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I INTRODUCTION AND SUMMARY 

This thesis gives an account of the author's language theoretical 

studies on the Automath languages, during his work in the project 

Mathematical Language AUTOMATH (under supervision of Prof. De Bruijn) 

at the Eindhoven University of Technology. These studies can be con- 

sidered as a continuation and completion to previously published work 

of Nederpelt [5i 1 and De Vrijer [701.*) 
Actually, an introduction to the remaining chapters of the thesis 

is hardly necessary because they are formally self-contained and pro- 

vided with lengthy introductions themselves. However, we like to make 

some general remarks on the Automath project, hoping to clarify some 

points which have sometimes given rise to misunderstanding. Most views 

expressed are common in the Automath project, but some are personal 

views, not necessarily shared by other workers in the project. 

We start with preliminary remarks, followed by a survey of the 

Automath project. We discuss the Language theory and its role in the 

project. We give an informal introduction to the various Automath 

Languages and explain how mathematical reasoning can be represented. 

Finally we smarize the contents of this thesis. Occasionally we make 

a comparison with related logical systems and related enterprises else- 

where. For more information on the subjects of this chapter we refer to 

De Brui jn [13,20], Jutting [3 71, Zucker [ 77 1 and Van Daalen [27 I. 

1.1 Preliminary remarks 

1.1 'Reliability and formal rigour 

The Automath project originally arose (around 1966) from the idea 

that it was desirable to increase the dependability of pieces of mathe- 

matics by having them checked by a computer. To this end the mathematics 

involved was to be formalized in a mathematical Language allowing 

computer verification. 

First something about this part of the motivation. One might wonder 

whether greater dependability is desirable at all - and if so, in what 
parts of mathematics -, and whether formal rigour (as imposed by the 

*)  Numbers in brackets refer to items on the list of references. 



computer) c o n t r i b u t e s  a t  a l l  t o  dependabi l i ty .  C r i t i c s  sometimes argue 

t h a t  c o r r e c t n e s s  of a mathematical t e x t ,  o r  of a proof,  a f t e r  a l l  depends 

on human i n s i g h t  i n  t h e  s i t u a t i o n  and understanding of t h e  concepts in -  

volved. And, consequently, they sometimes suggest  t h a t  formal r igour  

can be opposed t o  r e l i a b i l i t y ,  because t h e  presence of too  many formal 

d e t a i l s  may s p o i l  t h e  understanding. 

There is ,  genera l ly ,  some p o i n t  i n  t h i s  c r i t i c i s m ,  but  a l l  t h e  same, 

many mathematicians sometimes produce f a u l t y  proofs  and, even, f a l s e  

theorems. Th is  j u s t  means t h a t  they have been cheated by t h e i r  i n t u i t i o n .  

Such mistakes cannot be s a i d  t o  be caused by  l ack  of r igour  b u t ,  r a t h e r ,  

would have been prevented by being more r igorous .  E.g. by formal iz ing 

t h e  s u b j e c t  mat ter  i n  a well-chosen formalism. I n  genera l ,  t h e  p o s s i b i l -  

i t y  of computer v e r i f i c a t i o n  p lays  a minor r o l e  here  and, a s  De Brui jn  

p u t s  it, t h e  computer i s  j u s t  t h e r e  t o  s e t  t h e  s tandards .  Ser ious  e r r o r s  

won't  survive  t h e  process  of fo rmal iza t ion  and w i l l  never be fed i n t o  

t h e  machine. However, a f t e r  having taken t h e  t roub le  t o  produce a 

" f u l l y  formal" proof with poss ib ly  l o t s  of t echn ica l  d e t a i l s  it i s  n i c e  

t o  have a p a t i e n t  computer a c t u a l l y  wai t ing t o  read it and r e l i s h  t h e  

d e t a i l s .  I n  p a r t i c u l a r ,  because on rereading,  t h e  d e t a i l s  indeed may 

s p o i l  one ' s  own understanding. 

Besides ( t h i s  i s  our second p o i n t  a g a i n s t  t h e  c r i t i c i s m ) ,  we th ink 

t h a t  t h e  l a t t e r  s i t u a t i o n  can be avoided by using a good formalism, 

which a l lows a formal izat ion f a i t h f u l  t o  t h e  informal ideas  one had i n  

mind ( s e e  a l s o  1.4)  . * 
I t  has ,  of course ,  never been intended t h a t  computer v e r i f i c a t i o n  

might replace human understanding,  and t h a t  formal izat ion might cover 

a l l  of  mathematics. We j u s t  note  t h a t  formal izat ion sometimes can 

support  our understanding and guide our i n t u i t i o n .  

1 . 2  The "data bank" aspec t  

According t o  t h e  above c r i t i c i s m  one never can r e l y  on r e s u l t s  one 

does n o t  f u l l y  understand. Such an orthodox p o i n t  of view we think un- 

satisfactory; one sometimes wants t o  use what might be c a l l e d  "more o r  

l e s s  b lack boxes", e.g. one sometimes wants t o  be l i eve  a theorem without 

knowing, o r  without q u i t e  understanding,  i t s  proof (e.9.- one does not  

understand t h e  proof any more). 

* )  Numbers n o t  i n  b racke t s  r e f e r  t o  s e c t i o n s  i n  the  p resen t  volume; i f  
n o t  s t a r t i n g  with a Roman numeral they i n d i c a t e  sec t ions  i n s i d e  the 
c u r r e n t  chapter .  



Here we touch a certain "data bank" aspect (as opposed to the 

checking aspect) of such a formalization project: the codification and 

storing of a large amount of dependable and unambigous mathematics. 

