , t he cZ0sure property (a f t e r Nederpelt) :

(do not confuse CL with "combinatory log ic")

We a l s o d e f i n e CL one-step cZosure, f o r a one-step reduc t ion > : 1 '

- -
For each of our one-step reduc t ions > > and > we have CL1 =+ C L .

1 , 1 1 '
The c r u c i a l p o i n t i n a proof of CL i s o f t e n t o prove cZosme

1
under s u b s t i t u t i o n :

(i n most of t h e cases a d d i t i o n a l r e s t r i c t i o ~ s o n t h e C l t ..., C have t o k
be imposed).

5.2.2. C lea r ly , i f A i s c losed , then "Aisprec ise ly theequiva lence r e -

l a t i o n genera tedby > (s e e 4 . 7) . P roofsby induc t ionon (t h e d e f i n i t i o n c f)
A

2 (o r onreduc t ion t r e e s , i f these arewell-founded) r e q u i r e t h a t t h e

system under cons ide ra t ion i s c losed.

I f 2 and 2 ' a r e two reduc t ion r e l a t i o n s , 2 * > ' , and A i s c losed

w . r . t . 2 ' then A i s c losed w . r . t . 2 .

5.2.3. Le t 7 be a s t r i n g of cons tan t s . C a l l C an ?-expression i f t h e

cons tan t s of C a r e among 7. The ?-expressions a r e c losed under sub-

s t i t u t i o n , so they s a t i s f y CL1 (provided t h a t t h e de f in ing axioms do

no t con ta in cons tan t s o u t s i d e 71, s o they s a t i s f y C L . S i m i l a r l y , t h e

f u l l universe of express ions i s c losed under s u b s t i t u t i o n (a s we a l -

ready t a c i t l y assumed) s o it i s C L . Free A-calculus, and t h e va r ious

systems of Automath express ions a r e CL too (sec . . l . 4) .
Clear ly , t h e s e t of r educ t s of an express ion i s c losed. I n chapter

IV , w e prove t h a t t h e so-cal led normable express ions form a closed

s e t . I n chapter V andVII I we prove t h a t va r ious systems of so c a l l e -

correct Automath express ions a r e c losed.

5.3. Normalization and s t r o n g normal iza t ion

5.3.1. We d e f i n e (r e l a t i v e t o a r educ t ion r e l a t i o n)

(i) C i s i n normal form (o r j u s t : normaz) i f not C > 1

(ii) Z has a normal form i f Z = r f o r some normal r
(iii) c normaZizes (o r j u s t : N (c)) i f c r f o r some normal r
(i v) C strongzy normalizes (o r : SN (C)) i f a l l proper reduct ion se-

quences of C te rminate .

(v) A s e t A of express ions i s s a i d t o be N (resip.%) i f

5.3.2. C lea r ly , C i s normal i f f C does not reduce p roper ly i f f C does

not con ta in r e d i c e s . So t h e property of being normal is decidable .

Of course , C normal * SN (C) * N (C) +. C has normal form.

I f SN (C) then t h e reduct ion t r e e of C is well-founded, so (by t h e

Brouwer-K6nig lemma) it i s f i n i t e . Hence, i f SN(C) then we can de f ine

? (1) a s t h e l eng th of t h e reduct ion t r e e of C , i. e . t h e maximum length

of proper r educ t ion sequences s t a r t i n g i n C . And, i f SN(C) , then t h e

r e l a t i o n C 2 r is decidable .

5.3.3. C a l l a r educ t ion sequence C > C1 > ... secured i f f o r some k ,

,I i s SN- Then SN(C) i f f a l l the reduct ion sequences of C a r e se- k
cured i f f a l l t h e d i r e c t r educ t s of C a r e SN.

By monotonicity, we have: SN(z), r c C * SN(r) .

Ccnversely, i f (1) r sub C * SN(T') and (2) a l l f i r s t main reduc t s of

2 a r e SN, then SN(C) - because a l l i t s reduct ion sequences a r e secured -.

5.3.4. Le t A and A' be s e t s of express ions , A c A ' . Let 2 and 2' be

reduct ion r e l a t i o n s , with 2 * 2'. Let A' be SN with r e s p e c t t o 2'. Then

A is SN with r e s p e c t t o 2 (compare 5.2.2). So, i n o r d e r t o conclude SN

fer a v a r i e t y of s e t s A and reduct ion r e l a t i o n s 2 it i s s u f f i c i e n t t o

prove SN f o r t h e "union" of these systems.

A s f o r p roper ty N , t h e impl ica t ions r a t h e r work i n t h e o t h e r d i -

r ec t ion : l e t 2' and 2" be reduct ion r e l a t i o n s , 2 i s t h e "union" of 2'

3rd 2". If A is c losed w . r . t . 2', N both w . r . t . 2' and 2", and we have:

, 3 no-ma1 w . r . t. 2' , C 2" r) * (r normal w . r . t. 2') then A i s N w . r . t. 2.

5.3.5. I t i s well-known t h a t f r e e A-calculus does n o t 6-normalize (e.g.

consider B : E AA with A : Z X x - z . ~) and t h a t not n e c e s s a r i l y N (c) SN (1)

:e. g. consider (Ay -A) B) .
However, t h e c o r r e c t expressions of a l l t h e Automath languages do

s t r cng ly normalize under a l l t h e assoc ia ted reduct ions: chapter I11

j r s v e s E-SN, chapter I V d e a l s mainly with 6-SN and chapter V I I I proves

=he s t rong normalization of AUFPi w . r . t . a l l t h e reduct ions considered

(and t h e permutat ive reduct ions) except E .

5.4. Church-Rosser p roper ty and Church-Rosser theorem

5 . 4 . 1 . W e d e f i n e (r e l a t i v e t o a reduct ion r e l a t i o n) :

(i) (Chrch-Rosser p roper ty) : C R (C) i f A < C 1 r e A t r
(ii) (h7eak Church-Rosser p roper ty) : CR1 (1) i f A C r * A t r
(iii) Church-Rosser theorem (C-R-thm) f o r A: i f C E All ' E A then

c = r * c t r
(i v) Weak Church-Rosser theorem f o r A : i f C 6 A , r E A then

z - r - z t r ,

A

(v) A i s C R (resp . CR1) i f C E A * C R (C) (r e sp . CR1 (Z)) .

5 .4 .2 . C l e a r l y , CR * CR1 (f o r t h e converse impl ica t ion s e e 6 .1 .5 .) , and

(C-R-thm f o r A) * (weak C-R-thm f o r A) . And, i f A i s c losed then

(A s a t i s f i e s t h e weak C-R-thm) (A i s C R I .
* *

Since = i s + and - i s (tA) (sec . 4.71, t h e C-R-thm (resp . the
A

weak C-R-thm) a s s e r t s t h e t r a n s i t i v i t y of t (resp . tA) .
I f A s a t i s f i e s the C-R-thm, C E A , C has normal form r E A then

C 2 r , so N (c) . Hence, i f C E A , C has normal forms r E A and A E A

then r E A . Conversely, i f A i s N and, f o r normal C,r E A we have

Z = r * C 5 r , then A s a t i s f i e s the C-R-thm.

5.4.3. Anyhow, i f CR(C) , C 2 r , C L A , both r and A a r e normal then

r E A (uniqueness of normal forms) . Hence, i f C R (C) and N (c) then we

can d e f i n e t h e normal form, n f (C) , of C. Conversely, i f A i s closed

and N and a l l c E A have j u s t one normal form then A i s C R .

5.4.4. I f A is N and C R then, f o r a l l 1 E A, nf (1) can be e f f e c t i v e l y

computed, s o t h e r e l a t i o n t i s decidable . So, i f A i s N and A s a t i s -
A

f i e s t h e C-R-thm (resp . t h e weak C-R-thm) then t h e d e f i n i t i o n a l equa-

l i t y = (r e s p . -) i s decidable on A.
A

5.4.5. F i n a l l y , l e t A and A ' be s e t s , A c A ' . I f A ' i s C R (r e sp . C R 1 ,

e t c .) then A i s s o too (compare 5 .2 .2 and 5.3.4) .

11 6. CR continued

6.1. How t o prove CR

6.1.1. Here follow some elementary cons ide ra t ions on two p o s s i b l e

methods of proving C R , v i z . wi th and without making use of SN. The

f i r s t method, i . e . with use of SN, reduces t h e CR-problem t o C R The
1 '

p o i n t of t h i s i s t h a t C R i s usua l ly e a s i l y v e r i f i e d . A case a n a l y s i s
1

of CR w . r . t . our l i s t of elementary reduct ions follows i n sec . 11.8.
1

The second method, without use of SN, employs our "nested" one-step

reduct ions .

For more complete comment on CR-proofs, we r e f e r t o , e .g. [2] .

6 . 1 . 2 . For good comparison of the methods we in t roduce a s l i g h t l y more

genera l s i t u a t i o n . Le t + be some binary r e l a t i o n (th ink of a reduct-
* 0

i o n r e l a t i o n) . Let + (resp . +) be t h e t r a n s i t i v e and r e f l e x i v e (resp .

t h e r e f l e x i v e) c l o s u r e of +. Let B + - A s tand f o r A + B e t c . Le t 1 be

an expression. We d e f i n e , f o r + and C : (with q u a n t i f i c a t i o n conventions

a s i n sec . 11.0.4.3)

0 0

! i diamond p r o p e r t y : r + - c + A * ~ + c ' + - A
* *

(ii) p l a n k p r o p e r t y
0

: r + - C + A * r + C f + - A
* *

(iii) weak p l a n k p r o p e r t y : r +- C : A * r + C ' +- A
*

(i v) weak diamond p r o p e r t y : r +- C + A * r + C 1 : A

where t h e terminology r e f e r s t o t h e geometry of the i l l u s t r a t i n g d ia -

grams intended.

We say t h a t t h e p roper ty holds i n A , i f a l l C E A s a t i s f y t h a t

p roper ty - but it i s not required t h a t t h e r , A and C ' mentioned a r e

themselves i n A t o o - .
*

0.1.3. Let us abbrev ia te t h e diamond proper ty f o r : by (i) . Then it

i s c l e a r from t h e d e f i n i t i o n t h a t (i) * (i v) , t h a t (ii) * (iii) * (i v)
*

and t h a t (i) * (iii). Fur the r , i f A i s c losed under +, then by in-
*

duct ion on (t h e d e f i n i t i o n o f) + : ((i) holds i n A * (ii) holds i n A) ,

and: ((iii) holds i n A 3 (i) * holds i n A) . So i n a closed (under +) s e t A:

*
(diamond proper ty f o r +) * (diamond proper ty f o r +) .

*
6.1.4. But i f A i s c losed under +, and a d d i t i o n a l l y + i s well-founded,

*
then we can say more: (i v) holds i n A * (i) holds i n A . Proof: assume

*
t h a t (i v) holds i n A . By induc t ion on t h e well-founded r e l a t i o n + we

prove t h a t t h e diamond p roper ty f o r , i . e . (i) * , holds i n A .
* * * *

C E A , r + C + A . We w a n t a C ' with r + C ' + A . I f C - r (o r C r

simply t a k e C ' Z A (resp . Z ' E T) . Otherwise (it i s advised t o
*

diagram), f o r some I. i I , A l C , r + T1 + 1 - + A i : A . By (i v)
* * 1

some L' T1 -+ C; f A l . By t h e induct ion hypothesis appl ied t o r l
1 ' *

we f i n d i , A' with r : I.; 2 Pi -+ A; : A . F i n a l l y , by t h e induc t ion
1

hypothes is a p p l i e d t o Ci we f i n d t h e d e s i r e d C ' with
* *

Y I: I': + Z ' A: + A , q .e .d . So, i n . t h i s case:
1 L

(weak diamond p roper ty f o r +) * (diamond proper ty f o r $1.

6.1.5. Now we come back t o t h e o r i g i n a l s i t u a t i o n :
*

reduc t ion then t h e diamond p roper ty f o r -+ i s j u s t

we t a k e o rd ina ry one-step reduc t ion f o r + then t h e

t y i s p r e c i s e l y CR1 .

So 6.1.4. provides t h e f i r s t m e t h o d of proving

SN and CR1 then A i s C R .

So, l e t

A) then

draw a

f o r

and A l

i f + i s one-step

proper ty C R . And i f

weak diamond proper-

C R : I f A i s c losed ,

And 6.1.3. provides t h e second method, a s follows: c a l l a com-

pound one-step reduc t ion > sui table i f (1) = o 2 (i . e . > * > *>, * ?
1

and (2) > s a t i s f i e s t h e diamond proper ty . Once such a one-step reciuc-

t i o n has been i n d i c a t e d , one can apply 6.3 and prove C R . Indeed, t h e

common CR-proofs (f o r f r e e A-calculus, where SN does no t hold) work

i n t h i s way - i . e . they can be rephrased along these l i n e s - .

6.2. A survey of r e s u l t s

6.2.1. The a n a l y s i s i n sec . 11.8 of CR y i e l d s a t l e a s t -i .e. a s long a s we 1
do n o t use SN - some negat ive r e s u l t s concerning C R . These negat ive

r e s u l t s a r e of two kinds: f i r s t t h e r e a r e t h e problems with t h e type-

l a b e l s which were f i r s t mentioned by Nederpelt [~ l . ~ . 7 1 1 i n connection wich

6rl-reductions. A s a r e s u l t BVCR s implydoesno t hold i n t h e f u l l u n i v e r s e

of express ionsbu t only f o r t h e c o r r e c t Automath express ions (chapter I:,

chapter V I) . Analogous problems a r i s e from a s - r e d u c t i o ; ~ ~ and +€-re-

duc t ions (chap te r V I I I) .
The second kind of negat ive r e s u l t i s more se r ious : it appears

t h a t f o r any reduc t ion r e l a t i o n including BE-reductions, CR i s f a l s e ,

even if t h e type l a b e l s a r e ignored. More about t h i s i n chapter V I I I

t oo (V I I I . 6) .

6 . 2 . 2 . Now we mention some f a c t s which show t h e relevance of our com- - -
pound reduc t ions > and > F i r s t , > (i . e . d i s j o i n t one-step 6-re-

1 1 ' 116
duc t ion) i s s u i t a b l e (i n the sense of 6.1.5) f o r &-reduction (chapter

111, sec . 3 .3) . Secondly, by t h e way, t h e d i s j o i n t one-step reduct ion

genera ted by weak reduct ions is s u i t a b l e f o r weak combinatory l o g i c
w

(Rosser, i n T r o e l s t r a [69]). Fur the r , > i s s u i t a b l e f o r B-reduct-
1 , 8

i o n i n f r e e A-calculus (T a i t , Martin-LBf, i n Barendregt [2]) and i n t h e
N

genera l i zed typed A-calculus (Nederpelt [5 1]) . I n f a c t , > i s s u i t a b l e
1

f o r t h e combination of a l l t h e elementary reduc t ions , except o and E,

provided we l eave o u t the type- labels . This was proved f o r Bqr-reduc-

t i o n by Mann [431 ; he a l s o ind ica ted t h e problem with u a s explained -
i n sec I1 8.4. Below we prove the s u i t a b i l i t y of > f o r f r e e A-cal-

1, Brl
c u l u s , s impl i fy ing t h e proof of Mann.

6.3. A proof of 6q-CR i n f r e e A-calculus

-
6.3.1. Th i s p r o o f v i a the s u i t a b i l i t y of > f o r f r e e A-calculus

1 1 Brl
(which f a c t was claimed by Barendregt [21) i s j u s t s l i g h t l y more in-

volved than i n t h e 6-case, i n c o n t r a s t wi th Mann's proof which is un-

n e c e s s a r i l y complicated. A s explained i n sec . 6.1.5, t h e s u i t a b i l i t y

i s s u f f i c i e n t t o prove CR.

6.3.2. The express ions a re : va r i ab les x, 1-expressions Ax-A, app l i ca t ion

express ions BA. By wr i t ing A ' , B ' we i m p l i c i t l y in tend t h a t A > A ' ,

B > B ' , e t c . The elementaryreductionsare, a s i n sec .

(" z F V (A) * Ax9Ax > A ' . From sec. 3.8 we r e c a l l

p roper ty V: BUA] > B'BA' 1.

6.3.3. I f Ax-A > B then e i t h e r (1) B 2 Ax*A', o r (2

6.3.4. I f BA > C then e i t h e r (1) C E B'A', o r (2) B G AX-D, C E D ' U A '] .

So, i f (Xx.D)A > C then e i t h e r (l a) C E (A x * D ') A f , o r (l b) D E EX,

C 5 E'A', o r (2) C D ' U A '] .

6.3.5. Now we j u s t have t o prove t h e diamond proper ty :

A l < A > A2 =$ A1 > A3 < A*. We use induc t ion on A . I f A - X then t h e r e

is nothing t o prove. I f A i s a ?,-expression o r an a p p l i c a t i o n expression

then we must conf ron t t h e va r ious p o s s i b i l i t i e s ((I) , r e sp . (l a) and

(l b) , and (2) of 6.3.3, r e sp . 6.3.4) of reducing A t o A and A with
1 2

each o t h e r . I n both cases (A i s A-expression o r no t) t h e combination

(1) v . (1) (i . e . A > A l l A > A2 both by " i n t e r n a l " r educ t ion) , (2) v . (2)

(i . e . A > A A > A2 both by an "outs ide" reduc t ion) and (l a) v. (2)
1 '

a r e j u s t s tandard.

6.3.6. So, l e t ((l b) ~ . (2)) A - XX.(AY.D)X, X # w(D) A1 - l x * D ' u y / ~ D ~

A 2 z El Ay*D > E . Applying t h e ind. hyp. t o Ay * D we f i n d A j with

Xy-D' > A j < E. s i n c e x j! EV (D l) , Xy-D' E Az-L)'[y/x], s o A 3 does t h e

work.

6.3.7. And, l e t ((l b) v . (2)) A -(Xx*Ex)D, X # FV(E) , A1 E'D',

A2 z FUD"], Ex > F, D > D M . Applying t h e ind. hyp. t o EX and t o D we

f i n d H and D"' wi th F > H < E'x, D ' > D"' < D". By t h e s u b s t i t u t i o n

p roper ty FUD" lj > HUD"'] < (E'x) [D '] - E'D' (because x (C W (E')) . So

11.7. Combined reductions

7.1.1. I n some cases d e s i r a b l e p r o p e r t i e s , such a s N, SN and CR, f o r a

combination o f reduct ion r e l a t i o n s 2 and 2 ' can appropr ia te ly be

proved by f i r s t consider ing 2 and 2' s e p a r a t e l y and then use c e r t a i n

connections between 2 , 2 ' and t h e i r "union". An example of t h i s can

be found i n sec . 5.3.4 (second h a l f) .
I n t e r e s t i n g ques t ions on t h e connections of 2, 2 ' and t h e i r "union"

a r e whether 2 and 2 ' c o m t e (c f . sec . 7.2 below) and whether >'-post-

ponement holds (c f . sec . 7 . 3 below) .

7.1.2. L e t i and j s t and f o r (combinations o f) elementary reduct ions ,

and l e t i j r e f e r t o t h e i r "union". E.g. i f i denotes Bq and j denotes

6 then i j s t and f o r Bq6 . We w r i t e > > 2 e t c . f o r t h e corres- i' l , i l i

ponding (one-step) reduct ions . We use S e t c . i n t h e usua l sense. i

We say t h a t C > > r r resp .
' i 2 j

r , i f f o r some A , C > . A > . I'
i j 1 1

resp . C > . A 2 r . S i m i l a r l y 2 z and 2 . 2 .
1 j i j 1 j

The no ta t ion C I.< r i s used f o r r > > C e t c .
1 j j - i

7.2.1. Church-Rosser f o r combined reduct ions

I n S t a p l e s [65] *) w e f i n d some ingenious const ruct ions f o r proving

t h a t a combined system is C R . Here we r e s t r i c t ourse lves t o some simple

p r o p e r t i e s .

We assume t h a t A , a s e t of express ions , is i j - c losed (i . e . closed

under r . .) , and t h a t a l l express ions considered a r e elements of A .
13 A x

Clear ly , (2 . 2 .) i s j u s t 2 so i f 2 . 2 s a t i s f i e s t h e diamond
1 3 i j ' 1 j

proper ty then we have i j - C R - because 2 . 2 is a s u i t a b l e one-step re -
1 i

duct ion f o r 2. . , i n t h e sense of sec. 6.1.5.
13

We say t h a t 2 . and 2 commute i f , f o r a l l C (q u a n t i f i c a t i o n a s
1 j

i n 0.4.2) r

~ h u s , i f i - C R , j-CR and 2 and 2 commute then ij-CR.
i j

7.2.2. When do 2 and 2 commute?
i j

We g ive an a n a l y s i s analogous t o sec . II .G.l .Define, f o r one-step

reduct ions > and >
i j '

(i diamond property : r < . c > A + r >i C 1 < . A
3 3

(ii) trapezium property : r < . C > A - r 2 C ' < . A
3 i i 3

(iii) plank property : r < . c z ~ a r 2 c1 < . A
3 i i 3

! iv) weak plank property : r < . c 2 A 2 C' 5 . A
3 i i 3

iv) weak diamond proper ty: r < . c >i A a r r C I < A
I i j

A s i n sec . 6.1.3 , (i) * (ii) (iii) (i v) @ (2i and 2 commute) a (v) .
j

And i f ij-SN, > and > s a t i s f y (v) then a l s o 2 and 2 commute
i j i j

(a s i n sec . 6.1.4) .

7 .2 .3 . So, j u s t a s i n t h e case of ordinary C R , t h e r e a r e two p o s s i b l e

ways of proving t h a t 2 and 2 commute (v i z . with and without SN).
i j

With SN, it i s s u f f i c i e n t t o prove t h e weak diamond proper ty f o r >
1 ,i

and > . But without SN, we r a t h e r look f o r a compound reduct ion >
1 , j i

* See a l s o de ~ r u i j n [19]

such t h a t > and, say, > s a t i s f y a t l e a s t t h e trapezium proper ty .
i 1 ,j

7.2.4. The a n a l y s i s of sec . 8 provides us with t h e weak diamond pro-

p e r t y f o r a l l combination of q-, rr-, 6-, 6- and +-reduction (b u t f o r t h e
0

type- labe l s , of c o u r s e) . Let > s tand f o r t h e r e f l e x i v e c l o s u r e of
1 ,i

(i . e . c o n t r a c t one o r ze ro i - r e d i c e s a t a t i m e) . Then sec . 8.8
> I ,i

0 0 0

a l s o shows t h a t a l l combination of > > and > s a t i s f y t h e
1 , o l , + 0

diamond p roper ty , and t h a t a l l combinations of > (resp . with
116

> , > and > s a t i s f y t h e trapezium proper ty (modulo t h e type
l , r l l , n 1 ,+

l a b e l s) . I n t h e Bq-case t h i s g i v e s an easy a l t e r n a t i v e proof of Bn-CR

(compare sec . 6 .3) f o r t h e f r e e A-calculus, v i z . from B-CR (e .g . by

t h e Tait-Martin-L6f method) and q-CR (which i s t r i v i a l from e.g. n-SN).

A simple v a r i a n t of t h e CR-proof i n sec . 6.3 (o r r a t h e r o f t h e

CR-proof i n chapter 111, sec . 3 . 3) shows t h a t 3 and > s a t i s f y
- 118

t h e trapezium proper ty : r < C > A + r C' < A . A l t e r n a t i v e l y , - 1,B 116 1 1 6
one can prove t h a t > and > toge the r s a t i s f y t h e diamond proper ty .

116 1 1 6
Resuming, q-, rr-, 6-, 6- and +-reductions commute wi th each o t h e r

(b u t f o r t h e t y p e - l a b e l s) .

7 .2 .5 . Fur the r , sec . 8.8 y i e l d s some negat ive r e s u l t s about t h e com-

muting of r educ t ions , even i f we ignore t h e type- labels . F i r s t t h e r e

i s t h e BE-problem.

Secondly, t h e r e a r e t h e problems with a and c : n e i t h e r a nor E

commutes wi th any o t h e r reduct ion.

7.3.1. Postponement

For some c a s e s of i , j no "new" i - r e d i c e s a r e c rea ted by j-reduc-

t i o n s , and t h e i - con t rac t ions i n an i j - r e d u c t i o n can be c a r r i e d o u t

f i r s t . Th i s p;operty i s c a l l e d i j -postp~nemenk, f o r s h o r t i j - P P . We

say t h a t C s a t i s f i e s i j-PP i f

and we say t h a t i j -PP holds i n a s e t A i f a l l C E A s a t i s f y i j - P P .
C

C l e a r l y we have i i - P P . Use t h e index i f o r t h e "converse" i - r e -

duct ion:

f 4-
C 2i I' :H C 5 r . S i m i l a r l y > e t c .

i i

f
Then i j - P ? i s s t r o n g l y connected wi th i j -CR. I n f a c t , i n a closed

(ander 2 . .) s e t A, ij-PP i s equivalent wi th t h e proper ty
1 3

i . e . 2t and 2 commute i n t h e sense of 7.2.1.
3 i

7 . 3 . 2 . When does postponement hold?

Let us conf ine t h e d iscuss ion t o a c losed (under 2) s e t A . Since
i j

the ques t ion of i j-PP j u s t amounts t o t h e ques t ion whether 2 and 2:
i 3

ccmiute, we can simply follow the development i n sec . 7.2. Define, f o r

one-step reduc t ions > and >
i j

(i) trapezium proper ty I : C > > r + C 2 . > r
j i 1 I

(ii) trapezium proper ty 11: C > . > r * C > . 2 r
I i 1 j

Since both trapezium p r o p e r t i e s imply i j -PP, it i s s u f f i c i e n t

f o r ij-PP t o i n d i c a t e a s u i t a b l e one-step reduc t ion > (resp . > .)
j I

s a t i s f y i n g trapezium proper ty I (resp . 11).

~ u t , i f we have i-SN, we can do with a weaker form of (i i) ,

So, assuming i-SN, we can use induct ion on t h e well-founded re-

l a t i o n > . and prove i j-PP, a s follows: l e t C 2 . 2 r . I f C 2 I- t he re
I. J i j

i s nothing t o prove. Otherwise, C 2 . > r 2 r , f o r some r l . By
J 1 1 i

{iv), Z > C 2 r l . By t h e induct ion hypothes is appl ied t o C1 we 1 , i 1 i j
fir5 t h a t Z1 Z i t j r q.e.d.

7 . 2 . 3 . Some r e s u l t s

The f a c t t h a t f3q-PP holds belongs t o t h e t r a d i t i o n of t h e f r e e

A -ca lculus . Nederpelt ' s proof (i n [5 l]) shows t h e trapezium proper ty I -
f o r t h e combination of > and > . A s Nederpelt p o i n t s o u t , Curry ' s

118 1117
proof i n [25] which ins tead aims a t t h e trapezium proper ty I1 f o r a -
ccnpound one-step B-reduction (with >) is d e f e c t i v e (though >

1117 1, E

would have worked) .
From sec. 9.2.4 it is clear that the following combinations of

reductions satisfy property (iii) of sec. 7.3.2: of > with > , of
1 16 1 tn

> with> , and of > with > Assuming some weak type re-
1 110 1,6+ 1,n.

strictions (clearly satisfied by correct Automath expressions) we also

get property (iii) for > with > and for > with > . This,
1 1 8 1 , u 1 1 ,n 1 t'l

together with the appropriate SN-assumptions, yields that the com-

bination of the I.E. reductions (sec. 3.3) 6n+ with the ext-reduc-

tions u and 0 allows postponement of these ext-reductions.

Alternatively, we can extend Nederpelt's construction to these -
cases, with the nested version > (and get PP without resorting to

1 ,no'
SN) .

Anyhow, €-reduction is an exception: its postponement is not pos-

sible, viz. in combination with B+-reduction.

7.3.4. As an application of PP in general, we give the following theorem:

if i-SII, j-SN and ij-PP then ij-SN

Proof: Let C be an expression. By induction on the i-reduction tree

of C we show that all ij-reduction sequences of C are secured. Let

C rl > r2 By PP, for all kt C 2.2
1 j rk

. The j-reduction
tree of Z is finite, so, if for all k, 1 2j rk, the reduction sequence

is finite (whence secured). Otherwise, for some proper i-reduct 1' and

some r in the reduction sequence, C' 2 r. By induction hypothesis, i j
C' is SN, so r is SN so the reduction sequence is secured q.e.d.

7.3.5. In fact it is more straightforward to prove the theorem from

property (iii), section 7.3.2. (which holds in all our PP-cases),

directly:

If i-SN, j-SN and property (iii) holds (i.e. 2 2 * >) then j 1,i 1,i ij
ij-SN.

Proof: Let C be an expression, let C rl r2 Again, we
use induction on the i-reduction tree. If the reduction sequence just

contains j-reductions, then it is finite, by

C 2 , r >
3 k l,i rk+~

. By (iii), for some C', C

BY the ind. hyp. C' (so r) is ij-SN, and k+ 1
secured q.e.d.

As a corollary of this, we have 6-SN =+

j-SN.Otherwise, for some k,

> C' 2
l,i ij 'k+ls

the reduction sequence is

7.4.1. Weak postponement

For some cases of i,j, indeed no essentially new i-redices are

created by the j-reductions, but if one starts with carrying out the

i-contractions, possibly too many i-redices are contracted. We say

that wea;: ij-postponement (weak ij-PP) holds, if for all C ,

In particular, as sec. 9.3.1 shows, we have only weak 6 B -PP .
There are two relevant ways of proving weak ij-PP, viz. with and

without use of i-SN. First, without i-SN. We introduce some properties:

' i C > .> r * C > . > I r (a kind of weak trapezium
I i 1 j 1

property I)

iii) C 2 > r * C > 2 2 . (a kind of plank property)
j i i j 1

Assume that i- and j-reduction commute. Clearly, (iii) implies weak
. . LJ-PP , and (by induction on 2 ,) (i) implies (ii) . Further, if > . sa-

3 1
tisfies the plank property for CR (< t * 2 . < .) , then (ii) implies (iii) .

i i 1 1

So: if

1 > sat is fie,^ the plank property for CR,
i

! 2) i and j commute,

: 3) property (i) holds, then we have weak ij-PP

(hence without using SN).

Then, with SN. We introduce a weak form of property (iii) sec. 7.3.2.

;.ssume that i-reduction and ij-reduction commute. Then (iv) gives, by

induction on > . ,
3

Ey induction on i-reduction trees, we get:

if (1) i-SN, (2) i-CR, (3) i and j commute (so, with i-CR, i and ij

commute) , (4) property (iv) holds then weak ij-PP.

'.4.2. As a corollary of (1) i-CR, (2) i and j commute, (3) weak ij-PP,

, 4) i-N (i.e. i-normalization) we get: C 2 , r * i-nf(1) 2 . i-nf(r).
3 3

An alternative way of getting the latter property (which, in turn, in-

piies weak ij-PP) avoiding the question whether i and j commute, is

from: (1) i - C R , (2) i - N , (3) weak i j-PP and (4) : f o r a l l C,

r 1 2 , n = . r X I S c .
j 1 i i j

7 . 4 . 3 . Sec t ion 9 . 3 . 4 l e a r n s us t h a t 6j-PP holds f o r a l l r educ t ions j

except +reduct ion. This can be proved e i t h e r from 6-SN (Chapter 111)

and p roper ty (iii) s e c t i o n 7.3.2 o r without 6-SN, by showing trapezium

proper ty 11 (sec . 7.3.2) f o r 7 and >
116 l , j '

Fur the r 6 commutes with a l l reduct ions b u t a and e . For t h e l a t t e r

two reduc t ions , however, we can prove (wi th o and E i n t h e r o l e of j) :

So, assuming 6-CR and 6-N, f o r a l l reduct ions j bu t 8 we have a l ready :

c r r 6-nf (c) r 6-nf (r)
j j

F i n a l l y , we have weak 6i3-PP1 with use of 6-SN and p roper ty (i v)

above, o r a l t e r n a t i v e l y from proper ty (i) above (q u i t e simple, with

> and >) . So, i n t h i s case too , i f 6-N and 6-CR then
l l & 110

7 .4 .4 . For t h e r e s t , weak postponement i s j u s t what we g e t i n t h e

following s i t u a t i o n : l e t D l and D2 be d i s j o i n t s e t s of d e f i n i t i o n a l

cons tan t s , l e t 2 , resp . 2 denote t h e reduc t ion r e l a t i o n genera-
6 ~ 1 6 ~ 2

t ed by c o n t r a c t i n g cons tan t s from D (r esp . D) exc lus ive ly . I f
1 2

d e f i n i n g axioms of t h e cons tan t s i n D do not conta in cons tan t s
1

the

i n D: -
then we have weak 6 6 -PP.

D2

11.8. An informal analysis of CR1

8.1. I n presence of SN, t h e weak CR-property C R i s s u f f i c i e n t f o r C R
1

(s e e sec . 6.1.5). Anyhow, f o r the h e u r i s t i c s of a CR-proof an a n a l y s i s

of CR1 i s indispensable .Let i and j i n d i c a t e kinds of elementary re -

duc t ion , such a s 8, q e t c . Let C be an express ion, with an i-rePex

B c C and a j-redex S c C . By c o n t r a c t i n g R t o R' (resp . S t o s ') we

g e t i >, r (r e s p . C > A) . We want t o f i n d o u t whether h a n d C
1 , I

have a common reduc t C ' and i f so , by what kind of and by how mazy

c o n t r a c t i o n s , 1' can be reached from I' and A . I n the informal d i s c u s s i c ~

below a l l p o s s i b l e cases a r e sys temat ica l ly t r ea ted ,accord ing t o t h e

r e l a t i v e p o s i t i o n s of t h e r e d i c e s R and S.

8.2. The f i r s t p o i n t i s of course, t h a t e i t h e r (a) R and S a r e d i s -

j o i n t , (b) R : S, (c) R s u b S o r (d) S s u b R . I n case (a) , the con-

t r a c t i o n s j u s t commute:

l- = - ... R...S... > r z ...;it... S... >
1 ,i 1 , I

C ' = ... R' . . .S t ... < A E ... R. . .S r . . . < , C .
1 .i 111

AS f o r case (b) , i f we assume t h a t

(*) f o r each d e f i n i t i o n a l cons tan t on ly one de f in ing axiom i s given,

=hen a l l elementary reduct ions a r e mutuazly exclusive. 1 .e . i f Ri-con-

t r a c t s t o R' and R j -con t rac t s t o S' then i and j r e f e r t o t h e same

kind of r educ t ion and R' : S ' . So, under assumption (* I , which i s in -

deed f u l f i l l e d i n t h e Automath system of abbrev ia t ions , i n case (b)

f o r a common reduct we can t ake C ' I'(E A) .

Case (c) i s discussed i n sec. 8 .4 and f u r t h e r . Case (d) can of

course be reduced t o case (c) by interchanging i and j, R and S.

8 .3 . About express ion v a r i a b l e s i n schemes f o r reduct ion

The elementary reduc t ions a r e formulated i n schematic form, i . e .

with meta-variables f o r express ions i n them. For ins tance , i n t h e

scheme of @-reduct ion "(A}[z:B]C elementary reduces t o c U A D " (i n

sec .3 .21) , t h e meta-variables A,B,C a r e t h e expression v a r i a b l e s of

t h e scheme.

For each of the schemes, a l l of i t s expression v a r i a b l e s occur

(of course:) a t l e a s t once i n t h e lef t -hand s i d e (redex) . Let X be an

express ion v a r i a b l e of a scheme f o r reduct ions . We d i s t i n g u i s h t h r e e

cases :

(i) X disappears i n the contractum (such a s B above)

(ii) X occurs j u s t once i n t h e contractum, poss ib ly the re i s sub-

s t i t u t e d i n X (such a s C above).

(iii) X i s poss ib ly muZtipZied by s u b s t i t u t i o n (such a s fi above).

For a l l kinds of reduct ions , except a and E, the expression var-

i a b l e s occur p r e c i s e l y once i n the redex. To these two except ional

cases we r e f e r a s the ' b i n reductions (because of t h e twin occurrences

of t h e meta-var iable , e .g. of X i n <X(,x f2)>) .

8.4. Case (c) . Le t R S U ~ S, S j - con t rac t s t o S ' . Dis t ingu i sh t h e f o l -

lowing cases :

(c l) R c X f o r some ins tance X of a meta-variable of t h e j-redex

(c2) no t (c l) , so R forms an essentiaZ part of S (such a s [x:B]C

i n {A)[x: BIC) .
Now, u n l e s s j r e f e r s t o a twin reduct ion and R c X for some in-

s t a n c e X of a twin occurrence, i n c a s e (c l) t h e j-redex i s no t s p o i l t

by t h e i - con t rac t ion . For common reduc t C ' we t ake t h e r e s u l t of simply

c o n t r a c t i n g t h e modified (by t h e i n t e r n a l i - con t rac t ion) j-redex i n r .
From A we can reach C ' by i - con t rac t ing nothing (i f X d i sappears , i . e .

case (i) , sec . 8 .3) , i - con t rac t ing one poss ib ly modified (by sub-

s t i t u t i o n) occurrence of R (i f X occurs once, i . e . c a s e (ii) , sec . 8.3)

o r i - con t rac t ing poss ib ly more d i s j o i n t occurrences of R (i f X mul t i -

p l i e s , case (iii) , sec . 8.3) . So C > l r > ~8 7
1 , i A < I , ,

z
l , j -

(where > i s d i s j o i n t one-step i - reduct ion) .
1 ,i

Examples :

(1) j i s B, X "occurs once", use s u b s t i t u t i o n p roper ty I , sec . 3.8:

(2) j i s 6 , X "mul t ip l i e s" ,

I n c o n t r a s t wi th t h i s , i f j r e f e r s t o a twin c a s e and R c X f o r

some " twin v a r i a b l e " X I then t h e j-redex is s p o i l t by t h e i - c o n t r a c t i o c

indeed - b u t can be r e s t o r e d by i - con t rac t ing t h e o t h e r twin a s wel l .

So, s i n c e twin v a r i a b l e s occur j u s t once i n t h e contracturn (case (i i) ,

sec. 8.31, f o r some r ' , C ' , C > l , i r r ' > Z' c l r i A I.
1 , j

Hence, i n t h i s case i and j not commute. An example (where j r e f e r s

8.5. Case (c2): R is an essential part of S. Notice that there are

two possibilities:

(1) j is an 1.E.-reduction, i is the corresponding ext-reduction.

(2) i is an 1.E.-reduction, j is an ext-reduction.

Case (c21). Here are three cases, n v. 6, a v. n and E v. +. In

the first two cases there is no problem, even if type-labelsare pre-

- A, so we can take C ' 5 r too. sent: r =

(p = 1 or p = 2).

The case of E v. + is more complicated. First, there is an additional

E-reduction needed. Secondly, there are problems with the type-labels.

- \

=-; R 3 (C x:B I{il (x,D1) 1C) e (I x:B21Ci2(~,D2) IC) , 3' E C , 1

So, ln this case, r < C > A > A' with r 5 A' but for the
1 , ~ I t + 1 t B

-. cdpe Zabels. Hence, without type-labels, C ' : I' A' can serve as a

carnmon reduct. But with type-labels type-restrictions have to be im-

posed in order to guarantee that D [A] and D are definitionally
P 3

equal (and may have a common reduct).

- -
2 .0 . Case (c22) covers 6 v. Q,T v.0, + v. E and B v. E . In the first

b-o cases CR holds but for the type-labels. In the third case addi-
1

t~2nai ?-contractions areneeded (compare with 8.5, E v. +) , but in the

f s u r t h case CR (so CR) simply does not hold at all.
1

! 2 -) [x:A]C < Cx:A]{x)[x:B]C > [x:B]C
118

x # FV(B) .
1 1 1 7

Sc here, r 2 A but for the type-labels. Regarding n v. a, the situation

csnpares with the twincase in 8.4:an additional T-reduction is needed.

I -:I <P,A,E>< <P,A,<&,A,B>(2)>
1

In the third place, we mention de Vrijer's definition method of

Ah in [7 0] . He starts with the simultaneous introduction of the correct
E- and Q-formulas, and after that defines correctness of expressions in
terms of E, Q and typ.

1.2. Some general points on the language theory

A priori it is not clear that the various definition methods gener-

ate the same structure (of correct expressions, with typing and equality).

So one might think that the language theory has two aims, viz. (1)

proving the equivalence of the various formulations, and (2) proving

that the generated structures satisfy some specific desirable properties

(sec. 1.3).

However these aims can hardly be separated: properties are first

?roved for one formulation, then the equivalence is established and

finally the properties are transferred to the other formulation, via

the equivalence.

A simple example of this situation: for the system given by the

algorithmic definition, decidability is just a matter of termination

of the algorithm, i.e. normalization (as Nederpelt points out [51]).

So, by the results in Chapter IV, if a system can be proved to be

equivalent to the "algorithmic one", it is decidable.

As a second illustration, we sketch roughly how the development

below is organized. For the terminology see 11.4.7 and for the kind of

reasoning see 11.5.4, where for A we take t now.
We work with three systems: I and I1 are given by an E-definition

and I11 is the algorithmic definition. The three systems essentially

just differ as regards their Q-rules. In system I, Q is defined to be
the equivalence relation generated by >L (but realize that Q and 1
are introduced simultaneously). This is the restricted "technical"

version of the E-definition, which we present in section 2, and take

as the starting point for the development in section 3. In system 11,

is -I-* i-e-
the transitive closure of + . This is the liberal form t

of the E-definition, which we think is most suitable for practical

purposes, as a reference manual, say.

In system 111, the algorithmic definition, which we give in section

4, 0 is defined to be just + . t

We say that a system satisfies CLif its correct expressions remain

correct under reduction, and that it satisfies CR if its correct ex-

pressions are CR. Clearly, both I and 111 are contained in 11, since
11 has more liberal rules for Q. Further, if I satisfies CL then I and
I1 are equivalent, as is proved by induction on the definition of

correctness in system I1 (see sec. 2.11.2). Also by induction on

11-correctness it is proved that I1 and 111 are equivalent, if I11

satisfies CR. Now, in section 3 we prove that I satisfies CL, and in

Chapter VI we prove (roughly) CL 4 B~G-CR (for the f3G-case we know CR
already). This gives CR for 11, so CR for 111, so it shows that all the
three systens are equivalent, and satisfy CL and CR.

An approach, alternative to the one sketched above, is given in

Chapter VII. There the algorithmic definition serves as a starting

point and CL and CR are proved simultaneously, using induction on
socalled big trees .

1.3. What are the desirable properties?

As desirable properties for the structures of correct expressions

generated, we mention:

subs t i tu t i v i t y : correctness of expressions and formulas is pre-

served under substitution with correct expressions of the right

types.

closure (CL) and preservation of types (PT) : correctness of

expressions and formulas is preserved under reduction.

the Church-ROsser property CR, and the weak Church-Rosser theorem

(see Chapter 11.sec.5.4) : A Q B * A .I. B

(strong) normalization (S) N and decidabiZity

properties for Q, which show that Q behaves as an equality,
such as:

- the lefthand-equality rule LQ: A E B , A Q C * C E B

(the righthand-equality rule is included in the definition)

- monotonicity rules: A Q B , C Q D - 1A)C Q {BID, etc.

uniqueness properties

- uniqueness of types: A E B , A.E C * B Q C
- uniqueness of domains U D : [x:A]B Q [x:C]D ~9 A Q C (and B Q D)

- extended uniqueness of domains E U D : Cx:AlB E Cx:CID - A Q C

(and B E Dl.

Of course in the presence of type-inclusion (in AUT-QE), only restricted

forms of uniqueness of types and property LQ (see sec. 1.7) are valid.

It depends on the choice of a definition method and on the

language defined, which of the above properties are basic and which

can be derived from these basic ones. Anyhow, SN, 6q-CR and 66-CR we

know already. The discussion below starts with substitutivity (sec. 2.9)

and ends with pq-CR (Chapter VI) and decidability (section 4, as sketched

in 1.2). In between, (ii) and (v) and (vi), which turn out to be connected,

are considered more or less simultaneously. In fact, first PT, LQ and
UD and the property of

(vii) souzd appzicability SA: (A)Cs:BlC correct * A E B
are proved simultaneously, by a careful induction on degree. Then follows

ane-step closure CL1 by induction on correctness, and finally CL, by
induction on 2.

1.4. Some points on closure

Apart from the specific role which closure plays in our discussion,

LC is of course important as a technical property, in view of 11.5-6.

Zompare, e.g. IV.2: the point of the generalization from the correct

sxpressions to the normable expressions, lies precisely in the fact

chat the normable system is "large enough" to prove closure for it in

a relatively easy fashion (in contrast with closure for the correct

expressions), and small enough to prove (strong) normalization for it,

n t h the help of closure.

The normalization properties and CR are nicely preserved under

certain forms of taking subsystems(II.5.2.2 and 11.5.3.4). So it is

r~fficient to prove these properties for some "large" systems: norma-

lization for the normable expressions, 66- and 716-CR for all the ex-

sressions, and $$-CR under fairly general conditions in Chapter VI.

The closure property however, in spite of 11.5.2.2, poses a

separate problem for each particular language, because correctness

is defined in terms of reduction.

Further we must stick to a particular definition, since in the

proof of closure we often apply induction on the definition of correct-

ness. Only after closure has been proved, some important derived rules

foilow and equivalence with the alternative definitions can be estab-

l i s h r l ? .

Never theless , we t r y and give a uniform t rea tment of t h e va r ious

l a n g ~ a g e s he re , by s p l i t t i n g up the c l o s u r e proof i n the p a r t s , common

t o a l l t h e languages (e .g . s u b s t i t u t i v i t y , C L 1 * CL, e t c .) , and the

p a r t s p e c i f i c f o r each p a r t i c u l a r language, i . e . t h e proof of SA, UD,

PT and L Q . The s p e c i f i c p a r t i s given q u i t e e l a b o r a t e l y f o r t h e "worst

case" , 6 ~ - A U T - Q E (and i t s e x t e n s i o n s) , i n sec . 3.2 and 3 .3 , and j u s t

sketched f o r t h e simpler languages, such a s 86-AUT-QE, Bn-AUT-68 e t c .

(sec . 3 . 4) . I n f a c t , f o r t h e simpler languages the s p e c i f i c p a r t

simply vanishes , i n which case t h e whole c losure proof b o i l s down t o

the simple c l o s u r e proofs i n Girard [31] and Martin-Lof [4 5] .

1.5. Summary

Sec t ion 2 s t a r t s with a l i s t of induc t ive c l a u s e s f o r establishing

c o r r e c t n e s s of express ions , E- and Q-formulas, r e l a t i v e t o c o r r e c t

book and con tex t , a s i n the previous chap te r . E-def i n i t i o n s for p a r t i c ; l l s -

languages a r e s p e c i f i e d by i n d i c a t i n g (1) a reduct ion re la t io r i (5-re-

duct ion wi th o r without 6 and 17) , (2) p o s s i b l e degree r e s t r i c t i o n s ,

(3) a p a r t i c u l a r s e t of r u l e s from t h e l i s t . I n order t o avoid con-

f u s i o n we r e s t r i c t ourse lves here t o t h e regu la r languages (i . e . de-

g r e e s only 1 , 2 and 3) , from 8-AUT-68 t o BnG-AUT-QE+. Then we prove

some simple p r o p e r t i e s (renaming of con tex t s , s u b s t i t u t i v i t y , c o r r e c t -

ness of c a t e g o r i e s) and g ive a s h o r t d i scuss ion of some of t h e r u l e s .