1.3 The experimental character of the project 

Thus far about the original motivation. The present author likes 

to consider the Automath project as an experiment in order to answer 

the question: can we develop formalisms (mathematical languages), in 

which mathematical texts actuazzy can be formulated in such a way that 

mechanical verification (by a computer) is ~ctuazzy possible. Apart 

from the emphasis on computer verification there is another difference 

as compared with earlier formalization projects: it is required that 

both writing (i.e. translating mathematics into Automath) and checking 

are practically feasible (and it would be nice if it were readabZe 

too), and that the formalism is kind of Unive~saZ, i.e. suitable for 

large parts of mathematics. 

1.4 The correspondence with ordinary reasoning 

In Automath it is attempted to achieve the feasibility of the 

writing stage by keeping as close as possible to ordinary informal 

mathematical reasoning, and to existing good mathematical habits. This 

then was to result in the possibility of a fully formal proof not 

blurring the understanding - compare a well-structured computer pro- 

gram -. 
Keeping close to ordinary reasoning also serves the feasibility 

of the checking process: in principle we do not expect more from the 

machine than we would expect from a human checker - though of course 
we expect the machine to be much faster and more accurate than a 

human -. The feasibility of the checking requires that aZZ of the rea- 
soning is formalized in the language, whereas usual logical systems 

generally formalize only part of it and leave the rest to informal meta- 

language. In particular we mention the handling of proofs, the handling 

of vmiabZes and the handling of abbreviations (i.e. the introduction 

of new defined constants, see 4.3) . 



1.5 The didactical aspect 

A side effect of the analysis of mathematical reasoning needed for 

the development of a formalism meeting the above specifications might 

be a better insight into ways of presenting and teaching mathematics. 

This, didact ica l ,  aspect of Automath (beside the aforementioned check- 

ing and storing aspects) proves indeed to be important: Nederpelt and 

De Bruijn have used Automath-like systems to explain first-year mathe- 

matical students and mathematics teachers-to-be some principles of 

mathematical discipline. Research in this direction now falls under the 

WOT project ("Wiskundige Omgangs Taal", this is Dutch for: mathematical 

vernacular), which is going on in Eindhoven. One tries to codify ele- 

ments of natural mathematical reasoning into a rather pr-ecise language 

which is inspired by Automath but does not particularly aim at computer 

verification. 

1.6 The possible foundational contribution 

From the modest statement of the aims of Automath, above, it will 

be clear that Automath has no strong foundational claim - in the usual 
logical sense - or philosophical position to defend like some of its 
forerunners. ~ u t  if one wants to hear such a claim it might be the 

following one: that it is possible to present large parts of ordinary 

mathematics in Automath in a natural way. In particular that large 

parts of even c lass ica l  reasoning fit quite well in the "minimaz logic" 

of Automath (see 5.10) and that large parts of classical mathematics 

can be founded on the typed A-caZcuZus frame work of Automath (see 5.3) 

rather than on axiomatic set theory. (In fact this claim is a sine qua 

non to the Automath project.) 

Besides, the original, simple wish to increase the reliability of 

mathematics can, from a practical point of view, also be considered as 

a foundational contribution. 

1.7 The nature of Automath 

A more ambitious, less carefull phrasing of the aim of Automath, 

viz. the development of a language in which all mathematics can be 



expressed so meticulously t h a t  syntacticaZ correctness would e n t a i l  

mathematical correctness,  has sometimes given r i s e  t o  confusion. 

Logicians then argued t h a t  such an enterprise  was doomed t o  f a i l u r e ,  

f i r s t l y ,  because it would contradict  the incomp'leteness theorems and, 

secondly, because it would contradict  the undecidabiZity: the computer 

cer ta in ly  would not be ab le  t o  check for  correctness ( t o  decide, a s  one 

says) any subs tan t ia l  p a r t  of mathematics. 

We w i l l  explain t h a t  such cr i t ic i sm is  hardly t o  the point .  The 

basic  system of Automath ju s t  covers a t iny  p a r t  of mathematics, so t o  

say minimal predicate  Logic. The Automath user himself has t o  add t o  

t h i s  basic  system a l l  the axioms and constants necessary fo r  h i s  spec i f ic  

area of i n t e r e s t ,  and he has t o  supply more axioms and constants when- 

ever he wants t o  increase the expressive power of h i s  language or the 

s t rength of h i s  theory. Further,  the computer is  cer ta in ly  not supposed 

t o  decide the t r u t h  of the  axioms, it i s  even not supposed t o  decide 

derivabi Z i ty  from the axioms, but j u s t  v e r i f i e s  der ivat ions (i . e . 
proofs) . 

1.8 Some proof checking systems 

In the Automath pro jec t  the computer i s  not expected t o  check (e.g. 

t o  prove) theorems but,  r a the r ,  i s  expected t o  check whether something 

i s  a proof and whether it proves a cer ta in  theorem. Thus, the project  

can be compared with two other major proof-checking projects :  the FOL 

( F i r s t  Order Logic) pro jec t  of Weyhrauch C.S.  i n  Stanford [ 2 1 ,  7 3 1 ,  and 

the LCF (Logic Of ComputabZe Functions) of Milner c .s .  i n  Edinburgh 

[ 3 2 1 .  

FOL i s  based on c l a s s i ca l  f i r s t  order logic ,  i n  na tura l  deduction 

s ty l e ,  and i s  intended t o  be universal l i ke  Automath. However, according 

t o  Bulnes [21] ,  the system ( s t i l l )  has some d i f f i c u l t i e s  i n  asping 

with s o r t s  (or  types) which seems t o  make the system l e s s  appropriate 

fo r  p a r t s  of mathematics not based on c l a s s i ca l  s e t  theory. 

The kernel  of LCF i s  a system cal led PPX (poZymorphic predicate 

A-cakuZus) a system of typed A-calculus plus  fixed poin t  induction 

plus logic ,  a l so  i n  na tura l  deduction s ty l e ,  based on S c o t t ' s  work i n  

the theory of computations. I t  i s  especially intended fo r  problems con- 

cerning algorithms and programming languages. 



In p r inc ip l e ,  these two systems are  not more in t e rac t ive  than 

Automath, s ince i n  Automath a s  well l i n e  a f t e r  l i n e  can be fed i n t o  the  

machine, thus incrementally constructing pieces of cor rec t  mathematics. 

However, recent ly  both systems have been enriched by a strong heu r i s t i c  

mechanism allowing socalled top-dom proof ( i . e .  working from the r e s u l t s  

backwards t o  the assumptions). In f a c t ,  by these mechanics, ca l led  

GOAL ( f o r  FOL) and ML ( fo r  LCF) respect ively,  a kind of clever mixture 

between a proof-checker and a theorem-prover has been created ( i n  f a c t  

the "top-down t a c t i c a l s "  a r e  j u s t  a p a r t  of ML, which a l so  contains 

some other  useful  mechanisms). 

The bas ic  elements of Automath j u s t  include what may be cal led 

"construct ive reasoning", a s  borrowed from ordinary, informal, sound 

mathematical p rac t ice .  Of these we mention the " l inear"  natural  deduct- 

ion  system (see 4.5 ,p.23)used i n  the construction of both proof s and 

objec ts ,  the f a c i l i t y  t o  abbreviate expressions by a new name (with para- 

meters) a t  any desired moment (see 4 . 3 ,  and the introduction t o  

Ch. III) ,  and the suppression mechanism f o r  "fixed" parameters (see,  

e .g . ,  [27 , sec. 2.151). A consequence of the  log ica l  weakness of the  

basic  system i s  the required universal i ty:  the Automath user i s  even 

f r e e  i n  the use of h i s  ZogicaZ axioms. 

1.9 Proof checking vs. theorem proving 

When constructing a proof-checking or  theorem-proving system one 

has t o  decide how t o  devide the t o t a l  amount of work between the human 

wr i te r  and the machine. In general it i s  assumed t h a t  eas ie r  writing 

makes more d i f f i c u l t  checking and vice-versa. A d i s t i nc t ive  pr inc ip le  

of Automath languages always has been t h a t  the computer actuaZZy must 

be ab le  to  cope with i t s  task.  So, a t  l e a s t ,  the system the machine i s  

' supposed t o  decide must be formally decidable. In f a c t  we want feasibZe 

decidabi l i ty  (c f .  2.10). On the other hand it i s  required t h a t  the 

w r i t e r ' s  burden i s  a s  l i g h t  a s  possible.  

A nice poin t  i s  t h a t ,  i n  cont ras t  with the above s ta ted  general 

view, ea s i e r  wri t ing sometimes makes checking eas ie r  too. Viz. i f  the 

system allows the  wr i te r  t o  omit p a r t s  of the argumentation these p a r t s ,  

of course, do not  need t o  be checked: But, on the other  hand, a cer ta in  

redundancy w i l l  help the machine t o  de t ec t  the ,  almost inevi table ,  minor 

e r r o r s  a t  an ea r ly  stage. 



I n  view of f e a s i b l e  d e c i d a b i l i t y  general  theorem proving i s  o u t  of 

t h e  quest ion.  But it i s  i n  t h e  s p i r i t  of t h e  Automath p r o j e c t  t o  success- 

i v e l y  extend an e x i s t i n g ,  working, v e r i f i c a t i o n  system with new t o o l s  

t h a t  handle a d d i t i o n a l ,  f e a s i b l e  t a sks .  I n  such a way one might t u r n  

o n e ' s  proof-checking system i n t o  a p a r t i a l  truth-checking ( i . e .  theorem 

proving) system, notably i n  well-defined r e s t r i c t e d  domains. Put d i f f e r -  

e n t l y ,  t h e  machine might be allowed sometimes t o  calcuzate f a c t s ,  r a t h e r  

than proving them. Although, i f  one would allow t h e  use r  of t h e  system 

t o  program such a t tached mechanisms himself ,  i t  would be p re fe rab le ,  

i f  a l s o  a proof would be generated and checked ( c f .  2 . 3 ) .  

I n  f a c t ,  t h e  Automath proof-checking system has always contained 

such a p a r t i a l  truth-checker,  v iz .  a dec i s ion  procedure f o r  t h e  formulae 

( d z f i n i  tiona 2 equations and typing formulae) of t h e  under ly ing typed 

A-calculus ( s e e  4.1 ) . 

1.10 Some c h a r a c t e r i s t i c  f e a t u r e s  of Automath 

We j u s t  mention here  (bu t  w i l l  come back t o  it) t h a t  t h e  p a r a l l e l  

n a t u r a l  deduction treatment of o b j e c t s  and proofs ,  which we think q u i t e  

n a t u r a l ,  and c h a r a c t e r i s t i c  f o r  Automath, g ives  r i s e  t o  a generalized 

typed X-caZcuZus. By "generalized" we mean t h a t  t h e  types a r e  no t  given 

beforehand, bu t  a r e  r a t h e r  const ructed along with t h e  terms and can 

have complicated form ( c f .  4 . 1 ) .  I n  I V . l  t h e r e  i s  given a f u r t h e r  

c l a s s i f i c a t i o n  of such systems, i n t o  pure, extended and arithmetical 

systems. The pure systems have t h e  ordinary A-calculus operat ions  only,  

the  extended ones have a d d i t i o n a l  l o g i c a l  operat ions ,  and t h e  a r i t h -  

met ica l  systems have a r i thmet ic  b u i l t  i n  i n  t h e  form of a recurs ion 

operat ion.  The pure and extended systems a r e  the  sub jec t  of t h i s  t h e s i s .  