Sec t ion 3 d e a l s with t h e a c t u a l proof of c losure and t h e connect€,

p r o p e r t i e s (i . e . (i i) , (v), (v i) and (v i i) above) f o r t h e whc-s range

of r e g u l a r languages, a s f a r a s t h e s e p r o p e r t i e s a r e v a l i d (x i view cf

type- inclus ion) . F i r s t , h e u r i s t i c cons ide ra t ions (sec . 3.1) p o i n t

o u t how t h e connections can be, and how t h e proof might be organized

i n t h e more complicated cases (such a s Bq-AUT-QE). Secondly, t h e proof

is a c t u a l l y c a r r i e d o u t f o r Bq-AUT-QE (s e c . 3 .2) . Af ter t h a t , v l a

an u??esse??tiaZ extension r e s u l t , a l l the p r o p e r t i e s a r e t r a n s f e r r e d

t o 3qC-AUT-QE+ (sec . 3 . 3) . F i n a l l y , it i s shown, t h a t f o r a l l the

simpler languages (Bq-AUT-68, B6-AUT-QE(+) , e t c .) e a s i e r proofs car.

be given, which use the more l i b e r a l E-def in i t ion I1 (see 1.2) i n -

s t e a d of I a s a s t a r t i n g p o i n t (sec . 3 .4) .

we claim t h a t t h e r e s t r i c t i o n t o degrees 1 , 2 and 3 i n t h e c losure

proof of Bq-AUT-QE i s n o t e s s e n t i a l , and t h a t t h i s proof can b~ e a s i l y

adapted for A (+) , using the results on norm-degree-correctness in

VII.2.2.

Section 4 contains the details of the equivalence proof sketched

in 1.2 above. First it is shown how, in principle, the verification of

correctness can be reduced to the verification of equality. Typ-functions

for the various languages are discussed. Then we present the algorith-

mic system (like system I11 above) and an "intermediate" system (like

system 11). However, the situation is more complicated than sketched

above, because the equivalence proofs in 4.3.2 and 4.3.3 are also used

for proving the socalled strengthening ruZe superfluous (see below).

Finally some remarks on the actual verification are made (sec. 4.4).

1.6. Complication 1: the strengthening rule

Of course, if an expression or a formula is correct relative to

a book and a context, its constants are in the book and its free

variables are in the context. The strengthening rule is connected with

the converse question: In systems such as I, I1 above, which have rules

for the transitivity of Q, it is a priori not clear that a correct

equality A Q B can be established via expressions containing only

variables and constants occurring in A or in B . So it might be possible

that a proof of correctness of A, or of A E B needs correctness of

expressions containing variables and constants outside A (and B).

Now for the sake of proving q- one-step-closure we have included

a postulate, the strengthening rule, in our definition, which allows

to skip "redundant" variables from the context. This appears to be a

nasty rule because it might spoil the nice order on the correct ex-

pressions induced by the definition of correctness. See, e.g., sec.

2.10.3 and 2.14.1.

The proof that the rule is superfluous, runs roughly as follows:

let bI, bII and kIII stand for the correctness predicate in system I
(as in 1.2, with strengthening rule), system I1 (as in 1.2, without

strengthening rule), and the algorithmic system I11 (without strengthe-

ning rule) , respectively. As in 1.2. tIII * tII (set. 4-3 -2) By CL
for system I (sec. 3) , we have tII * 1,.

Since in the algorithmic definition strengthening is provable as

in Nederpelt [51]), by Cf? (for I, so for 11, so for 111, in Chapter

VI) we can conclude I * tIII , which closes the circle (sec. 4 -3.3) .

1.7. Complication 2: definitional 2-constants in the presence of type-

inclusion.

The rule of type-inclusion in AUT-QE allows us to infer A E T
from A E [z:a]r. This shows how uniqueness of types gets lost in AUT-QE

(bxt only for 2-expressions A). For the restrLcted form which we can

prove instead we refer to sec. 3.2.6.1.

A peculiarity, due to the combination of definitional 2-constants

and type-inclusion, is that rule L Q is violated too in AUT-QE.

Example: if a E r, A E [x:a]r (relative to empty context, say), then

the scheme

L - Z : = A * ~ E T (also with empty context)

is correct in AUT-QE. NOW d Q A, A E Cx:al~ but not d E Cx:a]~.

So, in AUT-QE, definitional 2-constants are not only used as abbrevia-

tions but also for cutting down the type of the expression abbreviate6.

As a consequence of this,definitional 2-constants in AUT-QE can lead

to unessent ial extensions, which are not definitionaz extensions (sec.

3.3 .2) .

One might wonder why we do not take more liberal variants of

AUT-QE, which allows d E [x:a]r as well. I n fact, we mention such a

variant AUT-QE* somewhere for technical reasons (~ec.3.3.11)~ but we

do not think that this way of ignoring the typ of a definitional con-

stant is suitable for practical purposes.

Part of our motivation runs as follows:

First, we do not want it for definitional 3-constants, where the defir'i-

tion part can stand for a long proof, and the typ represents a shcrt

theorem (1.5.2). So, we do not like it for 2-constants, for the sake cf

uniformity.

Notice, however, that the definition of p for the weakly normable

expressions (I V . 4 . 4 . 1) actually ignores the typ of the defined con-

stants and only takes the def into account (otherwise p could change

by reduction) .

V . 2 . On the E-defini t i o n

2.1. The book-and-context part of the E-definition

2.1.1. The correct expressions with respect to a book and a context

form a system of admissible expressions, i.e. a restricted pretyped

system, in the sense of IV.3. The correctness of books, contexts and

expressions is defined simultaneously with the correctness of

E-formulas A E B and Q-formulas A Q B.

The symbol k stands for correctness; the notation for the correct-
ness of contexts (w.r.t. 81, expressions, E- and Q-formulas (w.r.t. 8
ar,d j) is respectively 8;C kr a;[/-A, 8 ; ~ FA E B and 8 ; ~ bA Q B.
The symbols E and Q are assumed to bind tighter than 1.

2.1.2. For brevity we sometimes write "8;C /-A E/Q B" instead of

" 8 ; E ;A E B respectively 8; 5 /-A C B " , and "8 ; &A (E/Q B) " instead of
"l3;:r.L: respectively 8;5 /-A E B resp. 8;C /-A Q B". So statements containing

this kind of shorthand have to be read two or three times, each time

with a different interpretation.

2.1.3. As in IV.3, if B;s:A then A is a 8;~-expression and hence has '

a degree. ~f 8;C LA EB or 8;C kA QB then B is a 8;~-expression and has

a iegree, too. The rules for the formation of books and contexts are

reclsely as in m.3.3.2. The two additional restrictions (see IV.3.3.3)

are as follows:

: i) (tnhabitabze degree condition) an expression a can only act as the

typ of a constant in a scheme or as the typ of a variable in a

context, if its degree is 1 or 2.

(2) (compatibiZity of def and typ) in a scheme 5 * d (2) := A * d (z) E r
it is required that 8 ; ~ F A E r , where 8 is the preceding book.

2.2. Some notational conventions

2.2.1. We often assume implicitly a fixed correct book 8 and a fixed

context 5, correct w.r.t. 8. I.e., if B;El~C then we write

and just

A E/Q B for 8 ; 5 k A E / Q B

(so for formulas we omit the b-symbol in this case).

2.2.2. At some places in the definition the degree of expressions is

explicitly displayed as a superscript:

k i ~ (E/Q B) o b A (E/Q B) and degree (A) = i

2.2.3. Formulas like A E A2 Q A3 E A4 are used as abbreviation for
1

A1 E A 2 and A 2 Q A3 and A E A 4 etc.
3

2 . 3 . The expression-and-formula part of the definition: expressions

The rules for the correztness of expressions and formulas fall

apart in six groups labeled I to V1. We start with group I (correct-

ness of 1-expressions) and group I1 (correctness of non 1-expressions).

I. correctness of 1-expressions

1
1.1. T-rule: /- T

2 1 1
1.2. abstraction rule: b a, x E a A * /- [x:alA

1
x . 3 . application rule: A E a , t B Q Cx:alC - ~'{AIB

-
1.4. instantiation rule: if the scheme of d is in 6, with context 2 E ? , - - -

and d is a I-constant then i E BCy/Bl * !-ld(~)

1
Notice, that the degree of A is indeed 1, if b A is derived by the

above rules.

11. correctness of non-1-expressions

11. A E B * k A

2.4. The expression-and-formula part: E-formulas

The rules of group 111, below, in combination with rule 11, alsc

serve as the formation rules for the non-1-expressions. Group IV con-

tains the type modification rules.

111. Formation of non-1-expressions

111.1. copy rule: 5 E ..., x E a,... *x E a

111.2. abstraction rules: if k 2 a then

i+l
111.2.~~. x E a I- B E C * ki+'~x:al~ E [x:alC

1 2
So of the latter are two versions, III.2.B and III.2.B .

111.3. application rules: if A E a then

III.3.A. B E Cx:alC 4 {AIB E CUx/AD
III.3.B. B E C E Cx:alD * {AIB E {AIC
111.4. instantiation rule: if the scheme of C is in 8, with context

y E 23, then

Note: Below we shall prove A E B - t B (correctness of categor-ies),
which is not explicitly required here.

IV. Type modification rules

IV.1. type conversion: B E C, C Q D * B E D

1v.2. type-inclusion: B E [~:~]C~:@IT * B E [G:~]T
(where [;:GI stands for [xl;at]. . .[x -a- I)

k' K

2.5. The expression-and-formula part: Q-formulas

The rules for the correctness of Q-formulas form group V.

V. Correctness of Q-formulas

V.1. reflexivity: FA * A Q A

v.2. Q-propagation: A Q B, t-C, (B > C or C > B) * A Q C

Note: this is indeed the most restricted version of Q, see sec. 1.2.

2.6. The strengthening rule

This is a technical rule, which we use in the proof of 0-CL, but

afterwards, i.e. after having proved CL and (with help of CL)CR, as in
sec. 1.6, prove superfluous. It is called strengthening rule because

it permits to remove assumptions from the context. We say that is

a subcontext of 5, for short q s u b 5, if the sequence of E-formulas

of q is a subsequence of the sequence of E-formulas of 5. So,

VI. The strengthening rule

If Bico , E o s u b 5, Eo 1 2 E o and V Qj r FV(A) -9 z) , then
Y

2.7. Degree considerations

2.7.1. Degree restrictions play a minor role in the E-definition. It

is rather intended that the degree specifications ofthe various languaoes

(see below) are satisfied automatically by a suitable choice of the

rules of the E-def initions .
We define (the notion of being a domain degree, etc.):

+[z : aIB * a has domain degree and B has value degree.

b{A}3 * A has argument degree and B has funct ion degree.

2.7.2. The degree specifications for the regular languages AUT-68,

AUT-QE and AUT-QE+ are:

(1) degrees admitted 1, 2 and 3, inhabitable degrees 1 and 2,

domain degree 2 and argument degree 3

(2) value and function degree are as in the following scheme

AUT-68 AUT-QE AUT-QEt

function degree 3 213 1,213

value degree 2,3 1,2,3 lI2,3

Languages where all value degrees are also function degrees, are said

to be +-Zanguages: AUT-QE+ (and AUT-68+, AUT-QE*, to be defined later).

Consequently AUT-68 and AUT-QE are non-+-ZangLUZges.

2.7.3. No matter what rules are chosen, by induction on (i.e. cr

the definition of correctness) it follows that

A E B 4 A not of degree 1

So no application expressions {CD with degree (C) = 1 and no in-
-

stantiation expressions c(C)where some C has degree 1, are formed,
j

and the rules 111.4 and III.3.A. do not give rise to substitution

with 1-expressions (in the categories). Hence, also by induction on -,

2.7.4. This shows, together with the explicit degree restriction in

the rules 1.2 and 111.2, that the expressions formed and the substitut-

ions involved are weakly degree correct (cf. Ch. IV.4.4.2). The inhabit-

able degree restriction guarantees that only expressions of degrees 1,

2 and 3 are formed. So, the specifications of 2.7.2.(1) are fulfilled and

A E B * degree (A) = degree (B) + 1

A Q B * degree (A) = degree (B)

and all the substitutions generated by the rules are degree correct: -
If 2 is substituted for x then, for all i, degree (A.) = degree (xi).

1

2.8. Specification of the languages

2.8.1. The rules

The difference between the definitions of the various regular

languages only concerns the rules of abstraction, application and type-

inclusion. A11 the other rules, and 'also 111.2 . B ~ (for abstraction

expressions of degree 3) and III.3.A (application) are present in each

of the definitions.

For the r e s t the situation is as follows

AUT-68 AUT-QE AUT-QE+

1 1 1 . 2 . ~ ~ ~ 1.2 1 abstraction III.2.A III.2.B , 1.2
application III.3.B III.3.B, 1.3

type incl. rule no Yes Yes

Note: Below it will turn out that

(1) III.2.A is a derived rule of AUT-QE and AUT-QE+.

(2) III.3.B and IV.2 (type-inclusion) are derived rules of AUT-68.

1
So, after all, in AUT-68 all the rules except III.2.B , 1.2 and 1.3
are valid; RUT-QE and AUT-QE+ have additionally 111.2 .B1 and 1.2

and, besides, AUT-QE+ has 1.3.

2.8.2. The reduction relation

For definiteness we agree that > in the Q-rule V.2 stands for -
disjoint one-step reduction > So it satisfies the monotonicity con-

1 '
ditions, e.g.

with the important consequence that

In any case the reduction relation includes 8-reduction, but we leave

open the presence of q- and 6-reduction. Of course, if no definitional

constants are in the book then there is no &-reduction.

We assume that AUT-68 has no definitional 1-constants (because,

modulo the elimination of abbreviations, the only 1-expression in AUT-

68 is r).

The rules of strengthening will only be present in languages with

q-reduction.

2.9. The substitution theorem

2.9.1. For the E-definition (in contrast with the algorithmic definitior

it is easy to show the substitutivity: correctness of expressions and

formulas is preserved under correct substitutions, i.e. substitution

with correct expressions of the right types.

For technical reasons we start with a weak form of substitution,

conpare a-reduction.

- - - -
2.9.2. Theorem (renaming of contercts) : I f 5 X E a and 1 ' Z z [X/Z '] ,

-
all z! are mutually distinct, then (with 5 ' : Z X' E a ')

1

and the correctness proofs of both sides of the implication sign are

equally long.
"

proof: induction on k. -

2.9.3. An easy corollary of this is the weakening theorem, the converse

of strengthening: if c0 S U ~ 5 then

5 I-, CO I-A(E/Q Bl* 5 t.4 (E/Q B)
-

Proof: induction on 6 FA (E/Q 5) . 0
L

As a corollary of this we can prove that in a derivation of

correctness the application of strengthening can be postponed to =he

end of the derivation.

2.9.4. NOW we come to the simuZtaneous substitution theorem: if

n y E i, then
B E BBy/Bn, ntC(E/Q D) * CUy/BII (E/Q D[~/EJ 1

Proof: By induction on n !-C(E/Q Dl. We treat just some of the cases,
distinguished according to the last rule applied in the derivation.

*
Abbreviate CU;/BD to C .

i 2 i+ 1
Last rule is III.2.B : Assume qk C1 and q , z EC1 k C2 E D2. By the

2 * *
ind. hypand by 2.7.4, C1. By the copy rule z E C; 1 z E C1 (if
necessary, i.e. if z in 5, rename the implicit context 5 to 5'). Now,

by weakening, we can apply the ind. hyp. with the extended substitution
i+ 1

[y,z/l,z]to n,z E C1 kit1c2 E D2. This gives z E C; k C* E D; and,
i * * 2

by III.2.B , k[z:C1]C2 E CZ:C;]D;. q.e.d. Possibly one must first re-

nane 5 ' back to 5 again.

Last rule in V. 2 : Assume n kc1 Q C2 , q C3 , C2 > C3. By the ind. hyp.
* * *

--* Q C; and kc;. Since C
'1 > c,. kc; Q c3, q.e.d.

2 . 9 . 5 . Corollary (single substitution theorem) :

A E a, x E ~~B(E/Q C) * BUx/AII (E/Q CUz/AII)

2.10. Some easy properties

2.10.1. On abstraction

In addition to the remark in 2.3, after rule 1.4, we can say that
1

the last inference in a proof of /- A must be rule VI.1 or one of the
1

rules I. In particular, if 5 k Cx:alA, this can only follow from
1 0

S , Z E a A for some 5 with 5 s u b 5 (since s u b is transitive). So
O 1

application of VI. 1 gives 5 I E ak A. Similarly, if kitl~ , the last
0'

rule in proving this is VI.l or 11. So in the proof of correctness of
- i+l
i9 p

A we can retrace some M E B, where to s u b 5. Hence if
- i+l i+ 1
io i Cx:alA, in its derivation we can find 5, x E ak A E B for
some B and 5 , with to s u b 5. By application of I1 and VI.l we get
, z E a \-A. Resuming we have

2.10.2. Correctness of categories

In the rules of the definition, having A E B as their consequence,

it is not explicitly required that k B . For the copy rule this correct-

~zz s s oJ -a-l;egoi>ies follows from weakening, for I I I . 2 . A from the T-rule,

for 111.3. A from the single substitution theorem (use induction on /-) ,
for 111.4 from the simultaneous substitution theorem etc. So, we have

correcti.;ess of categories

2.10.3. Abstraction again

i
Assume that 5 X E u k A, 4 of value degree, degree(a) = 2. If

0'
i = 1 then from 1.2 we infer 5 C C X : ~] A . If i > 1 then, as above, we

0 'i
can retrace some 5 X E a , C 2 k ' A E B with 5 sub 5 and the transition

1 ' 0 1
from 5 x E a, c2kA to z E u/-A follows from applicationsd strength-

1 "
ening. By the weakening theorem, we can extend the context to

s E a , C2,x1 E a, with some new x'. By the substitution theorem we

can infer 5 x E a, c 2 , x ' E a ~ A [X / X '] E B [X / X " . In case we can
1

apply I I I . 2 . B (this depends on the language under consideration) we

get cl, x E a, 5 b [X : a I A E C x : a l B . Otherwise the language is AUT-68,
2

i = 2, B 5 T and application of I I I . 2 . A gives 5 x E a , 52k[s7:a1fi E T . 1 '
Anyhow, rule I 1 and iterated use of strengthening give 5 k[z:ulA.

0
Resuming,

(degree(u) = 2, f i of value degree, x E a F A) @ k[z:aIA .
Note: the results in 2.9 and 2.10 are also valid, and simpler to prove,

if n-reduction (and strengthening) is not present.

2.11. On the Q-rules

2.11.1. Clearly Q is the equivalence relation generated by > ,-, i.e.
the restriction of > to the correct expressions. So A Q B means pre-

cisely that

/-A and FB and there are correct C ..., C such that 1 ' k

A > C1 > ... < Ci-l < Ci > Ci+l > . . . < Cj-l < Cj > Cj+l> . . . < C k < B

(where possibly, in view of strengthening, the C . in between are correct
1

w.r. t. extended contexts) .

2.11.2. An alternative rule of Q-propagation is

v.2' A Q B , I - C , B + C - A Q C

If the language definition has this rule, Q becomes - ,-. i.e. ($,-I*

(sec. 1.2,II. 4.71, i. e. the transitive closure of the restriction of f

to the correct expressions.

So, no matter what other rules there are in the definition of

correctness,

and.

CL, v.2 * V.2'

2.11.3. An even stronger rule for Q, also including reflexivity is

v.2" 1-A, B A = B*A Q B

Assuming the (full) CR-theorem, i.e. CR for all, not just the
correct expressions, which is the case if Q-reduction is not present,

we get:

(V.1, V.2') * V.2"

2.12. On type-conversion

2.12.1. The Q-formulas (and the q-rules, see below) can be avoided,

completely by reformulating IV.1, the type-conversion rule to

Iv.1': A E.B, FC, (B > C o r C > B) * A E C

And, corresponding to V.2' rather than to V.2,

1v.1": A E Bl kc, B + C *A E C
As in 2.11.2, IV.1" * IV.1' and CL, IV.1' * IV.1".

Corresponding to V.2" is the alternative rule

IV.1"' : A E B, 'B = C, IC * A E C

2.12.2. The system with Q-formulas, Q-rules V.1 and v.2, and rule IV.1

is indeed a conservative extension of the system without Q but with
the corresponding type-conversion rule instead. First we have

respectively

IV.1, v.1, V.2' * IV.l",

respectively

IV.1, V.2" =+ IV.1"' ,

so the Q-system is an extension of the Q-less one.

Secondly, the expressions and E-formulas, correct in a Q-system

are also correct in the corresponding Q-less system.

2.12.3. Notice, that in the presence of TI, rule IV.1"' (so rule V.2"

too!) is inconsistent in the sense that it gives rise to anomalies

such as self-application. This fact is connected with the B~~-CR-~roblm,

solved in Chapter VI.

Example: if a E T then k[x:a]a and k[y:[x:alala. Further

[x:a]a = (by 6) Cx:alEx~Cy:Cx:alala = (by n) Cy:Cx:alala.

So, if f E [x:a]a then {f)f E a .

2.13. On type-inclusion

2.13.1. Iterated use of the rule of type-inclusion gives

- - - -
A E [s:a][y:B]~ * A E [;:~IT

This shows that AUT-68 is a sublanguage of AUT-QE: all the correct

books, contexts,expressions and formulas of AUT-68 are also correct

in AUT-QE.

proof: Rule III.2.A, not in the definition of AUT-QE, can be derived
1

from III.2.B and IV.2. For, let x E a FB E T. Then I-[~:alB E [x:al?

so F[x:alB E T, q.e.d.

2.13.2. Conversely, rule IV.2 is (vacuously) a derived rule of AUT-68,

because all the correct AUT-68 1-expressions &reduce to r.

2.14. The form of derivations

2.14.1. We called the rules I11 the formation rules of non-1-expressions.
i+ 1

This is because, in a proof of cot A, we can retrace some S!-A E B

and 5 FA E C, such that (i) the last rule applied in proving 5 FA E C
1 1

is the formation rule of A, i .e. one of the rules 111, (ii) the tran-

sition from 6 FA E C to 5 FA E B is by iterated use of VI.2 and type
1

conversion, (iii) the transition frorntt-A E B to 5 FA is by using
0

VI.2, 11, and VI.l. So, in case there is no type-inclusion applied,

e.g. if i > 1, we have (use weakening) 5 FB Q C. Below we introduce
1

a symbol covering the relation between B and C in case type-inclusion

is involved.

2.14.2. The new relation E can be defined as follows

(iii) C is transitive

Clearly, C is a reflexive and transitive relation on the correct

expressions, including Q and type-inclusion, which on the non-l-ex-
pressions coincides with Q (use 2.10.3). The type modification rule

can now be contracted to one rule

IV. A E B , B E Ca.4 E C

Ar.d, for 5 B and C as in 2.14.1 we have 5 tC C B now.
1 1

2.14.3. So, in a proof of [x:a]B E D we can retrace
x E at-a E C with [x:alCC D.

Similarly, in a proof of {A)B E D we can retrace either

(i) B E [x:a]C with C[A] C D, A E a I Or

{ii) B E C E [x:a]E with (A)C C D, A E a .
-

And, in a proof of c(C) C D we can retrace some

2.14.4. Above, we used already

t[x:a]~, x E a t A Q B [x:alA Q Cx:a]B

The other monotonicity rule

a Q 6, tCx:al~ + Cx:alA (7 Cx:BIA

follows by induction on Q, using the substitution theorem.
However, we do not know yet

A Q B , C Q D =, {AIC Q {BID

and consequently, it is a priori not clear that (uniqueness of types

for 3-expressions)

This (and its weaker counterpart for 2-expressions) will not be proved

before the next section (3.2.4, 3.2.6).

2.15. On the application rules

2.15.1. In AUT-68,where no 1-abstraction expressions are formed, the

rule III.3.B is vacuously a derived rule, viz. there are no B with

B E C E Cx:alD.

Since, in AUT-QE and AUT-QE+,

2 k Cx:alC [x:a]C E [x:a]D

we can restrict the rule III.3.A

A E a, B E Cx:alC * {A)B E CUAD

to the case where degree (C) = 1.

2.15.2. As an alternative to III.3.B (and to III.3.A if 1.3 is present)

we mention

III. 3. B' : (AIC, B E C * {AIB E {AIC

The following equivalences hold

(1.3, 111.3.A, 111.3.B) @ (1.3, 111.3.B')

(III.3.A, III.3.B) (III.3.A1 111.3.~') .

Proof: e.g. t h a t 131.3.8 i s a der ived r u l e i n presence of 1.3 and

111.3.3'. Let A E or, B E [x:alC. By 1.3 (and III.3,B1, i f degree (c) = 2),

L{A-i[z:ci]C. By t h e s i n g l e s u b s t i t u t i o n theorem FCEA]. So by 111 .3 . E '

and typo-conversion { A]B E CBA],

2 , 1 5 . 3 . Notice t h a t i n the presence of n-reduction r u l e III.3.A by it-

s e l f i s s u f f i c i e n t , because

Proof: assume A E a, B E C E Ez:alD. Then x E u k x E a, so by III.3.A;

z E a i (x)C E D and by a b s t r a c t i o n k[x:or](x}C E Cz:alD. By I1 and

t y p e - c ~ n v a r s i o n 6' E Cx:al{x)C (Z & FV(C)), so by III.3.A. !A)B E (AjC,

q.e.d.

2 , 1 6 . An E-def in i t ion f o r A and A+

2 . 1 6 . 1 . In o rde r t o adapt the E-def in i t ion t o A and A+ we must f i r s t

drop the i n h a b i t a b l e degree condi t ion, and t h e r e s t r i c t i o n t o a of

degree 2 i n the a b s t r a c t i o n r u l e s 1.2 arid 111.2. The r u l e of type-

inc lus ion and r u l e II1.2.A must be skipped b u t 111.2 .BI i s permitted

f o r a l l i. A s u i t a b l e combination of a p p l i c a t i o n r u l e s i s 1.3 and

XIL.3.B' f o r A+, and IIX.3.A and III.3.B' f o r A. An a l t e r n a t i v e f o r

111.3.3' is an extended form of III.3.B

A E a, B E C1 E ... E Ck E Cx:a]D * (AIB E {A]C1 .

2 . 1 6 . 2 . Degree considera t ions f o r A and A+ a r e indeed more involved

than those i n 2 . 7 . O f course xe can show weak degree cor rec tness , a s

i n 2.7, but we must know more i n order t o e s t a b l i s h degree cor rec t -

ness . See Ch. VII, see . 2.2.

Th.e va r ious p r o p e r t i e s proved above,such a s s u b s t i t u t i v i t y , co r rec tness

of c a t e g o r i e s , e t c . e t c . siillply .;o through f o r t h e E-versions of A and

3.c.

V.3 . The actual c losure proof

3.1. Heuristics

3.1.1. The first idea which comes to mind about proving c~osure, CL

CL : t . 4 , A 2 B * L B

is simply to prove one-step closure, CL1

CL1: bA, A > B *I-B

by induction on FA and then use induction on 2.

Among the possible ways of one-step'reduction we distinguish the main

or "outside" reductions

(6) {A)[x:BIC > CIA4

(n) x ,d FV(A) Cx:al{x)A > A

(6) d(A) > def(d)BAB

and the "inside" reductions which follow by the monotonicity rules

So we assume that > stands for disjoint one-step reduction. Now

consider, e.g.,the appl-case where the correctness of {A)C follows

from A E a, B E [x:aIC. Here the induction hypothesis, CL1 applied to

A and to B, just tells us that LA' and IB ' (where A > A ' , B > B ') ,
which is of course not enough to conclude C C A f) B ' . This suggests that

we need preservation of types, PT

PT: A E a , k B , A > B * B E a

or at least one-step preservation of types, PTI

PT1 : A E ~ , C B , A > B * B E ~

additionally. Similarly with the const-case of one-step reduction.

3.1.2. So the next idea is to combine CL and PT to

CLPT: IA(Ea), A 2 B *CB(E a)

(as the conjunction of the version with and the version without paren-

theses) and to use the same induction. 1.e. first prove

CLPT1 : LA (E a), A > B *LB(E a)

by induction on correctness and then use induction on 2.

This works fine with all the inside reductions. E.g., consider once

more the appl-case: A E a, B E [~:ajC, A > A ', B > B '. Now the induc-
tion hypothesis gives us A' E a, B' E [x:a]C and {A')B1 E CUA']. Since

> is disjoint one-step reduction, CUA] > C[AP] SO CUA] Q C[A '1 so
C.4r}3r E CUAD, q.e.d. The other cases of inside reductions are treated
similarly, using some facts from the previous sections.

Then the outside reductions: 8 and T- do not cause major difficulties

either. For 6 use the simultaneous substitution theorem and the

compatibility of def and typ, for Q use the strengthening rule. But

there is a problem with E-outside reduction. For, in order to conclude

C:U.A] from L{A)Cx:B!C, we seem to need soundness of appZicability, SA

which would allow us to use the single substitution theorem.

3.1.3. Let us try to find out about SA. So consider the assumptions

which can lead to the correctness of {AI[x:BIC.

E.g. A E a, [x:B]C Q Cx:alD (resp. [x:BIC E Cx:alD). Then
SA amounts to uniqueness of domains, UD

resp. extended uniqueness of domains, EUD

EUD Cx:BIC E Cx:aID * B Q a

or: A 3 , [s:B]C E D E Cx:alE (these are the assumptions of rule

II1.3.B). As in 2.14.3, for some J?, Cx:B]C E CZ:BIFCD (and in fact

[.c:,.:jlF Q D). So, in this case SA seems to require the left-hand

e+uZity m Z e LQ

which would give Cx:BIF E Cx:alE and, by EUD, A E B.

However, LQ * PT. SO, it appears that we cannot do SA separately

beforehand (i.e. not if III.3.R is present) and then proceed with

CLPT as sketched above.

3.1.4. In order to simplify matters, we first forget about type-inclu-

sion. Then we may hope to be able to prove U?ziqUenes~ of types, UT

UT: A E a , A E B * a Q B

~f we assume UT then UD *EUD and, besides, LQ and PT turn out to be
equivalent. This may suggest us to incorporate the proof of SA in the
proof of CLPT
But we do not have UT yet. If we try to prove UT by induction on the
length of A, we come again in trouble with rule III.3.B. For, let

A1 E a, A2 E B E ix:alD, A E C E Cx:alC. The ind. hyp. just gives us
2

B Q C here, but we need more, viz. something like

(this is one half of the third monotonicity formula of sec. 2.14.4).

Since a proof of (*)requires LQ in turn, UT cannot be isolated either.
We might try to combine SA, UTand CLPT, i.e. to prove the necessary

instances of SA andUTin the course of the proof of CLPT . A proof
1

along these lines is indeed possible even if type-inclusion is presenG

but it has a complicated structure and it cannot easily be extended

to languages with higher function degrees, such as A and A+.

3.1.5. Thus we prefer the alternative approach sketched below, which

essentially runs as follows: first prove PT UT and LQ by induction
1 '

on degree, then prove SA and UD, and afterwards proveCLas indicated

in 3.1.1. To this end we distinguish degree-i-versions of the various

properties

First notice that: PT: , UTI * L Q ~

and that : L$ * (*i)

hence : L Q ~ , t1

We assume that the language under consideration is a non-+-language

(see sec. 2.7) . Then it is relatively easy to show U D ~ and UT~"
(ignoring type-inclusion), where k is the lowest value degree. Now let

i+ 1
us try to prove PT, by induction on correctness, where we assume

PT:, LQ' and UT'+" for j ri. An instructive example is the appl-case
i+ 1 i+ 1

of inside reduction: A > A', B > B', 1- {A}B, 1- {A3B1. It is no

restriction to assume that both {A}B and {A')Br originate from the

extended application rule of 2.16.1: A E a, A' E a', B E 5 E . . .
E L? E [x:a]D, B' E C; E ... E Cb E rx:a7Dr with degree (D) =degree !Dl)=

f,
i+ 1

k and R = R ' . Then by the ind. hyp. we have B' E C,, so by UT

Q s' and by C; E C2. Then follows C Q C; and C' E C etc. - 1 1 k2 2 3
Finally we have [x:alD Q Cx:aqD1 and by UD a Q a' so A' E a. Hence
:J . . 113 I E {Ar}C1 < {A]C , so {A')Br E {A)C1, q.e.d.

!+ 1 i+ 1 i+ 2
From PT~+' and UT we get LQ , and UT . So by induction,

1
we get PT LQ, (*) and UT.

1' i+ 1 i+l '
3.1.6. It is clear that SA can be distilled from the proof of PT

1 '
but it can alternatively be given as follows. First, we have

i+ 1
so we have UD. Now let 1 {A}Cx:BIC. Then (see sec. 2.15.2) either

.4 E ! :1 , [z:BlC E [x: alD, or [x:BlC E E, I-{AIE. Further [x:B]C E [x:B]I'.

So by UT we have either [x:BIF Q Cx:alD, or [x:BlF Q E. Hence, either
by UD we have a Q B, or by (*) we have I-{A)Cx:B]F. So from LQ, UD and
UT we get

S A ~ + SA~+'

and by induction SA.

3.2. Closure for Bn-AUT-QE

3.2.1. For definiteness we present a rather detailed version of our

closure proof here for 8n-AUT-QE, i.e. AUT-QE without definitional

constants and without &-reduction. So the admitted degrees are 1 , 2

and 3, the value degrees are 1, 2 and 3, the domain degree is 2 and

the argument degree is 3.

The function degrees are just 2 and 3, so Bn-AUT-QE is a non-+-

language. So the reasoning of sec. 3.1.5 is valid, but for additional

problems due to the presence of type-inclusion (viz. that UT is not

true and that not immediately (PT * LQ) and (UD * EUD)) . These 1
problems are overcome by the introduction of a "canonical type" in

sec. 3.2.4. below.

This canonical type also plays a role in the q-case of PT
1

Later we include definitional constants and 6-reduction, and applica-

tion expressions of degree 1, thus extending our result to BqG-AUT-QE+

(in section 3.3) .
A closure proof of BTI-AUT-68 can easily be imitated from thepmof

below and is in fact somewhat easier because there is no type-inclu-

sion.

3.2.2. We specify a set of rules (in shorthand, omitting contexts) for

Qq-AUT-QE, which according to the properties in 2.10-2.15 are equiva-

lent to the rules indicated previously.

(ii) ..., x E a, ... I-x (E a)

(viii) CAI A > B or B > A, LB * A Q B (where > is disjoint
one step Bq-reductiod

(ix) A Q B Q C * A Q C

1
(xi I-A + A C T

(xii) x E a CA C B + Cx:alA C Cx:aIB

(xiii) AC B E C * AC 5'

(xiv) strengthening

3.2.3. On 1- expressions and type-inclusion

3.2 .3 .1 . Since there are no 1-application expressions and no defini-
-

tionalconstants all 1-expressions are of the form [Z:E]T, with x

1 1
possibly empty. And, if k [x:alA, I- [X:BIB, [x:aIA > [x:BIB, then

a > B, A > B so a Q 8 and x E a \-A Q B. So, by induction on Q, we can
show UD 1

Then, by induction on C , we get

1 I- Cx:alACCx:BlB 3 a Q B (andx E a \ - A C B).

i
3.2.3.2. We introduced UT , uniqueness of types for expressions of
degree i (i > 1) ,

U T ~ I - i ~ ~ ~ , ~ ~ ~ ~ B Q C

For i=3 this will be proved below, but for i=2 it is simply false

in view of type-inclusion. Now we define

B U C : o B C C or C C B

Below we shall prove that the new symbol covers the relationship

between B and C whenever A E B and A E C.
Clearly on the non-1-expressions is just Q. We have

Further satisfies a strengthening rule, and is substitutive:

A E a , x E a C B C 3 C * B U A D U C U A D

3.2.3.3. We also want to show

1 k B C for some A, A C B and A C C

- - - -
Proof:+ is trivial. So let B 7 A C C. Then A r [~ : ~ I [~ : ~ ~ I C X : ~ I T ,

3 r [z:y,][y:z, IT, C 5 [;:?,IT (or similar with B and C interchanged),

3.2.4. The canonical type

i+ 1
3.2.4.1. It is possible, for each A with)- k to indicate an a such

0

that

(1) a is a minimal representative - w.r.t. 1- of the categories
0

of A, i.e.

A E a and: (A E a a C a)
0 0

We call this a the cantyp of A (with respect to a context). The
0

definition of cantypislike the definition of typ given previously

(sec. IV.3.2), but slightly modified in order to stay in the correct

fragment, as follows:

(i cantyp(z1 = typ(x)
(ii) can typ (p (R) : typ (p) uA D

(iii) cantyp(Cztl~1B)~ fx:alcantyp (B) - w.r.t. to extended context-

cantyp(CA)B) I c;t[A] if degree (B)=2 and cantyp(B) E

[x:ulC

3.2.4.2. Clearly, typ(A) 2 cantyp(A) so property (2) above is

immediate.

Now we prove a lemma corresponding to property (1).

Lemma : if L Q ~ and bi+l A E a then A E cantyp(A) C u

Proof: By induction on the length of A . The more interesting

cases are

cantyp(A) C [x:a Icx C a , q.e.d.
1 2

hyp., A2 E cantyp(A2) t Cx:allC so cantyp(A2) z Cx:a; lCf . Hence cantyp(k'>
is indeed defined, a Q a;, z E a kCf C C, so {A1]A2 E CfflAl]Ctu, q.e.d. 1 3 1

(iii, A = {A1)A2, A1 E al , I- A2 E B E Cx:u11C, [A1 IB Q a. By the
i

ind. hyp. A E cantyp (A) Q B . By L Q ~ we can use property (*) of sec. 2 2
3.1.5 and get cantyp(A1 Q {AIIB Q a, q.e.d.

3.2.4.3. Corollary: (i) b2 A E B, A E C B O C (this is, for .A of

degree 2, the desired property of 0).
L

(ii) I- [x:alA E [x:BIB a Q 8 , x E a 1-A E F (this
2

includes EUD)

(iii) S A ~
1

Proof: (i) LQ is -vacuously fulfilled, so B 3 cantyp(A) C C, so

by 3.2.3.3. B c. (ii) and (iii) are immediate.

3.2.5.1. Now that we have introduced cantyp we can use it in the proof

of PT. we define the property of preservation of cantyp.

i
similarly PCT:; PCT is the conjunction of all the PCT .

2
We first prove some lemmas for PCT .

3.2.5.2. Lemma (substitution lemma for cantyp): let B* stand for
2 3 3[r/.4]. Thenz E a, y E B 1- C , 1- A E a cantyp(c)* E cantyp(c*)

- *
where the cantyp's are taken w.r.t. (x E a, E B) and (,; E B) resp.

Proof: Induction on C. Note that c&, because degree (x) =3. Some
*

cases are: (ii C E Cz:C 1C cantyp(c)* : Cz:~;lcant~~(~~) (w.r.t.
- 1 2 '

u E a, 9 E 8, z E C i (by ind. hyp.) iz:C~lcantyp(c;) (w.r.t.
- 1
y E B*, z E c*) E cantyp(c*) , q.e.d. 1

* * *
i i i) C IC }C cantyp(c)* 5 DfCID I D IC1] where

1 2'
cantyp(C,) E Cz:yID and, by ind. hyp., [Z:-{*ID*? ~ a n t ~ ~ (~ l) , so

z * *
cantyp(C) r D [CID as well, q.e.d.

2 3
3.2.5.3. Corollary: x E a 1 C, b A E a * cantyp (c) [A] E cantyp (CIA]).

2
3.2.5.4. Corollary (6-PCT) :

1
2 1 {A)[x:BlC * cantyp({A)Cx:BIC) Q cantyp(C[IA]).

2
Proof: BY SA we have A E B, so even cantyp(IA}Cx:BlC) r cantyp(C)[A] z

cantyp(cljA]) .

L
3.2.5.5. Lemma (n-PCT 1 :

1

~-~[x:al{z}A, z p! FV(A) * cantyp (Cz:allr}A) Q cantyp (A)

3.2 .5 .6 . Theorem: PCT;
2

Proof: let I- A, LA A y.4 '. For a main reduction use 3.2.5.4 or
3.2.5.5. For inside reductions use induction on the length of A.

Some cases are:

li) A ~X:A IA A' [x:A;]A;, A1 > A' A2 > A;, BY ind. hyp. 1 2' 1
cantyp ([X:A~ I A ~) Q cantyp (Cx:AllA;) E [x:Allcantyp(A;) Q [x:Arlcantyp(~ I),

1 2
by the substitution property 3.2.5.3.

(ii) A - CA11A2, A' - IAr)A' A > A' A > A'. Since {A)A is
1 2, 1 1' 2 2 1 2

oorrect, A1 E all A2 E cantyp(A2) : Cx: BIC C Cx:al ID. So a Q B. 1
Similarly A' E a;, A; E cantyp(Af) 5 [x:BrlC' C [x:a;1Df. so a' Q e ' .

1 2 1
By the ind. hyp. [x:bJC Q [x:B1~C', so CIA1l Q Cr[A1J Q C'fA;], q.e.d.

2 2
3.2.5.7. Corollary: (i) PTl, (ii) L Q ~ , (iii) UD .

3.2.6.1. By L Q ~ we can apply 3.2.4.2 to expressions of degree 3 now.
3

we get: (i) I- A E a * A E cantyp(A) Q a
3 3

(ii) UT : k A E a, A E B * a 0 B (i.e. a Q B)

(this is the announced property of 0 for A of degree 3).

(kii) S A ~ (e.g. as in 3.1.6)
3 3 3

Notice that by UT the properties PCT and PT are equivalent.

3.2.6.2. We introduce CLPT~:

and similarly C L P T ~
1'

Here follow some lemmas for CLPT 3
1 '

3 3
3.2.6.3. Lemma (B-CLPT1) : I- CA1Cx:BIC E D * CtAD E D
Proof: Let A E a, rx:BIC E F E Cx:alG, {A)F Q D, and let x E B LC EH,

3 2
[x:Bl H Q F. By SA we have A E B and by (*) {A)rx:BIB (! (A I F . BY th?

substitution theorem for correctness CUA] E H[AD Q D.

3 3 3.2.6.4. Lemma (17-CLPT1): 1- Ix:al{x)A E B, x jf Fv(A) * A E B

Proof: cantyp (Cx: a1Cx)A) 5 Cx:alCx)cantyp (A) Q cantyp (A) (by n-reduc-
tion) , by strengthening CAI so by 3.2.6.1 A E B.

3.2.6.5. Now we are ready for CLPT.
Theorem: (CLPT1) : IA (E a) , A > A ' * LA ' (E a)
Proof: If A > A ' is a main reduction use SA, strengthening, P T ~ and

the preceding two lemmas. Otherwise use induction on the length of A.

(i) A - Cx:a]A A' E Cx:afIA' a > a;, Al > A;, x E a 1 (E a2),
1 1' 1 1' 1 1

([x:a la Ca). By ind. hyp. La; and x E a; I-A; (E a2).
1 2

So t[x:arj~' (E [x:a;la2 Q [x:a la Ca) - read this twice, one time
1 1 1 2

with and one time without the symbols in parentheses - .
(ii) A -{A }A A'S (A;)Air A 1 > A r , A > A r

1 2' 1 2 2' A1 k 2
[.Z:'X 1 IC, c U A D C ~ . B ~ ind. hyp. A; E all 3 E [x:alIC. SO A r E c [A ;] Q

CIA, 1.
(iii) As in (ii) ,

. - ! I E all A' E B, so A'
1 2

(iv) A Z p (B
l l * * .

~31~'..., Bk E BklBl
" 2
a scheme. By ind. hyp.

aBrnr so ~(B;~...~B;
' k

3 .2 .6 .6 . Corollary: (i

but A2 E B E [x:al IC, {Al IB C a. By ind. hyp.

E CA;)B Q {A1)B.

Bk). A' p(B ',... ,Br). B > Br, B1 E B1, B2 E
1 k

. - - I BkVl], PIED C a, where y E B * p(yjE P is

B; E B; E B IB II Q B~[B;D.. . B; E B ~ W I 3
1 -

E PUB;, ..., B;] Q PUB].

CLPT, (ii) LQ, (iii) UD.

3.2.6.7. Corollary (Rule V. 2 ' , sec, 2.11) : IA, /-Br A .C B * A Q B

3.3. Extension to Bn6-AUT-Q.E+

3.3.1. Now we consider Bn6-AUT-QE+, i.e. Bn-AUT-QE extended with 1-

application expressions, with definitional constants and with defini-

tional reduction. The additional rules are

1.3:
1 1 A E a, B Q [x:alC 3 1- (AIB

- - -
(vi') : A E &[A], x E a * d(x) := D (*d(G) E E) is a scheme *

(cf. sec. 3.2.2 and sec. 2.3 respectively) .
If we try to repeat the previously given proof, we first come in

trouble because not all the compound 1-expressions are abstraction
1

expressions anymore. This makes the proof of UD from sec. 3.2.3 fail-

though the property itself reinains valid. Furthermore there is the

problem with definitional 2-constants and type-inclusion (mentioned
L

in sec. 1-71, which makes LQ fail.

Below we give an indirect proof instead which runs as follows:

first we show (secs. 3.3.3 - 3.3.8) that the indicated extension is a
so-called unessential extension. Then we use this fact to transfer the

desired properties from Bn-AUT-QE to the new system (sec. 3.3.9).

Finally (in sec. 3.3.11) we briefly discuss an even larger system than

3.3.2. Some terminology

Consider two systems of correct expressions with typing and equa-

lity relation, (k , El Q) and (I- +, , E+, Q+) respectively.
(t-+, E+, Q+) is an extension of (I-, E, Q) if 1- * b E * E+ and +'
Q Q+, i.e.: 8 bresp. 8; 1 resp. B; F, F A (E/Q B) *

I-+ resp. 9; E I-+ resp. 8; 5 I-+ (E+/Q+ B).

We further just write t+A E/Q B instead of \-+A E+/Q+ B. The "new"

system I- is said to be conservative over the "old" system if all +
new facts about old objects are old facts, i.e. if

UEo I-A, I-B, b+L E/Q B * I-A E/Q B.

An extension is unessential if no "essentialLy new" objects are

formed, i.e. if all new objects are equal to old ones. This means

that the new system can be transZated into the old one by a mapping-*

working on expressions, books and contexts, such that

UE2 8 I-+ resp. 8; <I-+ resp. B; &+A *
-

~ - t resp. 8-; 5 1- resp. 8-; 5- LA-

Clearly unessen'tial extensions are conservative. Property UE3

means that new formulas imply their old counterparts. Unessential

extensions also satisfying UE3', the converse of UE3,

UE3 ' t+A. I-+B, ti;- E/Q B- * C+A E/Q B

are called def in i t ional extensions.

In a definitional extension new formulas are equivalent to old

ones. ~ l l unessential extensions satisfy the Q-part of UE3: but for

the E-part we need property LQ for the larger system (at least if the
smaller system satisfies LQ). For that matter, if the +-system

satisfies LO, we have

and : UEO, UE1 UE2 * UE3

3.3.3. The translation

Of course, we take 8~-AUT-QE for our smaller system C and we take
B~I~-AUT-QE+ as the extension k+. We are going to prove that 1 is an +
unessential (but not a definitional) extension.

For an expression A we intend its translation A- to be the normal

form w.r. t. a certain reduction relation 2-. In order to make A- well-

defined and in view of UE1, UE2 we require

(0) 2- normalizes and satisfies CR
(1) 2- just affects the new elements of expressions (1-application

parts and definitional constants) and removes them

(2) >-is part of the reduction relation of the new system and

satisfies CLPT
- -

For contexts 6 - x E a the context 5- is simply 2 E a- (where the
--

meaning of a is clear). Similarly schemes for primitive constants

C*p (2) E 8 are translated into c* p(z) E 8-. But schemes for defini-

tional constants have to be omitted in the translation.

Before fixing 2- we define i3-reduction 2' i-reduction of degree
i'

j (where i is 8, n, 6 or a combination of these). This is the reduc-
tion relation generated from ezementmy ij-reduction , defined as
follows :

A elementary ij-reduces to A' if A elementary i-reduces to A'

and degree(d)=j.. The corresponding one-step reduction is denoted > j
i'

Notice that for degree-correct A the degree of A' above is j as well

(cf. sec. 2.7).

Now, in view of requirement (1) above, we define 2-to be the re-
1

duction relation generated from 2 and 2
B 6'

3.3.4. Notice that 6'-reductions cannot be inside reductions. Strong

normalization for B1 is easy to prove even without using normability.
From Ch.111 we recall 6-SN and 6-CR. As in Ch.11, secs.6, 7, 8 , w e can

1 1
show that B -CR holds, and that B commutes with all other reductions

2 2 1
(such as 6 , 6, i-~) except 0 .

So 2-commutes with all kinds of reduction but rtl, and we have

2--SN and &-CR (whence requirement (0) above) .
Clearly &normal forms do not contain defined constants anymore;

a simple normability argument shows that2-removes the 1-application

parts as well.

3.3.5. A further property we want >-to satisfy is CLPT. since 6-CLPT1

follows from the simultaneous substitution theorem (cf. 2.9.4) we j u s t

want to know SA 1

1 \

I-+{A}Cz:BlC * I-+ A E B

or, equivalently, UD 1

Here turn up the problems with 1-expressions, announced in 3.3.1.

To overcome these we seemingly modify our system:
1

(1) we exclude v -reduction

(2) we change our 1-application rule into

where r ed - is 2 restricted to the correct expressions, i.e. generated -
by

1
C+A, L+A: (A >S A ' or A > A ') * C+A r e d A '. 6 -

Clearly 1.3. * I.3'., so the modification is a restriction.
However, after having proved &-cLPT (whence UE1, see sec. 3.3.6) , UE2 &

UE3 (sec. 3.3.7) for the modified version, we shall be able to show
1 1

that both I. 3 and i-i -equality: I- A, A > A', -t
!-+Ar * \-+A Q A are

17
derived rules. Hence.the two versions of 1 are equivalent, and we +
have t-he desired properties for the original +-system.

3.3.6.1. For the modified system the property SA' is clear, so we have

the theorem (>=cLPT) : \-+A (E a) , A 2 A ' * L+A ' (E a)
1

Proof: Since we know 6-CLPT, and 2 is j u s t 5 on the non-1-expressions
B

we only need to consider A of degree 1. Use, e-g., a double induction,

viz. (1) on B(A) - i. e. the length of the >--reduction tree of A, (2)
on length(n) . The only interesting case is when A 5 {A1]A2, A1 E a,
A r e d Cx:alC. ~f A LA; then A > A' so by 6-CLPT A; E a.
2 - 1 1-6 1

If A2 2 A' then by the ind. hyp. and by &-CR: A' r e d ;z:a'1Cr,
2 2 -

[x:a;C r e d - Cx:A'lCr. So A; E a' and k+{A; IA; . If A2 [x:A 3.4 then
1

3 4
.Al E A3 (this is SA) and k+A4!Al].

Since a reduction A 2 A' starts with an inside or with an out-

side reduction, we are finished by the first ind. hypothesis.

3.3.6.2. Corollary

3.3.7. Theorem (UE2

rule I. 3'. Then Bt

and UE3) : Consider the system without t- and with

, resp. B; EC+, resp. B;S1-+A (E/Q B) *

Proof: By induction on I- using t.CLPT. The interesting rules are
+I

(i) appl. rule 1.3': let &+A E a, k+B r e d - Cx:alC. By ind. hyp.
I I

- -
I-.? E a . Clearly B- r [x:~-Ic- and by ind. hyp. LB-, so x E a- 1 C-,
so b (1.4)~)- C-UA-], q.e.d.

- -
(ii) instantiation rule (vi ') : let contain a scheme y E 6' * d (y) : =

(possibly followed by * d (y) E C). Let P be the book preceding this
- - - - 1

scheme. By ind. hyp. B1; y E B ID-(E C-), Now if 8;E F B E B c B D , then
- -- --

by ind. hyp B-;c- I-B- E (BUED) - B CB I l r SO 8-; EL (d (E)) - E - --
z CB D (E (c3aj)- E C-[IB-j), q.e.d.

-
(iii) Q-rule: let t+A Q 8, C+C, B > C. By ind. hyp. LA 0 E - I LC-.

Since >_ commutes with all other reductions, except possibly n1 which -
we have forbidden, we find B- 2 C- so by CL for 617-AUT-QE FB- 0 C-
andl-A- Q C-, q.e.d. The case that C t B instead is completely similar.

3.3.8.1. Now we prove that 1.3. is a derived rule in the modified
1

system. So assume t+A E a, t+B Q Cx:alC. BY 3.3.7 1 - l ~ - Q ~x:a-lC-,
-

whence B must be [x: BIB with b a- Q B and t +a Q B. Further, by
1

3.3.6.1.. -+B r e d - B- and by I.3'C+{A)B1 q.e.d.

1
3.3.8.2. Similarly, n -equality is a derived rule. ~etl- A, I- A'

1 + +
'i. > A '. We :an assume that degree(A) = 1. By induction on length (A)

we prove that 1 +A Q A'. The interesting case is when A E [x:a I(x)/J', 1
s k FV(."I)). AS in 3.3.8.1., x E C A' r e d Cx:a 1A withx ,dFv(a2). 1 + -

1
2 1

By SA x E a 1- a Q a2 and by strengthening a
1 + 1 + 1 Q a2. So]-+A c)

[J ' : u 7tZ Q Cx:a21A1 0 A', q.e.d.
1 1

3.3.8.3. Hence the system with 1.3 and nl-equality is equivalent to
1

the system with I. 3' and without n -equality. So we have SA' , L-CLPT,
UE1, UE2 and UE for the original system of BQ~-AUT-QE+ now.

3

3.3.9. The proof of CLPT

3.3.9.1. As in 3.2.6.5, we can prove CLPT from outside-CLPT1, by 1
induction on correctness. Clearly 6-CLPT (and a fortiori6-outside-

CLPT1) is included in>-CLPT, - so we just need 5- and n-outside-CLPT
1 '

3 In the next section we infer PT and SA from our UE-result, which
2 2

leaves us to prove the B - and T- -case of outside-PT only. These two
1

cases are dealt with in 3.3.9.3.

3.3.9.2. Consider the properties mentioned in 3.1.5. In this section

we distinguish

and the larger

is clear that

U T ~

the two versions of a property (viz. for the smaller

system) by providing the latter with a + below. ~t

* U T ~

whence

and
3

LIT+,

UT: ,
3 ?T+ and

The property UD is also preserved in passing to the larger system, and
in fact, as in 3.2.3.1,

k+Cx:alA Q Cx:elB* !-+a Q 6 , (x E a I-+A C! B)

3 3 1 i
By LO+ we have (* + I . SA+ we knew already. Now we show SA+ for ifl: let
i

k+{A I[x:BIC. Since iZ1, ((A KX:BIC)- ? {A-}CX:B-IC-, so by UE
3 2 '

and by SA, LA- E B-. Hence by LQ + again, we have
SA: for i#l as well.

3.3.9.3. In sec. 3.2.5 we used cantyp in proving 8- and T--outside-PT 2
1 '

The same procedure applies in the +-system, but with typ (defined as

in IV.3.2) instead of cantyp now. In particular we have

(ii' typ (d (A) typ (d) IjZD

for defined constants of degree 2 and 3 now

and (iv) typ({A)B) E {A)typ(B)

for both B of degree 2 and 3.

As in 3.2.4.2 we get

2
k c A E a * t + A E typ(Aj C a

and,

So, as in 3.2.5.4 and 3.2.5.5, we get

C:IAH~:BIC + ~Y~({AHX:BIC) Q ~ ~ ~ (c u A D)

whence 8-outside-PT and
+,If

2
I-+Cx:alIxlA, x ,d FV(A) * typtCx:alCxlA) Q typ(A)

whence q-outside-PT
2
+, 1 -

3.3.10.1. In 3,3,,9.2 we have carefully avoided the properties which
2 2

do not hold in the larger system, in particular LQ and (*) . For a

counterexample let d(x) be defined by x E T * d(x) := [y:xh, with

typ(d) E T. If a E T , then d(a) Q [y:a]a E [y:a]-r, but certainly not

J(il) E Cy:a]r, so not L Q ~ . If, furthermore, A E a, then k(A)Cy:ala
2

but not I-{A}d (a) , whence not (*) . Consequently, the +-system is not
a definitional extension of the old system.

3.3.10.2. Besides, if we stick to our counterexample,

:; E I(a) C.2 E Cy:ala, so z Ed(a)t.(A}z E a, but not

n E < (u) 1 CAld(a) (E typ ({Alz)). This shows that typ applied to 3-

expressions can lead us out of the correct expressions (in contrast

wlth the situation in the smaller system), and that not:

2
3.3.10.3 In the next section we restore (*) and L Q by a further ex-

tension of the language. But first we give a theorem stating some very
2 2

weak versions of LQ to hold in BUG-AUT-QE+ instead of LQ . Recall
the symbol from sec. 3.2.3 and the result (sec. 3.2.4.3, 3.2.6.1)

for OWAUT-QE:

1A E B, C.A E C I-B 0 C.

Proof: BY UE we get IA- E B-, LC- E D-, LA- Q C-. BY L q for
-

q-RUT-QE we get L C E B- so k ~ - 0 D-, so L+B Q B-• D- ? D,
i.e. 1 .:-' 0 Dl i.e. B C D or D C R, q.e.d. +

3.3.11.1. The aforementioned anomalies can partially be removed by

properly extending Bv6-AuT-QE+ to a language ~~~-AUT-QE*. In this

new system we first replace the application rules by

(1) 3 Q Cx:alC, A E a 3 l- {AIB

(2) B E C, b{AIC 3 k iAIB E {AX

Rule (1) is simply 1.3 without the restriction to degree 1. Rule

(2) is 111.3 .B' (sec. 2.15) . So, indeed, AUT-dE* extends AUT-QE+.

3.3.11.2. By this modification

Furthermore, by Q-reduction we

B E Cx:cilC 5 B

we gain the property

so it is a proper extension.

get

Q Cx:cil{x IB, which yields property (*)

for the new system.

Our counterexample, however, shows that there are still problems:

L Q ~ does not hold, so we do not yet have a definitional extension of

AUT-QE. Besides, now the new 2-expressions (e.g. {A b(a) in the

example, which is correct now) do not have a correct typ, and not

even an E-formula.

3.3.11.3. The following theorem shows that the difference between AUT-QE+

and AUT-QE* just lies in the particular role of the definitional 2-

constants, and that AUT-QE* is an unessential.extension of AUT-QE+'

(though it is no definitional extension).

Theorem: Let \ * stand for correctness in AUT-QE*, and let A' be the
2 -

fi -normal form of A. Then 1 *A (E/? B) * C+Ar (E/? B ') (so LA-(E/Q F:)).

Proof: Induction on *.

3.3.11.4. A drastic way of combining 2-constants with type-inclusion

and still preserve LQ, is to add LQ explicitly to the language defini-
tion, or at least something like

2
t 2 ~ , C E B , A r C * A E B

6

Adding this rule to Bn6-AUT-QE+ produces the smallest defini-

tional extension of AUT-QE which includes Bn6-AuT-QE+, and it gives

us AUT-QE* plus all the missing E-formulas.

An alternative way of defining this new system (We s t i l l c a l l it

AUT-QE*) is by ignoring the type-assignment part of definitonal 2-

schemes, and by defining the typ of a definitional 2-constant to be

the typ of its definiens (compare the definition of u in IV.4.4).

From the latter definition of this new system it will be clear
2

that our desirable properties (except UT , of course) can be proved
for it by the same methods as used in the closure proof of AUT-QE+.

3.3.12.1. Up till now we have, for definiteness, just compared

Qq-AUT-QE with Bt-16-AUT-QE+ (and Bn6-AUT-QE*), i.e. we made the exten-

sion in one step and added the definitional constants and the l-appl-

expressions simultaneously. One can as well, of course, consider

intermediate languages like Bq-AUT-QE+ and Bq6-AUT-QE.

Thenone notices that the problems with * , LQ' and typ are ex-
2

elusively due to the &(in particular 6) and not to the + in
2nd-AUT-QE+. Thus Bq-AUT-QE+ satisfies LQ and (* I , and is a neat de-

finitional extension of Bq-AUT-QE,.whereas Bq6-AUT-QE has all the un-

pleasant features of BqB-AUT-QE+.I~ fact, @TI&-AUT-QE+ is a definitional

extension ofBq6-AUT-QE, and Bq&-AUT-QE can only be made into a

definitional extension of 60-AUT-QE (call this new system from now

on AUT-QE') by adding a rule like in sec. 3.3.11.4.

3.3.12.2. If one takes AUT-68 instead and adds an application rule:

(compare 3.3.11.1, rule (1)) one gets the corresponding +-language.

(i.e. smallest value degree = smallest function degree), AUT-68+.

These systems are easier to handle than AUT-QE: both AUT-68 and

AUT-68+ satisfy UT, LQ and (*) , even in the presence of definitional

constants, and AUT-68+ is a definitional extension of AUT-68.

Without definitional constants, AUT-68+ is already contained in

AUT-QE, but Bnd-~UT-68+ is not contained in 8q6-AUT-QE. It is

contained, though, in the system AUT-QE' of 3.3.12.1.

Closure for AUT-68+ can, e.g., be proved by the methods of the

next section (see 3.4.5) .

3.4. Some easier closure proofs

(for simpler languages)

3.4.1. There are various ways of proving closure for simpler languags,

such as sn-AUT-68 or 66-AUT-QE. First,.one can take the closure proof

of the previous sections and adapt it to the language under considera-

tion. Since 0-reduction, type-inclusion and liberal degree specifica-

tion (in particular for function degree) are responsible for many

technical details in the proof, the simpler languages allow some

obvious simplifications. E.g. if a language lacks n-reduction we can

clearly skip the q-closure part and, besides, we can freely use CR.

Or, if a language has more restricted function degrees (AUT-68 vs.

AUT-QE, non-+-languages vs. +-languages), we have to push SA, LQ, UD

etc. through less degree levels. And, if a language lacks type-inclu-

sion (AUT-68 and Nederpelt's A), we simply have PT * LC), and do not

need to introduce something like cantyp for this purpose.

A second approach is suggested by the fact that our language de-

finition contains some technicalities which are only introduced to

make the closure proof (i.e. this kind of closure proof, for a

complicated language like 60-AUT-QE) possible. In particular, I intend

the use of the restricted Q-rule V.2 instead of the more liberal V . 2 ' ,

i.e. the use of the restricted system type I, instead of the liberal

system type I1 (see sec. 1.2.). Recall that after having proved

closure for I, I and I1 can be proved to be equivalent, and that,

after all, we are more interested in system I1 than in system I.

Now it turns out that, for the simpler languages, the modifica-

tions in the language definition (and the detour via system I) are

superfluous, and that we can give a direct closure proof for a type 11

language definition.

Such direct closure proofs are presented below for all theregular

languages which either lack n-reduction, or have just function degree

3 : 6 (6) -AUT-68 (+ I , 6 (6) -AUT-QE (+) and Bn (6) -AUT-68. A mere sketch is

given for Bn (6) -AUT-68+ (for the definition of AUT-68+ see sec. 3 .3 .12)

3.4.2. So we give these languages by an E-definition with Q-rule

v.2': A Q B , B + C , C C * A Q C

which a priori is stronger than V.2 but later turns out to be

equivalent. The properties in secs. 2.9, 2.10 such as the substitxtim

;heorem, correctness of categories, and the property: a of domain

degree, A of value degree, x E a bA * /- [x: a 1 A simply go through.
As in sec. 3.1., we essentially just need SA for proving closure.

So below we confine ourselves to SA and, in connection with this,

UD for the various languages. We start with the q-less languages.

3.4.3.1. Theorem: UD for n-less languages

Proof: Let [x:aIB Q [x:alC. Then by CR, [x:a]B t [x:alC so a J- 4 and

2 .i :, whence a Q f3 and x E a I-B Q C.

1 2
3.4-3.2. Corollary: SA for B(6)-AUT-QE+, SA for B(6)-AUT-68+.

Proof: Let A E a, h:BIC Q Cx:alD. Then B Q a so A E B.

3 .3 .3 .3 . LetC be defined as in sec. 2.14. We need a lemma:

--;. C GI G 2 CZ:EID * F 2 C;:~IC with l & l = IBI and a t B (i.e.
1 4 3
1

a 1B2, etc.)
1' 2

Proof: Induction on C.

2 3
3 .4 .3 .4 . Corollary: SA for 6 (6) -AUT-QE (+) , SA for 4 i 6) -TAUT-68 (+)

Proof: Let A E a, Cx:BlC E Cx:a]D. Then Cx:BlC E [x:BIF C rx:alD. so

by the previous lemma B Q a and A E B.

3.4.3.5. NOW in order to get S A ~ for B -AUT-QE (+) we need a lemma

again. Notice that the proof of this lemma fails when there are

definitional constants.
2

Lemma:/- A E B, B 2 C~:810, A 2 [~:;Ic, la1 = 1?51* J- B
Proof: Induction on the length of A. The interesting cases are:

- -
(1) '2. z [x :a IA A 2 CX -a IC, xl E al (-A1 E B1, Cxl:allB C

1 1 1' 1 2- 2 1
3 2 [X -B11C; :8 ID. /i2(= IF2/. By 3.4.3.3 a i 4 and B 2

I
2 2 - 1 1 1

IS~:B;IP~ with B2 t 8;. By the ind. hyp. a i ' so a 4 B and - 2 2 2 2
Y - (a ' $ 2 ' t (B ,B) : E l q.e.d.

1 2
(rr .4 = A , A E Y, A, E IZ:YIB~, B ~ U A ~ ~ c B 2 [;:Em.

By 3.4.3.3 again, B [A 1 2 [;:g ' ?D~ with i '. Because B has 1 1 1
degree 1 and A has degree 3, B 2 Cz:B ID with R 1 2 it.

1 1 0 0 0 1

larly, since A has degree 2, if (Al A2 2 C;:~IC then A
- 2 - 2 > - -

1 : I w i t i ~ [A 11 2 i, c UA 1 2 2. BY the ind. hyp. a0 I B~ 0 0 0 1 0 1
5 ; u.4 D 4 B u.3. 1 2 and by CR a I , q.e.d.

0 1 0 1

3
3.4.3.6. Corollary: SA for 6-AUT-QE (+)

Proof: Let.; E a, [x:BIZ E D E [x:alF. Then [x:B]C E [x:BIG Q D wheme

; 2 [z:3'JGr with B 2 Br. By the lemma B C a, so B Q a and A E B.

3.4.3.7. So we have SA for B (6) -AUT-68 (+) and 6-AUT-QE (+) . In order
to tackle the B6-case of AUT-QE we first prove 6-CLPT, which give us

an unessential extension result. Then we can either extend SA directly,

or first extend the lemma 3.4.3.5 to B6-AUT-QE+ and proceed as before.

3.4.4.1 Now consider Bq-AUT-68. We cannot use CRanymore.
2

Theorem: UD for Bq-AUT-68.

Proof: All 2-expressions are of the form [;:GIy or [zIp(?). So if
2 I- A 2 [x:B]B, then A - Cx:alA, with a 2 B. By ind. on Q we can prove:

2 1
2

if b A Q Cx:41B then A 5 Cx:alA with a Q B . This gives UD .
1

3.4.4.2. Corollary: SA for Bq -AUT-68

Proof: Immediate.

3.4.4.3. The same proof works as well for Bq6-AUT-68, as follows.
2

Lemma: I- A) Cx:alA C ~ B , A I B * B 2 Cx:BIBl, a 4 6 . 6 1 6
Proof: Since 2 commutes with 2, [x:a]A1 2 [x:a ']A; < E I R. BY

6 -6
&-advancement (set. II.9.3), B C 2 [x:arr]A;' ~6K~:u'lA' 1' Here the re-

duction C 2 [x:afrlArl does not contain &-reductions so C E .rz: ell? with
1 1

fi 2 a" I ctr 5 a, q.e.d.

3.4.4.4. By the simultaneous substitution theorem we have 6-CLPT

again. Then by induction on Q we can prove:

This gives us U D ~ whence SA, as before.

3.4.5. It is possible to extend these results (for Bq (6)-AUT-68) to

the corresponding +-language Bq(6)-AUT-68+, but it is rather

complicated. We can use a mixture of the methods in 3.4.4.3 and
L

3.4.4.4 and the methods in sec. 3.3. Thus we start with leaving n -

reduction out of consideration, and restricting the appl-rule of
2

degree 2 to: A E a, b B 2 Cx:PIC, a 2 B * k{A JB.
Later on these two restrictions prove to be immaterial. For the

2 2
restricted system SA is immediate and 6 -closure is guaranteed. Then

2 2
we need&-B -advancement and the fact that 6B -reduction commutes

with 2 , and get:

2 t- F Q CX:BIB + F 2 CX:~IA, a Q B.
6 B

2 3
This yields UD , and SA and we are finished.

178

V.4. The equ

d e f i n i t

i va

i o n

lence o f the E - d e f i n i t i o n w i t h the a l g o r i t h m i c

4.1. Introduction

4.1.1. Since in the E-definition the correctness of expressions and

formulas (relative to a correct book and a correct context) was

given by an ordinary inductive definition, the correctness relation

is a priori just recursively enumerable and not necessarily recursive

i.e. effectively decidable.

In this section V.4, though, we prove the decidability and

discuss some related topics. First we give some introductory considers

tions leading to a sketch ofadecisionprocedure (secs. 4.1.3-4.1.6).

The whole verification process is, in principle, reduced to the

verification of Q-formulas, for which the decidability follows from

the normalization property N and the Church-Rosser property

(compare sec. I1.5.4).We can use normalization freely because we

proved N for a very large system in IV.4.5, but BTI-CR we do not know

yet. Therefore we assume throughout V.4 property CR for the co~~e,?t

expressions, for the proof of which we refer to Ch. VI.

4.1.2. Then (sec. 4.2.2) we present the actual algorithmic definition,

to be adapted for the various languages by a suitable choice of a re- -
duction relation, of a typing function cantyp and of a domain function

dom for the computation of domains (sec. 4.2.3., 4.2.4).

The equivalence proof in sec. 4.3 is organized as sketched in

sec. 1.2 and 1.6, with the following effects:

(1) the strengtheningrule can be skipped from the E-definition

(2) the E-systems are decidable

(3) the algorithmic system satisfies the nice properties of the E-
system: closure etc.

The final sections concern the verification of Automath languages

in practice. This is a matter completely different from the

theoretical decision procedure discussed before. Particularly some

remarks are mac?eon suitable reduction strategies for deciding Q-

formulas.

4.1.3. Deciding Q and C

No matter whether a system has Q-rule V.2 or 0-rule V.2', there holds

Proof: a. By induction on Q, using CR.
c. This is precisely rule V.2' so either it holds by definition

or it follows from CL. 0

So, by N (as in 11.5.4) , for correct A and B, A Q B is decidable.
In ~(q)-AUT-QE all I-expressions are of the form CZ:EIT.

We have
1 I- A C r - !-'A

and (sec. 3.2.3.1).

1 'A C h:B1B1 <* A Cr:alA 1 ' a Q 6 and 3; E o t A 1 C Bl.

So, for correct 1-expressions A and B, A C B is decidable (use induc-

tion on the length of B). Since on non-1-expressions C is just 0,

this is true for A and B of other degrees as well.

Let /- stand for correctness in B(r7)-AUT-QE, 1- for some larger
- +

1
system, like Bn6-AUT-QE+ or 6q&-AUT-QE* and let denote the B &-

normal form. By UE (secs. 3.. 3.2, 3.3.3) we have.

b+A E B t A C+Bl CA- C B-

So, in the larger systems, too, A E B is decidable, for correct A and
- - u.

4.1.4. Deciding E-formulas

In principle, E-formulas A E B, for correct A and B are going to be

decided by the equivalence

A E B - typ(A) C B

which reduces the E-formula to a C-formula.

However, there is some trouble with t yp . First, typ can lead us

out of the correct expressions of the language we consider. There

are two ways to solve this problem: first one can introduce for each

language a specific modified type-function catltyp (for: ca?zonicaZ

type) which does not suffer from this defect. Then we get what we

want (as in 3.2.4 for AUT-QE)

A E B -]-A, tB, cantyp(A) C B

Alternatively, one can use the fact that the new, possibly in-

correct expressions created by typ in general are correct in some

larger system (e.g. the corresponding +-system). Then one can decide

the E-formula in the larger system:

where I+ stands for correctness in the larger system.
If we make sure that t+cantyp(A) Q typ(A) then, by conservativi-

ty, the two approaches are clearly equivalent.

A second difficulty with typ occurs exclusively in AUT-QE' and
2 2

AUT-QE*. These languages have the rule: t B , E D, B >6 C *
I B E D l and for the new category D of B the property t~p(B) C D (even

if typ(B) is correct) is not necessarily true anymore.

This problem can be solved by taking a type-function which first
2 2

eliminates all the 6 -constants. For a 6 -constant d we have then
2

cantyp (d (2)) : cantyp (6 -nf (d (f l))) .

4.1.5. Deciding correctness of expressions

All correct expressions relative to a correct B and a correct 5 have

to be 8; c-expressions, i.e. the constants have to be in 8 and the

free variables have to be in 5. The verification of compound

expressions can roughly be described as: verify the subexpressions,

plus their possible type- and degree-restrictions. E.g. for abstr-

expressions use the equivalence

[X : a]A a, ci of domain degree, x E a] - A , A of value degree.

For the subexpressions B in c;E) there are type-restrictions
prescribed in the scheme of c , viz. if the context of the scheme is

y E 3 then

l c (8) - B E ?[ED (i.e. B1 E B l r B2 E B2IB11 etc.)

To verify the right hand-side first verify CB Since bel
1'

(it occurs in B) , we can decide 3 E B1 as indicated above. Then
1

check I-B2. Since B 1 E B1 and y l E til I-B2 we know kB2[BlD SO we can

tackle the next E-formula etc.

4.1.6. Verification of application expressions

Now we discuss the type-restriction implied in the correctness

of JAB. We restrict ourselves to AUT-68 and AUT-QE here.

Define a to be a domain of B if

(i) B E Cx:alC for some C, or (ii) B E C E Cx:alD for some C, D.

Then, in view of the formation rules for appl-expressions, we

have the equivalence:

b{A)B * kB, B has a domain a, A E a

The arbitrariness w.r.t. the domain can be somewhat reduced by

another property of uniqueness of domains, viz.

if a and a are domains of B then a Q a
1 2 1 2

(which will be proved below, 4.2.4.2). This allows us to modify the

equivalence:

C{A)B L B , B has a domain, and \d (P has a domain a *A E c$
a

i.e. we need just one domain to check the type-restriction.

If one fixes a particular procedure for the computation of some

domain of an expression, one can define a domain function dom

(specific for each language). E.g. for AUT-68 one might inductively

define

62- nf (cantyp (B)) - Cx:alC * dom (B) - a.
NOW define an extended reduction relation +, as follows:

(i A > B * A - t B

(ii) A + typ (A)

(iii) + is transitive.

Then, an alternative way to compute a domain of an expression B,

is to perform a more or less specified search through the +-reduction

tree of B until one possibly encounters an abstraction expression,

say [x:alC; if so, this a is some domain of B. Certain restrictions

(specific for each language) have to be imposed upon the search in

order to guarantee that not too many expressions get a domain in this

way.

Just like property N (at least 6 L - ~) is crucial in the definition

of dom above, the well-foundedness (i.e. property SN) of -t is needed

for the termination of the second procedure. This will indeed be

proved below (4.4.11) .
As a whole, the situation with the two possible ways of finding

a domain can be very well compared with the two ways of deciding a

Q-formula: either one can compare normal forms (use N) or one can
.search for a common reduct in the respective reduction trees (use SN)

4.2. The algorithmic definition

4.2.1. Now we give, guided by the considerations in the preceding

sections, the algorithmic definition of correctness. Apart from the

compatibility condition of def and typ (see below), the book-and-

context part of the definition is as usual (see IV.3) and will be

omitted. So we just define the correctness of expressions and

formulas (new notations k E , qa and Cat with the subscript for
a' a

"algorithmic") in terms of reduction, dom and cantyp (sec. 4.2). Later

we discuss the choice of cantyp and dom for the various regular

languages (4.2.3, 4.2.4).

4.2.2.1. Let 8; 5 k . The conventions for omitting 8 and 5 in
a

8; 5 k A are as in v.2.1. . Degrees are indicated as superscripts and
a

defined as usual. The compatibility condition reads: def(d) Ea typ(d).

4.2.2.2. Formula part of the definition

Let A and B be B ; 5-expressions (so not necessarily correct). We

with the straight forward extension to strings: A qa 8.
(ii) A C B , if degree(l3) =- 1 : -

1 1 a 1 1
B 6 -nf(n) s C;:~IA~, B a -nf(B) a CX:BIT, a Q 8. a

(iii) A C B, if degree(B) # 1 : * A Qa B
a

(iv) A E B : ++ cantyp(A) C a B
a

with a straightforward extension to strings A E B.
a

4.2.2.3. Expression part of the definition

(ii) : * x occurs in 5

(iii) Cac;B1 ,... , B) : * kaBlr..., k a Bm , C occurs in B and,
m

if the scheme of c has context y E E then B E E 15j. a
(iv) A E B : - cantyp (A) Ca B

a
with a straightforward extension to strings 2 E B

a

4.2.2.3. Expression part of the definition

(ii) !- X: * x occurs in 5
a

(iii) 1 C (B1 , .. . ,Bm) :- a B1 , .. . , I- B c occurs in 8 and, if
a m r -

the scheme of c has context y E ? then B Ea BEBU.
(iv) 5 l-a[~:olA :- 5 /-) and E l x E u CA and A has value degree.

(v) ka{A}B :r b: A , baB, B has function degree, A E d~m(B)
a

4.2.3. The choice of cantyp

4.2.3.1. For our purposes (see 4.1.4) we require that, for correct A,

cantyp(A) is as well correct, is a category of A, i.e.A E cantyp(A),
and is minimal with respect ,to C: A E B * cantyp (A) C B.

This leaves us still a lot of freedom for our choice of cantyp:

e.g., as long as different definitions of cantyp yield definitionally
equal results, they are equally good to us. In some languages ~ Y P
itself meets the requirements mentioned above, viz. Bq-AUT-QE+ and

Nederpelt's A . In most languages, however, typ causes some problems,

e.g. there are correct expressicns with incorrect ~ Y P ; then we choose

cantyp to be some suitable modification of typ.

Below we give a survey of the difficulties with typ, and how

these can be solved by cantyp.

4.2.3.2. We start with the languages where the trouble with typ is

due to mere degree restrictions.

2
(1) 1311-AUT-68: if l- [x : a l B then its typ is not correct in AUT-68, but

is a typical AUT-QE-expression. Then cantyp of this exyession has to

be T . lurther, typ ((A }B) where degree (B) = 3, is incorrect in AUT-68

but correct in AUT-68+ (so, see 3.3.11.2, in AUT-QE) . In cantyp ((A }B)

we have to remove the a9plicator (A) , so we can define cantyp(IA1B) 5

CUA], where cantyp(B) Z [x:a]C. This is the same idea as in 3.2.4, but

now for 3 of degree 3.

[2) .-.:-1-AUT-QE and ;?,rl-AUT-68+: Application of typ to {A }B of degree 2

yields AUT-QE+ expressions. For AUT-68+ cantyp of these expressions

il~s to be T. For AUT-QC .we remove { A) from cantyp, by @-reduction as

in 3.2.4 (and in (1)).

4.2.3.3 Now we add definitional constants. This gives rise to the
2

interference of 6 -constants and type-inclusion, discussed before in

3.3.10-3.3.12.

(3) 606-AUT-68: Consider the example of 3.3.10 which is also correct

in AUT-68. There occurs an {A $3 of.degree 3 such that typ({A)E) does

not belong to AUT-68 (of course not, as in (I)), does not even belong

to AUT-QE and AUT-QE+, but does belong to AUT-68+, AUT-QE' (3.3.12.1)

and AUT-QE* (3.3.11). Again, we must remove the applicator in Cantyp,

but we cannot be certain anymore that cantyp(B) is an abstr-expression.
2

Therefore we define cantyp(1A D) Z CUA3, where 6 -nf (cantyp(B1) 5

Cz:alC.

(4) Bq6-AUT-QE(+) : The same expression typ((A)B) of (3) is again in-

correct here. Now the applicator is allowed in cantyp, but we need the
2
6 -reduction in order to remove the effect of the type-inclusion:

2 cantyp ({A 13) - {A)(ti -nf (cantyp(B))) .
(5) Bq6-AUT-68+: This language has 2-expressions {A)B (see 3.3.11.2),

the typ of which is incorrect in all the languages, and even not

normable, e.g. {Ah. The cantyp of such CAIB must be T.

(6) Bq6-QUT-QE' and Bq6-AUT-QE*: Here we have the same {A $3 of degree

2 of AUT-68+. Besides, the typ of a degree 2 definitional const-ex-

pression (even if typ is correct) need not be a minimal category
2

anymore. Therefore we define cantyp (J (2)) : ~Cantyp (6 -nf (d (2))) . Then
for the cantyp of (A }B of degree 2 we can simply take (A kantyp (B) in

1
AUT-QE*, whereas in AUT-QE' we must take CUA] where 6 -nf(cantyp(F)) :

Cz:alC.

4.2.3.4. Resuming: we have three types of difficulties, viz.

(i) In AUT-68 (+) the only 2-expression is T , so the typ of 2-ex-
pressions can be incorrect. Remedy: define cantyp to be T.

(ii) In non-+-languages (AUT-68, AUT-QE and AUT-QE') the typ of (A 13

of minimal function degree (say: i) is incorrect. Remedy: create
i-1

an abstr. expression by taking the (86) -normal form of
i-1

cantyp(B) and remove (A) by another $ -reduction.

2
(iii) In languages with 6 -constants and type-inclusion typ produces

incorrect appl-2-expressions (AUT-QE(+)) or appl-1-expressions

(AUT-QE' and AUT-QE*). Besides, in AUT-QE' and AUT-QE* the
2 typ of a 6 -const-expression is not necessarily a minimal

2
category. Remedy: remove the 6 -constants after (AUT-QE (+)) or

before (AUT-QE' and AUT-QE*) taking cantyp.

4.2.3.5. In view of the arbitrariness of cantyp (4.2.3.1) we need

only three different definitions of cantyp, one for the AUT-68-

family, one for the restricted AUT-QE languages AUT-QE and AUT-QE+,

and one for the liberal AUT-QE branch (AUT-QE' and AUT-QE*). Since

the above list of difficulties is exhaustive, for the rest (e.g. for

variables and const-expressions) the definition of cantyp differs

only as regardsthe following clauses:

for AUT-68 and AUT-68+

degree (B) = 2 - cantyp (B) : 7 .r
2 2

degree (B) = 3, B 6 -nf (cantyp(B)) - Cx:aIC * cantyp ((A }B) ::

for AUT-QE and AUT-QE+
1 1

degree (B) = 2, B 6 -nf (cantyp (B)) - [x:alC * cantyp ((A IB) :-

for AUT-QE' and AUT-QE*
2

degree (d) = 2 * cantyp (d (z)) : 3 cantyp (6 -nf (d (2)))
1 1

degree@) = 2, 6 6 -nf(cantyp(B)) r Cx:alC * cantyp
CUA 1

4.2.3.6. That the proposed definitions of cantyp actually satisfy the

requirements of 4.2.3.1 can be proved directly for the E-systems using

the results (CLPT, LQ, UE etc.) from section 3, but will become clear

as well in the course of the equivalence proof, below.

4.2.4. The choice of dom

4.2.4.1. We start with a recapitulation of the appl-rules for the

various languages. F i r s t , the appl-rules of AUT-68 ((1) A E a ,

3 E [x:aIC * /-{A IB) and of AUT-QE ((2) A E a , B E C E [x:a]D *
I- {;l)3) a re simply va l id i n a l l the languages (though ru l e (2) i s

i vacuously so i n AUT-68 (+)) . Then, addi t iona l ly , r u l e (3)
i (.A E a , !- 3 Q [X : a IC * I- {A IB) ; t h i s r u l e is with i = minimal value

degree necessary fo r defining the +-languages AUT-68+ (i = 2) , AUT-QE+
i

and AUT-QE* (i = l) . For languages s a t i s fy ing LQ , where i is not the
i

minimal value degree, r u l e (3) is a derived ru le . Indeed, fo r such i
i 3

i s [x:alC E [x:alD so by L Q ~ B E [z :cr lD. Hence, r u l e (3) is
2 2

anyhow va l id , r u l e (3) is va l id i n the AUT-QE languages without 6 -
1 constants , f u r the r i n AUT-68+, AUT-QE' and AUT-QE*, and ru l e (3) i s

va l id i n AUT-68(+)(vacuously) , AUT-QE+ and AUT-QE*. Alternat ively
i 2

formulated, r u l e (3) i s always va l id but for : r u l e (3) i n AUT-68
2 1

and AUT-QE(+) with 6 -constants, and: r u l e (3) i n AUT-QE and AUT-QE'.

4.2.4.2. So, f o r ce r t a in languages we must extend the de f in i t i on of

domain from 4.1.6 with the clause : (iii) B Q [x: alC =, a is a domain

of 2. The s e t of domains of an expression is c l ea r ly closed under 0:

a a domain of B, a Q a2 * a2 a domain of B.
1 1

The converse of t h i s is the announced uniqueness property, which we

prove here f o r the enlarged notion of domain:

a and a both domains of B * a l Q a2.
1 2

Proof: From 3.2.3.2, 3.2.4.3, 3.2.5.7 we r e c a l l the propert ies of ?,T-

AUT-QE

1 l- Cx:a11C O [x:a I D * a
1

2 1 Q a2 (t h i s includes U D)

2 k Cx:cc1lC E [x:a 2 I D * a 1 Q a2 (EUD')
2 c C X : ~ ~ I C Q C X : ~ ~ I D e a 1 Q a2 (uD')

3
Now l e t !- [x:a 1 I C E [x:a 2 ID. Then a l so /-3[x:a1]C E [x:a

7
UT' we ge t [x:u21D Q [i : a l l F and by UD-: a l Q a2: So we have EUD- as -

3
well. Further k [x:al1C Q [x:a21D. Then a l so C ' C X : ~ 1 I C E [i : u 1 IF

3
and by LQ [s:a21D E [x:ol IF. SO by E U D ~ : ol Q a?. This amounts t o
-,

UD'. These r e s u l t s can a l l be extended t o the extensions of Bq-
1

AUT-QE by t r ans l a t i on (e.g. 6 6-reduction) i n t o @n-AUT-QE, a s follows:

l e t 1-+[x:u]C E/O [x:a 15, where I+ stands fo r correctness i n the
1 2 -

larger system. BY UE, 1 [x : a ; l ~ - E / O [x :a ; l~- , cor rec t i n Bn-AUT-QE,

- -
so by one of our (E)UD results: a Q al Q a2 Q a2. Of course, in AUT- 1
63 (+) these (E) UD results are also valid.

Now we treat the various possibilities for a and a to be a
1 2

domain of B.

(1) Cx:allC Q B Q Cx:u21d. use UD.
2

(2) [x:allC Q BE C X : ~ ID. ~f necessary, translate (e.9. by 6 - 2
reduction) into a language satisfying LQ: Cx:a-Ic- Q B- E

1
[x:~;ID-. Then by LQ we get [x:a;IC- E Cx:a;l~-, and can use EUD.

(3) Cx:allC Q B E D E Cx:a21F. Use LQ: Cx:allC E D E [x:a IF.
3

2
But also [x:a IC E Cx:allG and by UT : [x:allG Q D we arrive in

1
case (2) again.

(4) B E [x:alIC, B E [x:a21D. Then [x:a ICO [x:a ID so a Q a 2 . 1 2 1
3

(5) B E [x:allC, B E D E [x:a21F. By UT : [x:a 1C Q D we are again 1
in case (2) .

(6) B E C E [x:allDr B E F E [x:a21G. By U T ~ we get C Q F. Translate
-

into a language satisfying LO. This gives C Q F- E [Z:CY;]G-
and by LQ C- E CX:~;IG-. It also gives C E CX:~;ID-, and case

(4) applies.

4.2.4.3. It would be nice if the notation of domain of an ex~ression

was preserved under Q: B Q C, a a domain of B * a a domain of C. This
is indeed true for languages satisfying LQr but not for the others,
viz. Bnb-AUT-QE and Bn6-AuT-QE+. By CLPT, there holds

B 2 C, a a domain of B * a a domain of C

i.e. the notion of domain is preserved under 2 . So the converse direc-
L tion (C r B, in particular with 6 -reduction), fails in Bn6-AUT-QE(+).

For all the languages we have

B Q C, a a domain of B * a a domain of C-

2
where C- is the 6 -normal form of B.

-
Proof: BY the translation wearrive in a language satisfying LQ, so

from B- Q C-, a a domain of B- we get the desired result.
As a corollary of this, we get

B Q C, a a domain of B, C has a domain * a domain of C.

4.2.4.4. In view of the above remarks we still have a lot of freedom

in defining a domain function dom which picks some expression from

the set of domains. Dom is going to be defined in terms of cantyp and,
i

just like cantyp, in terms of 62-reduction and (86) -reduction, where

i is the minimal value degree. 1.e. by application of cantyp and these

reductions we arrive at an expression which we call the domain normaz

j b m , dnf. ~i the dnf is an abstr-expression then we read off the

domain dom from it:

Otherwise, dom is simply not defined.

The rules for computing dnf are for the non-+-languages:

2 2
(1) AUT-68: dnf (B) : B 6 -cantyp (B)

(2) AUT-QE (') : (i) degree (B) = 3 * dnf (B) :
2

8'6'-nf (cantyp(& -nf (cantyp(B1) 1) .
1 1

(ii) degree (B) = 2 =+ dnf (B) : - B 6 -nf (cantyp (B))

2 1
The 6 of AUT-68 and the B of AUT-QE(') were only added in order

to cover the corresponding +-languages too. Now, we can deal with the

+-languages by simply adding a rule for B of minimal value degree:
i

degree(B) = i, i is minimal value degree * dnf(i3) :- (86) -nf (B).
This rule gives us AUT-68+ from AUT-68, AUT-QE+ from AUT-QE and

AUT-QE* from AUT-QE ' .

4.2.4.5. That dom(B), as defined above, gives us a domain if R has

one, and gives us nothing otherwise, can be proved directly, but will

also become clear in the course of the equivalence proof.

4.3. The equivalence proof

4.3.1. As announced before, the equivalence of the algorithmic defini-

tion with the E-definition will also prove the superfluity of the

strengthening rule. To this end we use, along with the algorithmic

definition system 111, two distinct versions of the E-definition,

system I and system 11. Here, system I is the system of sec. 2: it

has the strengthening rule and it has Q-rule V.2. System 11, however,

lacks the strengthening rule and has Q-rule V.2' instead.

By CL for system I, we have: str., V.2 -(str., V.2') =+ V.2' , SO

system I1 is c l e a r l y included i n system I.

Below we denote correctness i n I , I1 and I11 respec t ive ly by { ,
t o and k; hence t h e inc lus ion of I1 i n I becomes: I-,* I - .

Now t h e equivalence o f , t h e t h r e e systems is shown by addi t ional ly

proving =b t o (sec . 4.3.2) and k * la (sec . 4 .3 .3) .
a

4.3.2. The j- * t -par t .
a 0

4.3.2.1. We f i r s t formulate t h e theorem, which we want t o prove.
1 i+l

Theorem: I f B k a resp. 8; 5 Fa resp. B ; E k aA resp. B ; S k A then B ?-
a

1 i + l
resp. 8 ; 5 oA resp. B ;c A E cantyp (A) . So t h e theorem implies

t h a t cantyp i s well-defined on t h e non-1-expressionsofthealgorithmic

d e f i n i t i o n . The proof of t h e theorem i s by induct ion on ?- and
a

depends of course on dom and cantyp, i . e . Qn t h e language we consider.

However, l a r g e p a r t s of t h e proof can be done f o r a l l o r some of the

languages toge ther .

4.3.2.2. Some p r o p e r t i e s

(1) k o A r LOBl A Qa B * koA Q B
Proof: t h i s i s simply r u l e V.2'.

(2) k $ 4 I o~161-nf (A) Q A

Proof: By t h e simultaneous subst . theorem 6-CLPT holds. Further SA 1

1
can be-proved a s i n 3.3.6.1-3.3.8.2, o r holdsvacuously so B -CL. By

-

1 1 66-CR and B6-N t h e 8 6 -nf i s well-defined.

(3) Let koA, koB, A E a B. Then F O A L B
1 1

proof: For 8 of degree 1 , by (2) b oA Q B 6 -nf (A) S [~ : ~ I A ~ C I;:&
1 1

4 [::BIT 2 f3 6 - n f (B) Q B so 1- A 1 B. I f degree(B)# 1 t h i s i s (1)
0

Proof: apply (3) .
(5) The -system s a t i s f i e s CR

0
Proof: =b k and we assumed CR f o r k .
(6) Strengthening f o r Q:

i' t$ Q Br t 1 sub E r k o A r El kOB * El kOA Q B
Proof: By ind. on Q we g e t A + B so koA Q B.

4.3.2.3. Proof of the theorem, part 1

We only need to give the inductionstep for those clauses'in the

definition of f which differ from the corresponding clauses in the
a

definition of f We start with the easy cases.
0'

(1) the compatibility condition

let 5*d(G) :=A * d(;) E B be a correct scheme according to the

algorithmic definition, i. e. 5 FaA, 5 kaB and A .E B. By the ind.
a

hyp. 5 kOA E cantyp(A1, LOB, SO by (4) above 5 k0A E B, q.e.d.

(2) expressions (easy cases)

(i) T: trivial

(ii) variables: let 5 b then by the ind. hyp. 5 to, so for x
a

in 5, 5 1 E typ (x) E cantyp (x) .
(iii) const-expressions, except 62-const-expressions in AUT-QE'

and AUT-QE*: let the scheme of c be in B with context

y EB. Let t B
a 1'""

1 I! and E BUBO. By the ind. hyp.
a m a

Cofi, E cantyp (B1) , I- oB2 E cantyp(B2) etc. Further y E 6 I- a

s o y E B C 0 so ~ O B l l y1 E B 1 f O B Z etc. Sok B E B1 and
0 1

by the subst. theorem 6 (B 1, so 1 0B2 E B2[IBlD etc. up
0 2 1

to 1 E E B~IBR. m e conclusion ii 0u (El (E typ (c) [E D I 0 m -
cantyp (c (B) 1) .