The Automath languages AUT-68 and AUT-QE (4.5-4.7) belong t o  t h e  

pure ,  t h e  language AIIT-Pi ( i n  Ch. V I I I )  belongs t o  t h e  extended systems 

and t h e r e  a r e  no arithmetical Automath languages. This i s  a fundamental 

choice:  the  add i t ion  of a b u i l t - i n  recursor  might g ive  r i s e  t o  d e f i n i t -  

i o n a l  equations which a r e  n o t  f e a s i b l y  decidable  and, bes ides ,  we d o n ' t  

th ink  t h a t  t h e  presence of a recurs ion would make t h e  representa t ion 

of ordinary mathematical reasoning any e a s i e r .  Consequently, the  n a t u r a l  

number s t r u c t u r e  i s  n o t  b u i l t  i n ,  bu t  has t o  be introduced axiomatically,  

j u s t  l i k e  any o ther  mathematical s t r u c t u r e .  Needless t o  say t h a t  t h e  



Church ( o r ,  any o t h e r )  r epresen ta t ion  of numbers i n  A-calculus does n o t  

come i n .  

1.11 Propos i t ions  a s  types  

The p a r a l l e l i s m  between o b j e c t s  and proofs ,  types  and p ropos i t ions ,  

d e f i n i t i o n a l  e q u a l i t y  and proof t h e o r e t i c  conversion, f o r  shor t :  t h e  

propositions-as-types not ion of cons t ruc t ion ,  was f i r s t  h in ted  a t  by 

Curry and Feys 1251. Later  on it was developed f u r t h e r  by Howard [34] 

and employed by him and o ther  log ic ians  ( ~ c o t t [ 6 2 ] ,  Prawitz [60], Martin- 

LBf [45], Girard  1311) i n  founding a theory of cons t ruc t ions ,  i n  proof 

theory ,  and i n  cons t ruc t ing  an i n t u i t i o n i s t i c  theory of types.  In  t h e  

meantime, it was independently discovered by De Brui jn  (he a l s o  insp i red  

S c o t t  [62]) and used i n  t h e  Automath p r o j e c t .  

1.2 A survey of t h e  Automath p ro jec t  

2.1 The AUT-QE s t a g e  

The experimental ,  p r a c t i c a l  charac te r  of t h e  p r o j e c t  c l e a r l y  re -  

qu i red :  (i) t h e  development of appropr ia te  languages, (ii) t h e  const ruct -  

ion  of programs f o r  v e r i f y i n g  these  languages, (iii) t h e  a c t u a l  wr i t ing  

and checking of l a r g e  p ieces  of mathematics. 

There e x i s t s  n o t  j u s t  one Automath language, bu t  a whole family of 

Automath languages. The f i r s t  language (around 1968) which had t h e  

c h a r a c t e r i s t i c  typed A-calculus s t r u c t u r e  was AUT-68. Before 1968 t h e r e  

were j u s t  some sub-languages: LSP (see  C h .  111) which cod i f i ed  t h e  

abbrev ia t ion  device ,  PAL which a l ready  had type s t r u c t u r e  b u t  s t i l l  

lacked A-calculus ( s e e  [ i l l ) .  Experience wi th  AUT-68 l e d  almost imme- 

d i a t e l y  t o  t h e  cons t ruc t ion  of AUT-QE, which proved t o  be q u i t e  s u i t a b l e  

f o r  t h e  then adopted proposit ions-as-types s t y l e  of wr i t ing  mathematics. 

So t h e  f i r s t  language around which t h e  p r o j e c t  was centered was 

AUT-QE. De B r u i j n ' s  sketch of a ve r i fy ing  program was e laborated and 

implemented by Zandleven [75]. J u t t i n g  t r a n s l a t e d  Landau's "Grundlagen 

d e r  Analysis",  and h i s  t r a n s l a t i o n  was completely checked by t h e  v e r i -  

f y ing program. This e n t e r p r i s e  has been ex tens ive ly  documented i n  [ 37 1. 
The Chapters V ,  V I  of t h i s  t h e s i s  a r e  mainly devoted t o  AUT-QE. 



2.2 The AUT-Pi stage 

I t  was always foreseen t h a t ,  on the bas i s  of the  experience with 

AUT-QE, higher-level, easier-to-write,  so ca l led  super-languages were 

t o  be developed, possibly fo r  "special purposes", i . e .  spec i f ic  areas 

of mathematics. The second language playing a cen t r a l  ro l e  i n  the pro jec t  

was AUT-Pi ,  developed by Zucker. 

This is  indeed a kind of super-language extending AUT-QE i n  two 

respects.  F i r s t l y ,  the mathematical basis  of AUT-Pi i s  somewhat stronger 

(it is  an extended system, i . e .  there i s  s l i g h t l y  more log ic  b u i l t  i n ) .  

This answered, e.g. ,  i n  combination with the pr inc ip le  of irrezevance 

of proofs (see 5.2, and [ 2 0 ]  ) Ju t t i ng t  s need f o r  ea s i e r  embedding 

and "exbedding" f a c i l i t i e s  (see [37] ) .  Secondly it contains some handy 

"syntac t ica l  fea tures"  which make l i f e  for  the Automath user somewhat 

more comfortable. We mention the ~ y t l t - f a c i l i t y  f o r  syntac t ica l  operat- 

ions on expressions (which, i . a . ,  allows t o  omit redundant parameters 

(but  see 1 . 3 ) ) ,  and the presence of str ings and telescopes. More about 

t h i s  can be found i n  [37, 771. 