2
(iv) abstr-expressions: let 5 1 a and 5, x E a 1 aA, A of value

a 2
degree. By the ind. hyp. 5kOa and 5, x E akoA(E cantyp(A)),
For A of degree 2 in AUT-68 (+) this is 5 , x E a oA E T

which yields 5 O[x:aIA E T - cantyp ([x:alA) . Otherwise,
we get 5 t OCx:alA (E Cz:alcantyp (A) cantyp ([x:a]A)) .

4.3.2.4. Some more properties

Before discussing the remaining clauses we prove some more
1 1

properties of f First something aboutr. Of course, the B 6 -nf's
0'

of 1-expressions are of the form [;:;IT. As in 3.3.6-3.3.8 (leave n 1

out of consideration, restrict the appl-1-rule) we can prove, even

without using CR

and, by induction on C,

1 1 1 - - - - 1 1
koA C B s 6 6 -nf (A) i Cx:aICy:ylr, 8 6 -nf (B) z I !- oi Q 8.

1 1 1
so we get: FOA C Cx:BIB1 - 6 6 -nf(A) : Ix:a]A ,. 1 ' boa Q 8, x E a kAICEl

Proof: E.g. in AUT-68(+) there is nothing to prove. Anyhow, the cases
2

A Z T , A a variable or A an easy const-expression (i . e . not a 6 -const-

expression in AUT-QE' or AUT-QE*) are immediate. For the rest we

proceed by induction on (1) the length of €i2-reduction tree of A. (2)

the length of A.
2

Abstraction expressions are easy. If A is a 6 -const-expression
2 2

in AuT-QE' or AUT-QE*, by 6-CLPT and the first ind. hyp. 06 -nf (A) E -
cantyp(6'-nf (A)) - cantyp (A) (C B) . Then by the extra type modification

2
rule of these languages we get boA E cantyp(A) (C B), q.e.d. Now let

1 1
A = {A }A we have 1- A E a, A E cantyp(A2) C [x:aIC. So B 6 -nf

1 2' 0 1 0 2
(cantyp(A2)) 5 [x:alIC1 with a q a, x E al PC1 C C. We want 1
k oA E cantyp(A) ? C1[AID (C B) . If the formula A E B in the assumption

comes directly from CUA J/ C B we get C [A 1 C CIAl C B 4.e.d.. Other-
1 1 1

wise A L2 Dl 1 OD E B (i. e. the extra rule of AUT-QE ' and BUT-OE* has
6 2 2

been used). This D 2 {D ID with A
1 2

"6 Dl' A 2 2 6 D 2 1 koD1 " 1

and kOD2 E cantyp (D2) Q p16'-nf (cantyp(02) z Ix:a21C2 C Cx:o 1C
1 1

(apply one of the ind. hypotheses to D2), and by the first ind. hyp.

!-,D E cantyp(D) z C2UD11 Q C2[lA1D C CIBA1!I. So, by the type mod. rule,

koA E CIIIAID. g.e.d.

4.3.2.5. Proof of the theorem, part 2

Now we prove the induction step for the two remaining cases.

2
(1) 6 -const-expressions in AUT-QE' or AUT-QE*

2
As in 4.3.2.3. (iii) we can get F d(B) from padtB). Then by the

0
lemma t- od (@ E cantyp (d (8)) .

(2) appl-expressions
3

Let 1- A, k aB, B of function degree, A Ea dom (B) . By the ind.
a

hyp. ~2 E cantyp (A) + dom (B) , b B~ (E cantyp (B) . For the
computation of cantyp and dom in the various languages see

4.2.3.5 and 4.2.4.4 respectively.
3 2 2

(i) AuT-68 (+) , I- B: B 6 -nf (cantyp (B)) - Cx:aIC, dom(B) - a.
0

By 6-CLPT k oB E [x:a]C and k SO A E a and
0

u
2 2 2 2

(ii) AUT-68+, 1 3 B 6 -nf (B) E [x:a]C. We have SA (s e e e.g.
0

cantyp ({A 1B)
1 1 2

(iii) AUT-QE (+I , 1 3 ~ : B 6 - n f (cantyp (6 -nf (cantyp (B)))) z
0

[x:aIC, dom(B) .: a . By 6-CL and t h e lemma i n 4.3.2.4
2 t oB E 6 -nf (cantyp (B) E Cx:alC SO I- OEA IB E

2
EA) (6 - n f (cantyp (B))) - cantyp (CAIB) .

3
(i v) AUT-QE' and AUT-QE*, 1 B: A s (iii), but from

2
0

1- ,ti - n f (cantyp (B)) E Cx:alC we i n f e r now !- ocantyp (B) E

(v) AUT-QE, c L ~ : Like (i) but decrease t h e degrees by 1
0

(v i) AUT-QE+ and AUT-QE*, : l i k e (ii) , but decrease the

degrees by 1.

This f i n i s h e s t h e proof of t h e theorem i n 4.3.2.1.

4.3.3. The k * La-par t

4.3.3.1. We formulate our theorem.

Theorem: I f 8 1 resp. B ; 5 k resp. 8;5 +A then 8 la resp. B ; < la resp.

8 ; t 1 A . Fur the r , i f 8 ; ~ !-A E B then A E B.
a a
The proof w i l l be by induct ion on 1. We j u s t d i scuss AUT-QE,

because wi th AUT-68 everything is completely s i m i l a r o r somewhat

e a s i e r .

4.3.3.2. F i r s t , we need some p r o p e r t i e s

(1) Strengthening holds i n t h e b -system
a

Proof: n o t i c e t h a t t h e d e f i n i t i o n of cantyp only r e f e r s t o t h e

r e l e v a n t p a r t s of the c c n t e x t , i . e . t o assumptiors concerning a-y

occurring f r e e v a r i a b l e s , and t h a t t h e o ther not ions i n t h e

d e f i n i t i o n of cor rec tness do not r e f e r t o t h e context a t a l l .

Hence, s t rengthening can be proved by a simple induct ion on l a -

(2 j on P C T ~ (preservat ion of cantyp) : I n 3.2.5, we proved Bq-outside-
2 2 PCT f o r Bq-AUT-QE. However 6-outside-PCT i s wrong, so f c r AUT-
1 1

2 2
QE(+) with 6 -constants we can only get re6tricted PCT :

2 2
if 1. A, A 2 B not using 6 -reduetian then cantyp (A) Q cantyp (B)

In order to prove this, start with 1 L~ E a * F A E cantyp iA) II a
(e.g. as in 4.3.2.4). Then, as in 3.2.5, one can prove:
2 2 1 A, A 2 B not by 6 -reduction =s cantyp(A1 Q cantyp(B).

2 2
Restricted PCT gives us restricted LQ for AUT-QE (+) :

2
if b A, B E C, A Q B without using 62-reduction then A E C

Z
(3) However, in AUT-QE' and AUT-QE*, full PCT is still valid and

L
hence LQ holds (this was already implicitly claimed in

3.3.11.4).

Proof: In AUT-QE' and AUT-QE* we have

2 2
6 -nf (cantyp (A) a cantyp (6 -nf (A))

2 2 2
So, let A 2 B. Then 6 -nf (A)> 6 -nfl,B) without using 6 -reduction,

2 2
so by restricted PCT we have cantyp(6 -nf (B)).

4.3.3.3. Proof of the theorem

Note that the F A E B * A Ea B part of the theorem, for A of
2

degree 2 follows from A E B * F A E cantyp (A) C B (in 4.3.3.2 (2)

and 4.3.3.2.(4)). The proof is by induction on k. We first discuss
some of the clauses for the formation of expressions:

2
(i) abstr-expressions: let b a, x E a FA1 (E B1). By the ind. hyp.

2
/-,a, x E a kaAl, (A1 Ea B1, i.e. cantyp(Al) Ca B1), SO
!--aCx:alA1, (cantyp(Cx:alA1) E Cx:alcantyp(Al) E [x:a]B 1 ' SO

Cx:alA E Cx:alB) , q.e.d.
1 a 1

(ii) const-expressions: let y E be the context of the scheme of c,

I-B E EuBn. BY the ind. hyp. kaEl Ea E @ D , so Fae(B). I£ c is
2

not a 6 -constant i6 AUT-QE' or AUT-QE* then ~antyp(c(B)) Z

typ ;c) UB] so certainly cantyp (c (k C typ (c i 6 @ , q.e.d. Other-
a

wise use the remark above.
3

(iii) 2-appl-expressions: let I- A E a, 1-B E ~x:~Ic. By ind. hyp.

, 3.
r ..-., Ca3, cantyp(A1 + a, cantyp(B) a Cx:aIC.

1;l
SO 5 -nf(cantyp(B)) E [x:a'ICr, dom(B) - a' J- a. BY CR,

Cr; 15 Ea CIIAD, q.e.d.
3

(iv) 3-appl-expressions: let 1 A E a, FC E Cx:alD. By the ind. hyp
2 2

!- 2, cantyp (A) r a, bag, cantyp (B) r C. BY 6 -CLPT, 1- 6 -nf (C)
E [x:alD. BY the 1 - 3 kg-part, COB E cantyp(B) so !-B E

cantyp (B) , so l- cantyp (8) so l- b2-nf (cantyp (B)) . Further
2 2 2
6 -nf (cantyp(B)) J- 6 -nf (C) without using 6 -reduction, so by

restricted LQ, 1 6L-nf (cantyp (B)) E Cx:crlD and cantyp
2 1 1 ?

(6 -nf (cantyp(B))~ [Ia Cx:alD. 1.e. 6 6 -nf (canty~(6 -nf !cantyp(E))))=
Cx:ar ID', a + a' 5 dom (B) . Hence ba{A IB. Further {A kantyp (E) i.

{A 1.: a'nd {A 1(6~-nf (cantyp(B)) 4 {A ic so anyhow cantyp(iA B) 4

{A E, q.e.d. Finally we discuss the type modification rules and

the strengthening rule.

(v) Type modification: let /-A E B, B c C. By the ind. hyp. kaA,

A E B, i.e. cantyp(A) C B and by 4.3.3.2. (4) B E a C. Use CR
a a

to get A E C q.e.d.
a

(vi) Strengthening : Use 4.3.3.2. (1) .
This finishes the proof of the theorem 3 l- and the proof

a
of the equivalence of the three systems I- , 1 0, b a. SO we do
not distinguish between k , LO and Ta any more and have

and C {A)B 3 cantyp (A) J- dom (B) .

4.4. The actual verification

4.4.1. Before discussing the actud verification we make some con-

cluding remarks on the formal decidability of the Automath languages.

First, on the weZz-definechess of the decision algorithm suggested

by the definition of l- in sec. 4.2, in particular the well-definedness
a

of cantyp and dom. Cantyp and dom are partial functions, so by well-

definedness we understand: (1) it is decidable whether an expression

has a cantyp (or a dom) (2) if it has one, this is effectively

computable. All this is already implicitly included in the equivalence

proof. E.g. the ta 4 !- -part states that cantyp on the correct non- 0

1-expressions delivers a correct expression again. In the course of

the decision process cantyp and dom are required of correct expressions

only. E.g. before settling cantyp(A) Q B (in the verification of /! E) we

first check ?-A, and before settling A E dom(B) (in the verification

of {AB) we first check F B . The definitions of cantypanddom just
i

computation of degrees, and computation of B 6-normal forms where i
i

is the minimal value degree. Notice that B -.N in this case, and in

fact for all i < 3, can even be proved without using normability.

4.4.2. Our second remark concerns the normability. Below we make sure

the normability result of sec. IV.4.4., as we claimed already several

times, actually covers the regular languages, viz. by proving that

the system of sec. IV.4.5 contains our most liberal language AUT-QE*.

Let us abbreviate the system of sec. IV.4.5 by system IV. Theorem:

System IV contains AUT-QE*.

Proof: This system avoids Q-formulas as indicated in 2.12. For the

rest it is like our system k with type-modification rule V.2' o r
(sec. 2.11) and without strengthening, but of course with much weaker

degree restrictions. The expression formation rules are the familiar

rules of AUT-68 and AUT-QE, except perhaps for the appl-rules which

are most similar to the rules in 3.3.11 for the first version of AUT-

QE*. We only consider the 1-appl-expressions. Let (in AUT-QE*)
1 1

.-I E a, /- B Q Cx:alC. By 6 6-reduction we get B t [x:arICr which
1

Y Q a'. The substitution theorem and SA' (and hence f3 6-CL) are as

usual valid in system IV, so using induction on AUT-QEk-correctness

we get (in system IV) A E a', P B 2 Cx:af1C' so] - { A) B, q.e.d.

4.4.3. From our axiomatic introduction in sec. 11.1.3 the actual

nature of expressions does not become very clear, viz. that they are

just some well-structured symbol-strings. In view of this fact, a

verification process for the correctness of expressions must be able

to perform the following task: given a correct book and a correct

context (mere symbolstrings as well), each symbol-string must, in a

finite amount of time, either be recognized as a correct expression

(relative to book and context) or be rejected.

The verification of such a string can be analyzed in several

stages, e.g.: (1) bracket structure has to be correct, (2) the free

variables have to occur in the context and the constants have to occur

in the book (after this stage the constants in the string can be

assigned an arity, variables and constants get a degree and possibly

a t y p and a d e f) , (3) the arity of each constant has to fit the arity

of theargument string going with it (only after this stage we can

speak of expressions in the sense of sec. II.l), (4) degree restric-

tions (and possibly norm restrictions) must be satisfied, (5) the

type restrictions have to be fulfilled (i. e. of the argument A in (A
-

and of the argument string C in c (?) .

Here it is just stage (1) which represents the context-free part

of the verification. The stages (2) - (4) are literally context-dependert,
but still trivially recursive. After passing stage (3) an expression

is pretyped. From our point of view stage (5) is the interesting part

of the verification.

The actually running verification program for Automath languages

at Eindhoven University has indeed been organized along this lines

(see Zandleven [7 5 1 , Jutting [37 I) . There is a first pass with a
"syntax-chezker" covering stages (1) and (2). This pass is optional

since there is a next pass with a "translator" covering stages (1)-(4)

(but without checking norm-restrictions). And finally there is the

"pro~essor~~, operating on the result of the translator, which covers

stage (5).

4.4.4. First we discuss the verification of definitional equalities

A + B. As in the case of 6-equality (sec. 111.6.2) we do not want to
compute normal forms but rather design a strategy which after a few

reduction steps in A or B either results in common reduct of AandE

(if this exists), or enables one to conclude that it does not exist.

As explained in sec. 111.6.3, when confronted with certain A and

B during the decision process, we have to answer the following ques-

tions: (1) shall we do an outside reduction, (2) if so, on which of

the expressions? The form (or: shape) of A and B (i.e. whether they

are abstr-, or appl-expressions etc.) plays a crucial role here. E.g.

if A and B are both in i m z e f o m (see 11.4.9) then there is no choice:

there is simply no outside reduction possible. So either we can

immediately decide our definitional equality (if A and B are of

different shape, or if A and B are atomic) , or we have to spzit up

(or: decovpose) the equality into the equalities of the corresponding

subexpressions of A and B. But if A and B have different form, not

both immune, then an outside reduction is required.

The basic construction aim for a decision strategy is of course

to minimize in most of the cases the total number of reduction steps

required for a conclusion: A is equal to B or not. There is of course

uncertainty about what happens in most of the cases, but the intuitive

(and possibly questionable) ideas on this subject, underlying the

algorithm in the next sections, can be summarized as follows:

generally, the definitional equalities arising in the course of the

verification and offered to the decision process, are trme, and a

common reduct can be reached in rehtively few steps.

4.4.5. We define new, restricted relations > > (h for head reduc-
- - h' -h

tion) and > > which precisely cover: (1) outside reduction steps,
h' -h

(2) the reduction steps needed in order to make new outside steps

possible. The relations are given by a simultaneous inductive defini-

tion:

- -
(i) 8 2 Cx:alC * IAIB >h CIA8

h

(ii) d(?I >, de f (d) Qcl

(iv) .4 >- B * A >h B
h

-
(v) > (resp. >) is the reflexive and transitive closure of >-

-h -h h
(resp.

>h)

- -
1.e. >h and 2h are just q-less versions of > and 2 Clearly

h h '
A r B * A 2 B, and if A >- B (or A > B) then B is a first main

h h h
reduct (see sec. 17.4.9) of A.

Remark: This reduction does correspond to the head reduction common

in the literature [4 1 , i.e. to the "first half of" the so-called
normal reduction [25 I. A reduction A 2- B consists of mere simple

h
head contractions, i.e. {A1 1;. .{Ak IB > {Al 1.. . {Ak I C where B > C is

an elementary 66-reduction, and even only such of these that their

reduct eventually becomes a new simple head redex.

The unrestricted reduction D 2 C in clause (iii) is put there

on purpose: it is of course possible that internal contractions are

needeclin order to remove free variables from an expression.
-

The main property of 2 (or 2 depending on whether q-reduction
h h'

is present) is: if A 2 B then A 2 C 2 B where the reduction from C
h

to B consists solely of internal reductions. So if A 2 B and A, B

have different shapes, then A > A' 2 B.
h

4.4.6. The intuition formulated in 4.4.4. leads us to the idea that a

sensible decision process for definitional equalities must search for

a common reduct (i.e. an affirmative answer) rather than normalize, by

means of t (in order to get a negative answer), and that during the
h

reduction process the definitional constants must be saved, i.e. left

intact, as much as possible.

The strategy presented below (corresponding to what is actually

implemented in Eindhoven [75 I) can indeed be characterized by the

following principles:

(1) decomposition is preferred above main reduction

(2) B-reduction is preferred above 6-reduction (is preferred above n-

reduction)

(3) reduction of a "younger" definitional constant is preferred above

reduction of the "older" one (see sec. 111.6.3).

For example, if there is to be decided whether { A J- <C]D, the

process first tries decomposition: B 1 D and A J- C . If this succeeds,

i. e. B 2 F 5 D, A 2 G 5 C then we have a common reduct { G p. Only
after this has failed, an outside reduction is attempted on one of the

expressions: e.g. {AIB >h E l i.e. B 2 Cx:alF, E r FI[Al, and the new

question to be decided is E 4 (CB. Was no outside reduction possible,

then the other expression is tackled: {C)D >h E is tried, possibly

resulting in a new question {A)B 1 E. And, when confronted with the -
question {A C d (C) , the process tries to main reduce the appl-ex-

pression rather than the other one.

4.4.7. The inductive d e f i n i t i o n of > and 2 can be read as a
h h

recursive algorithm for deciding questions of the form A 2 B , gB (A >h B) ,
h

(A 2h [x:B1]B2) etc. We give our algorithm for deciding 4 also

form of an inductive definition. Here are the rules:

(0) Exchange: B 1 A *:A J- B

(i) Variable, T: A 2 x*.: A J-x, andA 2 -r w:A 4 - r
h h

(ii) Prim: (A ah p,(?) , .F 1 E) -:A 1 p(B)

(iii) Appl-appl, decompose: B J- Dl A J- C *: {A}B J- {CD

(iv) Appl, @-red: {AIB > C * (C J- D w:{A)B J- D)
h

(v) Def-def, decompose: B J- ? =+:d(B) J- d (C)
(vi) Def, &-red: d(B) > C* (C J-D-:d(g)J-D)

h
(vii) Abstr-abstr, decompose: a B, A 4 B @: Cx:aIA EX: BIB
(viii) Abstr, n-red: [x:aIA >h B - (B J- C w: [x:aIA C C)

The notation B J- ? is used in the ordinary sense, i. e. B1 J- CIt

B J- C etc. The clauses (i)-(viii) are given in their order of
2 2
priority, they have to be tried successively until a clause applies.

Clause (0) must only be applied, and of course only once: (1) if

none of the rules (i)-(viii) applies, (2) if by the exchange a rule of

higher priority among (i)-(viii) can be made to apply, (3) in case

the question d (A) J- e(B) is presented, where e is a "younger"

definitional constant than d . The clauses containing a bi-implication

((i) , (ii) , (vii)) are terminal: if application of one of these rules
does not lead to an affirmative answer, a negative conclusion about

the presented definitional equality can be drawn. In contrast with

the other clauses, e.g. clause (iii) : if not (A J- C), so not (A J- C

and B J. D) then it is of course very well possible that rule (iv)

produces a common result of {A)B and {C}D. Further, a negative con-

clusion can be drawn if after exchanging still no clause applies at
-

all. If n-reduction is not allowed then one has to read s- and 2
h h

instead of > and 2 and rule (viii) has to be skipped.
h h

4.4.8. It should be clear that the algorithm above on the correct

expressions indeed corresponds with J - . The only interesting point is

the bi-implication in clause (vii), which makes that clause (viii)

never has to be applied to a pair of abstr-expressions. This is

justified by our property UD (for correct expressions only) from the

previous sections.

We also have to show the termination of the algorithm (this

shows the decidibility of J- once more). First, the questions con-

cerning > and 2h (e. g. whether A > [x:B 1B for certain B1, B2) are
h h 1 2

decidable on behalf of SN. Secondly, the procedure sketched above

(for deciding A C B) is easily shown to terminate by induction on

(1) 6 (A) + 0 (B) , (2) & (A) + R (B) - where 8 stands for length of
reduction tree and It stand for length of expression -.

Clearly the q-rule (viii) is equivalent to:

By a careful implementation of the handling of bound variables - this

falls outside the scope of my thesis - there can be guaranteed that
whenever during actual verification an equality Cx:alA t B is offered

to the decision procedure, B does not contain free occurrences of the

same free variable X! This enables us to modify (viii) into the

simpler rule (viii') : A J. {X }B * [~:alA J. B, which avoids the nasty
internal reductions in the course of an outside q-reduction completely.

The termination of the algorithm is still guaranteed with this new

rule; we can even use the same induction as before, because it can be

shown that rule (viii') never will be applied with a B such that

Z >h Cg:BlC.

4.4.9. In accordance with our views on the actual verification process

it may be sensible to provide the decision procedure with a device

which gives a warning in the following cases: (1) if the decision

process requires too much time, or rather: too many reduction steps

(2) if a question d (2) J d (?) or 30 J {F % is posed and not -
(3 t 2) , resp. (D t G and not (A J. F)) has been concluded.

The warnings in case (2) can be partly motivated by the idea

that most defined constants in an Automath-book are "XI-constants"

(see 111.5.5.3, 111.6.3) and that most functions in an Automath-book

are AI-fiozctwns, where D is a XI-functwn if: D t [x:a]F =S x E FV(F).

The following example shows however that this motivation is not quite

satisfactory: D r G [x:al~I~kc, A [y:Blp(y,v), F - [y:Blp(y,y).
4.4.10. Now we discuss the verification of E-formulas. Since the

definitions of cantyp in 4.2.3, with their computation of normal forms,

are very unpractical, we prefer the alternative approach sketched in

4.1.4. Besides,the latter approach avoids the different definitions of

cantyp and is by uniformity easier to implement for several languages

simultaneously.

AS our "universe", the large language which we use to decide our

E-formulas, we take AUT-QE*. Let denote correctness in AUT-68, AUT-

68+, AUT-QE or AUT-QE+ and let stand for correctness in AUT-QE*.

One easily proves by induction on A, using LQ, CLPT etc. for I-*, the

important properties: (1) FA * t*typ(A), and - unless A is a 2-
expression in AUT-68(+) -

(2) I-A +. typ (A) 2 cantyp(A) .
This justifies the equivalence mentioned in 4.1.4.

except, trivially, the degree 2 case of AUT-68(+)

2 2
C A E B w I - A , B - . r

The +-procedure of sec. 4.4.7 can be adapted in order to decide

i and simultaneously by making some obvious modifications, e.g.:

- clause (0) becomes: B +/C/3 A :- A +/7h B

(where "B +/47 A" reads "B + A resp. B C A resp. B 7 A", etc.)

- to clause (i) there is added: degree (A) = 1 * A C T

- clause (vii) becomes: a .C 6, A +/VJ B M: EX alA J./C/J [x: BIB

etc.

We do not bother to give a practical algorithm for deciding E in
AUT-QE' and AUT-QE*, because we think that these languages are of

mere theoretical purpose.

4.4.11. Rather than computing domains via the domain normal £oms

(d n f ' s) of sec. 4.2.4.4. we use the alternative approach of 4.1.6 of

searching through the+-reduction tree of an expression. Recall that

- is generated by (I) ordinary reduction, (2) taking typ. We promised

the following theorem.

Theorem: + is well-founded on the correct expressions

Proof: As long as we stay inside the correct expressions we can use a

double induction, viz. (1) on degree, (2) on 0 (=length of reduction

tree). For, reduction preserves degree and decreases 8, and taking

typ decreases degree. We must be a bit careful with applying typ to a

degree 2 AUT-QE* expression - such as, e.g., can originate by taking
typ of a degree 3 AUT-QE expression - because an incorrect and even

not normable I-expression might arise. A typical example is {A h.
1 However, this does no harm to the well-foundedness, because B -SN can

be proved, without using norms at all, for all degree correct ex-

pressions.

Also, we have another uniqueness result (compare 4.2.4.2).

Theorem: A correct, A -+ [x:a]C, A -+ [x:BID * a + 6

Proof: For 3-expressions A we even have a kind of CP\-result A 2 A' *
typ (c;) + typ (A ') . Now let degree (A) = 2, and let A 2 A ' . In AUT-68 (+)

and AUT-QE (+) this gives t*typ (A) 7 typ (A ') , but in AUT-QE* this is
not generally true, because t~p(A) and typ(Ar) need not be correct.

Luckily such incorrect 1-expressions (see the proof of the previous

theorem) never reduce to an abstr-expression. So by UD we still get

the desired result.

4.4.12. The internal q-reductions included in -+ are of course useless

during domain computation where one only wants to reach an abstr-ex-

pression. So in an algorithm for domain computation we rather employ

a restriction of -t which we name -+ and is generated by head reduction
- h
2h and taking typ.

In general unrestricted search through the -+ -reduction tree can
h

be permitted - provided the degree restrictions are respected. However,
the 2-expressiorsof AUT-QE and AUT-QE+ form an exception. Here the

search for an abstr-expression has to start with taking typ. Otherwise

too many expressions would get a domain, which would give rise to

typical AUT-QE* appl-expressions.

Besides, unrestricted search can be very unpractical. E.g. in

AUT-68(+) one never needs to inspect 1-expressions: if the 2-ex-

pressions in the -+ -reduction tree fail to produce a domain, going to
h

the 1-expression by taking typ will not help. In general it is no good

strategy to start the domain computation with reduction, unless we are

obliged to because the expression under consideration is already of

minimal value degree.

So, a simple and probably rather practical strategy for AUT-68(+)

and AUT-QE(+) may run as follows. Let A be the expression we start

with. Take typ until one arrives at an expression of minimal value

degree. Then reduce (with 2-) until one possibly finds a domain. If
h

this does not succeed, A can still have a domain if it is a 3-ex-

pression of AUT-QE(+), otherwise A has no domain. In the indicated

case unrestricted search of the -+ -reduction tree of typ(A) is
h -

required, to be executed as follows: one-step reduce (typ(A) > B) ,
h

then take typ, then reduce (with 2;) . If this does not yield a domain,
one-step reduce B once more etc. The well-foundedness of -+ guarantees

the termination of this procedure.

CHAPTER VI. THE Bn-CHURCH-ROSSER PROBLEM OF

GENERALIZED TYPED A-CALCULUS

VI.l. Introduction

1.1. The problem with BQ-CR in Automath-like languages was first pointed
out by Nederpelt ([51], p.71). Let x 9 FV(B), then

and the question is whether [x:a]C and [x:B]C have a common reduct, i.e.

whether 6n-CR1 holds. In untyped A-calculus this case of CR is particu-
1

larly trivial, because without the type-labels there just remains

and for the common reduct we can simply take AX.^ itself. If

[x:a]{x)[x:~]C is not necessarily correct, a common reduct does not need

to exist, for a and 6 can be any expressions.

Nederpelt conjectured already that for correct expressions fin-CR
(SO 6n-CR) does hold. This we shall prove below, making free use of the

1
results of the previous chapter, in particular sec. 3. So, if

~[x:~]{x}[x:B]c then by SA we know a Q 6 SO [x:alC Q [x:B]C; but we know
nothing about a common reduct.

It is possible that certain versions of the algorithmic definition

allow a proof of ~ q - C R But then it is not so easy to infer CR, because
1 '

we do not yet know CL for the algorithmic system. An alternative to the

approach below is presented in the next chapter. There CR and CL are
proved simultaneously for an algorithmic system, by induction on so-

called big trees.

1.2. Below we concentrate on Bn-reduction and leave 6-reduction out of

consideration. It is easy to extend our result to 6q6-CR, since 6 com-

mutes with Bq-reduction:

and, of course, 6-CR holds.

We start (in sec. 2) with a partial solution of the Bn-problem,

for q-reduction of degree 2, which works for regular langages only.

Then (sec. 3) we prove full ~n-CR.

VI.2. A first result concerning 8n-CR for regular languages

2.1. We prove the Church-Rosser property for regular languages with a

reduction relation 2. generated by B-reduction and n2-reduction, i .e.

11-reduction of degree 2: degree (A) = 2, x $! FV(A) * [x:a] {x)A > 2 A. n
The motivation for studying this restricted Bq-reduction lies in

the fact that the actual verification of mathematics in AUT-QE (in

particular, of Jutting's Landau-translation, see [37]) just required

this specific type of n-reduction. 1.e. the Automath texts offered to

the verification program appeared to be correct B~I~~-AUT-QE.

2.2. Heuristics

The idea is to proceed in two stages. First we consider a seemingly

weaker form of n2-reduction which is tailor-made to avoid the critical

Bn-case mentioned in the introduction. For this restricted 6q2-reduction

we prove CR. Afterwards (sec.2.5) it is shown that full fin2-equality is

equivalent to the restricted form. This can be compared with the situ-

ation in sec. V. 3.3.8 - where ql-equality turned out to be provable.
How to define the restricted form of rpreduction? 1.e. under which

conditions do we permit the reduction of [x:a]{x)A to A? Clearly, we

require :

Further, that A is not of the form [y:B]C - to avoid the critical case -.
But this is not enough. Consider, e.q., [x:a]{x)F, where F 2 [y:F1]F2,

x f? FV(F). So we require:

i.e. A does not reduce to an expression of the form [y:B]C.

Thirdly we want to preserve the substitution lemma

a t l e a s t f o r D of degree 3, so we fur ther require

This shows why the method works fo r regular languages only.

Condition (2) can now be weakened t o

o r , i n the presence of &-reduction, to: A $2 [y : @]C. B 6

2.3. The de f in i t i on of the r e s t r i c t e d reduction re la t ion

For def in i teness we give a formal def in i t ion :

(1) > i s the d i s j o i n t one-step reduction generated by the ele-

mentary reductions:

(i) {A)[x:B]C > C[A]

(ii) x $! F V (A) , A $2 [y:B]C, degree(A) = 2 + [z:a]{x)A > A
B

(2) 2 is the t r ans i t i ve closure of >

2.4. The proof of C R f o r the r e s t r i c t e d reduction

2.4.1. Subst i tut ion lemma I: (i) A > A ' * BEAD > BI[A']

(ii) A 2 A ' * B[A] 2 BI[A']

Proof: A s usual, by induction on B and 2 respectively.

2 .4 .2 . Weak ~ ~ - f 3 j - ~ o s t ~ o n e r n e n t : i f i f 3 and A i s degree correct then

i j i j i A r B * A > C 2 D 5 B
B B B B

j i Proof: I f a 6 -contraction produces an essent ia l ly new B -redex

then i=3 o r i = j . If i = j there is nothing t o prove, so unless i=3
j i i

we have A > B * A >i 2' c si B. SO, using -SN, B ~ - C R
118 B B

and 63 commute we ge t the desired property,

2.4.3. Something about 62 (for degree correct expressions)

(i) ~egree(B) = 2, B > [y:C]D * B r2 [y:C1 ID'
6

(ii) If degree(B) = 2, degree(A) = degreetx) = 3 then

B[x/AD z2 [y:C]D - B z2 [y:C']D1 B 6

Proof: (i) Let B 2 [y:C]D, degree(B) = 2. By Bq-postponement and

weak ~ ~ - ~ ~ - ~ o s t ~ o n e m e n t we get B r2 F z3 G 1* H 2 [y:C]D. Then
B B B l l

H, G, F are abstractions expressions, q.e.d.

(ii) Use the square brackets lemma (11.11.5, IV.2.4) and the

previous property.

2.4.4. Substitution lemma 11: if degree(A) = degree(x) = 3 and A, B are

degree correct then

(i) B > B1 * BI[x/A]I > B'[x/AD

(ii) B B' * B[x/AD >- B8[x/A]

Proof: (i) By induction on B. The crucial case is when

B E [y : ~ ~] { y) B ~ , y $!' Fv(B2), B [y:ClD, degree(B1 =

= degree (B2) = 2. Of course, y 6! FV (B2(Al) , degree (B2[A]) = 2 and,

by 2.4.3.(ii) B2[AD $; [y:CID. So BRAD I [y:B1[ADl{ylB2[Al > B2UAI

q.e.d.

(ii) By induction on 2.

2.4.5. Theorem (CR for the restricted reduction): if A degree correct
1

then

A > B , A > C * B C C

Proof: Let A > B, A > C. By induction on A we define a common re-

duct D of B and C. The crucial cases are

(i) A {A1)[x:A2]A3, B I A3[A1D (by 6-red.), C {A~)[x:A;]A$

(by monotonicity). Take D E A$[A;] and use the substitution lemmas.

(ii) A 5 {A1)[x:A2]{~)A3r B 5 {A;)A~ (by rpred. and monotonicity) ,
C E {A1)A3 (by 6-red.). Simply take D Z B.

(iii) A [x:A~]{x)A~, B 5 A2 (by n-red.) , C 2 [X:A{]{X}A~ (by

monotonicity) . Clearly degree (Ah) = degree (A2) = 2, x e FV (Ah).

I f A ' >2 [y:C1]C2 then A i 2 [y:C1]C2 SO by 2 .4 .3 . (i)
-6

A, r2 [y:C{]C{. Hence A; #2 [y:C1]C2 SO D 5 A h can serve a s t h e
B B

common reduct .

2.4.6. Corol lary: If A degree c o r r e c t and normable then C R (A) .

Proof: By induct ion on the reduct ion t r e e of A .

2.5. The extension t o f u l l 8n2-reduction

2.5.1. From now on we l a b e l the not ions r e f e r r i n g t o t h e r e s t r i c t e d

reduc t ion r e l a t i o n with a subscr ip t o. Thus we w r i t e > 2 and + , and
0' 0 0

by to we denote correctness i n AUT-QE(+) with an e q u a l i t y r e l a t i o n Q0

generated, e .g . , by

By 2.4.6. we have

On t h e o ther hand t h e no ta t ions without a s u b s c r i p t have t o be

i n t e r p r e t e d i n terms of " f u l l " @n2-reduction. Thus, we w r i t e 1 f o r

cor rec tness i n AUT-QE(+) with e q u a l i t y Q, generated by

Below we sketch t h e equivalence of t h e two systems. The impl icat ions

>o * > SO to * t and Qo 4 Q a r e immediate.

F i r s t we go through some theory of t h e o-language (i .e . with to
. The theorems about renaming ~ f , c ~ n t e x t s and weakening (see

) a r e s t i l l v a l i d . We have a r e s t r i c t e d s u b s t i t u t i o n theorem:

(q l , E g) , a l l y i n y have degree 3 , and B E then
i

So we have t h e s i n g l e s u b s t i t u t i o n theorem: i f degree@) = 3 then

t o B E B , y E 6 koC (E/Qo D) * t0cI BD (E/Qo DQ BD .

i i 2
Hence, from SA we can i n f e r 2.4 f3 -CLPT, a s usua l . Now SA works pre-

c i s e l y a s i n t h e previous chapter (V.3 J . 4) s o we may assume f32 - CL.

2.5.3. The proof t h a t I- =, to and Q * Qo goes by induct ion on 1. The

only i n t e r e s t i n g case i s when t 2 [x : a l { x) ~ , x $! F V (A) , A >* [x:A1]A2.
B

Then r12-reduction i s poss ib le , b u t r e s t r i c t e d reduct ion i s not . So from

/-A one g e t s ~ [x : ~] { x) A Q A and we l i k e t o show t h a t t o [x : a] (x) ~ Qo A

holds a s we l l . BY t h e i n d , hyp. ~ o [x : a l { x ~ ~ and to^, and by B2-CL

A Qo [x:A11A2 and [x:a]{x)A Qo [x : a l { x) [~ : A ~ I A ~ Qo [x:alA2. By SA2
a Qo A 1 s o by t h e s u b s t i t u t i o n theorem Ix:aIA2 Qo [x:A11A2r whence

[x:a] {x)A Qo A .

2 .5 .4 . So t h e o-language i s equ iva len t with t h e f3~2-language, f o r which

t h e p r o p e r t i e s C L , PT, SA e t c . can be proved a s i n the previous chapter .

Now l e t A Q B. By t h e equivalence A Qo B and by C R A J., B, s o a f o r t i o r i

we have C R f o r a l l f u l l .Bn2-reduction.

Extension t o t h e corresponding &-language i s p o s s i b l e a s i n sec .

v.3.3.

VI . 3 . A proof of CR f o r f u l l ~ n - r e d u c t i o n from c losure and s t rong

normal i za t ion

3.1. The assumptions

3.1.1. I n c o n t r a s t wi th the proof i n t h e previous s e c t i o n , t h e sequel

does n o t presuppose r e g u l a r i t y of t h e language. So, a f t e r having proved

CL f o r , e .g . , Nederpel t ' s h , t h e p r e s e n t proof a p p l i e s t o t h i s language.

We assume t h a t co r rec tness of express ions and e q u a l i t y formulas i s

def ined r e l a t i v e t o a c o r r e c t book 8 and a con tex t 5. The book i s f ixed

throughout t h i s s e c t i o n and omitted i n t h e no ta t ion .

Below we in t roduce an extended reduct ion r e l a t i o n and a corres-

pondingly extended e q u a l i t y . Since we want t o r ese rve our usua l nota-

t i o n s 2, Q f o r these new r e l a t i o n s , we w r i t e 2, and Qo f o r t h e ordinary

f3n-reduction and t h e corresponding e q u a l i t y r e l a t i o n , generated e .g . , by

by

5 /-A, E FB, A 2, C 5, B * 5 FA Qo B.

We use our ordinary shorthand notation, writing

~ I A f o r 5 , 1 1 1 ~ and

A Qo B f o r 5 IA Qo B e t c .

3.1.2. Fordefini tenesswe give a l i s t of the propert ies which we assume

through t h i s sect ion and use i n the proof.

(1) Strengthening, and i n pa r t i cu l a r the following consequence:

i f 11 (~10~111) then

(2) Soundness of equal i ty w . r . t . abstract ion,

a Qo 6 , x E a IA Qo B [x :~IA Qo [x:BIB

(3) w . r . t . appl icat ion,

A Q, B, C Qo D * {AN Qo {BID

(a consequence of LQ, see below)

(a l so a consequence of L Q)

(5) closure: k A 1 A 20 B * ~ B

(6) SA, so (t h i s concerns d i r e c t l y the c r i t i c a l 611-case)

~ [x : ~ ~ I x) [~ : B ~ c * x E a l a Qo 6

(7) strong normalization (with 'respect t o 2,) : IA * SN (A) .

Remark: the propert ies (3) and (4) depend on L Q . A s we know (see V.3.3.10)

LQ f a i l s i n AUT-QE(+) with &-reduction, but CR for these languages can

be proved i n two ways:

(1) From CR f o r AUT-QE(*)

(2) By f i r s tproving CR f o r a &- less version, and then extend the

r e s u l t by using UE.

3 .2 .1 Heuristics

We saw t h a t i n the c r i t i c a l case of Bq-reduction the two d i r e c t

reducts of [x:al{xl[x: B1C a r e syntac t ica l ly equal (r) but fo r the domains

a and 6 which are j u s t def ini t ional ly equal (Q,). Below we define the

r e l a t i on M which precisely covers t h i s kind of syntac t ic s imizari ty

intermediate between 5 and Qo.

I t would be straightforward t o t r y and prove a modified CR-property

by proving -postponement, i . e .

However there i s a problem with the l a t t e r property i f A [x : ~ ~] { x } A ~ ,

B E [x:a]{x)C, 3: f! FV(C), A 1 fir C. For it is possible t h a t x E F V (A ~) .

So we take a d i f f e r en t approach. We define an extended reduction re la -

t i on > which i s d i s j o i n t Bq-one-step reduction, enriched by the clause

A M B A > B (elementary w - reduction) .

This means t h a t i n t e rna l contract ions i n the domains fo r the bookkeeping

ofreduction s teps a r e ignored. For the new reduction r e l a t i on we can

simply prove CR1. Further there holds a cer ta in version of 2-SN, which

gives us C R .

3 .2 .2 . Structure of the proof

We poin t out the difference with the approach i n sec. VI.2. There

we f i r s t r e s t r i c t e d our reduction r e l a t i on , proved CR f o r the r e s t r i c t ed

reduction and then extended the r e s u l t t o the or ig ina l reduction. On the

other hand, here we s t a r t with proving CR fo r the extended reduction

r e l a t i on 2, and afterwards we s t i l l must prove CR f o r ro. In f a c t we

f i r s t prove modified uniqueness of >-normal form, i . e . uniqueness with

respect to M : A Q B, A and B >-normal *A M B. And then, using the

equivalence of Qo and Q, uniqueness of 2,-normal form. So we have 2,-CR.

For a comparison of kO- and >-normalisation see sec. 3.7.1 below.

3.3. Definition of the extended reduction relation

3.3.1. By simultaneous inductive definition we introduce the syntactic

simiZarity M, the extended reduction relation 2, with one-step reduction

>,and the extended definitional equality Q, between correct expressions,

as follows.

I. Elementary reductions

(1) {AI[x:B]C > C[Aj (B-reduction)

(2) [x:B]{x)C > C if x $2 FV(C) (n-reduction)

(3) A w B * A > B (w - reduction)

11. Monotonicity rules

111. (1) 2 is the transitive closure of >

(2) Q is the equivalence generated by >

3.2.2. Some remarks concerning the definition

3 . 3 . 2 . 1 . It is not necessary to define the above notions simultaneously.

For in view of 3.4.3. below, we might as well have taken instead of IV.(2)

3.3.2.2. Except for the rules 1.3 and 11.2, the rules of I and I1 are

the ordinary rules for ; , disjoint one-step Bn-reduction. Rule 1.3
1,617

can be considereda strong form of the reflexivity rule A > A . Rule 11.2

is one half of the usual monotonicity rule for abstr. expressions. The

other half can be derived using IV.1, IV.2 and 1.3: if a > a' then

a Q a ' , further A m A so

3.3.2.3. If we had defined > to be the corresponding "nested" one-step

reduction we might have been able to prove the diamond property for >.

Then we could have avoided the appeal to SN when deriving CR from CR1.

3.4. Some easy properties

3.4.1. By simultaneous induction on definition 3.3.1., using the sound-

ness of Qo w.r.t. expression formation, we get

if A > A' or A 2 A' or A Q A' or A M A ' then A Qo A'

3.4.2. From 3.3.2.2. it is clear that t satisfies all the monotonicity

rules and that

and A Qo B * A Q B

3.4.3. So combining this we have Qo w Q.
As a corollary we have the monotonicity rules 3.1.2.(2)-(4) now also

for Q. The monotonicity of fir is immediate. Further fir is an equivalence

relation.

3.5. On --reduction and normalization

3.5.1. I n c e r t a i n A-calculus systems (see , e.g.[25]) renaming of bound

v a r i a b l e s i s n o t ignored - l i k e we do here - b u t formalized i n t h e form

of a-reduction:

Then (s e e our d e f i n i t i o n of s u b s t i t u t i o n , sec . I I .2 .4) it i s poss ib le

t h a t a-reductions a r e needed before some &reduction can be c a r r i e d out .

I n such systems, a s u i t a b l e d e f i n i t i o n of proper reduct ion sequence is:

a sequence i n which only a f i n i t e number of a- reduct ions occur. 1 .e .

a reduct ion sequence C 1 > C2 > ... i s proper i f from a c e r t a i n Cn on,

only a-reductions a r e appl ied. S imi la r ly C is normal if only a-reduc-

t i o n s of C a r e poss ib le .

3.5.2. Here we t r e a t t h e =-reductions analogously, a s extended a-re-

duct ion, and c a l l them improper reductions. Proper reduct ion sequences

a r e reduct ion sequences i n which only a f i n i t e number of such improper

reduct ions occur. An expression i s now SN i f a l l i ts proper reduct ion

sequences terminate and normal i f only improper reduct ions a r e poss ib le .

So

A i s normal, A 2 A ' * A w A' .

3.5.3. I n 3.5.1. we mentioned t h e p o s s i b i l i t y t h a t a-reductions created

new 6-redices. For --reductions t h i s i s not the case. Let > (resp . >17) 6
denote t h e d i s j o i n t one-step reduct ion generated by t h e r u l e s I . (1)

(resp. I . (2)) and 11 of 3.3.1. So, e.g., A > A' i f some 6-redices not B
ly ing i n s i d e a "domain" a r e contracted. Then we have;indeed, 6 = -
postponement

However n FY -postponement f a i l s because fir -reductions can c r e a t e new

q-redices (see 3 .2 .1 .) . For tunate ly we have fil 17-postponement ins tead

3.5.4. Now we can prove SN (i n t h e sense of 3.5.2) . Let a proper

reduction sequence X1 > C2 > ... be given. If no B-step turns up then
the sequence terminates because from some C on only n-steps are applied,

n
which decrease the length of the expression. Otherwise, for some n, by

M 17-PP

By o-SN, i.e. SN with respect to 2,, 8 (C) is defined for correct C and B
eB(Z1) > eB(r'). So by induction on 0 we can prove SN. B

3.6. CR for L

3.6.1. Substitution lemma I: If I~UA], t a ~ ' n then

(iv) A M A' * BEAD a aA']

Proof: All parts can be proved separately by ind. on B using the

monotonicity rules for >, 2, Q and f i r .

3.6.2. Substitution lemma 11: If F ~ A J and ~B'[A] then

Proof: By simultaneous induction on the definition of >, 1, Q and

M .

3 .6 .3 . Main lemma (C R) : I f A c o r r e c t , B < A > C then B + C .
1

proof : By ind. on A . I f A FJ B then f o r t h e common reduc t D we can

t a k e D 3 C. Simi la r ly i f A a C . I n case A % { A }A B E { B 1)B2 , 1 2'
C : {C)C B < A 1 > C l l B < A > C t h e n b y t h e i n d . hyp. a n d b y

1 2' 1 2 2 2
monotonocity of r we f i n d a common reduc t {D)D with B t Dl 5 C 1 , 1 2 1
B 2 D2 < C 2 . Simi la r ly i f A 3 C (A 1 , . . . , A k) .

2
Fur the r d i s t i n g u i s h :

(i) A : { A) [x : A 2] A 3 , B z { B 1 } [x : B 2 I B 3 , C A [A 1 , A 1 > B1, 1 3 1
A2 Q B2, A3 > B3. BY the s u b s t i t u t i o n lemmas above.