However, the  use of these syntac t ica l  mechanisms i s  not res tr ic ted  

t o  AUT-Pi, they can a s  well be added t o  AUT-68 and AUT-QE. This seems 

t o  be pa r t i cu l a r ly  worthwile, because the strings-and-telescopes i n  

some sense duplicate the pairs-and-products of AUT-Pi (see VIII.1.5). 

Zucker ( a s s i s t ed  by A .  Kornaat) employed the new language fo r  a 

modern, thoroughly c l a s s i ca l  ( i n  the sense of " c l a s s i ca l  logic") 

t r e a t i s e  on the pr inc ip les  of r e a l  analysis ,  thus contributing t o  the 

foundational claim mentioned above. A survey of the AUT-Pi  p a r t  of the 

pro jec t  i s  t o  be found i n  1771. 

A new verifying program was designed by Zandleven, developed by 

him and Kornaat, and i s  now being finished by Ju t t ing .  Apart from the 

f a c t  t h a t  t h i s  new verifying program accepts AUT-Pi a s  well a s  the older 

languages, it a l so  contains improved f a c i l i t i e s  fo r  handling bound 

~ a r i a b l e s  (see 3.4) and fo r  storage manipuzation. The l a t t e r  proved 

necessary because with the f i r s t  ve r i f i ca to r ,  which l e f t  the handling 

of the extensive storage requirements t o  the computer system, working 

i n  in te rac t ive  mode turned out t o  be cumbersome. 

Apart from the  two major Automath t e x t s  produced by Ju t t i ng ,  Zucker 

and Kornaat there have been formalized many smaller pieces of mathematics 



into Automath by a variety of authors, mostly students. In Bulnes 

it has been suggested that the size and scope of the proof checking 

projects performed in FOL were comparable with size and seope of e.g. 

Jutting's opus. The present author disagrees: The amount of material 

handled in FOL is in no way comparable to what has been done in Auto- 

math. 

2.3 The multi-level approach 

The words "higher-level languages" suggest a separation between an 

object language, and a formal super-language which provides easier 

writing. Texts in the latter language may then be mechanically trans- 

lated into object-language, which in turn is to be verified by the 

machine. In AUT-Pi, contrarily, there is, in principle, no such separat- 

ion of levels: all the additional features are incorporated into the 

language. We write "in principle", because the ~ynt-facility is indeed 

somewhat related to this multi-level approach. 

There have also been certain proposals actually directed towards this 

multi-level framework. E.g. Wieringa (now working on the application of 

Automath to programming language theory), has once constructed a system 

that answers simple arithmetical questions (n * m = ? )  and provides the 

resulting equation with a proof in AUT-QE. This AUT-QE proof turns out 

to be correct, of course! Similarly, there has been constructed a mecha- 

nism that decides propositional formulas and provides the true ones 

with an AUT-QE proof [53,74].  Compare also the discussion in 1.8 about 

partial theorem-proving mechanisms. 

In FOL and LCF partial theoremproversand multi-level approach are 

present too. We mention the FOL procedure MONADIC, which decides formulas 

of monadic predicate calculus, and the ATTACH facility, allowing the 

machine to establish combinatorial facts by actual calculation. As for 

LCF, the meta-language ML is presented as a kind of programming language 

for manipulating the objects of the PPh system. 

2.4 The theoretical aspects 

Of course the development task in the project, viz. of developing 

languages and verifying programs, and of writing mathematics in Automath, 



also gave rise to theoretical studies. Here we distinguish: 

( 1) language theoretical studies, 

(2) studies concerning the way mathematics is formalized in Auto- 

math. 

This thesis deals with the language theory ( I ) ,  which we define as 

the theory of the underlying typed A-calculus of the Automath languages. 

Object of study is the syntactical structure consisting of the Automath 

expressions, provided with the relations reduction, definitional equality 

and the typing relation (or typing function) . See 
As regards (2), we mention some typical logical questions: what do 

we gain and loose by such formalizations, and: what is the relation 

between the Automath formalization and, say, some standard formulation 

of a piece of mathematics. Such questions are interesting, mostly be- 

cause of the unconventional way in which mathematics is formulated in 

Automath. In particular, the fact that the proofs explicitly enter the 

Automath formalization is important. E.g. it allows detailed analysis 

of proofs, and of reasoning, and it gives rise to, as we say, generalized 

logic (see 5.10,[201 or [771).  

Then the studies (2) can, i.a., indicate what Automath language is 

suitable for what kind of mathematics. Roughly speaking, we might say 

that (2) concerns sernrmtical questions, in contrast with the basically 

syntactic questions of the language theory, treated below. 

2.5 What is language theory? 

The results of the language theory are important for the construct- 

ion of the verifying program and for proving its correctness. Further 

they serve as a foundation for the study of mathematics in Automath, 

i.e. the studies (2) mentioned above. E.g. the consistency of the under- 

lying typed A-calculus (as provided by Church-Rosser theorems and the 

like, see below) is clearly a prerequisite for the consistency of mathe- 

matics formalized in Automath. 

Nevertheless, the language theory concerns the expressions and 

formulas as mere syntactica2 constructs, thus abstracting from possible 

mathematical content. Hence, the language theory also abstracts from 

particular sets of constants and axioms (socalled books) belonging to 

a particular piece of mathematics. 