B > B [B] < A 3 [A 1 J s o take D E B [B].
3 1 3 1

(ii) A : { A 1 } [x : A 2] { x) A 3 , B r { B)A (by n-red.) , C r { A)A (by 1 3 1 3
6-red.) , x ft? FV (A3) , Al > B1 . Then C Z B and take D 5 B.

(iii) A : [x : A]A B Z [x : B] B C 5 [x : C]C
1 2' 1 2' 1 2' A1 Q B1 l A1 Q C1

B2 < A > C 2 . By ind. hyp. B 2 D 5 C s o t ake e .g . 2 2 2
D [x : B]D

1 2'

(i v) A [x : A l] { x) A 2 , B Z [x : B 1] { x) B C r A2 (by n-red.) ,
2 '

x ft? F V (A ~) , Al Q B 1 , A2 > B2 . I t i s easy t o see t h a t

A 2 . D M B Clear ly a: ft? FV (D) s o
2 Br, 2 2' 2

B M [x : B 1] { x) D 2 > D 2 A2 2 C. SO take D - D
2 2 '

(v) A I [X : A ~] { X } [X : A ~] A ~ , B 5 [x : A 1 1 A 3 , C z [x : A]A 3 , x f F V (A ~) .

This i s the c r i t i c a l case . By assumption (6) from 3.1 .2 A Q A 1 2
s o we can take D E B % C .

3.6.4. Theorem (C R) : I f A c o r r e c t then C R (A)

Proof: By SN we can de f ine 0 (A) t h e maximal number of proper r e -

duct ion s t e p s i n reduct ion sequences of A . Use induct ion on @ (A) .

Let B 5 A 2 C. The cases A B and A fir C a r e t r i v i a l . Otherwise,

f o r c e r t a i n proper r educ t s B and C 1 , A > B1 2 B , A > C t C. F i r s t
1 1

apply 3 .6 .3 . t o g e t B 2 Dl 2 C 1 . Then apply the ind. hyp. t o B 1 ,
1

C1 and D 1'

3.6.5. C o r o l l a r i e s : I . A Q B * A + B

11. s i m i l a r i t y of normal forms:

A Q B , A and B normal * A M B

3.7. CR for so

3 . 7 . 1 . Call an expression o-normal if it is normal with respect to I,,

i.e. if it does not contain 0- or n-redices. So, if A o-normal then

there are no reduction steps A > B or A >,, B possible. But it might
6

be possible - as long as we do not have CR - that after some --re-
ductions new n-redices are created. So a priori we do not know whether

A is normal.

But, if A is o-normal and A does not have abstraction form and

A 2 B then this reduction is an internal, and not a main reduction.

E.g. A - { A)A @ B Z { B)B and: .
1 2 1 2'

3 .7 .2 . Theorem (uniqueness of o-normal form): Let A and B be o-normal,

then

A Qo B * A - B
Proof: By induction on the sum of the lengths of A and B. Let

A Qo B , so A Q B , so A I C S B. Distinguish the following cases:

(1) Both A and B are abstr-expressions, [x : A] A resp. [x : B] B
1 2 1 2'

BY prop. 3 . 1 . 2 . (2) . Al Qo B1. x E A l t A 2 Q0 B2. BY the ind.

hyp. A1 2 B 1 , A2 r B S O A = B. 2

(2) Neither A nor B are abstr-expressions. Then A and B and C

have the same form. E .g. if A = { A }A then C 2 {C1)C2, so
1 2'

B E { B }B with A1 2 Cl S B1 and A2 2 C2 r B2. So A1 Q E l ,
1 2

A2 Q B2 and A Qo B , A2 Q0 B and by the ind. hyp.
- 1

A 1 = B 1 , A - B
2 2'

(3) A has abstr. form and B has not. Then A 5 [x : A 1] A 2 ,

A2 2 {"ID2' x 6 FV(D2) I A1 Q Dl , and
A r [x : D 1] { x } D 2 > D2 I C ri B. By CL, x E D ~ / - { X) D ~ and by

3 . 1 . 2 . (3 1 , x E ~~t { x } D 2 Q { x } B . SO x E A ~ ~ A * Q { x } B and

both A and { x) B are o-normal. By the ind. hyp. A = { x) B .
2 2 -

Clearly x f F V (B) # so A is not o-normal, contradiction. So

this case does not occur.

3 . 7 . 3 . Corollary (CRk

(i) A correct, A ko B, A Z0 C * B Z0 D So C

(ii) A Qo B * A ro C So B

3 . 7 . 4 . Now we can conclude

A o-normal * A normal

For, if A o-normal, A m B > C (i.e. A is not normal) then n
A a . . .[X:A~IIX)A,. . . , x E FV(A,), B E . . . [X:B,I{XIB~. . . ,

g FV(B,), A~ Q B,, x E A , ~ A , Q B,. BY CR, B 2 2, A,, so

FV (A) c FV (B) , impossible.
2 2

CHAPTER VII. THE ALGORITHMIC DEFINITION AND THE THEORY OF

NEDERPELT'S A: THE BIG TREE THEOREM,

CLOSURE AND CHURCH-ROSSER

VII.l. Introduction and summary

1.1. The history of A

A further unification of the concepts underlying AUT-68 and AUT-QE

led Nederpelt and the Bruijn [49, 5 0 , 9 I , after the construction of an
intermediate version A-AUT, to the introduction of the language A or,

as de Brui jn names it, AUT-SL, for: single line Automath.

First Nederpelt noticed that via a suitable translation instant-

iation, i.e. substitution in constant-expressions e(xl, ..., X) , could
n

be replaced by appZieation and that, by this translation, 6-reduction

reduced to 0-reduction. We used this fact for one of our proofs of 6-SN
in 111.5.4. However, in order to cover substitution with 2-expressions,

as is allowed in Automath languages, the restriction to argwnent degree

3 and domain degree 2 had to be dropped. This would in combination with

type-inclusion have given a higher order system, so to avoid normability

and normalization problems, one had to skip type-inclusion. Then, a

further streamlining of the definition was attained by dropping the

restriction as to inhabitable degree as well, thus allowing expressions

of any degree.

BY the aforementioned translation and the relaxation of the degree

restrictions it became possible to dispense completely with constants

and schemes: constants could be translated into variables, schemes could

be turned into assumptions and a book could be transformed into a con-

text. Besides, quantification over all free variables was allowed now,

so all assumptions x E a from a context could be converted into ab-

stractors [x:a].

Thus, a statement B ; c t A expressing the correctness of A w.r.t.

book 8 and context 5 could be translated into the correctness of a
- - - -

single expression [p:~][x:a]A', where the abstractor strings [p:El and
[z: E] and the expression A ' are intended to symbolize the translations
of 8, 5 and A respectively. 1.e. a whole book reduces to a single line.

For details of the translation see 6.2.1, 6.3.3 and 6.4.6.

Resuming, Nederpelt's A - as defined in his dissertation - is
characterized by the following three features: no degree restriction at

all, no type-inclusion, and single-line presentation. His definition is

a typical algorithmic definition - for the terminology see V.1.1. -
which, due to these simplifications, is remarkably short and elegant.

Nederpelt introduced his norm as a measure of functional complexity and

proved normability, normalization and strong normalization for his

system. He just conjectured, in the introduction to this thesis, that

the system satisfied closure and Bn-Church-Rosser.

1.2. The present treatment

The discussion in the previous chapters: starting from the E-defi-

nition (V.2) , first proving closure (V.3) and en-Church-Rosser (VI) ,
and finally proving the equivalence with the algorithmic definition

(V.4), though concentrating on the socalled regular languages AUT-QE and

AUT-68, applies to Nederpelt's language as well, which shows that this

conjectures were justified.

Here we choose an altogether different approach. Below we start with

the algorithmic definition of correctness (VII.2). We follow Nederpelt

but for his single-line presentation: we fit the system into the book-

and-context framework of the previous chapters. Whereas the definition

of the constant-less part of the language (sec. 2.1) simply can take

place in the pretyped expressions(see IV.31, it turns out that adding

constant-expressions (sec. 2.2) requires the introduction of degree-

norm correct expressions (2.2.4).

Then both ~ederpelt's conjectures are proved directly from the

algorithmic definition, using the socalled big-tree theorem (BT). This

theorem states that, on the correct expressions - and, in fact, on the
*

much larger domain of normable expressions - the partial order + gene-

rated by S U ~ (i.e. taking proper sub-expressions), by 2 and by taking

typ is well-founded. So 6T is an SN-result for an extended reduction

relation and, hence, implies ordinary SN. The big tree theorem was first

formulated and proved by de Vrijer 1701 for his regular language AX.
Section 3 below contains the closure proof of h without constants,

serving as a motivation for 6T. Section 4 contains two different proofs

of BT, and in sec. 5 we prove closure and CR for the constant-less part
of An. In sec. 6 we give some equivalence proofs: of the systems with

and without (definitional) constants, and of the single-line version

with the book-and-context presentation. As a result we get the various

nice properties for all these systems.

V11.2 The definition of A and An

2.1 The part without constant expressions

2.1.1 Both A and An are systems of ahiss ibZe expressions in the sense

of- IV. . The correctness of books and contexts is standard (see
so we just present the part of the definition concerning the correct-

ness of expressions. A simplification compared with e.g. AUT-QE is that

no degree restrictions are imposed. If in the definition below > (resp.

2 , resp. +) is interpreted in terms of Bn-reduction then we get An

otherwise just A.

The function typ is defined as in IV.3.2, degrees are as in IV.4.4.2

Throughout sec. 2.1 we follow Nederpelt and do not admit constant-

expressions. Later on (secs. 2.2, 2.3) we show how the language can be

extended with the formation of constant expressions.

2.1.2 By taking typ of a non-constant-expression A the degree is de-

creased by one (see 1V.3 and IV.4) , so by successively taking typ one

arrives at a 1-expression. This 1-expression is called tJ'p*(A). So,

typ* (A) :I A if degree (A) = 1

typ* (A) :: typ*(typ (A)) otherwise.

Now let B be correct and let 5 be correct w.r. t. 8. We use the con-

ventional shorthand: V I A instead of 8; 5 ,VIA , typ instead of c-typ etc.
Of course, as long as we do not form constant-expressions, the pre-

sence of the book 8 is completely irrelevant. Now correctness of non-

constant-expressions is defined as follows:

(i t
(ii) /-x if a: among the variables in 5

(iii) t [x : a] ~ if I-cr and x E crt~

(iv) ~{A)B if FA, F B , typ(A) 2 a, typ*(B) 2 [x:a]C for some

a, C.

2.1.3 So correct expressions are pretyped expressions satisfying the

socalled application condition: in appl. expressions (A)B the expression

B has a domain (to compute from t~p*(B)) corresponding with the typ of

A. In the next section where we also introduce constant-expressions, an

additional condition concerning instantiation will be imposed.

There are various alternative, equivalent, formulations of the

application condition possible. E.g. one can replace "typ(A) 2 a" by

"tyP(A) i a". In A (i.e. without 11-reduction) we have CR, so it is even

sufficient to require typ(A) = a and typ*(B) = [x:a]C, in other words:
*

typ (B) = [x:typ(A)]C - where = is full definitional equality (see

11.4.6-7, V.2.11) -or, anticipating certain results of sec.6.2.6,we might

restrict the computation of the domain of B by requiring
1

typ*(B) r [x:a]C (compare V . 3 . 3) .
B

2.1.4 Since norms are preserved under taking typ and under reduction

(see IV.3.4) the correct expressions are strictly normable. This can be

shown by induction on the definition of 1. E.g. that {A)B is strictly

normable if it is correct: By ind. hyp. A and B are normable, so

P (A) 5 ~(typ(A)) u(a) and P(B) 5 p(tYP*(B)) - u([x:alC) 5 [u(a) lu(C),

so {A)B is normable, with p ({ A }B) p (C) .
Hence the correct expressions are SN and the system is decidable.

2.2 Introducing constant-expressions; degree-norm correctness

2.2.1 We allowed the presence of a book containing schemes for the

constants. Now we can simply introduce constant-expressions by adding

the instantiation rule :

-
That is, in a constant-expression c (B) , the arguments B have to

i
satisfy the instantiation condition typ(Bi) + fiiuBn.

However, we have to make sure that ~ Y P * is still well-defined,
particularly that taking typ still decreases the degree by one. E.g.

typ(c(3)) (E typ (c) [[El E vl[g]) and typ(c) (E y) must have the same degree.

Here t h e n o t a t i o n a l conventions a r e j u s t l i k e those w . r . t . o rdinary

norms: we w r i t e d n ins tead of 6-dn and e .g . , c l ause (iii) would i n f u l l

read l i k e t h i s :

Further a context i s dnc i f a l l i t s type p a r t s a r e so , and a book i s

dnc, i f a l l t h e contexts and t y p ' s of it a r e dnc.

2.2.5 A degree-norm v can be t r a n s l a t e d i n t o an ordinary norm v* by

rep lac ing a l l occurrences of numbers by T. Notice t h a t (v + l) * : v*, so

dn (A) * - (A) . This shows t h a t dnc-ness impl ies s t r i c t normabili ty.

Fur the r , degree(A) can a l s o be const ructed from d n (A) , f o r d n (A)

ends p r e c i s e l y i n the degree of A .

We c a l l a s u b s t i t u t i o n [[;/ED dnc i f dn(B.) - dn(y i) , f o r
- 1

i = l , . . . , (y I . Clear ly dnc s u b s t i t u t i o n s a r e degree c o r r e c t .

Degree-norm correctness i s preserved under dnc subs t i tu t ions :

if y E r k= 1 y 1 , t~~ IB~, y dnc and ;/B] dnc then

proof : By induct ion on t h e d e f i n i t i o n of d n (y) .

This g ives us the following c o r o l l a r i e s :

(1) C dnc, degree (c) 1 1 typ (C)dnc, dn (t y p (C))+1 r d n (C)

(2) C dnc, C r D * D dnc, d n (D) 5 d n (C)

(3) C dnc, degree(c)11 * degree(typ(C)) + I = degree(C)

(4) C dnc, C 2 D * degree (D) = degree (C) .

So typ* i s t o t a l on t h e dnc expressions and, s ince dnc-ness i s c l e a r l y

decidable , typ* i s well-defined on a l l t h e expressions, i n the sense of

v.4.4.1.

2 . 2 . 6 Now we a r e ab le t o show t h a t correctness implies degree-norm

cor rec tness .

[x:a]C are dnc as well. NOW dn(type(B)) dn([x:alC) : [dn(a)+l]dn(C) 5

[dn (typ (A))+ildn(C) - [dn(A) ldn (C) , while dn(typk(B)) and dn(B) just
differ as to their "end number" so dn(B) Z Cdn(A)lv for some v . Hence

{AIB is dnc.

Or, let; E E * c(y) E y be a scheme, let t ~ ~ , . . . , t ~ ~ (withk=lg/)

and let the B. satisfy the instantiation condition: typ(Bi) i. B~~B]. By
1

ind. hyp. the B , and the Bi are dnc. Now dn(B1) E dn(typ(~~))+l 2
1

dn(Bl)+l z dn(yl) , so Uy /B 1 is a dnc substitution. SO
1 1

dn(B) I dn(typ(B))+I = dn(6 BB])+I E dn(B2)+i t dn(y2). SO
2 2 2 1

Iyl ,Y~/B~ , B ~ J is dnc, etc. Hence c(B) is dnc. 0

So typ* is also total on the correct expressions, and correctness

is well-defined. Further, the above proof shows that the system with

constants is strictly normable as well, so (using SN) it is decidable.

2.3 Introducing definitional constants

2.3.1 After the formulation of instantiation and application condition,

it will also be clear how the conrpatibiZity condition of def and typ

for the formation of definitional constant schemes has to read:

typ (def (d)) + typ (d) , for definitional constants d.

2.3.2 The scheme of a definitional constant d is defined to be dnc, if

dn(def (d)) E dn(typ(d))+l, and for the corresponding d(B) we define

dn (d (B)) : E dn (typ (d)) +l

provided [G/B] is dnc, where 5 E is the context of the scheme.

SO, still dn (d(B)) E dn(typ(d) r dn(typ(d)U@)+I 5 dn(typ(d(5))) + I ,

and degree-norms remain preserved under reduction: dn (d (B)) Z

dn (typ (d)) +l 5 dn (def (d)) z dn (def (d)) . And, by induction on correct-
ness, we can prove that correctness implies degree-norm correctness.

~ . g . let the scheme of d be correct, then kdef (d) , so def (d) dnc, and
dn(def (d)) E dn(typ(def (d)))+l, and 1-typ(d) so typ(d) dnc,

dn(typ(d)) E dn(typ(def(d))) and dn(def(d)) 5 dn(typ(d))+l, q.e.d.

VII.3 The closure proof for A

3.1 What to prove

The decidability of the Automath languages is one of the major

aims of the language theory. By using an algorithmic definition we got

the decidability of A and An, both with and without constants, directly

from normalization (see 2.1.4 and 2.2.6). So one might wonder what else

there is to prove.

First there are both Nederpelt's conjectures, the Church-Rosser

property (CR) for A q , and the d o s u r e property (CL). We define

A main lemma for B-CL (and 6-CL) is the s u b s t i t u t i v i t y o f correct-

ness: substitution with correct expressions of the right types preserves

correctness. Formally:

Other properties which play an important role in the proof of CL,

are sound appZicabiZity (SA) , preservation o f typ (PT) , o f typ* (P*T) and

of domain (PD). We write

SA(A): A 5 {B)[x:C]D * typ(B) + C
PT (A) : A 2 B * typ (A) + typ(B) (degree (A) +I, degree (B) S1)

PXT(A) : A 2 B * typ* (A) + typ* (B)
PD(A): A [x : B] C , A 2 [x:D]E B J. D

The properties PT
1'

CL1, P*T1 and PD are the respective one-step
1

variants of PT, CL, P*T and PD.
The above properties are not mere technicalities from the closure

proof, but are also meaningful from the point of view of in terpre ta t ion .

E.g. SA is characteristic for the fact that the Aut-languages do not

allow "proper inclusion" of type, and PT (resp. P*T) expresses the nice
behaviour of typ (resp. typ*) w .r . t . definitional equivalence.

Further, these properties serve to establish the correspondence

between t h e p r e s e n t , a lgor i thmic systems and t h e E-systems, and between

t h e ve rs ions with and without cons tan t s (s e e 6.2, 6 . 3) .

3.2 Some simple f a c t s

3.2.1 Throughout t h i s sec t ion VII.3 we j u s t d i scuss h without constants .

So we may assume CR, and P D (A) (f o r a l l A) and SA(A) (f o r c o r r e c t A)

a r e immediate.

By induct ion on IA one a l s o proves e a s i l y t h a t \-A impl ies t typ(A)

(SO t t ~ p (t ~ p (A)) ,.. . , t t y p * (A)) . This i s no t easy any more f o r a system

with constants . This proper ty i s c a l l e d ~~PrectneS.!? of type.!?.

3.2.2 A s with t h e E-systems (see V.3.1), we prove CL from CL by ind.
1

on 2. For t h e B-outside case of CL we need s u b s t i t u t i v i t y and SA. Pre-
1

viously s u b s t i t u t i v i t y (i . e . t h e s u b s t i t u t i o n theorem, V.2.9) was easy

and SA was r a t h e r involved, bu t here SA i s easy and s u b s t i t u t i v i t y is

q u i t e complicated.

F i r s t some p r o p e r t i e s of s u b s t i t u t i o n , which a r e v a l i d a l ready f o r

pretyped expressions. Let A be a <-expression, l e t B be a (<,x E a , ~) -

expression. Let C* denote C[x/A] . Then

w r i t t e n o u t i n f u l l ,

Both f a c t s a r e proved by ind. on t h e length of B . Notice t h a t (1) and

(2) a r e v a l i d f o r each r i g h t monotonic, r e f l e x i v e r e l a t i o n ins tead of

J , so e.g. f o r 2.

3.2.3 The problem with s u b s t i t u t i v i t y is t h a t t h e condi t ion typ(A) 4 2

is c l e a r l y n o t s u f f i c i e n t . We would a l s o l i k e t o know something about

typ*. I n f a c t we have t h e following theorem (modified subst., f o r s h o r t SC) :

proof: By induct ion on IB. E .g. t h e a p p l i c a t i o n case . Le t t ~ ~ . C B ~ ,
typ(B1) 2 8, typ*(B2) 2 [y:BlC. By ind. hyp. IB; and IB;. By (1) .

3.2.4 Corol lary:

Another consequence of (1) i s PT (A) f o r c o r r e c t A , i . e .
1

Proof: Assume f o r d e f i n i t e n e s s t h a t > is d i s j o i n t one s t e p

reduc t ion ;
1 '

The proof is by induct ion on t h e length of A . For example:

3.3 H e u r i s t i c considera t ions

3.3.1 A t f i r s t s i g h t SA, PT1 and cor rec tness of types seem t o g ive a

good s t a r t i n g p o s i t i o n f o r proving C L . I n a way t h i s i s t r u e : we only

have t o f i n d t h e r i g h t induct ion and t h e r i g h t induct ion hypothesis .

L e t us f i r s t t r y t o prove C L (A) by induct ion on the length of A ,
1

o r r a t h e r by induct ion on the r e l a t i o n "being a subexpression o f " , f o r

s h o r t : by induct ion on subexpressions. We i n t e r p r e t CL i n terms of
1

d i s j o i n t one s t e p reduct ion. For t h e appl . case of i n s i d e reduct ion the

ind. hyp. i s no t s t rong enough, we a d d i t i o n a l l y need P*T So ins tead
1 '

we t r y t o prove CL1 and P*T1 toge the r , again by induct ion on subexpress-

ions . NOW everything i s a l l r i g h t with the i n s i d e ,reductions, b u t with

o u t s i d e B1 we s t i l l come i n t roub le : A : {A1)[x:aY2, SA gives

typ(A) C a b u t i n view of t h e previous s e c t i o n we a l s o want 1

typ*(Ai) C t y p x (a) .

3.3.2 So l e t us see under what conditions we might prove t h i s tYP*-

requirement. F i r s t not ice: i f we knew CL already, then we could use PT
1

t o prove PT (f o r cor rec t expressions), e.g. by induction on 2. The in-

duction s t e p runs a s follows: l e t k ~ , A 2 B 2 C. By CL we g e t IB and

by ind. hyp. typ(A) G typ(B) J. typ(C) whence by CR: t Y p (A) G t y p (C) ,

q.e.d. An a l t e rna t ive proof of PT(A) from CL works by induction on the

reduction t r e e of A (by v i r tue of S N (A)) , f o r short : by induction on

reducts. Viz. l e t IA, A 2 C. I f A C then typ (A) - tyP (C) . Otherwise

f o r some B, A > B 2 C. By PT1 typ(A) G t y p (B) , by CL IB and by ind.
1

hyp. typ(B) + typ(C), so by CR typ(A) + t y p (C) .

3.3.3 Further from PT we can prove P*T, or ra ther :

by induction on degree(A) + degree(B), a s follows. I f degree(A) = 1

then degree (B) = 1 too so typ* (A) - A G B 5 typ* (B) . Otherwise,

degree (B)) 1 e i t h e r , so we can apply PT t o A and B. By CR we g e t

typ(A) G typ (B) , by correctness of types t t y p (~) , t t y p (B) so by the

ind. hyp. ~ Y P * (A) + ~ Y P * (B) , 9.e.d. An a l t e rna t ive proof of P*T from

CL and PT i s by induction on +, the order generated by (1) "being a

proper reduct o f " , (2) "being the typ of" (a s i n V.) . So the i n -

duction on + includes the induction on reducts mentioned before. That

+- i s indeed well-founded w i l l become c lear i n the sequel.

The proof looks l i k e t h i s . Let IA, l e t A 2 B. By CL b~ and by PT

typ(A) 2 F 2 typ(B). By correctness of types ~ ~ Y P (A) , t t y p (~) and by

the ind. hyp. ~ Y P * (A) G typ* (F) + typ* (B) , and by CR ~ Y P * (A) G typ* (B) .

3 . 3 . 4 In sect ion 3.2.2 we announced t o prove CL from CL1 by induction

on 2. However, t h i s can be in te rpre ted i n t w o ways:

(1) t o prove FA, A 2 B * IB, by induction on A 2 B, i . e . on the

number of reduction s teps between A and B,

(2) to prove C L (A) by induction on the reduction t r e e of A , i . e .

by induction on reducts. Both inductions work, but the second one has

an advantage: we j u s t need C L I (A) , but can f ree ly use CL(B) i n the

course of the proof, fo r each proper reduct d of B:

3.3.5 Now it becomes probably p l a u s i b l e t o t r y and prove C L (A) d i r e c t l y

by an induc t ion on z, t h e order generated by +- (3.3.3) and by sub. I n

t h i s way we combine t h e induct ion on subexpressions (3.3.1, f o r t h e

" ins ide" cases of C L 1) , on reducts (3.3.2, t o prove P T) , and on + (3.3.3,

t o prove P*T) .
I n order t o make t h e induct ion work we need t h e well-foundedness

of : on t h e c o r r e c t express ions , i . e . t h e soca l l ed big tree theorem BT.

Sect ion 3.4 con ta ins t h e proof of CL a s sketched above, assuming

BT, sec t ion 4 i s devoted t o t h e proof of BT.

3.4 The a c t u a l c losure proof

3.4.1 Def in i t ion of -+

-+ i s t h e r e f l e x i v e and t r a n s i t i v e r e l a t i o n generated by

*
3.4.2 Def in i t ion of +

i s t h e r e f l e x i v e and t r a n s i t i v e r e l a t i o n generated by

3.4.3 The big tree of an expression A i s t h e reduct ion t r e e of A w . r . t .
*

t h e extended reduct ion r e l a t i o n +. We assume t h e big tree theorem BT,
*

which s t a t e s t h a t + i s well-founded on t h e c o r r e c t expressions (and,

hence, t h a t t h e i r b i g t r e e s a r e f i n i t e) .

3.4.4 Lemma: Let FA, CL (A) . Then PT (A) (degree (A) 1)

Proof: AS i n 3.3.2, e.g. by ind. on reduc t s , using PT1 and C R .

+
3.4 .6 Lemma: Let t ~ , C L (A) . Then P * T (A) .

Proof: By BT we can use induction on +. Let A 5 B. If degree(A) = 1

then degree(B) = 1 too and there is nothing to prove. Otherwise,

degree (B) 1 either, so by the previous lemma PT (A) , i .e.
t y p (A) 2 F I t y p (B) . By C L and correctness of types b t y p (~) ,

t t y p (B) and by the ind. hyp. t y P * (A) ' C typ* (F) C typ* (B) . Now use
CR.

3.4.7 Theorem: IA * C L (A)

*
Proof: BY BT we can use induction on +. Let \A, A 2 B. If A 5 B

then there is nothing to prove. Otherwise A > C 2 B with C a proper

reduct of A . We want I c . The interesting cases are:

(1) A = { A 1) A 2 , C = { C I)C 2 , FA1, t Y P (A 1) 2 a , FA2,

t y p * (A 2) 2 [x : a l D , A1 > C 1 , A2 > C2. By ind. hyp. kc1, kc2

By PT1 t y p (A 1) j. t y p (C 1) , so by CR t y p (C 1) + a. NOW by the

+
ind. hyp. we can assume C L (A , so P*T(A2) and

2

t y p * (A 2) C t y p * (c 2) , and by CR t y p * (C 2) C C x : a l D , q.e.d.

(2) A r { A 1 1 C x : a l A 2 , FA^, t ~ x : a l A ~ , t y p (A 1) C a. By ind. hyp. we

+
can assume C L + (A ~) , CL (a , so ~ Y P * (A 1) C typ* (a), and by

substitutivity (3 . 2 . 4) t~ [A Z C , q.e.d.
2 1

V I I . 4 T h e B i g T r e e T h e o r e m

4.1 Introduction

For the definition of the extended reduction relations -+ and we

refer to sec. 3.4. Both definitions make use of t y p , so + and : are
only defined on pretyped expressions, i.e. expressions with a context.

Notice: taking subexpressions often requires extension of the context.

The big tree of an expression A is its reduction tree w.r.t. :,
*

i.e. the branches of the tree are the proper +-reduction sequences of A .

We define:

*
BT(A): @A has no infinite proper +-reduction sequences

The big tree is infinitary so:

BT (A) @ the big tree of A is finite

In this section ~11.4 we prove the big tree theorem BT:

(BT) A normable * BT (A) .
So BT states that on the normable expressions 5 is well-founded,

*
i.e. that +-SN holds.

*
De Vrijer C701 introduced +- and big trees, and proved BT for a

system of normable expressions containing his language AX.

Below we give two different proofs of BT. The first (sec. 4.5)
is modelled after the second proof of 6-SN (IV. 2.5) , the second one
(sec. 4.6) uses an idea from de Vrijer's proof (the "bookkeeping pairs")

but further follows the first 8-SN proof (IV.2.4.4). Actually both

proofs deal with a modification 2 of : which is somewhat easier to BT
handle and gives rise to even bigger trees (sec. 4.4.2).

For simplicity we start with a system without constants, and take

just B-reduction for the ordinary reduction 2 involved in + and z . Later
(5.2, 6.2, 6.3) BT will be extended to cover the remaining cases.

4.2 Heuristics 1

*
After de Vrijer we also call + and -t rt-reduction and rst-reduction

respectively, with r for ordinary reduction, s for subexpression, t for

type. Similarly we speak about r-reduction (i.e. ordinary 2), s-reduct-

ion (A s-reduces to its subexpression), t-reduction (A t-reduces to

typ(A) etc.) and their combinations. The meaning of rs-SN, st-SN etc.

and 9 - the length of rs-reduction tree of an rs-SN expression - etc.
r s

will be clear.

We want BT, i.e. rst-SN for the normable expressions. Let us

summarize what SN-results we know already:

(1) r-SN. This is ordinary 6-SN as proved in IV.2.4 for the

normable expressions.

(2) s-SN and t-SN. s-reduction decreases length of expressions,

t-reduction decreases degree of (pre-typed) expressions.

rt-SN. This was proved for correct expressions in V . 4 . 4 . The

same induction (1) on degree, (2) on 0 applies to all
r '

degree-norm correct expressions: taking t y p decreases the

degree, r-reduction preserves degree.

rs-SN. Provable for the normable expressions by induction on

(1) er, (2) length of expression. I n fact the induction used

in the proof of the square brackets lemma SQBR (I V .2.4.3) ,
and in several B-SN proofs as a subordinate induction (IV .2 .4 .4 ,

IV.2 .5 .3) is just induction on the rs-reduction tree.

st-SN. Can be proved by induction on the definition of pre-

typed expressions (I V .3.2) .
Clearly these inductions fail for full rst-SN: s-reduction can in-

crease the degree, r-reduction generally increases length of expression,

and taking t y p can increase both length of expression and length of r-

reduction tree. Besides, on the normable expressions r-reduction does

not preserve the degree.

4.3.1 Norm properties

From IV.2.1 we recall some properties of the norm p and of the

normable expressions. We write A < B for: 1.1 (A) is shorter than p (B) .
lJ

(1) { A) B normable* { A) B < B andA < B
1.I 1.I

(2) A normable * p (t ~ p (A)) E 1.1 (A)

(3) p(x) : p (A) , B normable * p (B l [x / A J) p (B)

(4) A 2 B , A normable * p (B) E p (A)

(5) B c A , A normable * B normable

Properties (2) , (4) , (5) make that the normable expressions are
*

closed under -+ and that + preserves the norm.

Similarly to the SN-conditions in IV.2.4.1 we can formulate

necessary and sufficient BT-conditions:

Proof: We j u s t g ive t h e *-par t of (3) . Le t BT(B1) , BT(B2) and

B2 -+ [y:B]C - BT(CIBIJJ). B2 i s rst-SN s o rt-SN s o we can use

(B) . B i s rst-SN s o r-SN s o we can use 0 (B) . Using induct ion
'rt 2 1 r 1
on Br(B1) + Brt(B2) we prove t h a t a l l one-step r s t - r educ t s of

{B1)B2 a r e BT. Dis t inguish:

(i) D sub {B1)B2, so D c B o r D c B s o B T (D) .
1 2'

(ii) B > D o r D r typ(B2) . we have BT(B1) , BT(D) and
2 116

D -+ Cy: Blc I. BT(c[Bll) . Apply the ind. hyp. t o {B1)D, t h i s

g i v e s BT ({ B1 ID) .
(iii) B > D. Apply the ind. hyp. t o {D)B2.

1 116

4 .3 .3 H e u r i s t i c s 2

I f BT (B2) , B2 -+ Cy : BIC then c l e a r l y BT(C) . SO BT-condition (3)

above suggests a s a main s t e p i n proving BT t h e s u b s t i t u t i o n theorem

f o r BT: B T (A) , p(x) r p(A), BT(B) + BT(B[x/A]).

Indeed, i f we knew t h i s theorem, we could simply proceed by in-

duct ion on pretyped expressions and g e t BT. The s i m i l a r i t y with t h e

s i t u a t i o n around B-SN suggests u s t o use SQBR (1v .2 .4 .3)~ f o r -+

ins tead of 2 : I f B* -+ [y: f3lc then e i t h e r (1) B -+ [y: 6 I C with B;) 2 8 , 0 0
C: -+ c, o r (2) B -+ {F}x, ({FIX)* -+ [y:B]C, where * s tands f o r [x / A ~ .

However t h e following counter example shows t h a t t h i s lemma i s

wrong: Take B 5 {B1)[z:y1[y:B]{z)x, A 5 [u :$ l**u .*u . Then

B* + [~ : B * [B ; D I - - B ; - - ~ * , bu t B + C y : B ~ B 1 ~ I { B 1 h r and ({ B ~ I X) * + **B?*Bi

4.4.1 One p o i n t which makes SQBR break down f o r -+ i s t h a t ne t :

Example: B X, C ~ Y P (X) and t h e only connection between x and A

concerns t h e i r norms (n o t t h e i r t y p ' s) .

The o t h e r s u b s t i t u t i o n proper ty : A + A ' * B[A] + BIA1] does n o t

hold e i t h e r , due t o the lack of monotonicity c lauses i n t h e d e f i n i t i o n

of +. Example: A -t typ(A) b u t no t * * - A * * * + * - * t y p (A) * * * .

4.4.2 Now we in t roduce BT-reduction by adding t h e s e monotonicity r u l e s

t o t h e d e f i n i t i o n of +. What we g e t i s a reduct ion i n t h e usua l sense,

t h a t a one s t e p reduc t ion c o n s i s t s of r ep lac ing a subexpression (redex)

by another express ion (contracturn). The r e d i c e s a r e he re of two kinds:

(1) B-redices which c o n t r a c t as usua l

(2) r - redices : v a r i a b l e s x w h i c h c o n t r a c t according t o x x: >typ(x).
T

We use t h e same terminology a s before (11.7.1.2) : 2 , > , > e t c . ,
T 1 , r B T

T-SN, Br-SN, 8 e t c .
B T

Now 2 s a t i s f i e s t h e second s u b s t i t u t i o n p roper ty (above) indeed
B T

b u t the f i r s t one i s s t i l l n o t v a l i d (same counter example).
*

J u s t l i k e + and +, 2 is only def ined f o r pretyped express ions .
B T

Formally, we ought t o speak about " 2 w . r . t . con tex t 5", and t h e
BT

monotonicity f o r a b s t r . express ions then would read:

I f B > C w . r . t . 5 and B > C w . r . t . (5 , y E B1)
1 B T 1 2 8~ 2

then Cy:B11B2 >Br Cy:C11C2 w . r . t . 5

4.4.3 We a r e going t o prove BT-SN and then conclude BT from t h e

Theorem: BT-SN (A) * BT (A)

Proof: L e t BT-SN(A) . Using induct ion on (1) 8 (A) , (2) l eng th of A w e
6 r

show t h a t a l l one-step r s t - r e d u c t s of A a r e BT. So A i t s e l d i s BT.

4.4.4 BT-SN cond i t ions

These a r e q u i t e s i m i l a r t o t h e BT-conditions. The only non- t r iv ia l

modif ica t ion concerns t h e appl . case.

Proof: A s i n 4.2.3 b u t now we use induc t ion on 0 (B1) + BgT(B2). B T

4.4.5 Something on 2
'I

Just like st-SN (see 4.2(5)) we can prove T-SN. Further we verify
T-CR: Let C contain subexpressions A Z ~x:a]**x**, r [y:B]**y** .
Then A >T A' 5 [x:a]**a** , r > r' Z ~.J:B]"B.~ and we want a common

T
~-r~duct of ...~l..r... and ...~..rl... . AS in 11.8.2 we consider

all the possible cases. Generally the reductions simply commute:

...~l..r... > ...A'..~I... < ...~..rl... . In case the specific x
T T

occurs in B or the specific y occurs in a then two steps are needed,

e.9. [y:..x..]..y.. > [y:..a..]..y.. > [y:..a..]..(..a..).. < <
T T T T

[zj:.*x*-]**(--x--)-* . Anyhow the weak diamond property holds for >
T I

so by T-SN we get T-CR, and uniqueness of T-normal form.

4.4.6 This gives an easy way of reaching a BT-normal form: first T-

normalize then @-normalize. Notice: the norm properties guarantee that

ZQT preserves the norm of normable expressions.

> 8
and 2 do not commute, but we still can get BT-CR for the

T
normable expressions, as follows. For norms v we define a BT-normal

expression v*: (1) T* 5 T, (2) (C V]V) * - [x:vXJv* . Now ,we can prove
1 2 1 2

by ind. on the definition of p. This gives Br-CR and uniqueness of BT-
normal form. The procedure above assures the existence, so for normable

.4 we can speak of 8-c-nf (A).

In fact V* is Nederpelt's original representation of the norm v.

4.5 First proof of BT-SN; a correction to IV.2.5.3

4.5.1 In view of 4.4.4 it seems reasonable to concentrate on the sub-

s t i t u t i o n theorem for BT-SN: A BT-SN, B BT-SN, v (XI = p (A) * BUAI BT-SN.
Just like with +, SQBR fails for 2 so we rather let us inspire by BT'
the second proof' of 6-SN (IV. 2.5.3) .

In fact we also take the occasion to indicate (and repair) a flaw

in that proof, concerning the distinction between replacement and sub-

s t i t u t i o n .

4.5.2 Replacement v s . s u b s t i t u t i o n

When d e f i n i n g s u b s t i t u t i o n 1 1 2 . 4 we have assumed t h e concept

o f l i t e r a r y r e p l a c e m e n t t o be understood. S u b s t i t u t i o n amounts t o r e -

placement With p recau t ions , v i z . t h a t no c l a s h of v a r i a b l e s t a k e s p lace ,

and s u b s t i t u t i o n can a l s o be considered a s p e c i a l case of replacement.

Now l e t u s s e e what went wrong i n IV.2.5.3 (and a l s o i n (IV.2.6.2).

E s s e n t i a l l y we wanted t o r ep lace a s p e c i f i c subexpression A i n C by an-

o t h e r express ion A ' , t hus producing C ' . We had t h e idea t h a t t h i s replace-

ment of A with A ' could be performed v i a s u b s t i t u t i o n f o r a new " f resh"

v a r i a b l e y , such t h a t C = - * y * * , Z ; CO[y/A1, C ' 5 C [Y / A ' ~ . However
0 - 0

t h i s i s wrong: p o s s i b l e bound v a r i a b l e s of C, which become f r e e i n A ,

can never g e t t h e appropr ia te bindings i n C U ~ / A] .
0

What we. need here i s l i t e r a r y replacement (LR) of y wi th A and A '

r e sp . We in t roduce a new no ta t ion : B[x/AILR i s t h e r e s u l t of l i t e r a r y

rep lac ing a l l f r e e occurrences of x i n B by A .

4.5.3 Below we fol low t h e genera l idea of IV.2.5.3, bu t i n s t e a d of

using a s u b s t i t u t i o n theorem f o r SN, we use the - s t ronger! - replace-

ment theorem - a s we ought t o have done t h e r e (and i n IV.2.6.2) too.

The e a s i e s t way i s t o use replacement wi th a set of e x p ~ e s s i o n s .

Notation: 6%x/a3LR, where a i s a s e t of express ions , i s t h e s e t of ex-

p ress ions which r e s u l t from B by (l i t e r a r y) r ep lac ing a l l f r e e x i n B

by an express ion A E a , bu t poss ib ly d i f f e r e n t A ' s f o r d i f f e r e n t

occurrences of x (compare mul t ip le s u b s t i t u t i o n , i n 11 .10) .

4.5.4 The monotonicity of 2 makes t h e replacement proper ty work:
B T

provided A has been p u t i n t h e appropr ia te extended context .

We make t h i s s l i g h t l y more e x p l i c i t . Le t A be an occurrence of a sub-

express ion i n C. The con tex t of A i n C can be def ined by induct ion on

t h e l eng th of C. I n t u i t i v e l y speaking, it c o n s i s t s of a l l t h e assumpt-

i o n s x E a , which one encounters (i n t h e form of a b s t r a c t o r s Cx:a])

when scanning C from " l e f t t o r i g h t " u n t i l one a r r i v e s a t A . The c r u c i a l

c l a u s e i n t h e d e f i n i t i o n i s of course: i f 5 i s t h e context of A i n C 2
then (x E C , c) i s t h e context of A i n [x:C]C

1 1 2 -

Now t h e con tex t of A i n t h e replacement p roper ty must provide a l l f r e e

v a r i a b l e s of A with t h e same typing a s they g e t when A i s i n s e r t e d i n

B. E.g. we can t ake (E r n) where 5 i s t h e context of B and TI i s the
0 0

i n t e r s e c t i o n (i n the sense of con tex t inc lus ion sub, cf . V.2.6) of a l l

the q ' s which a r e t h e context of a f r e e occurrence of x i n B.

We d e f i n e p (A) t o be t h e s e t of B v r e d u c t s of A . Then, again i f A

has been p u t i n t h e r i g h t context ,

4.5.5 The o t h e r replacement p roper ty B 2 C * B* 26, C*, where *
B T

s t ands f o r [x/A] is s t i l l not genera l ly v a l i d , b u t we have a r e s t r i c t e d
LR

vers ion . Lemma: I f A tBT t ~ p (x) and B C then B* 26, C*.

Corol lary: B* 6~-SN, A 2BT typ(x) * B BT-SN.
*

Proof: Use ind. on (1) e B T (~ *) (2) l eng th of B . E.g. i n s p e c t the

3~-SN cond i t ions .

4.5.6 Now we a r e ready f o r t h e BT-SN proof .

Replacement theorem f o r BT-SN: Le t * denote ; C X / P (A)) ~ ~

Let B normable, p (x) E p (A) , A , B BT-SN. Then

provided A has the r i g h t context .

Proof: By induct ion on (I) p (A) , (11) B B T (B) , (111) the "capac<ty" of

the t r a n s i t i o n from B t o C, i . e . t h e sum of t h e 0 ' s of t h e reducts of
B T

A i n s e r t e d i n B. Now consider a s i n g l e reduct ion s t e p C > D. We
1 1 6 ~

d i s t i n g u i s h : (1) t h i s reduct ion s t e p concerns an o l d redex, i . e . a redex

a l ready p r e s e n t i n B, (2) t h i s s t e p concerns a new redex. The l a t t e r

a r e of two kinds: (2a) mul t ip l i ed r e d i c e s , i . e . r e d i c e s i n s i d e an i n -

s e r t e d reduc t of A , (2b) newly composed red ices . A l l T-redices f a l l

under case (1) o r (2a) and the 6-redices a r e c l a s s i f i e d a s before , so

t h e only p o s s i b i l i t y of case (2b) i s a s fo l lows: B Z * * * x W * * {B1Ix.**,

i : . - - A - - -{C,) [y:y]E-**, D - . * * A - . * E [C , l - - * , where C1 E 8;.
1 1

A 2 A A 2 [y:ylE.
3.r 1 ' B-r

In case (1) and (2a) the replacement and the reduction commute,

i.e. B > Do, D E D:. To be precise, let {C1}[y:ylC2 be an "old" redex,

i.e. {B11Cy:B1B2 c BI Cl E B;, C2 E 8;. Then D Z -**C [C I = - * E
2 1

(a*-B [B]*-*)~X/~(A[B~D)~~~, and not simply D E D*. Then we get
2 1 0

BT-SN(D) by ind. hyp. I1 (case (1)) or I11 (case (2a)).

NOW we tackle case (2b): create a new variable z and form B by
0

replacing the intended {B }X by z. So B Z B [z/{B1)x] For simplicity 1 o LR'
we put ~ Y P (Z) BT-nf ({B }x), so p(z) E p({B1lx) and ,6r-SN(B0) -by 4.5.5. 1
Then we form B' E B: by replacing the remaining free x's of B

0 0
with the appropriate reducts of A, i.e. the same as used in the formation

of C, and finally replace the z of B' by E[C 1. This gives us
0 1

D B;[z/EUC~IB~~ back. Informally: B - *-*x**-z**- , B' ...A .. .z.. .
0 0 1

D : * * . A ***E[c~]*** . Either by ind. hyp. I1 or I11 we get eT-SN(C) .
1 1

Further BT-SN (A) so BT-SN (Cy : y IE) so BT-SN (E) . By normability B 1 <lJ " -

so C1 < p X. Substitution is a special case of replacement, and replace-

ment [[ILR is a special case of % % so by the first ind. hyp.
LR

BT-SN(~C~]). Bb is fir-SN by ind. hyp. I1 or 111, aC1l <lJ SO by ind.

hyp. I again BT-SN(D) q.e.d.

4.5.7 Corollary 1: B normable, p(x) : p(A), A, B BT-SN * ~A]BT-SN
(substitution theorem for BT-SN)

Corollary 2: B normable * B BT-SN (see 4.4.4)

corollary 3: B normable * BT(B) (as in 4.4.3)

4.6 Second proof of BT-SN

4.6.1 Bookkeeping pairs, ?expansion and n-reduction

4.6.1.1 Assume that A 2, B , i.e. B results from A by successively

replacing variables x by their type typ(x). Alternatively we can work

backwards from T-nf(A), by successively replacing newly created sub-

expressions by the original variable.

In general it is of course not possible to retrace which subex-

pressions are newly created, and from which variable they stem, unless

we store this information somewhere inside the expression!

Following de Vrijer 170 I we use a new pairing operation ' - * , -'
for this kind of bookkeeping.

Definitions: (1) I f A , B a r e expressions then r ~ , ~ l is

(2) I f A , B a r e <-expressions then 'A,B' i s a <-expression

239

an expression.

3 I f A , B a r e normable, p (A) Z p (B) then ~ (' A , B ') E p (A) .

For the r e s t the def in i t ions of pretyped and normable expressions a r e

unaltered. The notions of subexpression and subs t i tu t ion a re extended

i n a straightforward way. A s a new monotonicity r u l e , fo r each kind of

reduction, we can have, e.g. A > A ' , B > B' * 'A,B' > 'A',B".

4.6.1.2 Now the a l t e rna t ive way of producing B from A (above) can be

described a s follows: (1) f i r s t provide a l l var iables x successively

with a copy of t h e i r type, i . e . replace x by ' x , ~ Y P (x ~ and so on,

(2) then f o r some of these p a i r s simple res tore the lefthand pa r t , and

for the r e s t pick the righthand pa r t .
I

In the process (1) the T-eqansion of A , T - ~ x P (A) , i s constructed,
r i . e . each x of A i s replaced by X , T-exp (typ (x)) '. The process (2) we

describe i n terms of a project ion reduction (T-reduction rT) .

Definitions: (1) The T - e X p of pretyped expressions is defined

inductively:

(ii) T-exp ({A)B) E { T-exp (A) IT-exp (B)

(iii) T-exp(Cx:alB) E C X : T - ~ X ~ (a) IT-exp (B)

(i v) T-exp (r ~ , B-) z T-exp (A) , T-exp (B)

(2) (i) one-step T-reduction > i s generated from T-contraction:
l 1 T

'A,,B' > A , 'A,B' > B by the monotonicity ru les
11T lrT

(ii) T-reduction 2 i s the t r ans i t i ve and ref lexive closure of
T

> I , IT.

4.6.1.3 Remark: Formally we should have defined the T-expansion of

expressions w . r . t . t h e i r context, notation c-T-eXp(B). The abs t r . case

of the de f in i t i on then becomes:

4.6.1.4 The poin t of t h i s a l t e rna t ive approach of ZT1 making use of

A t B * ~ - e x p (A) t B (see 6.2.2)
T 71

i s t h a t 2 i s d e f i n i t e l y ea s i e r t o handle than 2 roughly because 2
71 'I' T

does not depend on the context, and t h a t 2 -reductions of an expression
B T

c a n be simulated by t -reductions of i t s T-expansion.
Bn

Our proof below cons is t s of two pa r t s : f i r s t we show t h a t Bn-SN

implies BT-SN, then we prove the SQBR lemma fo r 2 and fin-SN.
Bn

4.6.2 Bn-SN implies BT-SN

4.6.2.1 Lemma:
A >1,T

B * T-eXp(A) r T-exp(B) (i n f a c t >)
T l , n

Proof : Ind. on > :
l1 . r

(i) T-contraction, A E x , B 5 ~ Y P (x) . Then T - ~ X P (A) E

rxlr-exp (typ(x)) ' > l T-exp (typ (XI = T-exp (B)

(ii) Monotonicity, e.g. A [x:A IX, B : [x:B]x, A > 1 1 1 1,T
By ind.hyp. T - ~ x P (A ~) > 71 T - ~ X P (B1) , SO T-exp(A) 5

CX:T-exp (A l lrx,r-exp (dl ' z IT Cx:r-exp (B 1) l r x .~ -exp (B ~) ' E

4.6.2.2 Corollary 1: A 2 B * ~ - e x p (A) 2n T-exp(B)
T

Corollary 2: A 2 B * ~ - e x p (A) 2 B (because ~ - e x p (B) >71 F)
T IT

4.6.2.3 Lemma: Let A be a 5-expression, l e t B be a (5 , ~ E cx,q)-express-
I

ion. Let and 'I stand f o r [[x/A] and [[x/T-exp(A)n resp. Then

I I
with T-eXp(B) taken w . r . t . 5 , n .
proof: ind. on .the de f in i t i on of 'r-eXp(B) :

-111 = r
(i) r-exp(x) 'I E 'I, T-exp(a) - T-exp(A) .T-exp(u) ' > T

I T-exp (A) 2 T-exp(x .

4.6.2.4 Corol lary: Le t A be a c-expression, B i s a (s , x E a) -express ion.

Then T-exp (B) [x/T-exp(A)D ra T-exp (B[x/Al)

4.6.2.5 Corol lary: A 7 B * T - e X p (A) 3 2 T-exp(B)
1rB 1rB a

(ii) monotonicity, e .g . A - 'A A ', B 'B ,B ', A 7 1' 2 1 2 1 l , B B1'

A 2 1,B B 2' BY ind . hyp. T-exp(A) I ' r - e x p (~ ~) ,T-exp(A2)'
-
> z 'T-exp (B ~) .T-exp (B ~) ' = r-exp (B) .

116 'II

4.6.2.6 Theorem: T-exp(A) BT-SN * A BT-SN

Proof: Let -c-exp (A) be BT-SN, use i n d . on 9 (T-exp (A)) . I f A > B
671 1 , B

then r-exp(A) ; 1 , B >71
T-eXp(B) (by 4.6.2.5), so by ind. hyp.

8t-SN (B) .
Simi la r ly , i f A > B then BT-SN (B) . So A i s BT-SN.

1 , ~

4.6.3 The proof of 671-SN

4.6.3.1 The normable express ions a r e c losed (and norms a r e preserved)

under 2 . Further 2 , s a t i s f i e s both s u b s t i t u t i o n p r o p e r t i e s (see4.4 .1) .
B .n 71

Notice t h a t 2 does n o t s a t i s f y CR b u t t h a t 6 and a commute (use nes ted
71

one s t e p reduct ion see 11.3.4) and t h a t weak 718-postponement holds:
1 171

A ? B * A 2 C s B
B T .rr > B a

4.6.3.2 Bn-SN condi t ions

These a r e again q u i t e s i m i l a r t o the B-SN condi t ions . The i n t e r e s t -

ing c lauses a r e :

(1) A BT-SN, B 671-SN * Cx:AlB and r ~ , ~ ' 671-SN

So, again, we want the substitution theorem for BT-SN.

*
4.6.3.3 Square brackets lemma for 2 Let B be $n-SN. Let stand for

Bn -
[x / A] . Let B* 2 Cy:6lC. Then either (1) B 2 [y:f301C0 with

Bn 8
8' 2 8, C: 2Bn C, or (2) B 2 {Bk)***{Bllz, ({BIZ)* P Cy:61C.
0 Bn f3a

Proof : As in IV.2.4.3, by induction on (I) 8 (B) , (11) the length of
BIT

B. The new case is r~ B ', B* E r ~ * , ~ * l
1' 2 1 2

. Then either
B* 2 Cy:BIC or B; ZBn Cy:B]C, and we can apply ind. hyp. I to B1
1 BIT

or B
2 '

Remark: An alternative proof is provided by Barendregt's lemma, which

is still valid for 2 (see I1 -11.3.5) .
Bn

4.6.3.4 Substitution for Bn-SN: Let B be normable, p (x) - p (A) , A and
B are ~n-SN. Let * stand for [x/AD. Then B* f3a-SN.

and

4.6.3.5

4.6.3.6

Proof: As in IV.2.4.4, by ind. on (I) u (A) , (11) eBn(B), (111) length

of B. The new case concerns B I 'B B , B* I B , . Both B; 1 2
B; are f3n-SN by ind. hyp. 11 so B* is Bn-SN.

Corollary: B normable * B f3n-SN

Notice that the T-expansion of normable A is again normable,

so A normable * T - ~ X P (A) normable.

Corollary: A normable * A BT-SN (by 6.2.6)

Corollary: BT

VII.5 Closure and Church-Rosser for An

5.1 Introduction

5.1.1 Here we consider the constant-less part of Aq, defined as in sec.

2.12, but with 2 standing for en-reduction. It is easy to derive a

strengthening rule (sec. V.1.6) for such an algorithmic system, so q-CL

does not cause major difficulties. The problems with closure for hq, as

compared to A, are rather due to the fact that CL and CR appear to be

heav i ly interwoven. Namely, a proof of CL (s e e , e . g . , VII.3) seems t o

make q u i t e e s s e n t i a l use of C R , while i n t u r n we seem t o need C L i n the

course of t h e CR-proof - because Bn-CR holds f o r c o r r e c t express ions

only.

The s o l u t i o n is of course t o p r o v e C R and CL (and a number of o t h e r

p r o p e r t i e s) simultaneously, by induct ion on b i g t r e e s . I n sec . 5.2,

below w e prove indeed t h a t BT extends t o t h e p r e s e n t s i t u a t i o n .

5.1.2 We in t roduce some no ta t ion t h a t enables u s t o make t h e s t r u c t u r e
*

of t h e proof more e x p l i c i t . Here +- is a s i n VII.3.4.

Def in i t ion : I f P i s a proper ty of express ions then P* and P; a r e

given by

(1) P*(A): - A B + P (B) _
*

(2) P ~ (A) : - (A proper ly +-reduces t o B) * P(B)

Using t h i s n o t a t i o n , we can express our induct ion s t e p by

f o r which, of course , it i s s u f f i c i e n t t o prove

The p r o p e r t i e s SA, PD, PT and P*T from 3.1 p l a y again a r o l e

i n the p roof , and f u r t h e r p roper ty SC, s u b s t i t u t i v i t y of co r rec tness ,

here def ined by SC(B) : w

(x E at^, \A, typ(A) + t y p (x) , typ*(A) + ~ Y P * (x) + ~ B U A I) .

5.1.3 Now t h e proof below i s organized a s follows. F i r s t we p r e s e n t

some pre l iminary f a c t s , among which 6q-BT (s e c . 5 .2) , s t rengthening and

5-PT (sec . 5 .3) .

Sect ion 5 .4 conta ins t h e a c t u a l c losure proof . F i r s t we assume IA ,
C R t (A) , CL:(A) , and prove SA(A) and P D (A) (i n sec . 5.4. I) , PT1 (A) , SC(A)

and C R 1 (A) (i n sec . 5.4.2-5.4.4) r e spec t ive ly by a separa te induct ion

on b i g t r e e s , and by simple induct ion on length . Then we complete the

proof by proving PT (A) , P*T(A) and CL (A) s imultaneously, by induct ion 1
on the b i g t r e e of A again.

5.2 Extension of BT to the Bn-case

5.2.1 A postponement result

Let r and 2 be the straightforward extensions of 2 and 2
T 11 B T ~ T BT'

as defined in 4.4.2. Mere verification shows that

-
Apretyped,A> > B * A > > B

1,n 1,T 1,T 1,n

whence - as in II.7.3.2- ~n-postponement:

5.2.2 B~T-SN and ~n-BT

In 4.6.3 we proved BT-SN, which - as in 11.7.3.5 - together with
(B~)-n-pp and n-SN gives us B~T-SN, for normable expressions. Then

BII-BT follows, as in 4.4.3.

5.3 Some simple facts

5.3.1 Strengthening

I£ B is a (6 ,x E a,i E g) -expression, but x $ FV(B) and x $ FV (B) ,
then B is a (<,y E E)-expression as well, and the typ (if degree(B) $ 1)
and typ* of B w.r .t. both contexts are syntactically equal (2) .

So,by induction on the definition of correctness, we get

strengthening: if x E a, E &(B) , x $ FV(B) (and X $ FV (B) then
i E &(B) - read this twice, with and without the parts concerning B - .

As a corollary we have: X E at^, X $ FV(A) * IA
whence n-outside-CL - 1 X:a {x)A, X $ FV (A) * F A . 1 -

5.3.2 n-PT and n-P*T

For pretyped A there holds

Proof: Induction on the length of A .

So, induction on 2 gives
rl

5.3.3 From 3.2.1 we r e c a l l the property of correctness of types

CA * t t y p (4

and the subs t i tu t ion propert ies from 3.2.2

5.3.4 Property: Let degree(A) = 1, p (A) : [v l] * * * [v k] ~ . Then

A 2 [x : a l] - -* [x - a]C.
1 k' k

Proof: Induction on the length of A . E.g. l e t A 5 {A)A then
1 2'

p (A 2) : [u (A 1) I C V ~ I ~ - C V ~ ~ E , SO by ind. hyp.

A 2 [X :B] [X :a I - ** [x :a IC and A 2 [xl:ai]-**[xk:a;]C', q.e.d.
2 1 1 k k

Corollary: ~ e g r e e (A) = 1, p (A) E [v]v + A L [x:a]C.
1 2

Corollary: t l ~ , A : [x:a]C, A 2 F * F 2 [x:f3]D

Proof: I f A cor rec t , then A normable, so F normable, with

11 (F) 5 v (A) - Cu (a) l u (C) .
Corollary: I ~ A , A : [x:alC, A t F * F 2 [x:f3]D.

5.4 The ac tua l closure proof

Proof: By induction on the big t r e e of A .

(P D) . Let A : [x:A IA A 2 [x:B]B If A1 r B
1 2' 1 2 '

> B then
1 t A 2 - 2

ce r t a in ly A
1

t B1. Otherwise A 2 {x)[z:B1]B2. The l a t t e r expression i s
2

cor rec t , s a t i s f i e s CR* and CL*, so we can use SA and g e t A 1 t B1, q.e.d.

(SA). Le tA 5 {A }[x:A]A Then C A ~ , typ(A1) L +, ~ [x : A ~] A ~ , 1 2 3 '

typ* t ix:A21A3) C ~ : A ~ l t y p * (A3) 2 Cx:(IC. By cor rec tness of types

~ c x : A ~ I ~ ~ ~ * (A ~) , which a l s o s a t i s f i e s CR* and CL* s o we can apply PD

and g e t A t 6 , whence typ(A1) t A 2 , q.e.d. 2

Proof: Induction on length(A1. n-PT1 we know al ready (sec . 5 .3 .2) . For

B-outside-PT l e t A 5 {A1)[x:A]A By 5.4.1 typ(A1) f A 2 and by t h e 1 2 3 '
s u b s t i t u t i o n p roper ty 5.3.3. (1) typ (A) 5 {A1}Cx:A2]t~p (A3) >

typ (A) [A 1) t typ (A [A 1)) , q.e .d. The o ther cases a r e immediate.
3 1 3 1

5.4.3 Lemma: Let x E a , Y E Q ~ B , C R ~ (B) , CL:(B), t ~ , t y p (~) t a ,
*

typ*(A) 4 typx(cr). we wr i t e f o r Ux/AIJ. Then (SC(B)) E B * ~ B * .

Proof: Induction on length(B) . The c r u c i a l case is: B E {B }B
1 2'

tYP(Bl) 2 4 , typ*(B2) 2 Cu:(l$. By ind. hyp. F B ~ , tB2. We do n o t know

CR o r CL f o r t h e s u b s t i t u t i o n r e s u l t s , s o we use a t r i c k . Dis t inguish:

(1) B1 does no t end i n X, then typ(B1) : typ(B1) * 2 (*.

(2) Otherwise, l e t B E * * * x - - * X and form C from B by j u s t re-
1 1 1

Anyhow, i n both cases t y p (~ ;) 2 (I * . with (' i 4.

Further d i s t i n g u i s h :

(1) B does n o t end i n X, then typ*(B2) 5 ~ Y P * (B ~) * 2 CU:+*]$J*.
2

(2) Otherwise form C2 from B by rep lac ing i ts f i n a l x,
2

B 5 . . .x...x, C 5 . . .x...
2 2 typ* (A) + typ* (B2 . Then, by
-

C R (~ Y P * (B ~)) , C2 4 [u:(]$ and, by 5.3.4 C2 2 Cu:("I$" with,

by PD, 4 4 $*I. NOW typ*(B;) t C; ;1 CU:("*I$J'~*.

SO i n both cases typ*(B;) 2 CU:("*I$"*, with (+ (I r .

Now use C R (() , t h i s g ives + ' G (", whence (I * C ("* and

typ(B;) t (' I*. So ~{B;}B;. q.e.d.

5.4.4. Lemma: Let IA, C R $ (A) , C L t (A) . Then CR1(A)

Proof: Again by induct ion on length . The c r u c i a l case i s t h e c r i t i c a l

Bn-case: A : Cx:A] { X } C X : A ~ ~ ~ , x 4 w(A2). By 5.4.1 SA({x)Cx:A2M3)
1

s o A1 G A 2 , Cx:A1M3 G Cx:AZIA3, q.e.d.

5.4.5 Lemma: Le t IA , C R g (A) , C L ~ (A) . Then C L l (A) , PT (A) and P*T (A) .
Proof: Induction on t h e b i g t r e e of A.

(C L) . Let A > B , we must prove F B . The q-outside case we know a l -
l

ready. Consider, e .g. : A 5 { A 1 1Cx:A]A B - A3[A1]1 . By 5.4.1
2 3'

t y p (A l) + A 2 . BY P*T - ind. hypothesis - we g e t t y p * (A 1) + typ* (x)

a s we l l , so by 5.4.3 we a r e done. This i s 8-outside C L 1 .

O r consider : A Z { A)A A1 > B 1 , A2 > B 2 , B Z { B)B t y p (A 1) 5. $, 1 2' 1 2'
t y p * (n 2) 2 C u : $ l $. By (e.g.1 t h e ind. hyp. we g e t I B ~ , /-B2,

t y p (A l) + t y p (B 1) and typ* (A ~) + typ* (B ~) . Now use C R , t h i s g ives

t y p (B 1) + $ and t y p * (B 2) + [u : $ l $.

s o , by 5.3 .4 , t y p * (B 2) 1 [u : $ '] $ ' and by 5.4.1 $I + $ I r . F i n a l l y

c R ($ I) y i e l d s t y p (B 1) + $ I , so ~ { B ~) B ~ , g.e.d. The remaining case

of C L i s t r i v i a l .
1

(P T) . PT1 we know al ready. Now l e t A > B 2 C . By C L 1 F B and by 1
ind. hyp. P T (B) , so by C R (t y p (B)) , t y p (A) + t y p (C) , q.e.d.

(P * T) . Let degree(A) = 1 . Then by PT, i f A 1 B ,

t y p (A) r F 5 t y p (B) . BY C L 1 (A) (t h i s impl ies C L (A)) I B , so by

cor rec tness of types , t t y p (A) and t t y p (B) . Now apply t h e ind. hyp. :

typ* (A) + t y p * (F) + typ* (B) and use C R : ~ Y P * (A) + typ* (B) , q.e .d.

5.4.6 Theorem: I f IA then C R (A) , C L (A)

Proof: By induct ion on t h e b ig t r e e of A . The ind. hyp. reads C R g (A) ,

C L g (A) , and t h e preceding lemmas produce C R (A) and C L (A) . A s we 1 1
not iced before , t h i s y i e l d s CR(A) and C L (A) .

5.4.7 Corol lary: I f /-A then S A (A) , PD(A) , PT (A) , P*T (A) and SC (A) .

5.4.8 Note: The separa te induct ions on b i g t r e e s i n 5.4 .1 , 5.4.5 and

5.4.6 can of course be compressed i n t o a s i n g l e induction on big t r e e s .

248

VI I .6 Various equivalence resul t s

6.1 Introduction

In VII.2 we introduced A(n) with and without (definitional) con-

stants. The results in VII.3-5 are derived for the constant-less system.

In this section we extend these results in an indirect way to the re-

maining systems, by showing that, in a certain sense, they can be em-

bedded in the constant-less version.

Sec. 6.2 is devoted to primitive constants only. First we give a

translation which eliminates the constant-expression. Then we explain

the relations between (a) the system with constants, (b) its image under

the translation, and (c) the constant-less system. Afterwards we easily

extend our nice properties (CL, CR, BT) to the system with constants.

Sec. 6.3 covers the additional extension with definitional con-

stants. In 6.4 we prove another equivalence: between Nederpelt's single

line presentation with abstractorstrings Q and our presentation, with

contexts 5. In this case too, the correspondence is close enough to

show that ~ederpelt'soriginal system satisfies the required properties.

6.2 Eliminating primitive constants

6.2.1 The translation '

For the system with constants (for short: C-system) we use the

notations A(n) and kc. Now we define a translation of the C-system into
C

the system without constants. The translation (notation I) is characte-

rized by:

(1) it transf orms constants p into variables p ' ,

(2) it converts constant-expressions p (A *-*,A) into appl. express- 1 ' k
ions {A;)*-*{Ai)p',

(3) it eliminates schemes 2 E Ti * p(y) E y one by one from the book by

including an additional asswnption p' E [y: i' ly ' in the context,
(4) it commutes with the other formation rules (for expressions, strings

and contexts) .

Thus a statement 8; t c ~ is translated into B', E'CA' where 8' is.

understood to be a context consisting of the additional assumptions for

the new variables p' .

6 . 2 . 2 Why the indirect approach?

Below we use the properties of the constant-less system in our

proof of the desired correspondence. Afterwards we can extend these

properties to the C-system.

The point is that the constant-less system is definitely easier to

handle. In particular: the fact that the typ of a constant-expression

is constructed by substitution is a complicating factor, because cor-

rectness of types is not immediate any more.

E.g. by using this indirect approach we would have been able to

introduce constants without using degree-norms.

6 . 2 . 3 The nature of the correspondence

For terminology about extensions we refer to V.3.3.2. However,

because we study an algorithmic system now, we replace A E B by

typ(A) + B and A Q B by A + B.
Clearly the C-system is an extension of the system without con-

stants. Because t yp and 2 remain the same, it is a C O ~ S ~ P V U ~ ~ V ~ extens-

ion too. Of course it is not an unessentiaz one: primitive constant-

expressions do not main reduce at all, so they can never be definition-

ally equivalent to an expression without constants.

Contrarily, the translation ' maps expression (and contexts),
correct w.r.t. B in the C-system, proper~y into the expressions (and <
contexts), correct w.r.t. 8': expressions @) p ' that do not have enough

arguments in front, i.e. where 12 1 is smaller than the arity of p have

no counterpart in the C-system.

For the image of the C-system (w.r.t. a fixed book 8) under ' , we
introduce the notation . I .e. -

Then below it will appear that the expressions (and contexts) correct

w.r.t. 8' in the constant-less system, form a conservative extension of

t h e system - . I n the presence of rl-ireduction, it w i l l be d e f i n i t i o n a l

(SO u n e s s e n t i a l) t o o . See sec . 6.2.9.

6 .2 .4 Fac t s about '

Notice t h a t ' i s a pure ly " s y n t a c t i c a l " ma t te r , which has nothing

t o do wi th cor rec tness : pretyped-ness i s s u f f i c i e n t .

A s a map from s ta tements 8; S ~ A t o s ta tements B', S ' ~ A ' t h e t r a n s -

l a t i o n i n n o t one-one, bu t a s a map from 8-expressions and - con tex t s

i n t o B'-expressions and - con tex t s it is one-one indeed. For t h e (p a r t -

i a l) inverse we use t h e n o t a t i o n ,,:
(A ') , , :- A

Clearly., A [B] ' = A ' U B ~ D s o A 2 B * A ' z B' , s o A J. B - A ' + B'.
i

Fur the r typ (A ') 2 typ(A) ' - t h e r e a r e only head-@ c o n t r a c t i o n s involved,
i

where degree(A) = i + l (f o r t h e d e f i n i t i o n of head- and of - reduct ion

see V.3.3.3 and V.4.3.3.5). And typ(A8) 2 @ ' f o r some 4.

I f t h e r e i s no n-reduction then we have

(1) A ' > B - A > Bo, Bi, r B

6 .2 .5 ' and q-reduction

With q-reduction, (1) above does n o t hold any more:

([x : a 1 p (A b l ~ * ~ , A , x)) ' P [x:a'I{x}{A'}pl may reduce t o {A' lp ' .
1

Lemma: A ' 2 B' =+ A 2 B
rl rl

Proof: Ind. on the l eng th of A . E.g. l e t A [x:a]C, s o A ' Z [x:a ']C' .

C ' >
n

and A

E [x : B '] D ' with a ' t B ' , C' 1 D ' use t h e ind. hyp. Otherwise
rl rl

{x)B' . The l a t t e r express ion i s ({x)B) ' s o by ind. hyp. C t { X ~ B
11

2 B, q .e .d . 0
rl

Now l e t A ' r B' then by Bn-pp: A ' tB C 2 B ' . This C CAI s o C,, >n B
rl

by the lemma, and A > B. This i s proper ty (2) above. Proper ty (3) can

be proved i n t h e same fash ion .

6.2.6 Something about typ*

Proof: The translation ' preserves the degree, of course. We use induct-
ion on degree(B8). The degree 1 case is immediate. Otherwise

typ* (B') a typ* (typ (B')) and typ* (B) ' Z typ* (typ (B)) ' . By correct-
ness of types ttyp(B1), reducing to typ(B) ' and by P*T
typ* (B') + typ* (typ (B) ') . By CL ttyp (B) ' so by ind. hyp. ttyp* (B) ' ,
q.e .d., and typ* (B) ' + typ* (~YP(B) ') . By correctness of types
ttyp*(typ(B)') so by CR ~YP*(B)' + typ*(B1), q.e.d. 0

Now that we know CL, CR, PD and SA for A(n) we can extend property
1 1

5.3.4 to: A, t [x:a]C, A + [x:alC * A 2 [x:f3]D, a + 6. So, as alter- B
native application condition, equivalent to the one used originally:

we can as well use, e.g.

6.2.7 The proof of the correspondence

Proof: a. By induction on correctness. The formation of the context 8'

is allowed, due to the liberal degree conventions of A(n). Consider,

e.g. the appl.rule: let 12, tCB, typ(A) 2 a. typ*(~) a [x:a]C. By

ind. hyp. IA ' , k~', further typ (A ') 2 typ (A) ' 2 a ' and by the
lemma in 6.2.6 ktyp*(B) ', typ*(B') + typ (B) ' r 1x:a' IC' . By CR,
typ*(B') + [x:a']C'. By CL, ~cx:~'Ic' so, by the alternative appl.

rule ~{A')B'. Or consider the instantiation rule: ~ C ~ l ~ w * o l ~ c ~ k l

y E i*p(y) E Y is a scheme in 8, l y l = k and typ(Bi) + Bi[3 for
i=l , . . . , k . The translated scheme reads p ' E [(y: ')]y ' . By ind. hyp .
I-B;,.*.,~BL. NOW typ(Bi) 2 typ(B1)' + B i r typ*(~') CY :B'l**o~l 1 1
so t{Bi}p'. Further typ(B;) 2 typ(B2)' + B ~ U B ~ D ' 5 B;UBilI and

typ*c{a;~pv a {~;)typ*(p') [y2:~;UBill-**~, SO ti~jl{~;)p~.

* Also by induction on correctness. E.g. consider an appl. express-

ion. Either it is ({ A I B) ' or it is p (B) '. First case: if ~ { A ' } B '

6 . 2 . 8 The required properties

Theorem: The strictly normable constant-expressions (see IV.3.4)

satisfy BT

Proof: Strictly normable C-expressions transform into strictly normable
*

expressiolswithout constants under the translation ' . And all -+

*
sequences of C-expressions A transform into subsequences of +-

sequences of A ' : (1) t y p (A 8) a t y p (A) ' , (2) A > I B * A ' > B ' , 1
(3) A c B A' c B ' . SO by BT for the constant-less version we

are done. 0

Theorem: (q) satisfies CR

Proof: Let kg, A 2 B , A 2 C . By the *-part of the correspondence I A '

and by CR for A (q) B' + C ' , so B f C, q.e.d. 0

Theorem: A (q) satisfies CL

Proof: Let k c ~ , A > B. Then t ~ ' , A ' , B' so by CL 18' . SO t c ~ .
Theorem: A (q I C satisfies S A , PD, PT, P*T, SC etc.

Proof: Either from CL and C R , or using the correspondence

6.2.9 An unessential extension result

Now we explain the connection between the 1--system and the

ordinary 1-system of A (q) without constants. Recall

The f i r s t ha l f of t h e correspondence r e s u l t shows 1- /-, i .e . a
-

simple extension r e s u l t . Now we def ine a t r a n s l a t i o n from t h e l a r g e r
- -

i n t o t h e smal ler system, a s follows: i f x E a * p (z) E y i s a scheme

i n B, = k , i < k then

r{ai1---{n,}pp')- := ~ x ~ + ~ : a i+ 1 UA-I I--*CX~:OI;UA-IIIX~}-~~{X~+~}{A;}~~
{ A ; I ~ ' , i . e . we i1-expand u n t i l p ' g e t s enough arguments i n f r o n t . For

-
t h e r e s t a c t s a s i d e n t i t y .

C lea r ly A- 1 A , A- : (A-&' . Viz. ({ A ~ } * * * { A ~ } ~ ') - ~
i1

x i l i+ 1 ~ ~ ~ I - - - C X ~ : ~ ~ I A ~ I ~ ~ ~ X ~ + ~ , ~ - ~ , X ~) .

The t r a n s l a t i o n i s a b i t i n t r i c a t e , because ({A)B)- i s n o t necessa r i ly

{A-18-. I n general {A-IB- > ({AIB)- and ~-1A-j 26 (Bull)-. Further
-6

t y p (~ -) zq typ(A)-, and a l s o t y p (~ -) G 6 t y p (~) - . Without proof we -
s t a t e t h a t A 2 B * A- 2 B , and t h a t typ*(A-) G typ*(A)-. From these

f a c t s , it can be proved t h a t : /-A I-A-, s o by t h e second p a r t of t h e

correspondence IA * F-A-.
I n case of Bq-reduction, t h i s i s a t y p i c a l unessen t ia l extension

r e s u l t .

6 .3 The case of d e f i n i t i o n a l constants

6 .3 .1 We have t h r e e main p o s s i b i l i t i e s t o incorporate d e f i n i t i o n a l

cons tan t s i n our theory. The f i r s t one s t u d i e s t h e new system (we c a l l

it A (q) d l with correctness p red ica te Id, and a l s o speak about t h e

d-system e t c .) independently, a s a separa te sub jec t , the second one

considers it a s an extension of h (r ~) ~ , and t h e t h i r d one embeds it i n t o

A (q) , by extending t h e t r a n s l a t i o n ' from t h e previous sec t ions i n

order t o cover d e f i n i t i o n a l constants .

Here we a c t u a l l y use t h e second method, and j u s t mention some

p o i n t s on t h e t h i r d one.

But we s t a r t by proving t h e b i g t r e e theorem f o r A (~ I) ~ , f o r

reasons of completeness and a s an indispensable p r e r e q u i s i t e f o r t h e

separa te s tudy of t h e system (method one above).

6.3.2 The big tree theorem for A (n) d

In 6.2.8 we proved BT for A(qIC by means of the embedding ' into
A(n). It is indeed possible to extend ' to the case of definitional
constants, but (see 6.3.3) the translation does not reflect the type-

structure sufficiently, which makes this method fail here.

So instead we revise the BT-proof of 5.2 (for A(r))) and adapt in to

the A(q)d-case, which is relatively easy. First we mention the BT-con-

dition (see 4.3.2) :

(5) BT(p(A)) - BT(A1) , * * * , BT(A,). BT(~YP(P)U&I

(6) BT(~(A)) 9 BT(A~) , - = , BT(Ak). BT(typ(d)Un'l), BT(def(d)UAl).

The 86~-SN conditions are quite analogous, and, as in 4.4.3, we have:

Theorem: B~T-SN (A) BT (A)

This suggests that, in this case as well, the substitution property

of B~T-SN is crucial. We choose to adapt the first BT-proof (sec. 4.5)

so need the replacement theorem (see 4.5.6) instead: Let * denote
% x / P (A) ~ ~ ~ , let B be normable, p(x) - p(A), A, B 86~-SN. Then:
Proof: As in 4.5.6. We consider a single reduction step C > D. For

1 B ~ T
all f3-steps and all T-steps concerning variables (not constants),

BGT-SN(D) can be proved as in 4.5.6. The remaining steps, i.e.

6-steps and T-steps of constants, can only fall into the categories

(1) and (2a) so we get f36~-sN(D) by ind. hyp. I1 or ind. hyp. 111.

So we have a list of corollaries:

(1) B normable, p(x) v(A), A, B B~T-SN~BUA] 86.r-SN

(2) B normable, p (xi) 5 p (Ai) ,
A. (i=l, -**,k) and B BGT-SN * BUZD 86~-SN
1

Proof: The simultaneous substitution can be simulated by iterated single

substitution.

(3) B normable B f36~-SN

proof: Induction on pretyped expressions. For the new cases use the m e -

vious corollary.

(4) B normable e B f3q6~-SN

proof: ~ q - p p extends to the present case (see 5.2.1), 8q-PP we knew

already (see 11.7.4) . This gives (BGT) -q-PP and, by q-SNr

6176-r-SN.

(5) B normable * B ~ ~ - B T (B)

6.3.3 The translation into h(q)

Here we show how the translation ' can be extended to the d-case.
Viz. an expression d (A) transforms into { A ' {A; I[;: u ' I D 1 , where k

E & * d(z) :- D * d(z) E y is the scheme of d.

This translation behaves nicely w.r.t. to reduction: A > B *A' 2 B'.

But of course it is possible that an expression A' B-reduces to an

expression which is not some B'. This is in contrast with the situation

with primitive constants where this could only occur by q-reduction.

The bestwe canget is: A' > B * B 2 C, A > B 1186
C. So, e.g. by ind.

118
on Bg(A'), we get A' B * B 2 C', A t C. For the rest the translation

B
seems to be not too useful, because properties like A' J- B' * A J- B (at

least where q-reduction is allowed) and ~ Y P (A ') J- typ (A) ' are only valid

in the correct fragment. Note that tyP(A') 2 typ(A)' is simply wrong

here.

6.3.4 Some properties of h(qIC

Translation of A(q)d into A(q)= just requires the elimination of

abbreviations, which can be done by 8-normalization. In the next

sections we show that this actually constitutes a translation, i.e.

that it preserves correctness. Here we first give some properties of

h (~) ~ which we need in the - rather complicated - proof below.
The single substitution result (of A (q) , and of A (q) too)

can, by induction on 121 , be extended to a simultaneous substitution
result

2 , t A + 2 for i = 1 , ,] A 1 , (G E ~IB) * tan'] .

The properties of sec. 3.2.2 concerning the typ of substitution

results can be generalized to (1) the simultaneous substitution case,

(2) success ive a p p l i c a t i o n s of typ, r e s u l t i n g i n :

typJ (A,) t typJ(xi) [i] , f o r i= I , - * . . IAl a typJ(~)[I] + t y p ~ (~ [A]) , f o r
J a l l r e l e v a n t j, where typ s t ands f o r j success ive appl ica t i 'ons of typ.

Th i s holds f o r h(n) bu t a l s o f o r h (n I C and h (n) d . Notice, t h a t i n case B

does n o t end i n one of t h e I . we even have
1

t Y p J (B [~]) = typJ(B)[A]

6 . 3 . 5 The t r a n s l a t i o n i n t o h (n)

- -
Our n o t a t i o n f o r the t r a n s l a t i o n i s . For expres'sions amounts

-
j u s t t o t ak ing &-normal form. I t is c l e a r how a c t s on s t r i n g s and

con tex t s . I t is intended t h a t t h e book 8- is formed from B by &-normal-

i z i n g and by skipping the abbrev ia t iona l schemes. The t r a n s l a t i o n i s

of course n o t 1-1.
- --

We r e c a l l t h a t BIB] - 5 B [A 3 , t h a t d (2) - - def (d) -[8-3, and t h a t

&-reduction commutes with f3n-reduction. The l a t t e r impl ies

6.3.6 The t r a n s l a t i o n p rese rves cor rec tness
-

Theorem: 8; 5 t d A B - ; c-tCtYPi (A) - , typi (A) - i typi (A-) f o r i = O , ,
degree (A) -1 (t h i s concludes t C ~ - i t s e l f) .
Proof: By induc t ion on Id . Cruc ia l cases a r e : (1) t h e a p p l i c a t i o n case:

See 6.2.6 f o r t h e a l t e r n a t i v e appl . condi t ion. The proper ty

typi ({A }A) - + typi (({A }A)) i s t r i v i a l . (2) t h e d e f i n i t i o n a l
1 2 1 2

c o n s t a n t case: A E d @) , t d ~ typ(B.1 i f3.m f o r J = l , - - - , l y l ,
j ' J J

where y E B * d(y) := D * d(y) E y is t h e scheme of d. By ind.

- --
So, by the simultaneous subst. property, I D I[B I (- A-) ,

C

t y p (A-) I typ (A) -. Now there i s l e f t t o prove:

(1) t , t y p i (A) - (E t y p i - ' (y [~) -) , and (2) t y p i (A) - I typi(il-), i . e .

typi-' (y[B]) - + typi (D-[B-]) , f o r i=2, ,degree (A) -1. The ind.

i-1 -
hyp. gives us t c typi-'(y)-, k c t y ~ i (~) - l t yp (y) i- typi-'(y-) ,

typi (D l - I typi (D-) f o r these i. and kc t ypk (B j) - (t tYPk(B;)) , fo r

k=O,--- ,degree(B.)-1, f o r j = l , * * * , I ;] . Now (2) i s simple:
3

typi-I c y ~ ED) + typi-l (y) n EI so typi-l (y[BI) - + typi-l (y) -a E-1 i

i -- i - --
typi-I (y-)[B-n I typ (D)@-I I typ (D [B]I). Here we use PT and the

subs t i tu t ion property of types. By CR we ge t (2) . Property (1) we

formulate i n the form of a lemma.

Lema: Let 2 E Btdy, tdBj, f o r j = l , * * - , l y '] with y and 5 as above.

i
Proof: I f y does not end i n some of the y then typ (y[En)-

j

typi (y) -l[g-]l which i s cor rec t by the simultaneous subst. property.

This a l s o covers the case i = O (which we knew already) . For the

r e s t we use induction on the length of y . The case y E y i s t rue
j

by assumption. Further consider the application case: y S {y1)yZI

The a b s t r . case i s s t ra ightforward. This f i n i s h e s t h e proof of

t h e lemma. This f i n i s h e s t h e d e f i n i t i o n a l constant case of t h e

theorem. Now t h e remaining cases of t h e theorem a r e s t r a i g h t -

forward. Th is f i n i s h e s the proof of t h e theorem. 0

Corol lary: B; 5td A * B'; c-~ ,A- , B-; c-tC typ (A) -. B-; (-kc typ* (A) -

and t y p (~ -) + ~ Y P (A) - , typ* (A-) + typ* (A) - .

6.3.7 Is A (r l) d a d e f i n i t i o n a l extension of A (n) ?
C

The above c o r o l l a r y amounts t o t h e unessen t ia l extension p r o p e r t i e s
-

U E 2 a n d U E 3 (s e e ~ . 3 . 3 . 2) . O f c o u r s e w e a l s o h a v e A * A E A a n d i t tc
i s t empt ing . to conclude t h e o ther ha l f of UE1:

from t h e c o r o l l a r y . This i s however no t immediate a s ye t : we can conclude

but we hardly know anything about

Ins tead , we f i r s t prove t h e s u b s t i t u t i o n theorem f o r I I (~) ~ ; t h i s

g ives cor rec tness of types , a s we l l a s 6-CL. The l a t t e r impl ies UE1,

which completes our d e f i n i t i o n a l extension r e s u l t .

6.3.8 Some n ice p r o p e r t i e s of A (n) d

The c o r o l l a r y i n 6.3.6 g ives us a l ready some n ice r e s u l t s .

Theorem: A (dd s a t i s f i e s (1) C R , (2) SA and (3) PD

Proof: (1) Let t d A , B 2 A 2 C. Then 1 A-. B- 6 A' 2 C-. By CR B' i C-,
C

s o B + C .

(2) Let Id {A) [x :B]C. Then kc {A-}[x : B-]c- so typ (A-) + B- .
Fur ther t Y p (A) - + typ (A-1 and by CR. typ(A) + B.

Remark: We also prove some form of PT and P*T.

6.3.9 The substitution theorem for A(n)d

Lemma: Let tdB, i.1,-**,k. Let i E * c(i) E y be the scheme of c,

with 1 i 1 = k. Let kc c (E -) . Then Id c (B) .

Proof : typ (Bi) a typ (Bi) ' i typ (BI) i B ~ U ~ - I r 8,uBn . BY CR.
typmi) t B~UBII. SO tdcG). o

Theorem: Let 2 E atd B. Let * stand for [2/z] . Let A and d i

typ(Ai) i a2 for i=l,-**,121. Then tdB*.

Proof: We use induction on Id B. So, by ind. hyp. td af for i=l,- /;I.
NOW typ (A1) t al. SO typ (A;) i typ(A1)- + a; and by CR

- - --
typ(~;) t a;. similarly typ(d;) i a; I aZIA I. Etc.. and for all

- --
i typ (Ai) t ai[A 1 . Now consider, e .g., the application case:

E &d{~l}~2. By 6.3.6, 2 E u-tC{B;}B; and by the subst. theorem

so by the first lemma, 1 { B*)B* Similarly use the second lemma for d 1 2'
the constant-expression case. The other cases are immediate. 0

6.3.10 The remaining nice properties for A(q) d

Corollaries of the preceding theorem are (1) correctness of types,

(2) 6-outside-CL (3) B-outside-CL (use SA) .
1 ' 1

Lemma: A (n)d satisfies CL
1

Proof: The q-outside case is mere strengthening. We use the lemmas in

6 -3.9 for the inside cases. Let ~ d { ~ 1 } ~ 2 , B > C1 , B2 > C2. By ind.
1

hyp. tdcl1 tdC2. By 6.3.6 tC{B;}B;, and 8- 1 > c;, B; > c;, so
t,{C;}C; so td{cl }C2. Similarly fox const. expressions. 0

Theorem: h (0) satisfies CL

Proof: As usual, by ind. on 2.

Further we get the remaining UE-result:

6.4 Nederpelt's original formulation

6.4.1 Nederpelt's original definition of A [5 1 1 used single-line

presentation. 1.e. instead of defining correctness of expression rela-

tive to a context, he defined correctness of expressions having an ab-

stractor string [;:GI (notation Q) in front.

For definiteness we give his rules. We write 1 for correctness
N

in his system. But for certain provisions making sure that no confusion

of variables occurs, the rules read:

6.4.2 Apart from the use of abstractor strings instead of contexts,

there are two other points that make the two approaches not completely

parallel. The first point concerns abstraction; our abstraction rule

has no counterpart in Nederpelt's system. Nederpelt rather follows a

combinatory (i n t h e sense of combinatory l o g i c) way of bu i ld ing ex-

p ress ions . I n t h e language of combinatory l o g i c , r u l e (2) above i s the

r u l e f o r I t h e i d e n t i t y i n a , and r u l e (3) i s t h e r u l e f o r Kay, t h e
a

cons tan t func t ion on a wi th outcome y. A l t e r n a t i v e l y , r u l e (3) might

be c a l l e d a r u l e of weakening (s e e V.2.9.3) .

6.4.3 The second p o i n t t h a t r e q u i r e s a t t e n t i o n i s t h a t an a b s t r a c t o r

s t r i n g can g e t involved i n a r educ t ion (notably an 0 - s t ep) , whereas

con tex t s a r e of course immume t o reduct ion. F i r s t some no ta t ion . We

w r i t e / & I f o r t h e number of a b s t r a c t o r s i n &. We w r i t e & 2 & ' i f

Q E [z:;], Q ' Z [z:u1] and a 2 ;' i n the obvious sense.

Now we have t h e fo l lowing lemma: &A 2 & ' A t , I &] = / & ' I * A 2 A ' .

Proof: I f the re a r e no 0-steps involving the border l i n e between Q and

A , then c l e a r l y Q 2 Q ' , A 2 A ' . Otherwise & & [x:a], a 2 a ' ,
1

use ind. on 8 (&A) and conclude t h a t B 2 [x: B] A ' . But then A 2 A ' ,

q.e.d.

6 .4 .4 The equivalence proof

Now we a r e ready f o r t h e equivalence proof.

Theorem: Le t
- -

Q E C G : a l , 5 E x E a .

Then

Proof: The + - p a r t is immediate. We use induct ion on 1. E .g. consider

our v a r i a b l e r u l e : from G E at we conclude E otxi. I f x , i s the
- = -

most " recen t" v a r i a b l e then we must use r u l e (2) . Viz. x E a t i s

i t s e l f a r e s u l t from x E a l r . - * l ~ i - l E ai-l/-ai. By ind. hyp. we
1

g e t tN[xl : a1 1 [xi-1 : ai-l]ai. Otherwise we must i n s e r t t h e

a b s t r a c t o r s i n b e t w e e n k . : a ,] and t h e end of & by success ive
1 1

a p p l i c a t i o n s of r u l e (3) . Now consider the * -pa r t . The c r u c i a l

case is t h e a p p l i c a t i o n c lause . So l e t IN@, t N ~ ~ r

typ(Q4) 2 Qa, typ* (QB) z QCx:alC. By ind. hyp S ~ A , SIB. Now

typ(Q.4) Q typ(A) 2 &a s o by the lemma typ(A) 2 a . S imi la r ly

t y p * (~) 2 [x:a]C. So we conclude ~ ~ { A) B , q.e.d.

6.4.5 The nice properties for Nederpelt's system

One of the consequences of the theorem is:

so the N-system can be considered a part of our system. This gives us

CR and CL immediately. From this one can get the other properties SA,

PD, PT etc. as usual.

6.4.6 Alternative way of embedding Ad into A
N

Resuming the results of the preceding sections: we have constructed

an embedding of A (Q) ~ (via A (Q) ~ and A) into AN.

Here we introduce an alternative way (due to Nederpelt C491) of

embedding A(n)d directly into A Our notation for the translation is,
N'

again, ' . Let a statement 8 ; <t A be given. Primitive schemes d
2 E a * p(z) E y are, as is to be expected, turned into abstractors

[p' E Cz:a1Iy']. The context 5 is of course transformed into an ab-
stractorstring 5 ' E &. Essential is the translation of definitional

constant schemes. A scheme 2 E a * d(z) := D * d(z) E y is translated
into an expression "segment" {[;:a' ID')[do : [;:a' Iy' I . All constant

expressions c(2) are now translated into {A1)***{Ai]c'. So B ; 5 t d ~ is
k

translated into a single expression B'<'A1, where 8' is a string of

abstractors and applicators, and 5' consists solely of abstractors.

For expressions the translation is quite similar to the translation

' in 6.2.1. In particular we have (as in 6.2.4) typ(A1) 2 typ(A) ' . B
However, w.r.t. to &-reduction the correspondence is not too close: it

is not possible to eliminate occurrences of d' one at a time. So in

order to establish A $ B .+A' $ B' we need a partial 6-normal form

again.

Anyhow, it is indeed possible to prove 8 ; f h ~ Q IN8 ' E 'A ' .

VIII SOME RESULTS ON AUT-Pi

VIII.l Introduction and summary

1.1 There a r e two languages of t h e Automath family t h a t have been

developed f o r p r a c t i c a l (i n c o n t r a s t wi th , say , language t h e o r e t i c a l)

purposes and have a c t u a l l y been appl ied i n ex tens ive formal iza t ion pro-

j e c t s . On the one hand t h e r e i s AUT-QE, used by L.S. J u t t i n g i n h i s

Landau t r a n s l a t i o n [37] . The l a t t e r r e fe rence a l s o conta ins an informal

in t roduc t ion t o t h e language [27] . The theory of AUT-QE i s t o be found

i n Chs. I V t o V I of t h i s t h e s i s . On t h e o t h e r hand t h e r e i s AUT-Pi,

invented by J. Zucker, and employed by Zucker and A. Kornaat f o r the

fo rmal iza t ion of c l a s s i c a l a n a l y s i s and some r e l a t e d top ics . In [7 7]

one f i n d s a s h o r t account of both the language and t h e formal iza t ion

p r o j e c t . This chapter i s devoted t o t h e theory of AUT-Pi, which i s not

q u i t e a s complete a s t h e theory of AUT-QE. Some work remains t o be

done, notably on the extensional ve r s ion of t h e language (see sec . 6) .

1 . 2 What AUT-QE and AUT-Pi have i n common

In IV. 1 we descr ibed AUT-QE a s a f i r s t - o r d e r pure, regular , gene-

r a l i z e d typed A-calculus system. Using t h e same terminology, AUT-Pi i s

a f i r s t - o r d e r extended, r egu la r , genera l ized typed A-calculus system.