We take  t h e  p o i n t  of view t h a t  the  Zanguages of t h e  Automath family 

a r e  charac te r ized  by t h e i r  s e t  of correct ( i . e .  well-formed according 

t o  the  r u l e s  and r e s t r i c t i o n s  of t h e  var ious  languages) books, f o m z a s  

and express ions ,  r a t h e r  than by a c e r t a i n  s p e c i f i c  d e f i n i t i o n ,  i . e .  a 

s p e c i f i c  set of r u l e s .  Two d e f i n i t i o n s  a r e  s a i d  t o  be equivalent  i f  they 

def ine  t h e  same-language. One language i s  s a i d  t o  be an extension of 

another language i f  i ts  s e t  of c o r r e c t  express ions ,  books e t c .  con ta ins  

the  s e t  of c o r r e c t  express ions ,  books e t c .  of t h e  o ther  one. 

2 . 6  The aims of t h e  language theory 

Now we mention some t y p i c a l  t h e o r e t i c a l  aims. On the  one hand, t h e  

design and comparison of language def in i t ions ,  i n  p a r t i c u l a r  t h e  compa- 

r i s o n  of soca l l ed  E-definitions, which generate  the  language i n  quest ion 

by a s e t  of production r u l e s ,  with t h e  a lgor i thmic  d e f i n i t i o n s  which 

desc r ibe  t h e  language by g iv ing  i t s  verifying program. 

O n  the  o ther  hand t h e r e  i s  t h e  comparison of t h e  d i s t i n c t  languages, 

leading t o  conserva t iv i ty  and unessent ia l -  o r  d e f i n i t i o n a l  extension 

r e s u l t s  ( s e e  V .  3.3 f o r  t h e  terminology) . 
Las t  bu t  n o t  l e a s t  we mention t h e  decidabiz i ty  of t h e  Automath 

languages, which i s ,  i n  p r i n ~ i p l e ~ e s s e n t i a l  for t h e  aim of t h e  p r o j e c t ,  

mechanical proof-checking. The l a t t e r  goa l  ( t o  prove t h e  d e c i d a b i l i t y )  

c o n s i s t s  o f :  (1) i n d i c a t i n g  a dec i s ion  procedure, (2) proving i t s  equi- 

valence wi th  a given language d e f i n i t i o n  ( these  p a r t s  can be skipped i f  

t h e  language i n  ques t ion  i s  given by a d e f i n i t i o n  of t h e  a lgor i thmic  

t y p e ) ,  (3 )  proving t h e  terminat ion of t h e  ind ica ted  procedure. 

2.7 Three d e s i r a b l e  p r o p e r t i e s  

The main t o o l  of t h e  language theory is t h e  d e t a i l e d  study of t h e  

soca l l ed  reduc t ion  r e l a t i o n s  involved. Roughly speaking, reduct ion of 

expressions amounts t o  s t e p  by s t e p  evaluat ing,  s t e p  by s t e p  transforming 

t h e  express ion ( c f .  4 .3 ) ,  u n t i l  poss ib ly  an i r r e d u c i b l e  ( o r :  normal) 

express ion is  reached. DefinitionuZ equa l i ty  i s  t h e  equivalence r e l a t i o n  

generated by reduct ion ( t h e  p r e c i s e  d e f i n i t i o n s  a r e  i n  11.3-4). 

Now t h r e e  important d e s i r a b l e  p r o p e r t i e s  of t h e  systems, i n  con- 

nect ion with reduct ion and d e f i n i t i o n a l  e q u a l i t y ,  a r e :  (1) normalization 



and strong normalization, (2) the cz0SUre property, ( 3 )  the Church- 

Rosser property. 

Normalization states that all the correct expressions indeed reduce 

into a normal expression, i.e. there is a reduction sequence, a sequence 

of expressions produced by successive evaluation steps (reduction 

steps), ending in an irreducible expression. Strong normaZization says 

that all the reduction sequences of correct expressions terminate. The 

cZosure property (this term is due to Nederpelt) says that correct ex- 

pressions remain correct under reduction. Finally the Church-Rosser 

theorem (a corollary of the Church-Rosser property) states that two de- 

finitionally equal expressions have a common reduct, i.e. an expression 

to which they both reduce. For precise definitions see 11.5. 

2.8 Formal vs. feasible decidability 

A typical application of Church-Rosser theorem and normalization 

is the decidability of the definitional equality on the set of correct 

expressions. First, by the Church-Rosser theorem we have socalled 

uniqueness of normal forms: An expression has at most one normal reduct. 

So by combining this with normalization we can define the normaz form 

of an expression. Then, thanks to these properties, two expressions are 

definitionally equal iff they have the same normal form. These can be 

effectively computed, thus yielding decidability (of definitional 

equality, from which the decidability of the typing relation follows). 

However, computing normal forms is not a very practical way of de- 

ciding definitional equality, because normal forms can be very long and 

complicated expressions, and the reduction sequences leading to them 

often require many reduction steps. A more practical decision procedure 

rather relies on strong normalization. Namely, when confronted with two 

expressions A and B we can try to successively apply well-chosen re- 

duction steps on either A or B until we possibly arrive in a common reduct 

(thus establishing definitional equality) or we arrive in reducts 

A'  (of A) and B' (of B) which can be recognized not to be definitionally 

equal. Strong normalization warrants that this process anyhow terminates, 

no matter what reduction strategy has been chosen. Although, in the 

worst case it might end in normal forms A' and B', in particular this 

might happen if A and B are not definitionally equal. 



Since reducing to normal forms is simply not acceptable in feasible 

verification procedures, the importance of the formal decidability result 

and of the c0mpZetenes.s of the indicated more practical decision proce- 

dure must not be overemphasized (as observed by De Vrijer in [79]) - 
though these facts are, of course, important for a good understanding 

of the procedure -. In practice, in the Automath project, the action of 
the verifier can be explicitly bounded by giving a suitable upper limit 

to the amount of work (e.g. number of steps) it is allowed to perform 

when trying to establish a definitional equation. If, within this bound 

no common reduct is reached the equality of the two expressions is pro- 

visionally refused and the verifier will ask for further information. 