So both languages have much i n common and, i n some sense, AUT-QE can

be considered a sublanguage of AUT-Pi.

We resume: both languages a r e r e g u l a r , i . e . they have j u s t ex-

p ress ions of degree 1 (supertypes) , 2 (types and typevalued funct ions)

and 3 (t e r m s) . They a r e f i r s t - o r d e r , i . e . t h e r e i s only q u a n t i f i c a t i o n

and 1 -abs t rac t ion over term v a r i a b l e s , n o t over type-variables. Fur ther ,

they have genera l ized type s t r u c t u r e , i . e . t h e types a r e constructed

along wi th t h e terms. Besides, AUT-Pi and AUT-QE have the book-and-

c m t e x t s t r u c t u r e i n common. Books t o in t roduce p r imi t ive and defined

= a n s t a n t s , depending on v a r i a b l e s , f o r which s u b s t i t u t i o n (i n s t a n t i -

a t i o n) i s permit ted . Contexts f o r t h e in t roduc t ion of va r i ab les .

Here we want t o emphasize t h a t , j u s t l i k e AUT-QE, AUT-Pi i s a non-

a r i t h m e t i c a l system, i . e . i t has no recurs ion constant with the cor-

responding reduct ion.

1.3 The a d d i t i o n a l opera t ions of AUT-Pi

But, where AUT-QE belongs t o pure typed A-calculus (a b s t r a c t i o n ,

a p p l i c a t i o n and i n s t a n t i a t i o n a s t h e only term-forming o p e r a t i o n s) ,

A U T - P i i s a t y p i c a l extended system, wi th t h e a d d i t i o n a l k inds of terms:

pa i r s <P,A ,B>, p r o j e c t i o n s A and A
(1) (2)

i n j e c t i o n s il (A , B) and

i (B r a) and @-functions (o r : Q-terms) A e B. Here t h e P of t h e p a i r ,
2

and t h e Q and a of t h e i n j e c t i o n s a r e mere type-label's t o guarantee

uniqueness of types .

Corresponding wi th these new terms t h e r e a r e new type-constructs:

f i r s t t h e swn-type D? conta ining t h e p a i r s &,A,B> a s elements, where

P i s a type-valued func t ion wi th domain a , A belongs t o a and B is of

. type {Alp. I n case P (a s a type-valued func t ion) i s cons tan t , i . e . {A}P

does n o t depend on A , t h e p a i r and t h e sum type can be considered t o

degenerate t o <JIB> and a @ 8 r e s p e c t i v e l y , where @ i s the ordinary

c a r t e s i a n product and B i s t h e type of B. Secondly, t h e r e i s the dis-

j o i n t union o r e-type u e B , conta ining t h e i n j e c t i o n s i (A , B) and 1
i (B r a) , where A and B a r e of types a and B r e spec t ive ly .

2
The p a i r s g e t t h e i r meaning by t h e presence of t h e p r o j e c t i o n s and

t h e assoc ia ted reduc t ions : i f A i s a p a i r , i . e . element of a sum-type,

say ZP, then A i s an element of t h e domain of P and A i s element
(1 (2)

of {A)P. NOW cP,A,B, T-reduces t o A and <P,A,B> n-reduces t o E.
(1) (1 (2)

I n the ex tens iona l ve r s ion of AUT-Pi, C P , A (~) ,A(2)> U-reduces t o A ,

provided A belongs t o (otherwise the type would vary under r e d u c t i o c) .

S imi la r ly , t h e i n j e c t i o n s g e t t h e i r meaning by t h e e-terms and t h e

assoc ia ted reduct ion. Le t u s f i r s t expla in what a e-term is. Roughly

speaking, when f i s a func t ion on cr and g i s a func t ion on 6, then -
under c e r t a i n cond i t ions - f e g i s a func t ion def ined on a @ €3, a c t i n g

on (i n j e c t i o n s of terms of type) a a s f and on (i n j e c t i o n s of terms of

type) B l i k e g . So t h e reduct ions a r e a s fo l lows: { i l (A , B) 1 (f @ g)

+-reduces t o {A)f and { i (B r a) 1 (f @ g) +-reduces t o {B)g. The cor res -
2

ponding ex tens iona l reduct ion i s €-reduction: [x :cr l{ i l (z)) f @

E X : Bl{i2 (x))f €-reduces t o f , provided f does n o t conta in x a s a f r e e

v a r i a b l e (i . e . does no t depend on x) .

Please note t h e use of parentheses : Q i s supposed t o bind more

loose ly than t h e o t h e r term forming opera t ions .

A more p r e c i s e d e f i n i t i o n of AUT-Pi fo l lows i n sec . 2 .

1.4 The connection with natural deduction systems

By the well-known formulae-as-types, derivations-as-terms inter-

pretation, systems of typed A-calculus can be brought into close corres-

pondence with certain natural deduction systems for intuitionistic

logic (including the usual proof theoretic reduction relations). Thus,

pure systems correspond to logical systems with -+ and V only, and ex-

tended systems correspond to systems with more connectives. In particu-

lar, the 1, the pairs and the projections of AUT-Pi may provide the

interpretation of "strong" existential quantification with its intro-

duction and elimination rules (though this has not been exploited in

Zucker's book, see [77]). And @, the degenerate form of 1, corresponds

precisely to conjunction.

As for the interpretation of V (disjunction) by @-types, the in-

troduction rules of V do correspond to injection, but the elimination

rule of v differs slightly from its counterpart in AUT-Pi. The usual

elimination rule of v (see, e.g., Prawitz 1591) operates on three argu-

ments: from (1) a derivation of a v B, (2) a derivation of y under the

assumption a, (3) a derivation from y under the assumption 8, one can

£om4 a derivation with conclusion y . The assumptions a and B of the

derivations (2) and (3) are discharged.

The AUT-Pi operation representing this rule must be constructed

in several steps: first (2) and (3) are transformed into derivations

of a + y and f3 -t y respectively. These two derivations are combined into

a derivation of (a V f3) -+ y (by using 8) . Then the conclusion y follows

from modus ponens (by (1) .
Here we stick to the AUT-Pi variant of the rule. For a discussion

of the alternatives see Pottinger [56, 571.

Because AUT-Pi is still non-arithmetical, it cannot represent

natural-deduction systems for arithmetic (in the sense intended above).

1.5 Product formation versus type inclusion

Now we discuss a specific difference between AUT-QE and AUT-Pi,

that prevents AUT-QE from being an actual sublanguage of AUT-Pi. In

AUT-QE there is no difference in notation between type-valued functions

and function types. 1.e. the expression Cx:a18, with f3 an expression

of degree 2, stands for the function that to arguments A in a assigns

types p [A] , b u t a l s o f o r t h e type of t h e func t ions which, when appl ied

t o A i n a , produce a value i n BIAD . And, t o make th ings even more com-

p l i c a t e d , i t i s p o s s i b l e t h a t B a l lows such mul t ip le i n t e r p r e t a t i o n s

a s we l l .

I n AUT-Pi t h e r e i s reserved a s p e c i a l symbol f o r r e f e r r i n g t o t h e

func t ion type, v i z . n (f o r c a r t e s i a n product format ion) : by p r e f i x i n g

wi th l l t he type-valued func t ion [x:aIB i s turned i n t o t h e corresponding

func t ion type JJ[x:alB. More genera l , if P is a type-valued func t ion ,

then llP i s the corresponding product type, conta ining those func t ions

a s elements which, when appl ied t o arguments A of t h e r i g h t type,

produce va lues i n {Alp.

The language AUT-Pi i s named a f t e r t h e of product formation.

I n AUT-QE t h e expression [x : a] ~ can g e t (a t l e a s t) two p o s s i b l e

types , v i z . C X : ~] T and T , according t o which i n t e r p r e t a t i o n i s intended.

This i s implemented by the r u l e of type inc lus ion . A s a consequence,

uniqueness of types is v a l i d f o r terms only . Some problems a r i s e from

t h i s i n connection with def ined cons tan t s (see V.1.9 and V.3.3.10). In

A U T - P i uniqueness of types is v a l i d f o r types a s wel l : e .g. i f B is a -
type , then [x:a]B has type Tl[x:aI~ and ll[x:alB has type T .

Not% here t h e use of ll again which makes t h e (cons tan t) "super-type

valued funct ion" [x : a l ~ i n t o a super-type n [~ : a] r .

A t f i r s t s i g h t it seems t h a t t h e here- indicated d i f f e r e n c e i s a

t r i f l e , and t h a t AUT-QE can be made i n t o a subsystem of AUT-Pi by simply

i n s e r t i n g n ' s a t t h e r i g h t p laces . However, a s noted by the Brui jn , t h e

correspondence i s not t h a t c lose : the r u l e of type- inclus ion (of AUT-QE)

i s somewhat s t ronger than the product formation r u l e (of AUT-Pi). See

sec . 6.1. 1151 and [17].

1.6 Some f e a t u r e s of AUT-Pi not d iscussed he re

For completeness we mention two important , more o r l e s s syntac-

t i c a l , f e a t u r e s t h a t e n r i c h t h e language used by Zucker and Kornaat i n

t h e i r AUT-Pi book. F i r s t , t h e r e i s t h e use of AUT-Synt, a k i n d o f Auto-

math shorthand, a s documented i n J u t t i n g [37]. Secondly, t h e r e i s t h e use

of strings-and-teZescopes (see [77 I .
However, t h e s e f e a t u r e s do n o t belong s p e c i f i c a l l y t o AUT-Pi; they

r a t h e r can be a t t ached t o any Automath language, b u t were n o t y e t a v a i l -

ab le when J u t t i n g s t a r t e d h i s Landau t r a n s l a t i o n . On t h e con t ra ry , the

strings-and telescopes generalize (and, hence, duplicate) in some sense

the pairs-and-sums of AUT-Pi. These two features are not discussed in

this thesis.

In [7 7] Zucker describes how the whole language is divided into a

t-part (for terms and types) and a p-part (for proofs and propositions).

This division originates with the distinction between the two degree 1

basic constants, T (or type) and r (or prop). Connected with this is

the principle of equality of proofs (two proofs of the same proposition

are considered to be definitionally equal; only consistent with classical

logic). Here we just use T as our basic constant. As a consequence we

do not discuss equality of proofs.

1.7 Section 2 below contains a more precise definition of AUT-Pi. In

section 3 we prove the closure property; Correctness is preserved under

reduction. In section 4 we first define two systems of normable ex-

pressions, AUT-Pi and AUT-Pi which have the same "connectives" and
0 1 '

reductions as AUT-Pi but a simplified type structure. We study SN for

these two systems. First we show that the methods of proving B-SN

directly apply to the situation with Bv-reduction. In sec. 5 we give

some different proof methods for SN in presence of +-reduction. Then

we extend the AUT-Pi results to AUT-Pi. Section 6 just contains some 1
remarks on the connection between AUT-Pi and AUT-QE (type-inclusion vs.

product formation), and on the particular problems posed by the

addition of E-reduction.

V I I I . 2 A short definition o f AUT-Pi

2.1.1 We give an E-definition of AUT-Pi, along the lines of the AUT-QE

definition in V.2. For the formation of books and contexts we refer to

IV.3, and for their correctness to the requirements in V.2.1.3. However,

the inhabitable degree condition, to the effect that correct expressions

can be of degree 1, 2 and 3 only, has to be restricted further, to an

inhabitabi Zity condition: Expressions acting as the typ of a variable

or a constant have to be inhabitable. Where we define a to be inhabitable

when degree (a) = 1, or: degree (a) = 2 and a E T (or a E T) .

2.1.2 But f i r s t we must d e f i n e t h e degree (and, i m p l i c i t l y , t h e notion

of degree c o r r e c t n e s s) of t h e t y p i c a l AUT-Pi express ions:

degree (A) = 1 o r 2 =+ degree (l l (A)) = degree (A)

degree(A) = 2 * d e g r e e (t (A)) = 2

degree (A) = 3 * degree (A) = 3, degree (A
(1 1 (2)) =

degree (A) = degree (B) = 2 o r 3 * degree (A @ B) = degree (A)

degree(A) = 3, degree(B) = 2 =+ degree(; (A,B)) =
1

degree (i (A , B)) = 3
2

degree (A) = 2, degree (B) = degree(C) = 3 * degree (4 ,B,C>) = 3

2.1.3 Correctness of express ions , E-formulas (f o r typing) and Q-formulas

(f o r e q u a l i t y) i s def ined simultaneously. For t h e n o t a t i o n a l conventions

and abbrev ia t ions we r e f e r t o V.2.1 and V.2.2. E.g., we d i s p l a y degrees

a s s u p e r s c r i p t s t o t h e cor rec tness symbol 1, we f r e e l y omit books and

con tex t s (o r p a r t s of con tex t s) n o t r e l e v a n t t o t h e r u l e under con-

s i d e r a t i o n , and we sometimes omit a s we l l (v i z . i n f r o n t of a formula

when con tex t and degree a r e no t shown).

2.2 The genera l r u l e s

2.2.1 We s t a r t with t h e r u l e s , which AUT-Pi has i n common wi th AUT-QE.

We assume a c o r r e c t book 8 and a c o r r e c t context 5 . F i r s t t h e genera l

r u l e s f o r co r rec tness of express ions and E-formulas.

(iii) i n s t a n t i a t i o n : i f c i s introduced i n 8, with con tex t E z,
then B E EuB] =+ c(E) (E t y p (c) u B ~)

For our language t h e o r e t i c a l purposes we need n o t d i s t i n g u i s h between

T and r . So i n the seque l we j u s t use T , in tending t o cover a a s wel l .

2.2.2 Then the remaining genera l r u l e s : f o r Q, f o r type-modification

and s t rengthening.

Q-propagation: A Q B, Ic, (B > C or C > B) * A Q C

type-conversion : A E B Q C * A E C

strengthening: if (X E a,n)tB (E/Q C) , x does not occur free
in iq (,C) and B then +B (E/Q C)

The Q-propagation rule still depends on an assumed reduction relation,

e.g. either with or without the extensional reductions n, E , a . The rule

of strengthening is only included for technical reasons associated with q

and E , SO can be omitted in the non-extensional case.

Notice that the rule of type-inclusion of AUT-QE has been left out

here. Its role, viz. of transforming (type-valued) functions into types,

is to be played here by the product rule for 2-expressions of the next

section.

2.3 The specific rules I

Now we come to the rules specific for AUT-Pi. They are divided

into three groups. Each consists of one (or more) introduction rule(s)

one (or more) elimination rule(s) and a type formation rule to provide

the introduction expression(s) with a type. With each group an IE-re-

duction rule (i.e. introduction-elimination reduction rule) and its

extensional counter part can be associated.

I Abstraction, application and products

The associated reduction relations are f3 and iq:

I t i s i n the above group of r u l e s ehat the difference between AUT-QE

and AUT-Pi becomes exp l i c i t . For a discussion of the r u l e of n see 1.5,

and 6.1.

Notation: In case x $ FV (B) we abbreviate ll([x:alB) by a + B.

Using t h i s convention, product ru l e 2 and appl ru l e 2 become

B E a -+ T * l l (B) E T

and

A E a , B E l l (C) , C E a + T*{A)B E {AIC

2.4 A possible extension concerning 1-expressions

Notice . that a l l compound cor rec t 1-expressions have a n i n f ront ,

or possibly (when 1-abbreviation constants a r e present) 6-reduce t o an

expression s t a r t i n g with n. In f a c t , each cor rec t 1-expression &-reduces

t o an expression l i k e n([x - a ln([x .a l l l (* * - - * * l l ([x :a I T) - * -))) .
1' 1 2 ' 2 n n

A s a consequence a l l 1-expressions a r e inhabi table (see 2.1) , j u s t

l i k e i n AUT-QE, but they generally contain p a r t s which a r e not correct,

e.g. the p a r t [x:al'r i n l l ([~ : a] r) . I f we do not l i k e t h i s we can eas i ly

extend the language by

(1) r e s t r i c t i n g the notion of inhabi table 1-expressions: 1-expressions

a r e s a id t o be inhabitable according to : (i) T inhabi table , (ii)

(ii) i f B inhabi table then ll([x:a]B) inhabi table , (iii) i f B in-

habi table , B Q C then C inhabi table .

(2) r e s t r i c t i n g product ru l e 1:

1
x E a t B, B inhabitable * b n (C x : a l ~)

(3) dropping the r e s t r i c t i o n t o degree i + 1 i n the abs t r ru le . Then,

we can fur ther extend AUT-Pi t o a +-language (i . e . a l l value

degrees a r e a l so function degrees, see V . 2 . 7) by

(4) adding a new appl ru le :

These changes a re r e l a t i ve ly unimportant, of course.

2.5 The specific rules I1

2.5.1 The rules of group I can be considered as just rephrasing the

corresponding rules of AUT-QE. Now, however, we come to rules which

have no counterpart in AUT-QE.

I1 Pairs, projections, sums

Let 4 E a -+ T. Then

The reduction rules associated with group I1 are K and o:

2.5.2 Notice that here, for the first time, reduction ceases to be a

purely syntactical matter. The condition A E I(+) is inserted here

because we want to maintain preservation of t y p e s

atherwise, we come in trouble with 4 E a -+ T, A E a, + [x:al{A}4,

B E (A14, where C <$,A,* E I(() and <$lC(l),C(2)> E I($) and not

$ Q $.

As a consequence we must modify one of the monotonicity rules into:

if x E ct *A > B then [x:a]A > [x:alB.

2 . 5 . 3 Notation: in case x (FV(B) we abbreviate I([x:a]B) by a @ B .

For pairs <$,A,& in such a degenerate sum we can omit the type label

4 and just write <A,& (because it is intended that $ can be constructed

from A and B in this case) .
The degenerate versions of pair rule and projection rules are:

For degenerate p a i r s t h e typing cond i t ion f o r a-reduction can be omit ted .

Notice t h a t , i n c o n t r a s t with products , only degree 2 sums a r e

formed, and consequently only degree 3 p a i r s . Bes ides f the two components

of a p a i r a r e 3-expressions too.

2 .6 The s p e c i f i c r u l e s I11

See t h e d i scuss ion i n 1.4. The r u l e s concern

I11 Binary unions, i n j e c t i o n s and plus-terms

Let a E T , B E T . Then

1 . Binary union : t a @ 6 (E T)

2. I n j e c t i o n 1: A E a * ti, (A , B) (E a @ 8)
L

3. I n j e c t i o n 2: B E B * t i 2 (~ , a)

4. p l u s r u l e : y E - r , B E a - + y

The a s s o c i a t e r educ t ions a r e + and E :

Notation: Q i s supposed t o bind more loose ly than t h e o t h e r connectives.

This i s why t h e func t ion p a r t s of t h e +-redices are, and t h e Left- and

r i g h t p a r t of t h e €-redex a r e not p u t i n s i d e parentheses .

We mention a l s o the a l t e r n a t i v e form of +, +' (which i s i n f a c t +
followed by 6) :

and an a l t e r n a t i v e form of E , s a l t :

We c l e a r l y have >+, a > > (s e e 11.7.1.2 f o r t h e n o t a t i o n) . Fur the r
+ B

e t c . i . e . > * < > So, a s f a r a s e q u a l i t y Q i s concerned, we have + + I '

(i n t h e sense of 11.0.4.3) (@ , + +. + ') and (q r + ' +). Since w e always

include B, and i s o p t i o n a l , we p r e f e r t h e r u l e + i n our d e f i n i t i o n .

Simi la r ly we have > * > > and > * > > < s o (w . r . t . Q)
E ~ a l t r) ~ a l t B B E

(71, ~ a l t * E) and (B , E * ~ a l t) . Thus we p r e f e r r u l e E .

Binary unions always have degree 2, i n j e c t i o n s always have degree

3 . Only +-functions of degree 3 a r e formed.

2.7 A p o s s i b l e extension concerning @-functions

We can, however, d e f i n e an extension of t h e language by a l s o ad-

m i t t i n g degree 2 @-functions, i . e . g lueing type-valued func t ions together

i n t o a s i n g l e type-valued funct ion. To t h i s end we pu t : Le t a E T ,

0 E T . Le t @ E a + T, $ E B -+ T . Then

5. P lus r u l e 2: B E ?7($

The o l d p l u s can be considered

o r ~ a l t :

, a s a s p e c i a l case of r u l e 5 , by using E

We do not discuss t h i s extension he re , because i t r e a l l y complicates

the normabi l i ty problem (see 4.6) .

2.8 Elementary p r o p e r t i e s

A s i n V.2.7 - V.2.9 we can i n f e r some n ice p r o p e r t i e s . F i r s t , con-

cerning t h e degrees:

IA - A degree c o r r e c t

A Q B * degree (A) = degree(B)

A E B * degree (A) = degree (B) + 1

Then, concerning con tex t s , renaming (see V. 2.9.2) and weakening

(V.2.9.3). Fur the r , the simuZtaneous a n d t h e s i n g l e sslbstitution theorem

(V.2.9.4-5), and correctness of categories (V.2.10): A E B * IB .
Analogously t o the a b s t r and appl p r o p e r t i e s i n V.2.10 and V.2.1

(which m.m. hold a s well i n AUT-Pi) we have p r o p e r t i e s l i k e

~<$,A,B> * (A E a, $ E a + T, B E (A)$) e t c .

i.e. the "inversion of the correctness rules".

An important additional property (to be proved in the next section)

is uniqueness of types :

which in AUT-QE did not hold for A of degree 2, because of type in-

clusion.

VII . 3 A short proof of closure for AUT-Pi

3.1 Proving closure for AUT-Pi is not very different from proving it for

AUT-QE. So we just sketch how to modify the proof in V.3.2.

We start with a version without the extensions mentioned in 2.4

and 2.7, but we include all reductions (also 6'-reduction) .

3.2 For the terminology see V.3.1. Let > denote disjoint more step

reduction. By the properties in 11.7.4.3 we have

A > B * 6-nf (A) > 6-nf (B)

By the substitution theorem we have 6-CLPT. The 6-nf's of 1-expressions

are of the form n([z:alA) or T. Reductions of these expressions can only

be internal, so by induction on Q we get (including what might be called
1 UD here) :

2 2 2
3.3 From this follows SA (whence B-outside-CL1) and 6-outside-PTl. -
Viz. let A E a, tL[x:~]C E ll(Cx:alD) , with conclusion ~{A)[x:BIc. Then,
for some E, x E B ~ C E E and tll([x:~]~) Q ll([x:a]D). So a Q B and
x E &E Q D whence A E B (i.e. S A ~) and x E B ~ C E D. So

2
The proofs of UT and the inside cases of P T ~ are by ind. on t. 1

3.4 The strengthening rule gives q-outside-CL Here follows a proof
2

1 -
of q-outside-PT different from the proof in V.3.2.5. Viz. let

1
t2[x:a~{x)~ E y, x f FV(A). Then, for some C, [x:aI{xlA E

n(Cx:alCl[y/xD) Q y, where x E atA E n(Cy:a'lC), a' Q a. SO, as well,
x E ~ I A E ll([y:alC). By weakening x E a, y E atA E ll(Cy:alC) and

x E a, y E at(y)~ E C so x E ut~y:al{~)A E ll([y:alC). Again by
2

weakening x E at[x:al{xl~ E y, so by UT x E aty Q ll([y:alC). Hence

x E &A E y and by strengthening A E y, q.e.d.

2 2 2
3.5 This completes the proof of PT1. Then PT and LQ follow by ind.

on 2 and Q respectively. Now we come to PTCL~. For properties like SA 3

2
3.6 To this end we study B~-reduction and, in particular, B -head-

2
reduction, for short Bh (for the definitions see V.3.3.3 and V.4.4.5).

2 2
We know already -outside-CLPT1 (this is 6-outside-CLPT1). From this

2
follows p -CLPTI by ind. on 1, and B~-CLPT by ind. on 2. Now we use the

2
fact that 3 is the only argument degree and that, hence, B -reduction

2
does not create new 6 -redices. Compare V.3.3.4, VI.2.4.

Z
As a consequence, B -SN is quite easily provable (for degree

2
correct expressions) even without using norms: namely, if A B -SN, B
2 2 2
8 -SN then A[B] B -SN, by ind. on (1) BB(B) , (2) length (B) . So, as

2
usual, f3 -SN by ind. on length (see I". 2 -4 .1) . A fortiori, 6-SN.

2
Besides B2 satisfies CR, so we can speak about 6 -nf Is. E.g.,

h h

2
degree(B) = 2, 6 -nf(B) [x:alC

h
2-nf (IAIB) 1 C[AJ

=$ Bh

2 2
Clearly 82 and 6 commute, so B 6-CR and f3 6-nf Is are defined too.

h h

Sketch of proof: Ind. on Q. For the induction step we
2

property: t2A, Bh6-nf (A) I I(() , A > C or C > A, -.
2 4 Q $. If C > A it is eacy, (6) -i-pp holds here for h

need the following
2
~ ~ 6 - n f (0 I X($) ,
all kinds of

2
reduction i (see I I . 7 .3) , so Bh6-nf(C) r E (J ,) , J, > 4. Otherwise, A > C.

m .-,
L

Now B 6 commutes with a l l other kinds of reduction, except n; (see
h

11.7.2) . And it even commutes with the l a t t e r , except fo r "outside"

domains. Where we define the l a t t e r t o be the a B j I e t c . i n

{ , Z) [~ : ~ I { E) [~ : B I * * - , with { A) possibly empty. But there a r e no "outside"

domains l e f t i n E(4) . So, i n any case, B:6-nf (c) T($) , > ly. In f a c t ,

i f A > 2 C t h e n 4 = J,.
2 By Bh6-CL we know t h a t both I ($) and I ($) a r e correct so from

(4 > J , or JI >I$) we can conclude 4 Q J I . This proves the wanted property. 0

3.8 ~ o t h the theorem and the corol lary can be proved i n precisely the

same manner.for ll and @, yielding the propert ies i n 3.5.

Remark: The theorem above i s a kind of minimal r e s u l t for the desired
2

propert ies . E.g., we can, a l te rna t ive ly , prove a kind of weak C R -

r e s u l t a s i n VI.2.4, or prove a s imilar but stronger theorem i n the

s p i r i t of V.3.3, V.3.4.

3
3.9 Now we a re able t o prove the outside cases of CLPT1. E.g. fo r +-

reduction. Let { i l (A , B) } (F @ G) E y. Then il (A , B) E 6 , F @ G E n (+) ,
4 E 6 + T , {il(A,B))+ Q y . And A E a , a @ B Q 6 , F E a ' -t y ' ,

[x:a ' e B'ly' E 6 -+ T . SO (a ' @ 8 ') Q 6 Q (a @ B) , whence a Q a ' ,

B Q B ' . so IA)F E y ' . Further y ' Q lil(A,B))Cx:a' @ ~ ' l y ' Q I i l (A , ~) 3 @

Q y , whence {A)F E y too. Similarly fo r the other var ian t of +.

3.10 Then follows f u l l CLPTl by ind. on and CLPT by ind. on 2.

Besides, we have of course UT and LQ. And we can f ree ly make the

language de f in i t i on somewhat more l i b e r a l , a s follows.

F i r s t we can change the Q-propagation ru l e i n t o

A Q B , B + C, ~ c * A Q C

Secondly we can add the appl ru l e , with i 2 1

A E o r t i + l ~ Q C X : ~ I C =+. ~ { A I B

and drop the degree r e s t r i c t i o n i n the appl r u l e 1 (i . e . r u l e 1 .4) .

3.11 Now we shall say something about proving CL for AUT-Pi with the
extension of sec. 2.4. Just adding abstr expressions of degree 1 does

not matter at all, we still can get UD' without any difficulty.

Making the language into a +-language (i.e. adding appl-l-express-

ions too) causes some trouble with the domains in case reduction is

present. Which can however be circumvented as in V.3.3: First leave Tl
1

1
out, then prove B -CL and add q1 again.

3.12 Finally the extension of sec. 2.7, i.e. where @-2-expressions are
2

present. If there is also E -reduction the situation is essentially more

complicated, because f3 and E interfere nastily. But without c2 the

proofs of 3.3-3.8 just need some modification: (B+) 2 - ~ ~ can be proved
2 2

as easy as -SN, + -CLPT is not difficult either. Then theorem 3.7 can
be proved for (B+) 2-6-head-nf Is instead.

3.13 Requirements for the pp-results in 11.9 were:

(1) The result of outside-&-reduction is never a B-, an inj- or on

abstr-expression

(2) The result of outside T) or E is never an inj-expression or a pair.

Now we can easily verify them for AUT-Pi using the results of this

section. First let <$,A ,A(2)> > A. l.e. degree (A) = 3, A E E(4) . If
6

A were an abstr-term then A E n($) for some $. UT states that
ll(+) Q E(4). Theorem 3.7 states that n($) 2 Z (X) for some X. This is

impossible. Similarly for inj-or@-expressions. Or let [~:al(x)A > A. n
BY PT A E ll($) for some $I. I£ A were an inj-expression then degree (A) = 3,

A E (B @ y) for some B, y. By UT n ($) Q (B @ y) . Use the suitable variant
of theorem 3.7 again (sec. 3.8), this gives a contradiction.

V I I I . 4 A first SN-result for an extended system

4.1 Introduction

The word "extended" in the title of this section refers to the

presence of other formation rules than just abstr and appl (and possibly

instantiation) and other reduction rules than just B and q (and possibly

6). In the case of AUT-Pi we are concerned with the additional presence

of:

(1) pairs and projections, with reductions II and u

(2) injections and @-terms, with reductions + and E

In IV.2.4 we gave some versions of a "simple" (as compared to a proof

using computability) proof of 8-SN. Then we extended it to f 3 ~ using

Bq-pp. Afterwards we included 6 as well.

Here we stick to the separation of 6 from the other reduction

rules. Below we first show (4.6) that addition (1) mentioned above does

not cause any trouble: the first version of the "simple" proof of 6-SN

immediately covers the Bn-case. And afterwards, we can include 6 and n
by a postponement result again.

However the second addition essentially complicates matters. The

presence of + makes the first 6-SN proof fail here, because the impor-
tant induction on functional complexity (norm) goes wrong.(see sec.

5.1.2) . We add new, socalled permutative reductions (sec. 4.3.1, 111)

in order to save the idea of the proof (5.1.3). These permutative re-

ductions, in turn, complicate the SN-condition, and a way to keep them

manageable consists of adding (in 5.1.5) still another kind of reduct-

ion, viz. improper reductions (sec. 4.3.1, IV).

Our second B-SN proof of Ch. IV can fairly easy be adapted for the
present situation however. We just have to add improper reductions to

make the proofmrk (see sec. 5.2). For completeness we also include a

proof based on the computability method (sec. 5.3).

However, these three proofs just cover the situation with B + n-

reduction and can, by ext-pp be extended to B + n b q . Alas, we have not

been able t o handZe E too. We cannot use pp anymore, so we have to in-

clude E from the start of the proof on. And none of our methods can

cope with this situation.

The problems with e (or v) are well-known from proof theory. E.g.

Prawitz in 1591 first proves normalization for classical propositional

logic, where he avoids the problem with v, by defining v in terms of

"negative" connectives. Then, when studying intuitionistic propositional

logic, he also needs permutative reductions for proving normalization.

By the way, our improper reductions turn out to be identical with the

semi-proper reduction used in the SN proof for arithmetic by Leivant in

1401.

4.2 The system AUT-PiO

4.2.1 For b r e v i t y and c l a r i t y we study a system of terms with t h e same

"connectives" and reduct ions a s AUT-Pi (s o t h e e s s e n t i a l problems with

SN become c l e a r) bu t with a s impl i f i ed type-s t ructure . I t can be com-

pared with t h e normabZe expressions of Ch. IV. Later (sec . 5.4) we ex-

tend our r e s u l t s t o AUT-Pi.

4.2.2 Reduced type s t r u c t u r e

The reduced types o r norms (s y n t a c t i c a l v a r i a b l e s a , f3 , y, v) a r e

induc t ive ly given by:

(1) ? i s a n o r m

(2) i f a and f3 a r e norms then a l s o a @ f3, a -+ B and a @ f3

Note: I f we w r i t e Calf3 ins tead of a + f3 i t is c l e a r t h a t the norms of

Ch. I V form a subse t of t h e p resen t norm system. We w r i t e a -+ i3 with

t h e purpose t o show t h a t our norms form a simple type s t r u c t u r e over a

s i n g l e f i x e d type, T. This is a l s o t r u e of t h e norms i n Ch. I V . Hence

normabili ty r e s u l t s (a s i n Ch. I V , o r a s given e a r l i e r by J u t t i n g and

~ e d e r p e l t [3 6 , 5 1] f o r c e r t a i n Automath v a r i a n t s) can a l t e r n a t i v e l y be

proved a s follows: t h e general ized systems under considerat ion a r e no t

e s s e n t i a l l y r i c h e r than simple, non-generalized type theory, i n t h e

sense t h a t they do provide t h e same s e t of terms of f r e e A-calculus

with a type a s does a simple, non-generalized system. Compare Ben-

Yel les [6] .

4.2.3 Terms of AUT-PiO

A l l tem7.S (s y n t a c t i c a l va r iab les A , B , C,-**) have a norm. The

norm of A i s denoted p (A) . We a l s o wr i t e A E a f o r l~ (A) - a . Terms a r e

const ructed according t o :

(i) v a r i a b l e s x, y, z , * * * of any norm

(iii) C E a -+ 8, A E a , B E B * <CrA,B> E a @ f3

These terms can be compared with the 3-expressions of AUT-Pi. However

there are no constants, no instantiation (and no 61, it has simpler

type structure and it has only e-terms of the form [x:A]C e [y:B]D.

Below we also consider a variant AUT-Pil which has general 63-terms. In-

stead of rule (vii') it has rule

Below, we often omit type-labels in [x:A]B, i (A,B) , i (A,B) and
1 2

<C,A,B>, just writing CxIB, il(A), i2(A) and <A,&.

4.3 The reduction rules

4.3.1 We consider four groups of reduction rules

I The introduction-elimination rules (IE-reductions) 6, T and + '
(see 2.6) .

Rule + ' is particularly appropriate for AUT-PiO, i.e. in connection

with rule (vii'). For AUT-Pil we rather use rule +.

11 The ext-reductions n, o and E

Here we use the simple unrestricted version of 0: <CIA ,A (2 > > A .

111 Permutative reductions (p-reduc tions)

The general pattern of these rules looks like

where 0 is an operation on expressions, given in one of the following

The norms of these B's are respectively a: + 6, a: @ 6 and a s 6. That is

why the rules are coded (+), (@) and ((3).

In case the argument of (I allows outside (i.e. @-reduction), the

p-step does not produce a new equality: O({il(A)lCxlB @ [y] C) > I)(B[[A]J) E

O(B)I[AD < {il (A) } ([xlO(B) @ [ylO(C)). Below (6 .2) , it turns out that,

generally, p-equality is generated by B~+E-reduction.

The above mentioned rules are the standard ones from proof theory.

There it is formulated like this: if the conclusion of an v-elimination

rule forms the major premise of an elimination rule, then the latter

rule can be pushed upward through the v-elimination rule. E.g. our +-

rule can be compared with the following proof theoretic reduction:

Cal C 61 Cal C Bl

Both here and in proof theory the p-reductions are primarily intro-

duced for technical reasons. However, as Pottinger [56] points out there

is some intuitive justification for them too. Part of it, that in some

cases they do not extend the equality relation is stated above.

It has been suggested to allow other permutative reductions as

well (Pottinger [56] , Leivant [40]) . However, Zucker 1761 has shown

that this spoils SN.

IV Improper reductions (im-reductions)

Notice that the set of free variables of the expression can be enlarged

by performing an im-reduction. If an inside im-reduction takes place

inside the scope of some bound variable, the latter variables have to

be renamed in order to avoid any confusion.

These reductions can be compared with Leivant's [40] semi-proper

reductions. They degenerate to what Prawitz calls inmediate simplifi-

cations, when x $ FV(C) , resp. $ FV (E) .

4.3.2 One step and many-step reduction

One-step reduction > is, as well, generated from the main or out-
1

side reductions given above, by the monotonicity rules. Then follows

many-step reduction 2 from reflexivity and transitivit$.

4.3.3 The usual substitution properties are valid, e.g.,

A A' * B[A] 2 B[[A'] etc.

4.4 Closure for AUT-PiO

4.4.1 First notice that AUT-PiO is certainly not closed under n,

because of the restrictive rule (vii'). So the proof below is intended

for the n-less case.

4.4.2 Due to the simple type structure it is quite easy to show that

norms are preserved under substitution and reduction and hence that

AUT-PiO is closed under reduction.

4.4.3 Substitution lemma for the norms: X E a, A E a, B E 6 * B([x/A] E E

(and B[x/A] a term) .
Proof: Ind. on length of B. 0

4.4.4 Reduction lemma for norms: A E a, A > A' * A' E a (this includes

Proof: Ind. on the definition of >. For and +' use the substitution

(al Q a) -+ a, so [x1A2 E a1 + a# x E all A2 E a. So A2[A1] E a ,
2

q.e.d. Or a permutative reduction: A ((Al)([xu2 @ [yy 1)
3 (1)'

4.4.5 Theorem: (c losure) A E a , A 2 A ' (without 17) =* A ' E a

Proof: Ind. on 2.

4.5 The system AUT-Pil

4.5.1 Ins tead of r u l e (v i i ') it has the r u l e

and it has + ins tead of + ' .
Of course (v i i ') * (v i i) , so indeed AUT-Pi1 con ta ins AUT-Pie. We

can d e f i n e a t r a n s l a t i o n $ from AUT-Pi0 t o AUT-Pil such t h a t $(A) 2 A
17

and which shows t h a t AUT-Pi1 i s no t a very e s s e n t i a l extension of

AUT-Pi 0 .

The t r a n s l a t i o n i s given by ind. on length . The only n o n t r i v i a l

c l ause i s $(C1 @ C2) [x:Ma]{x}$(C1) @ CX:M]{XI$ (C2) , where
6

C1 @ C2 E (a d 6) + y and Ma, M a r e s u i t a b l e f ixed express ions of
B

norms a , f3 and x , y a r e chosen of norm a , 6 such t h a t x 4 Fv(Cl) ,

y $ FV(C2), r e s p e c t i v e l y , A . On var iab les , $ a c t s l i k e i d e n t i t y . For

t h e r e s t , $ j u s t commutes wi th the formation r u l e s . C lea r ly , $ leaves

t h e norm i n v a r i a n t and i s indeed a t r a n s l a t i o n i n t o AUT-PiO.

4.5.2 We have the following p r o p e r t i e s

(1) $(BUx/AD) = $(B) (Ux/$(A)D), if u(x) u (A)

(2) For IE-reduction: A B * $(A) $(B)

(3) For (IE-ext) -reduction: A > B * $ (A) proper ly reduces t o @ (B) . 1

Proofs: By induct ion on length . The 6-case of (2) uses (1) :

$({A11CyIA2) z {$(A1) ICyl$(A2) $(A2)1[$(A1)H 5 $(A2UA1D) , q.e.d.

The +-case of (2) : $ (t i l (A l)) (A2 e A 3)) S

Cx:MalIil (XI I @ (B) @ (Cx:M61{i2 (XI 14 (B) > E 4 (8) . we particularly
investigate the case of q which is not allowed in AUT-PiO:

4.5.3 In the sequel we prove SN for some versions (i.e. with and

without p-red. etc.) of AUT-Pio. By the above properties we can easily

extend the p- and im-less case to AUT-Pil:

AUT-PiO SN (with +') * AUT-Pil SN (with +) .
Proof : Let A be an AUT-Pil term. Use ind. on 8 (4 (A)) . 0

But, from SN with + follows SN with + and +', because each +'-step can

be simulated by a + a 8-step, so 8 decreases under +'-reduction. And,
-4-

because AUT-Pil contains AUT-PiO we also get SN for AUT-PiO with +
and + ' .

4.5.4 The postponement requirements

For AUT-Pio- and AUT-Pil-expressions it is quite straightforward

to show the requirements (I), (2) of 3.13. E.g. let <A(1) ,A (2)>A.

Then A E a @ 8. So A is not an inj-term, a O-term, or an abstr-term.

Etc.

4.6 The first-order character of the systems

4.6.1 In IV.1.5 we emphasized the importance of the property

i.e. the functional complexity of {A)B does not depend on the argument

A. Alternatively stated: if is of course possible that the different

values of Bhave different types, but apparently there is a strong uni-

formity in thesetypes, for the functional complexity of all the values

is t h e same. I n f a c t , we defined a system t o be first-order i f t h i s

p roper ty was p resen t .

4.6.2 Generally, t h e in t roduc t ion of $-types and @-terms might s p o i l

t h i s uniformity: we might be a b l e t o d e f i n e func t ions completely

d i f f e r e n t on both p a r t s of t h e i r domain. So, by "general" $-functions

t h e f i r s t - o r d e r p roper ty above g e t s l o s t . However, i n AUT-Pie, AUT-Pil

and i n AUT-Pi t h e domain of @-functions i s e x p l i c i t l y r e s t r i c t e d i n

such a way, t h a t t h e f i r s t - o r d e r proper ty can be maintained, v i z . by

r e q u i r i n g

(1) i n AUT-Pi0 t h a t p (B) E u (C) when forming (x) B @ (y)C

(2) i n AUT-Pi1 t h a t B E cr + y, C E f3 -+ y when forming B @ C

(3) i n AUT-Pi t h a t B E or + y, C E f3 -+ y when forming B @ C

A s a consequence we s t i l l have u({A }B) 2 p ({A IB) and i n p a r t i c u l a r
1 2

P ({ A } (CxIB @ CylC)) : p (B) = u (C) .

4.6.3 Now it w i l l be c l e a r t h a t the genera l ized @-rules of 2 .7 would

s p o i l t h e f i r s t - o r d e r cha rac te r . Example: l e t A E T , B E T , C E T ,

D E T then Cx:AIC E A -+ T , Cx:BlD E B -+ T . So Cx:AlC e, Cx:BlD E

(A B) + T . SO, i f E E A -+ C, F E B + D then (E @ F) E ll([cc:A]C @

Cx:BID). C lea r ly t h e func t iona l complexity of { i l (G) } (E e F) f o r G E A

and {i (H) (E @ F) f o r h' E B can be completely d i f f e r e n t , v i z . t h a t of
2

C and D r espec t ive ly .

4.6.4 I t is p o s s i b l e t h a t a not ion of norm (i . e . s impl i f i ed type) can

be def ined which is manageable and measures f u n c t i o n a l complexity of

t h e s e genera l @-terms, bu t t h e p r e s e n t norm (and the corresponding SN
proof) i s c e r t a i n l y no t s u i t a b l e f o r t h i s s i t u a t i o n .

4.6.5 Remark: S t r i c t l y speaking, t h e suggested cor rec t ion between the

typing r e l a t i o n i n AUT-Pi and t h e norms i n AUT-PiO has no t y e t been

accounted f o r . The preceding statements have t o be understood on an

i n t u i t i v e , h e u r i s t i c l e v e l .

4.7 A proof of ~ n ~ o - S N

4.7.1 Here we show that the first 6-SN proof of Ch.IV straightforwardly

carries over to the case of ~rqo-SN. As our domain of expressions we

take, e .g . , the terms of AUT-Pi 1.

4.7.2 SN-conditions for Ba

For non-main-reducing expressions (also called hmme ~OYVIS or IF'S)

it is sufficient for SN if all their proper subexpressions are SN. Inci-
dentally this is also true for projection expressions (because main x-

reduction amounts to picking a certain subexpression). So we have:

A SN@A(l) SN. andthe funnyproperty: A
(1)

SN.
We recall the SN condition for appl expressions in this case:

4.7.3 Heuristics: the dead end set for 6

So, the substitution theorem for SN is again sufficient for proving
SN (see IV.2.4). The crucial case of the substitution theorem for ,8-SN

was where A is SN, B : { B)B is SN, B (A] 2 CylC, but B2 $ CylCo. 1.e.
1 2 2

the reduction to square brackets form depends essentially on the sub-

stitutions. Then we used the square brackets lemma: B2 5 {PIX,
(I F) x) ~ A B r CylC.

We define the set Ex of these expression (FIX symbolically by a
recursion equation Ex = x + {U}Ex,
where U stands for the set of all expressions and it is of course under-

stood that all expressions in Ex are in AUT-Pil again.
The expressions {FIX can be considered as dead ends when one tries

to copy in B the contractions leading from B [A] to [y]C, i.e. when
2 2

one tries to come "as close as possible" to an abstr expression. We do

not bother to make the concept of dead end more precise, or more general,

but just give this informal explanation for naming Ex the dead end set

w.r.t. X , 6-reduction, and abstr expressions.

4.7.4 The dead end set for BT

When one tries to copy a Bn-reduction sequence of BBAJ in B one

need not end up with an expression in E but, e.g., can also end in
2'

x
(1)

The following theorem states that F defined by

F = x + F + F + { U) F
(1) (2)

is the dead end set w.r.t. XI B-ir and immune forms (IF'S). Let 2 stand
*

for 2 and let stand for [x/AD.
BT,

Theorem: If B SN, B* 2 C, C E IF then B 2 Cot Ci 1 C with either (i)

C; non-main reduces to C, or (ii) Co E F.

Proof: ~ u s t like the square brackets lemma (second proof, IV.2.4.3), by

ind. on (1) 9 (B) , (2) R (B) . Let B* main-reduce to C (otherwise take
B C) . Then B X, (and take COEB, C EF), B ! D

0 0
, B E D or

(2)
B E {D)D ~ . g . let B : D

1 2' (1) '
Then D* 2 d) ,D >, D 2 C. Apply

1 2 1
ind. hyp. (2) to D. In case (i) , D 1 a .E >. E* 2 Dl, E; 2 D2, so 1 2 1
B 2 El , E* 1 C. Then apply ind. hyp. (1) to El. In case (ii) ,

1
D L E E E F, E* Z cD D > and B Z EO(ll

0' 0 0 1) 2
2 C,

so case (ii) holds for B too. El

Remark: (1) Similarly we can prove a more general outer-shape lemma

(see 11.11.5.4) for Bn, where the condition "C E IF" simply has been

dropped.

(2) It is probable that such "standardization-like" theorems can

also be proved without using SN (as in 11.11).

4.7.5 Heuristics: the norms of dead ends

The point of the 6-SN proof is:

- where R is the length of the norm -. So, if B[AD 2 [ylC then

R(p(y)) < R(p(x)), and we can use ind. on norms in the crucial case of

the substitution theorem.

We are lucky that the same method works for Bn-reduction too.

Namely

4.7 .6 The s u b s t i t u t i o n theorem f o r Bn-SN

Theorem: A Ba-SN, B BPSN * B[x/AD B A N

proof : Ind. on (1) p (A) , (2) eBa(B), (3) L(B). L e t 2 be 2 . I f B E x
6 a

thenB[Al = A s o % . I f B E I F o r B = C o r B E u s e i n d .
(1) (2)

hyp. (3) . I f B E { B)B proceed a s f o r 8-SN, us ing t h e norm
1 2

p r o p e r t i e s of the dead end s e t F. 0

4.7.7 6n-SN and Bmo-SN

An immediate c o r o l l a r y of t h e s u b s t i t u t i o n theorem f o r 6n-SN i s

Ba-SN i t s e l f . Now we can extend t h i s t o BRQU-SN (a s i n 11.7.2.5) us ing

(B T) - (Q U) -pp, a case of ext-PP (see I1 -9.2) . The requirement f o r pp i s

indeed f u l f i l l e d (see 4.5.4).