This, we think, is in full accordance with the fact that, in principle, 

the verifier is not expected to do more than a human checker. For more 

comment on actual verification see 111.6, V.4.4 and VIII.6. 

Strong normalization has, apart from this, more or less practical 

application, some theoretically useful consequences. E.g. it simplifies 

the Church-Rosser proof in any case, and it seems indispensable for the 

case where surjective pairing is present. Besides, certain proofs of 

closure (for Nederpelt's A )  depend on strong normalization (in fact on 

an even stronger termination property, the big tree theorem). 

Cf. VII.1.2, VII.3, VII.5. 

2.9 The consequences of closure 

As an application of closure it is sometimes mentioned that it 

saves time for the verifier. Namely that the verifier does not need to 

check for correctness again and again when reducing an expression. 

More specific, the combination of closure and Church-Rosser is 

important in the verification procedure. First, the Church-Rosser 

theorem says that definitional equality (via any sequence of correct 

expressions) can be replaced by definitional equality established via 

a common reduct. Secondly the closure property states that the latter 

equality passes through correct expressions only. 

Besides, closure is connected with many other interesting properties, 

which are in fact characteristic for the Automath languages, like pre- 

servation of types (under reduction ; this property is elsewhere some- 

times called cZosw'e of the types under reduction), uniqueness of types 



(this means that proper inclusion of types is impossible), uniqueness 

of domains, and soundness of (definitional) equality with respect to 

expression formation and typing relation. See 4.1, 5.4 and V.1.3. 

Further, closure is necessary in the Bn-Church-Rosser proofs 

(see VI), for showing the equivalence of various language definitions, 

and for showing the connections between the various languages. 

2.10 The "unstability" of the difficulties of language theory 

When proving the nice properties connected with closure one often 

uses induction on the definition of correctness (for terminology about 

induction see 11.0). This means that the choice of definition, i.e. the 

order in which the expressions are generated, can be important. 

In fact, the present author thinks it surprising how important the 

choice of definition can be in this respect. Example: A proof of closure 

directly from the algorithmic definition turns out to be rather involved 

(see VII .3.3), whereas De Vrijer [701 formulated his system XA-9, 

(essentially AUT-QE+, see 4.9) in such a way that closure was straight- 

forward. (On the other hand, De Vrijer had to prove his big tree theorem 

in order to get decidability, whereas decidability for the algorithmic 

system just follows from normalization). 

Similarly, there is much difference between closely related 

languages, as regards the difficulties they pose in proving their nice 

properties: Seemingly harmless modifications of the languages - hardly 
increasing their expressive power - can make some parts of their 

language theory considerably more difficult. We mention the transition 

from AUT-68 to AUT-QE, from AUT-QE to AUT-QE+, or the extension from 

AUT-QE+ (even without type-inclusion) to Nederpelt's system h .  See sec. 

4 for the characteristics of these Languages. And there is the addition 

of the "extensionaZ" reductions n ,  o and E (11.3) which essentially 

complicate the Church-Rosser proof (E even spoils the property) without 

contributing much to the expressive power (see e.g.[37, p. 4 2 3 ) .  By the 

way, the phenomenon that hardly impressive modifications can give rise 

to considerable extra difficulties is itself the raison d'gtre of a 

large part of the Automath language theory: Some properties (closure, 

Bq-Church-Rosser) are interesting properties in Automath, but in ordinary 

typed A-calculus just trivialities, though the Automath languages can 

be considered as mere generalizations of the latter system! 



Returning to the Automath languages: generally, we have chosen the 

strategy of first proving the nice properties for a - in this respect - 
simple system, and then trying to extend these results to more compli- 

cated languages. See V. 3, VII. 6. 

1.3 Something on bound variables 

3.1 In this thesis we consider expressions modulo a-conversion (re- 

naming of bound variables), i.e. our relation of syntacticaZ identity 5 

actually stands for a-convertibility (11.2.2). So, in the sequel, we 

leave the complications concerning the handling of bound variables out 

of the discussion. This can be accounted for, e.g., by referring to 

Curry's classical exposition on substitution [25], to Nederpelt's notion 

of distinctly bound expressions [51], or via the correspondence with 

one of the proposals to eliminate the names of bound variables alto- 

gether (De Bruijn [ 101, Staples [661) . 

3.2 Both these proposals for nameless dummies reflect the idea that a 

bound variable occurrence is just an open position in an expression, 

which has to be uniquely linkable to its binding A. De Bruijn performs 

this unique linking by replacing such an open position with a positive 

number, the reference depth, viz. the distance to its binding A. 1.e. 

the number of A's one encounters scanning the expression from within 

until one arives at the binding A (the latter included). E.g. the bound 

occurrence x in Axy0y(yx) has depth 2, the two bound y's have depth 1. 

Of course the binding variables going with a A can be skipped in this 

notation. Staples, on the other hand, replaces all such open positions 

with one and the same standard symbol (one might as well leave them 

open) and provides the linking information by attaching a list of posit- 

ions to every A. These positions are coded in the form of binary strings, 

with 0 standing for left part and 1 for right part of the expression. 

E.g. the position x in Ay*y(yx) is coded 111, and the y 's in y(yx) have 

codes 0,10 respectively. 

In other words, in De Bruijn's notation one counts backwards from 

a bound position to its binding A ,  in Staples' notation one counts for- 

wards from a binding A to the positions it binds. Example: the name- 



car ry ing  expression Axy-y ( y d  becomes A ( A  ( 1  (12) ) ) and X (111) ( A  (0, lO) (x(xz) ) ) 

r e s p e c t i v e l y ,  where we have taken X f o r  S t a p l e s '  s tandard symbol. 