VI I I .5 Three proofs of Bat-SN, w i t h a p p l i c a t i o n t o AUT-Pi

5.1 A proof of ~a+-SN using p- and im-reductions

5.1.1 Here we show how the preceding SN-proof (based on t h e f i r s t

ve r s ion of the simple 6-SN proof i n Ch. IV) has t o be modified i n order

t o cope wi th + (o r + I) . F i r s t we s h a l l see how t h e norm cons ide ra t ions

of t h a t proof do n o t go through.

5.1.2 The dead end s e t f o r Ba+

Let 2 be 2 The following theorem s t a t e s t h a t t h e s e t G def ined BIT+'
by

G = x + G
(1) + G (2)

+ {U)G + {GI (U e U)

i s t h e dead end s e t w . r . t . X , Ba+ and IF 'S . L e t * s tand f o r [x/A].

Theorem: Le t B be SN, B* 2 C , C E I F then B 2 Co with e i t h e r (1) C*
0

non-main reduces t o C , o r (2) C: 2 C, Co E G

Proof: A s i n 4.7.4, by ind. ond (i) 8 (B) , (ii) R(B)

S i m i l a r l y , we can prove t h e corresponding o u t e r shape lemma.

The problem i s now t h a t t h e norm of the express ions i n G i s no t

r e l a t e d t o t h e norm of X. E.g. consider t h e t y p i c a l +-dead end

{XI (B e C) .

5.1.3 Improving t h e dead end s e t by p-reduction

W e r e s t r i c t our domain of considera t ion t o AUT-Pio. Ins tead of r u l e

+ we choose r u l e + I . Besides we add permutative reduct ions . Then a g r e a t

d e a l of t h e "bad guys" among t h e dead ends, i . e . whose norm i s no t r e -

l a t e d t o t h a t of X, can be main reduced by a p-reduction. This w i l l (i n

the next s e c t i o n) r e s u l t i n an improved dead end s e t H defined by

H = F + {FI(U e U) with F a s i n 4.7.4.

5.1.4 Le t 2 be f3+'~p-reduction. The d i r e c t r educ t s of a p-main s t e p a r e

of t h e form {A)([x]O(B) e [y]O(C)) (see 4.3.1 f o r t h e d e f i n i t i o n of O),

s o never a r e i n one of t h e immume forms (a b s t r , i n j , p a i r , p l u s) .

Lemma: p-main reduct ion s t e p s i n a r educ t ion t o IF can be circumvented

proof: The l a s t p-main s t e p i n a reduct ion t o IF must be followed by a

+'-main s t e p . However t h i s combination can be replaced by a s i n g l e

i n t e r n a l + ' - s t ep . 0

C o r o l l a r i e s :

(2) {B)C r D l D E IF * E i t h e r (i) C > [y]E, E[Dj 2 D o r

(ii) B r i. (A) , C r (CxICl @ CxIC2) C.IlA1 2 D l j= l o r j=2 .
3 3

(3) B

Proof: Each

p-main

P a r t of t h e

of these reduct ions t o IF can be replaced by one without

s t e p s . 0

two c o r o l l a r i e s can be summarized (with 0 a s i n 4.3.1) by:

i f O(B) > D l D E IF then B Z C , C E IF, O(C) > D.

This g i v e s another lemma.

This proof amounts t o : i f an express ion al lows both p-main and IE-main

reduc t ion then we can i n s e r t p-main followed by +'-main before perform-

ing t h e IE-main s t e p . Now we prove t h e theorem about t h e improved dead

end s e t H. Let * s tand f o r [x/A].

*
Theorem: If B SN, B* 2 C, C E I F then B L Co, C 5 C with e i t h e r (1) C*

0 0
non-main reduces t o C , o r (2) Co E H

Proof: A s in. 4.7.4, by ind. on (i) 8 (B) , (ii) ! L (B ~ . Here €I r e f e r s t o the

c u r r e n t reduct ion Bn+'p. L e t B* main reduce t o C, B X. I f t h e

f i r s t main s t e p can be mimicked i n B use ind. hyp. (i) . Otherwise,

by ind . hyp. (ii) B 2 O (D) , D E H , O(D)* 2 C. I f D E F then

(1 (D) E H and we a r e done. Otherwise D 5 { D ~ 3 ([y]D1 @ [z j ID) ,
2

D E F. Then B p roper ly reduces t o E E {D3} ([~] (1 (Dl) $ [y]0 (D2)) ,
3

E E H , and by the previous lemma E* 2 C, q .e .d. 0

5.1.5 Improving t h e SN-conditions by im-reduction

The c r u c i a l SN-conditions for$n + ' (i n AUT-PiO) is

Now t h e p-reductions have improved our dead end s e t , b u t t h e problem i s

t h a t they make t h e SN-conditions q u i t e complicated. E.g. i n order t o

prove t h a t {A}{B} ([x]C1 $ [x]C2) i s SN we need t h a t {A}C1 i s SN, i n

p a r t i c u l a r i f C > [y]E we need t h a t EI[AD i s SN e t c . 1.e. t h e SN-con-
1 -

d i t i o n of {A)B ceases t o be e a s i l y express ib le i n terms of d i r e c t sub-

express ions of r e d u c t s of A and B.

I n o rde r t o so lve t h i s problem we add im-reduction. But a t f i r s t

we show t h a t t h e dead end s e t i s n o t changed by t h i s add i t ion .

5.1.6 The dead end s e t of Ba+ 'prim

Luckily t h e dead end s e t remains H. Let 2 s tand f o r 2 . The
Ba+'p,im

f i r s t lemma of 5.1.4 can be maintained. For l e t a p-main s t e p be

follwed by an im-main s t e p . Then we can s k i p t h e main p-step and j u s t

apply t h e im-step i n t e r n a l l y .

The next c o r o l l a r i e s need an obvious modif icat ion, i n p a r t i c u l a r :

I f {B}(Cxlc, @ [xIC2) r D l D IF then e i t h e r (1) B 2 i . (A) ,
3

And t h e proper ty t h e r e a f t e r becomes:

If O(B) 2 D , D E IF then e i t h e r (1) B 2 C, C E IF, O(C) r D, o r

(2) o(B) {B} ([x]C1 e [x1C2), C , 2 D (f o r j= l o r 2)
3

But the second lemma of 5.1.4 remains unchanged. Namely, i f an express-

ion allows p-main reduct ion but a l s o im-main reduct ion, then we can

i n s e r t p-main followed by im-main before performing t h e im-main s tep .

E . g . EIB1) (CxlC1 @ CxIC2) 1 (CyID1 e CyID2) >
P

C B ~ I (C X I I C J (~ ~ I D ~ @ CYID,) e . * *) > i m {C1)(CylD1 @ [Y I D ~) >im D ~ .

SO, the theorem of 5.1.4, t h a t the dead end s e t i s s t i l l H , c a r r i e s

over too.

5.1.7 The new SN-conditions

The p o i n t of t h e im-reduction i s t h a t t h e SN-conditions f o r

a ~ + ' p , i m a r e i d e n t i c a l with those f o r BIT+' (see 5.1.5). F i r s t we give

the SN-conditions of {B) ([x]C1 @ [x]C) . These a r e (1) B SN, C1 SN and
2

C2 SN, and (2) B > ; . (A) * C.[A]I SN (f o r j = l and 2) .
3 3

Proof: Let the above condi t ion be f u l f i l l e d . Use ind. on (1) 0(B) ,

(2) R(B), The i n t e r e s t i n g case i s when t h e f i r s t main s t e p i n a

reduct ion i s a p-step. So l e t B 2 {B3) ([ylB1 @ [yIB2 t o prove

t h a t {B3)([y]{B1}C @ [y]{B2}C) i s SN, with C 3 [x]C 1 e [x]C2. By

ind. hyp. (1) o r (2) we j u s t need t h a t B i s SN (t r i v i a l) t h a t
3

{B.)C SN f o r j=1,2 and t h a t {B.[DD}C is SN, where B3 > i . (D) .
3 3 3

Since B proper ly reduces t o both B and B.[D] (i n case B3 2 i . (D))
j J I

we can use ind. hyp. (1) and g e t what we want. 0

Theorem: The SN-conditions f o r Br+'p,im a r e i d e n t i c a l wi th those of

p n + ' (see 5 . 1 . 5) .

proof : Let {A)B f u l f i l l t h e SN-conditions (I) , (2) , (3) of 5.1.5. We

use ind. on 9 (B ! . The i n t e r e s t i n g case is when t h e f i r s t main s t e p

i s p. The c a s e t h a t B 2 [x]B fB [x]B has been done before , s o l e t
1 2

B {B31 (CxlB1 @ CxlB2) , t o prove t h a t {B31 (lxl{AIB1 @ CxIIAIB
2

i s SN. 1 .e . t h a t B3 SN, t h a t {A)Bl and {A)BZ SN and t h a t IAIB~UDD,
{A)B211DII a r e SN whenever B 2 i . (Dl (j = l o r 2) . Now B proper ly

3 3
reduces t o both B , and B . [D j (if B, 2 i . (D)) s o we use t h e ind.

I 7 4 3
hyp. and g e t what we want. 0

I n o t h e r words: we j u s t need t h a t t h e d i r e c t subexpressions and t h e

IE-main r e d u c t s (n o t a l l t h e main reduc t s) a r e SN f o r proving t h a t an

express ion i s SN.

5.1.8 The s u b s t i t u t i o n theorem f o r SN

Notation: We j u s t w r i t e p (A) </ I p (B) t o abbrev ia te R(p (A)) < / s R(p (B))

Theorem: B SN, A SN, p (x) : p (A) * B[x/A]SN

Proof: Ind. on (I) p(A) (11)

when B : {B }B and B[An
1 2

can be mimicked i n B use

wi th {Bi)C o r {CIB' wi th
2

9 (B) , (111) R (B) . The c r u c i a l case is

IE-main reduces. I f t h i s f i r s t main s t e p

t h e second ind. hyp. Otherwise we end up

C E H a n d B t B i o r B 2 B 1 =
1 2 2 -

[y]Dl @ [ylD2, r e s p e c t i v e l y . I f C E G then p (Bi) < p(C) I p (x) s o

a f i r s t main reduct ion of ({Bi)C) t A 1 involves a s u b s t i t u t i o n [z/ED

with ~ (z) 2 p (B i) < p (x) . And a f i r s t main-IE reduc t ion s t e p of

({C)Bi)@AD must be a + ' - s t ep , s o involves a s u b s t i t u t i o n [z/En

wi th CQAD 2 i_ (E) . So i n t h a t case t o o p (z) E p (E) < p (C) I p (x) .
J

Anyhow i f C E G , we can use ind. hyp. (I) . Otherwise

C {C3) ([y]C1 @ [yIC2) , with C E G . Then a p-s tep i s poss ib le
3

and can be i n s e r t e d before doing t h e main IE-step. This p-step can

be mimicked i n the reduct ion of B, s o we can use ind. hyp. (11). 0

5.1.9 SN f o r AUT-PiO and AUT-Pi1

Like be fo re , an immediate c o r o l l a r y i s f3~+ '~ , im-SN f o r AUT-PiO, so

~n+'-SN f o r AUT-PiO, whence $IT+-SN f o r AUT-Pil. Then by pp we can ex-

tend t h e AUT-Pi1 r e s u l t t o B T + ~ ~ - S N . (Not f o r E .)

5.1.10 An a l t e r n a t i v e method

Actual ly im-reduction can be avoided i n t h i s proof. Namely t h e

e f f e c t of p-reductions on t h e SN-conditions can be expressed by means

of c e r t a i n induc t ive ly defined s e t s .

We d e f i n e a s e t of express ions B! by

B! = B + {U)(Cxl(B!) e U) + {U)(U @ CxI(B!)).

1.e. B! con ta ins a l l those express ions t h a t im-reduce t o B.

Then t h e SN-conditions f o r Bn+' become

~f (1) B SN, C SN, (2) B 2 B' E A!, C 2 C' E (CylD) ! * DUAD SN,

and (3) B 2 B'

then {B)C SN.

5.2 A second proof

E (i . (A)) : , C a (CgIC1 @ CyIC,)! * C.UAD SN (j = 1 , 2)
I 3

of BIT+ '-SN, using im-reduction

5.2.1 This proof i s based on t h e second ins tead of the f i r s t B-SN-proof

of Ch. I V (sec . IV.2.5, see a l s o VII.4.5). There we d i d not use the

square b racke t s lemma, and no dead end s e t , s o we can do without p-

reduct ion. Our language is AUT-Pio, again, and 2 s tands f o r 2 pn+',im.

5.2.2 Replacement theorem f o r SN

A s explained i n VII.4.5, t h e ke rne l of t h i s type of proof i s a

replacement theorem, r a t h e r then a s u b s t i t u t i o n theorem, f o r SN.

Theorem: I f B SN, A SN,)J (x) E p (A) then a x/AD LR SN.

Proof: By ind. on (I) p (A) , (11) 9(B) , (111) R(B1. We w r i t e * f o r

[x/AILR. Consider a reduct ion sequence B* > . * > F > G , where
1 1 1

t h e con t rac t ion leading from F t o G i s t h e f i r s t con t rac t ion not

taking p lace i n s i d e some reduc t of one of the i n s e r t e d ocurrences

of A . Real ize f i r s t t h a t t h e number of those inside-A con t rac t ions

is f i n i t e , because A i s SN. Now we prove t h a t G i s SN. Dis t inguish

two p o s s i b i l i t i e s :

(a) The s t e p F > G does no t e s s e n t i a l l y depend on the i n s e r t e d
1

A's and can be mimicked i n B. 1 . e . B G o , G t 2 G . I n t h i s case

we use ind. hyp. (11).

(b) Otherwise some reduc t of some i n s e r t e d A p l a y s a c r u c i a l r o l e

x by a f r e s h y , wi th p (y) Z al (where a 5 a l x a2). And
(1)

B I 60[y/x (l) D so B0 i s SN, 0 (Bo) 5 0 (B) , R (Bo) < R (B) . So by ind.
* *

hyp. (11) o r (I I I) , B i s SN and Bo 2 Go * * * A ' ...y... wi th
0

G GO[y/C$LR. Here G i s SN, C i s SN, p (y) E p (C .) , R (p (y)) <
0 1 3

R (p (x)) s o we can apply i n d . hyp. (I) t o g e t t h a t G i s SN. If

F > G i s a @-step argue a s i n IV.2.5.3 o r VII.4.5.6. I f F > G is

a + ' - s t e p , the redex con t rac ted is , e .g . , { i l (D)) ([y lC1 te [yIC2) ,

reducing t o C [D l . Now d i s t i n g u i s h (b l) a r educ t of an i n s e r t e d A
1

i s c r u c i a l i n i (D l , (b2) a r educ t of an i n s e r t e d A i s c r u c i a l i n
1

(Cy1C1 @ [yIC2). F i r s t case (b l) . Then B - * * x - - * (x)C;*.,

C* r CyK, te CyE2, A r i (Dl. BY a norm argument t h e @-term must
0 1

be p r e s e n t i n B a l ready , s o C E [ylEl @ CYIE~, E* 2 C1 , E* 2 C2.
0 1 2

Now form B - * * * x - * * E - - - . This is an im-reduct of B, so SN and
0 = 1

by ind. hyp. (11) B;) SN, reducing t o Go Z * * * A ' - - - C - - - , where
1

G ? *--A' -**C1[DD**- . C l e a r l y G SN, D SN and k (p (D)) < L (p (z)) .
0

So G % GOI[y/DDLR SN by ind. hyp. (I) . I n case (b 2) , argue a s i n the

8-case. F i n a l l y , the redex contracted i n F is an im-redex, i n which

5.2.3 An immediate c o r o l l a r y of t h i s replacement theorem is t h e

o rd ina ry s u b s t i t u t i o n theorem. From t h i s , a s before , fo l lows B~+'im-SN

f o r AUT-P iO . So we g e t @T+u~-SN f o r AUT-Pil.

5.3 A proof of ~n+rja-SN by computabil i ty

5.3.1 In t h i s proof we do n o t include rjo by a pp-result af terwards ,

b u t consider these ext - reduct ions from t h e beginning of t h e proof on.

We must consider AUT-Pil because AUT-PiO is not closed under n . Our

definition of computabiZity has been strongly inspired by de Vrijer's

definition in [701 .
De Vrijer's definition is phrased in such a manner that the im-

portant properties: (1) computability implies SN, (2) computability is

preserved under reduction, follow almost immediately. Then, as usual,

we prove by ind. on length that expressions are computabZe under sub-

stitution.

Notice that we do not include E .

5 . 3 . 2 The definition of computability

We write C for the set of computable terms of norm a. The set C
a a

is defined by induction on the length of a, as follows:

Let B a. Then B E C if B SN and the following requirements are
a

fulfilled:

(1) a~ a + a B 2 CylC, A E C * C [A B E Ca2
1 2 ' a1

Notice that each clause in the definition of C only depends on
a

C a ' s with I3 shorter than a.

5.3.3 We write C for the set of all computable expressions, the union

of all the C 's. BY definition: A E C * A SN. Each condition in the
a

definition of computability of B has the form: B 2 C * P(C), with P
some condition on C.

So computability is preserved under reduction.

5.3.4 Now we try to express the computability of an expression in terms

of the computability of its subexpressions. First a lemma.

Lemma :

(1) CxlC 2 CxlD*C r D

(2) <C,D> 2 G , F > 4 C 2 E l D r F

Proof: Without main reduction it is trivial. Otherwise it is t-l or a.

E.g. if <C,D> r <E,F> then C 2 <E,F> 2 E l D r <El,?> 2 F
(1 (2)

q.e.d. By the way, property (4) even holds in presence of E . 0

Lemma (computability conditions) :

(0) variables are in C

(1) A SN, C E C, D E C * d,C,D> E C

Proof: (0) is clear. (1) , (21, (3) by the previous lemma. (4) as follows:
Let C E C then C SN so C SN. If C(j) 2 CylD then C t <C1,C2>

(j)
with C 2 [y]D. Each of the C. is in C, so [y]D satisfies the re-

j 3
quired condition. Similar if C 6 <Dl ,D2>, C (j) 2 i (D) etc.

(j) 1
Proof of (5): Let B,C E C so B,C SN. Induction on p(B). We first

check the SN conditions. Let C 2 [g]D then D [B j E C so SN. Or let
> C1 @ C2, to prove that {D)C is SN. Well, both C.'s B r i.(D), C -

J j J
are in C, D E C and we can use the ind. hyp. to prove that
{D)C, E C (SO SN) . Further, if {B)C t [y]E (or reduces to <E,F>

3
etc.), this is only possible after a main step, so either via some

DUBJ with C 2 [y]D or some {D)C, where B t i.(D), C t C1 e C2.
3 3

Those expressions were in C so CyIE (and < E l k etc.) satisfy the

required conditions. 0

5.3.5 Computability under substitution

For expressions [y]C such simple computability conditions cannot

be given. We define an even stronger notion than computability.

Definition: B is said to be computabZe under substitution (cus) if

A1 ' -**,A E C, p(z.) 5 p(A.) for i=l,***,n =+ B[;/~D E C
n 1 1

Some easy p r o p e r t i e s a r e :

(1) B C u s * B E C (e.g. t ake n=O)

and (2) B Cus, B t C * C E C

Then a lemma: Le t p(C) : a + a and l e t F E Cal * {FIC E Ca2. Then
1 2

Proof: C lea r ly C is SN. We use ind. on R (c c l) . I f C r CyID, F E Ca l we

must prove D[F] E Ca2. This holds because {F)C 2 D[FD. I f

C r D @ E we must prove t h a t D,E E C. For i (F) E C
1 a l l

{ i l (F))C E C s o {FID E C. Now use t h e ind. hyp. Similar f o r E. 0

5 . 3 . 6 Lemma: B Cus,C Cus * [y:B]C Cus

Proof: Let C Cus, B Cus, 2 E C of t h e r i g h t norms. Abreviate [z/J] by *.
We must prove t h a t CY:B*IC* E C. Well, B* E C , C* E C s o

[y : B*]C* E SN. If [y : B*]c* 2 Cy :DIE, F E C of t h e r i g h t norm then we

need t h a t EtF] E C. Because C i s Cus, c [& ~ / & F D E C , which ex-

p ress ion reduces t o E[FD, q.e.d. I n p a r t i c u l a r , i f

C* a (y) (E l @ E 2) , y 4 FV(E e E 2) , we have t h a t (F)(E1 e E2) E C ,
1

s o by t h e lemma E @ E2 E C , El E C , E2 E C , q.e.d.
1

0

Theorem: A l l AUT-Pi1 express ions a r e Cus

Proof: Var iables a r e Cus by d e f i n i t i o n . Fur ther use induct ion on length .

For t h e a b s t r case use t h e previous lemma. For a l l t h e o t h e r cases
*

use the lemma i n 5.3.4. E.g. t o prove t h a t (B)C is Cus. Le t be

a s i n the previous lemma. By ind. hyp. B* E C , C* E C , s o

{B*)c* E C .

Coro l l a r i e s : (1) A l l AUT-Pil express ions a r e computable

(2) A l l AUT-P i l express ions a r e BT+T-,U-SN

5 . 4 Strong normalization f o r AUT-Pi

5.4.1 The normabi l i ty of AUT-Pi

I n order t o extend our r e s u l t s from AUT-Pi t o AUT-Pi we must f i r s t

extend our d e f i n i t i o n of norm (see 4 .2 .3) , and i m p l i c i t l y , of norma-

b i l i t y , a s follows:

A, B of degree 2 * p (A e B) = u (A) e w (B)

And we must say what the norms of the variables are

Our definition of normability,,here, is modelled after the norma-

bility definition of AUT-QE (weak normability), in particular as far as

the handling of 2-variables is concerned. For details see IV.4.4-IV.4.5.

First we define norm incZusion c:

(I) a a norm * a c T

Then we say that A f i t s i n B (notation A f i tl B) if:

Now we define the norm of constant expressions

where 2 E is the context of the scheme, in which c (resp. d) was in-

troduced.

We want to show that correct expressions are normable, and of

course that whenever A E B , A fits in B. In view of the instantiation

rule and the fact that norms can change under substitution (for 2-

variables) we prove, as in Ch. IV .4.5 a kind of normability under sub-

s t i t u t i o n .

Theorem: If 2 f i fl ZiJ] , E +C E D then C U ~ D f i n DUAD (note that "fitting
in" implies the normability of the expressions involved)

Proof: Ind. on correctness.

Corol lary: LC E D * C f i n D (s o C, D normable)

5.4.2 Note: By the above defined concept of normabi l i ty l o t s of ex-

p ress ions become normable which a r e c e r t a i n l y no t c o r r e c t i n AUT-Pi.

E.g. I A ~ (I ~ (C X : B I C)) ~ with p(A) I p(B) , and (E(B)) with

p(B) E -+ B 2 . This is a consequence of t h e f a c t t h a t AUT-Pi i s handled

j u s t l i k e AUT-QE: n ' s a r e (a s regards norms) ignored, and 1 ' s a r e i n

some sense i d e n t i f i e d with p a i r s .

5.4.3 Extending t h e SN-result t o AUT-Pi

C l e a r l y t h e presence of non-reducing cons tan t s such a s 1, ll,

(f o r 2-expressions) and T does not harm t h e SN-results of the previous

sec t ions . W e j u s t have t o add 6-reduction. The s u b s t i t u t i o n (resp. re-

pZacement theorem for SN can e a s i l y be extended because &-contractions

i n B[x/A]
(LR)

e i t h e r t ake p lace i n s i d e A o r can be mimicked i n B a l -

ready. Then we can proceed a s i n I V . 4 . 6 o r d i r e c t l y prove B normable

B SN, by ind. on (1) date(B) , (2) R(B). The new case is when B : d(c) .

The C . ' s a r e SN by ind. hyp. (2) . Fur ther we want t h a t def(d)UEl i s SN.
1

Well, d e f (d) i s SN by ind. hyp. (1) and def(d)U?l r def(d)IC,J-*-UCnil.

So by i t e r a t e d use of t h e s u b s t i t u t i o n theorem we a r e done. Later we

can add aq , by pp.

Alte rna t ive ly we can extend t h e SN proof by computabiZity t o t h e

p resen t case , v i z . by leaving t h e d e f i n i t i o n of computabil i ty unmodified

and prove computabiZity under s u b s t i t u t i o n by ind . on (1) da te , (2)

length. I n p a r t i c u l a r l e t A * * * , A E C of t h e r i g h t norms, l e t * stand
* 1' k

f o r tE/z] , l e t B, , , B* E c. Then we must prove t h a t d (5) * E C. The
n

B?s a r e SN. BY ind. hyp. (1) d e f (d) i s cus, so def(d)UB*B E C , so SN.
1

Fur ther , i f d (~ *) 2 [y]E (o r <E,F> e t c .) then t h i s reduction passes

through def (d) [B*] (which was i n C) .
So, f i n a l l y we have ~n+an6-SN f o r AUT-Pi.

3 00

VII I .6 Some a d d i t i o n a l remarks on AUT-Pi

6.1 The connection between AUT-QE and t h e a b s t r p a r t of AUT-Pi

Here t h e a b s t r p a r t of AUT-Pi is t h e p a r t genera ted by t h e genera l

r u l e s (2.2.1, 2.2.2) and t h e s p e c i f i c r u l e s group I (2 .3) . I f it werenot

f o r the r o l e of n, and t h e r u l e of product fo rmat ion , th i s p a r t of AUT-Pi

would be i d e n t i c a l t o AUT-QE.

I n t h e i n t r o d u c t i o n t o t h i s chapter w e mentioned a l ready t h a t t h e

r u l e of type- inclus ion i s somewhat.stronger than t h e r u l e of product

formation. Th i s means t h a t t h e obvious t r a n s l a t i o n of AUT-Pi, v i z . j u s t

skipping t h e n ' s produces c o r r e c t AUT-QE, b u t no t a l l of AUT-QE. Namely,

without n, t h e r u l e of product formation becomes

which i s j u s t a s p e c i f i c ins tance of t h e type- inclus ion r u l e

Let u s see whether s e n s i b l e use of (I) can y i e l d something l i k e
f

(11). So l e t 4 E[~:EICX:~]T. Then Z/ E Et{yl$ E [x:crI~ (where $ c o n s i s t s
C

of t h e 9 ' s i n t h e reversed o r d e r) . So by (I) E &{y)i$ E T , and by
i + + - - C

i t e r a t e d use of t h e a b s t r r u l e we g e t E T wi th Q, 5 [y:Bl{y}Q,.

C l e a r l y

+ m 2: m

which i n d i c a t e s t h a t AUT-QE i s no t a very e s s e n t i a l extension of t h e

image of AUT-Pi under t h e t r a n s l a t i o n . Compare De Brui jn 115, 17 I .

6 .2 The CR problem caused by E

I n Ch. I1 we gave a counter example f o r BE-CR. Namely [ZIX and

[y] i (y) e [y] i (y) a r e d i s t i n c t Be-equal normal forms (j u s t two
1 2

d i f f e r e n t ways t o w r i t e i d e n t i t y on a $-type). Th i s suggests t o save

CR by adding ~ a l t (see 2.6)

However, ~ a l t and + i n t e r f e r e i n a nas ty way:

C x I (- * * { x) F - - *) e [X I (- * * { x) G * * -) < [X I (- * * { i l (x)) (F e G) - - *) e ++
C x l (- - - C i 2 (x)) (F e G) * . *) > [~ l (~ * * { x) (F e G) . * *) , s o t h i s does no t

E

help .

I n p r i n c i p l e , CR i s n o t too important f o r our purpose, we r a t h e r

need a good d e c i s i o n procedure f o r d e f i n i t i o n a l e q u a l i t y . J u s t l i k e

(i n V . 4) we suggested t o implement w e q u a l i t y by t h e r u l e

we ConjectZPe here t h a t we could genera te f u l l e q u a l i t y (including E)

by adding

{i, (2) IF Q {x)G, { i 2 (x) IF Q {x)H * F Q G 8 H

But i n order t o quarantee t h e well-foundedness of such an algo-

rithm, we need of course some kind of s t rong normalization r e s u l t ,

which a p p l i e s i n t h e p r e s e n t s i t u a t i o n .

The genera l p a t t e r n of t h e counterexample t o + ~ a l t - C R reads

where 0 i s a very genera l opera t ion on expressions. This shows t h a t

extensional e q u a l i t y genera tes the e q u a l i t y induced by permutative r e -

duct ions (sec . 4 . 3) 0 ({A) (CXIB @ [xIC)) Q {A)[x]~({x} ([xIB @ [x IC))

Conversely, we might genera te p a r t of t h e €-equal i ty by adding

genera2 permutative reduc t ions , paying due a t t e n t i o n t o the thus a r i s i n g

SN problem.

6 .3 The SN-problem caused by E

We s t rong ly be l i eve t h a t SN holds f o r t h e f u l l AUT-Pi reduct ion

(including E) , and t h a t t h e r e a r e j u s t some techn ica l problems which

prevent the p roofs of t h e preceding s e c t i o n t o apply t o t h a t s i t u a t i o n .

We b r i e f l y sketch why each of t h e t h r e e proofs f a i l s i n presence of E .

A -
not

not

F E

F 2

A E

The problem with the first proof (5.1) is that the dead end set

for, e.g., BE-reduction is not so easy to describe. E.g.

Cyl{{i (y)}x)F @ [ylii2(y))F is a typical dead end for BE. Of course
1

f3q- or @a-dead ends are not manageable either, but an can be included

afterwards, using pp.

Then the second proof (5.2). An &-redex h.Jl{il(y))F @ [yl{i2(y)}F

can be created by substitution [x/AD in two different ways: (1) from

X @ [yl{i2(y))F, A iyl{il(y))F (and similar with the right hand part),

(2) from CylIil(y)lF1 @ Cyl{i2(y))F2, F1ilAD F, F !AD : F. In case (1)
2

we are suggested to replace x @ [y](f (y))F by a single variable z , and
1

to introduce a new substitution [z/F]. However, R (p (z)) > R (p (x)) ,
which does not fit in the proof at all. But we can remove this case by

just considering AUT-PiO. Case (2) does not pose a problem: the sub-

stitution reduction can be simulated by reduction plus substitution,

starting from [y]{il (y))FO @ [y]{i2 (y) IFO, where both F1 and F can be
2

constructed from F by substituting A for some of free x's. Besides,
0

the second proof is based on replacement. This means that the €-redex

above can also be created from, e.g., (3) [yl{X)F @ [yl{i2(y))F, with

il (y) , or (4) [y]{i (2) 3F @ [y]{i2 (y) IF. These two expressions do
1

reduce, unless we switch to a generalized form of E~~~ (which does

solve the problem, though - see below).
Finally the computability method (5.3) fails because the property:

C, G E C * F @ G E C is not so easy anymore. For, let

[xlIil (x) }CylD, G 2 Cxl{i2(x) ICylD. Then we

C * DQil(A)J E C, DUi2(A)] E C, but we want

general A E C.

We have tried to adapt the second SN-proof

by restricting to AUT-PiD, and by introducing a

E named E ' .
alt'

just know that

that DEAD E C for

to this situation, viz.

liberal version of

This can be considered a kind of improper reduction in the sense that

it identifies expressions which in the intuitive interpretation do

correspond to different objects. A typical way of creating a new E'- y

redex is, e .g. , from [y]x @ G by the replacement [x/il (y) LR' reducing

to [yly. One can indeed mimick this by first reducing td [y]x, and then

apply a new replacement, viz. [z/y]. But the norm of this new x is

longer than that of the old one.

REFERENCES

[I] P. Andrews, Resolution i n type theory, Journ. of Symb. Logic,
36 (l 9 7 l) , p. 414-432

[2] H.P. Barendregt, Some ex tens iona l term models f o r combinatory
l o g i c s and A-calculi, Ph.D. Thesis , Utrecht 1971

[3] H . P . Barendregt, Pa i r ing without conventional r e s t r a i n t s , Ze i t schr .
f . math. Logik u. Grundl. d. Math. 20 (1974), p. 289-306

[4] H . P . Barendregt, The type f r e e A-calculus, i n : Handbook of Math.
Logic, Barwise (ed .) , North Holland, Amsterdam 1977

[5] H . P . Barendregt, J. Bergst ra , J . W . Klop and H. Volkema, Represent-
a b i l i t y i n lambda a lgebras , Indag. Math. 38 (1976, p. 377-387

[6] Ch. Ben-Yelles, A r t i c l e t o be published i n Ze i t schr . f . Math. Logik
u. Grundl. d . Math. 1980

[7] S. de Boer, De ondefinieerbaarheid van Church' 6-functie i n de
A-calculus en Barendregt ' s lemma, s t agevers lag , Eindhoven 1975

[8] N.G. de Brui jn , The mathematical language AUTOMATH, i t s usage and
some of i t s extensions , i n : Symposium on Automatic Demonstrat-
i o n (I R I A , V e r s a i l l e s 19681, Lect. Notes i n Math., 125,
p. 29-61, Springer, 1970

* [9] N.G. de Brui jn , AUT-SL, a s ing le - l ine ve r s ion of AUTOMATH, AUT20 ,
1971

[l o] N.G. de Brui jn , Lambda ca lcu lus no ta t ion with nameless dummies, a
t o o l f o r automatic formula manipulation, with app l i ca t ion t o
t h e Church-Rosser theorem, Indag. Math. 34 (1972), p. 381-392

[l l] N.G. de Brui jn , AUTOMATH, a language f o r mathematics, notes (by
B. Fawcett) of a s e r i e s of l e c t u r e s (Seminaire de Math.
Super., Montreal, 1971), Montreal 1973

[12] N.G. de Brui jn , S e t theory with type r e s t r i c t i o n s , i n : I n f i n i t e
and f i n i t e s e t s I , Hajnal e t a l . (e d s .) , p. 205-214, Colloquia
Math. Soc. Jan. Bolyoi 10, 1975

[13] N.G. de Brui jn , The AUTOMATH Mathematics Checking Pro jec t , i n :
Proc. of t h e symp. APLASM I (Bra f fo r t volume), Bra f fo r t (ed.) ,
AUT34, 1973

[I 4 1 N.G. de Brui jn , Some extensions of AUTOMATH: The AUT-Bfamily,
AUT44, 1974

[151 N.G. de Brui jn , Some a u x i l i a r y opera to r s i n AUT-n, AUT51, 1977

*) Items marked AUT.. . a r e r e p o r t s d i s t r i b u t e d by the AUTOMATH group,
Dept. of Math., Techn. Univ. Eindhoven.

[16] N.G. de Bruijn, Lambda calculus with namefree formulas involving
symbols that represent reference transforming mappings, Indag.
Math. 40 (l978), p. 348-356

[17 1 N.G. de Bruijn, AUT-QE without type-inclusion, AUT56, '1978

1181 N.G. de Bruijn, A note on weak diamond properties, AUT57, 1978

[19] N.G. de Bruijn, A namefree A-calculus with facilities for interna-
definitions of expressions and segments, AUT59, 1978

[20] N.G. de Brui jn, A survey of the project AUTOMATH, in: Combinatory
Logic, lambda calculus and formal systems (Curry Festschrift),
Hindley and Seldin (eds.) , Ac. Press 1980

[21] J.P. Bulnes-Rozas, GOAL: A goal oriented commend language for inter-
active proof construction, Ph. D. Thesis, Stanford RI. Lab.,
Memo AIM-328, Stanford 1979

[22] M. Coppa, M. Dezani-Ciancaglini and B. Venneri, Functional charac-
ters of solvable terms, Zeitschr. f. Math. Logik u. Grundl.
d. Math., to appear

[23] M. Coppo and M. Dezani-Ciancaglini, A new type assignment for
A-terms, Archiv. Math. Logik 19 (1978), p. 139-156

[24] A. Church, A formulation of the simple theory of types, J. of Symb.
Logic 5 (l94O), p. 56-68

1251 H.B. Curry and R. Feys, Combinatory logic I, North Holland, Amster-
dam 1958

[26] H.B. Curry, J.R. Hindley and J.P. Seldin, Combinatory logic 11,
North Holland, Amsterdam 1972

[27] D.T. van Daalen, A description of AUTOMATH and some aspects of its
language theory, in: Braffort volume (see [13]) reprinted in
[371

[28] G. Gentzen, Untersuchungen uber das logische Schliessen, ~ath.
Zeitschr. 39 (19351, p. 176-210, p. 405-431

[29] G. Gentzen, Die Widersprachsfreiheit der reine Zahlentheorie,
Math. Annalen 112 (1936): p. 493-565

[30] J.Y. Girard, Une extension de l9interpr6tation de G6del d l'analyse,
et son application 8 l'blimination des coupures dans l'analyse
et la thgorie des types, in: Second Scand. Logic Symp. (Oslo
Volume), Fenstad (ed.), North Holland, Amsterdam 1971

[31] J.Y. Girard, Interpretation functionnelle et glimination des cou-
pures de 11arithm6tique d'ordre superieure, Thsse, Paris 1972

[32] M. Gordon, R. Milner and C. Wadsworth, Edinburgh LCF, A mechanical
logic of computation, Edinburgh 1979, submitted to Springer
Lect. Notes in Comp. Sc.

1331 J.R. Hindley, Combinatory reduct ions and lambda reduct ions compared,
Ze i t schr . f . Math. Logik u. Grundl. d. Math. 23 (1979),
p. 169-180

[34] W.A. Howard, The formulae-as-types notion of cons t ruc t ion , unpubl.
1969, t o appear i n Curry F e s t s c h r i f t (see [20])

[35] H. J e r v e l l , A normal form i n f i r s t order a r i t h m e t i c , i n Oslo volume
(see [301)

[36] L.S. van Benthem J u t t i n g , A normal form i n a A-calculus with types ,
i n : M i t t . d. Gesellsch. f . Math. u. Datenverarb. Bonn, 17,
Tagung iib. form. Sprachen u. Programmiersprachen, Oberwolfach
1971

[37] L.S. van Benthem-Jutting, Checking Landau's "Grundlagen" i n t h e
AUTOMATH system, Ph. D . Thesis Eindhoven 1977, Math. Centre
T r a c t s , 83, Amsterdam 1979

[38] L.S. van Benthem-Jutting and R.M.A. Wieringa, Representa t ie van
e x p r e s s i e s i n h e t verificatieprogramma YERA 1979, I n t e r n a l
Report , Eindhoven 1980

[39] S.C. Kleene, In t roduc t ion t o Metamathematics, Van Nostrand, New
York 1952

[40] D. Leivant, Strong normalization f o r a r i thmet ic (v a r i a t i o n s on a
theme of P r a w i t z) , i n : Proof theory symposium Kiel 1974, Lect.
Notes i n Math, 500, p. 182-197, Springer 1975

[4 1] J. J. Levy , Reductions su res dans l e lambda-calcul, Th6se 3' Cycle,
P a r i s 1974

[42] J.J. Levy, An a l g e b r a i c i n t e r p r e t a t i o n of t h e ABK-calculus and a
l a b e l l e d A-calculus, i n A-calculus and computer sc ience theory
(Rome volume) , C. Bbhm (ed.) , Lect. Notes i n Comp. Sc., 37,
p. 147-165

[43] C.R. Mann, The connections between proof theory and category theory,
Ph. D . Thes i s , Oxford 1973

[44] P. Martin-Lbf, Hauptsatz f o r t h e theory of spec ies , i n : Oslo Volume
(see [3 0]) , p . 217-234

[45] P. Martin-Lbf, An i n t u i t i o n i s t i c theory of types , Unpubl. 1972

[46] P. Martin-Lbf, An i n t u i t i o n i s t i c theory of types , p r e d i c a t i v e p a r t ,
i n : Logic Col l . 73, Rose and Sheperdson (e d s .) , North Holland,
Amsterdam 1975

[47] P. Martin-Lbf, About models f o r i n t u i t i o n i s t i c type theory and t h e
not ion of d e f i n i t i o n a l equa l i ty , i n : Proz. of t h e t h i r d
Scand. Logic Symp., Karger (ed .) , North Holland, Amsterdam
1975

[48] G . Mitschke, A-Kalkiil, 6-Konversion und axiomatische Rekursions-
Theorie, Habilit. Schr., Darmstadt 1976

[49] R.P. Nederpelt, Lambda-Automath, AUT21, 1971

[SO] R.P. Nederpelt, Lambda-Automath 11, AUT22, 1971

[51] R.P. Nederpelt, Strong normalization for a typed lambda calculus
with lambda structured types, Ph. D. Thesis, Eindhoven 1973

[52] H. Osswald, Ein syntaktischer Beweis fiir die Zulassigkeit der
Schnittregel im Kalkiil von Schfitte fiir die intuitionistischen
Typenlogik, Manuscr. Math. 8 (1973), p. 243-249

[53] P. Penning, Automath bewijzen voor tautologie@n, Stageverslag,
Eindhoven 1977

[54] G. Plotkin, Lambda-definability in the full type hierarchy, in:
Curry Festschrift (see [20])

[55] W. Pohlers, Ein starkes Normalisationssatz fiir die intuitionisti-
schen Typen, Manuscr. Math. 8 (1973), p. 371-387

[56] G. Pottinger, Letter to Prawitz, April 18, 1977

[57] G. Pottinger, On analysing relevance constructively, Studia Logica
38 (19791, p. 171-185

1581 G. Pottinger, A type assignment to the strongly normalizable -
terms, in: Curry Festschrift (see [20])

[59] D. Prawitz, Natural Deduction, a proof theoretic study, Almquist
and Wiksell, Stockholm 1965

1601 D. Prawitz, Ideas and results in Proof Theory, in: Oslo Volume
(see [30]), p. 235-307

[61] L.E. Sanchis, Functionals defined by recursion, Notre Dame J. of
Formal logic 8 (1967), p. 161-174

[62] D. Scott, Constructive validity, in: Symp. on Automath. Demonstrat-
ion (see [8]), p. 237-275

[63] J.P. Seldin, Review of [lo], Journal of Symb. logic 40 (1975),
p. 470

1641 J.P. Seldin, A theory of generalized functionality I, Unpubl. 1976

[65] J. Staples, Church-Rosser theorems for Replacement Systems, in:
Algebra and Logic, Lect. Notes in Math. 450, p. 291-307,
Springer 1975

166 1 J. Staples, A lambda calculus with naive substitution, Unpubl.
Brisbane 1977

[67] S. Stenlund, Combinators, A-terms and proof theory, Reidel 1972

[681 W.W. Tait, intentional interpretation of functionals of finite
types, Journ. of Syrnb. Logic. 32 (1967), p. 198-212

[69] A.S. Troelstra et al., Metamathematical Investigation of Intuition-
istic Arithrnatic and Analysis, Lect. Notes in Math., Springer
1973

[70] R.C. de Vrijer, Big trees in a A-calculus with A-expressions as
types, in: Rome colume (see [42]), p. 202-221

1711 R.C. de Vrijer, A syntactic model for A-calculus with surjective
pairing, Ph. D. Thesis, Eindhoven, to appear

[72] C. Wadsworth, Semantics and pragmatics of the lambda calculus,
Ph. D. Thesis, Oxford 1972

[73] R.W. Weihrauch, A users manual for FOL, Stanford A.1.-lab. memo 235,
Stanford 1977

[74] R.M.A. Wieringa, Binaire optelling en vermenigvuldiging in AUT-QE,
Stageverslag, Eindhoven 1976

[75] I. Zandleven, A verifying program for AUTOMATH, Braffort volume .
(see [13]), AUT36, 1973

1761 J. Zucker, Cut-elimination and normalization, Annals of Math.
Logic 7 (l974), p. 1-112

[77] J. Zucker, Formalization of classical mathematics in AUTOMATH,
Actes du coll. intern. de logic, Guillaume (ed.), Clermont-
Ferrand 1975

[78] D.A. Turner, Another algorithm for bracket abstraction, Journ. of
Symb. logic 44 (1979), p. 267-270

1791 R.C. de Vrijer, "Stelling" to his [71]

3 08

SAMENVATT I NG

In het Automath - project zij n een aantal wiskundige taZen ontwikkeld
die geschikt zijn om grote stukken wiskunde 26 weer te geven dat een

computer de correctheid van de wiskundige redenering kan controleren.

Het programma dat deze controle verzorgt wordt verificator genoemd. De

belangrijkste Automath talen zijn AUT-68, AUT-QE en AUT-Pi.

De Automath talen zijn gebaseerd op systemen van gegeneralizeerde

getypeerde A-caZcuZus. De taaZtheorie houdt zich bezig met syntaktische

kwesties, betreffende de definitiegezijkheid, de reduetie-relatie en de

typerings-rezatie in deze systemen. Drie belangrijke eigenschappen

waarop de taaltheorie zich richt zijn: (sterke) normaZisatie, gesloten-

heid en Church-Rosser eigenschap. Deze eigenschappen zijn onder meer

van belang om de correcte werking van de verificator te kunnen aantonen.

Dit proefschrift kan worden opgevat als een voortzetting en een

aanvulling op taaltheoretisch werk van Nederpelt en de Vrijer. Hoofdstuk

I geeft een overzicht van het Automath project, gaat uitvoerig in op de

rol van de taaltheorie binnen het project, en wordt besloten met een

uitgebreide samenvatting van het proefschrift. Hoofdstuk I1 bevat de

nodige preliminaria. Hoofdstuk I11 behandelt de theorie van afkortingen.

In de hoofdstukken IV, V en VI worden achtereenvolgend de drie genoemde

belangrijke eigenschappen bewezen voor AUT-68, AUT-QE en nog enige

varianten. Hoofdstuk VII gaat in op de theorie van Nederpelt's Automath

systeem A. De drie belangrijke eigenschappen worden bewezen (dit beves-

tigt twee vermoedens uit Nederpelt's proefschrift), en tevens wordt de

vrijer's grote-boom stelling van een nieuw bewijs voorzien. Hoofdstuk

VIII bevat de theorie van AUT-Pi. Geslotenheid wordt bewezen voor het

volledige AUT-Pi, alsmede sterke normalisatie en Church-Rosser voor een

deelsysteem van AUT.Pi.

Sommige resultaten uit het proefschrift zijn niet alleen van toe-

passing op Automath maar ook van belang in de A-calculus, en, door de

formuzae-as-types interpretatie, voor bewijstheorie.

CURRICULUM V I T A E

De schrijver van dit proefschrift werd in 1949 in Bergeijk

geboren. Na het eindexamen gymnasium B aan het Lorentzlyceum te

Eindhoven, begon hij in 1966, op aanraden van Prof.Dr. J.J. Seidel,

aan de studie voor wiskundig ingenieur aan de Technische Hogeschool

Eindhoven. In juni 1972 studeerde hij met lof a£, bij Prof.Dr. N.G.

de Bruijn. Na zijn afstuderen was hij tot eind 1976 verbonden aan

het Project Wiskundige Taal AUTOMATH, als wetenschappelijk mede-

werker in dienst van de Nederlandse Organisatie voor Zuiver-Weten-

schappelijk Onderzoek (Z.W.O.), en onder leiding van Prof. de Bruijn.

Sinds maart 1977 is hij wetenschappelijk medewerker bij Prof.

Ir. W. Baarda, op de afdeling Geodesie van de Technische Hogeschool

Delft.

Adress of the author:

Department of Geodesy

Technological University

Thi j sseweg 1 1

Delft