3.3 De Brui jn  admits t h a t  h i s  system i s  no t  p a r t i c u l a r l y  s u i t a b l e  f o r  

(i) easy  reading and wr i t ing ,  b u t  claims it t o  be good f o r  both (ii) 

metal ingual  d i scuss ion  and (iii) mechanical manipulation - what is  was 

invented f o r ,  i n  t h e  context  of t h e  Automath p r o j e c t  -. I n  f a c t ,  De 

B r u i j n ' s  system i s  j u s t  the symbolic r e p r e s e n t a t i o n  of the  most s t r a i g h t -  

forward computer implementation of A-expressions. 

S t a p l e s  t h i n k s  h i s  system is b e t t e r  than De B r u i j n ' s  f o r  purposes 

(i) and (ii) and does not  know about (iii). The p r e s e n t  author th inks  

t h e r e  i s  no t  much d i f f e r e n c e  between t h e  two systems a s  regards  (i) 

and (ii) (probably De B r u i j n ' s  i s  somewhat b e t t e r  f o r  (i) ) , b u t  th inks  

t h a t  De B r u i j n ' s  i s  d e f i n i t e l y  super ior  f o r  (iii). He th inks  f u r t h e r  

t h a t  both  systems, when compared t o  ordinary  name-carrying A-calculus, 

a r e  b e t t e r  f o r  (ii) - unless ,  of course,  one wants t o  study a-conversion - 
b u t  so  much i n f e r i o r  f o r  (i) - a t  l e a s t  t o  people  accustomed t o  ordinary  

no ta t ion  bu t  probably t o  o t h e r s  a s  we l l  - t h a t  he has p re fe r red  t h e  

o rd ina ry  approach i n  t h i s  t h e s i s .  

3 . 4  Zandleven has a c t u a l l y  used De B r u i j n ' s  system i n  the  implementation 

of Automath, extending it t o  a system of soca l l ed  postponed subst i tut ion:  

s u b s t i t u t i o n  i n s t r u c t i o n s  a r e  incorporated i n t o  t h e  syntax of t h e  sys- 

tem, and so ,  they can be postponed u n t i l  needed (e.g. f o r  e s t a b l i s h i n g  

d e f i n i t i o n a l  e q u a l i t y ) .  Since t h e  s u b s t i t u t i o n  i n s t r u c t i o n s  a r e  a l s o  

coded by means of r e fe rence  depths ,  we c a l l  t h e  system a system of 

i t era ted  references (documented i n  [38]) .  Closely  r e l a t e d  a r e  De B r u i j n ' s  

system of reference transforming mappings [ l61  and Wadworth's system of 

graph reduction [72]. Wadsworth's system i s  n o t  namefree, b u t  he s u r e l y  

h i n t s  a t  namefree implementation. De Bru i j  n and Wieringa [l9,80] have a l s o  

s tud ied  even more genera l  namefree A-calculuses. 

3.5 I n  a review 1631 of De B r u i j n ' s  a r t i c l e  [10],  Seldin  suggested t h a t  

cornbinatory l o g i c  i s  a s  good a s  any o the r  system f o r  nameless represent-  

a t i o n  of bound v a r i a b l e s .  Since most A-calculus t h e o r i e s  can only p a r t i -  

a l l y  be represented i n  combinatory l o g i c  ( see ,  e .g. ,  Hindley [33]),  and 

s i n c e  t h e  usua l  t r a n s l a t i o n s  a r e  r a t h e r  clumsy (though perhaps Turner ' s  



recent proposal [78] might be satisfactory) we think that Seldin's 

remark is not quite correct. (Lately (Swansea, 1979, oral communication) 

Seldin seemed to agree with this view himself.) 

1.4 The Automath languages 

4.1 General language rules 

We give a tutorial survey of the characteristics of the several 

Automath languages. Other introductory references on AUT-68 and AUT-QE 

are [27,11], for AUT-SL see VII.l or [sI], for AUT-Pi see VIII.1 or [773. 

See also the discussion in IV.1. 

We have already announced the generalized type-structure of Auto- 

math: the types can be complicated expressions themselves (e.g. they 

can depend on variables), they are constructed along with the terms and 

hence, the typestructure cannot be given beforehand - as is usual in 
ordinary typed A-calculus -. 

So the type-assignment is itself part of the system and does not 

belong to metalanguage. Consequently the system has besides formulas 

expressing the def in i t ional  equality of the expressions A and B, also 

formulas 

standing for A has type B. An alternative notation for Q is g or just = 

(e.g. in[ll, 37 ,701 ) , for A E B one sometimes writes A : B (in EO ,771 I .  

In fact, in accordance with the implicit character of definitional 

equality (see below), the Q-formulas are not written down, when actually 

using the Automath system, but are just introduced in the language 

theory for formal purposes. 

~ l l  Automath languages have the r igh t  hand equali ty  ru le  (or rule 

of type conversion) 

A E B ,  B Q C * A E C  



~ o s t  languages a l s o  have t h e  Zeft hand equaZity mZe LQ 

a s  a derived r u l e  ( c o n t r a r i l y  t o  t h e  r i g h t  hand r u l e ,  which i s  p a r t  of 

t h e  language d e f i n i t i o n ) .  Fa r the r ,  most languages s a t i s f y  uniqueness 

o f  types 

i . e .  t h e  "converse" of type conversion. I n  such languages t h e r e  can be 

def ined an opera t ion  typ,  such t h a t ,  f o r  a l l  c o r r e c t  A ,  

A E  typ(A) ,  and 

A E B *  B Q typ(A) 

( th i s .  exp la ins  why t h e  d e c i d a b i l i t y  of Q e n t a i l s  t h e  d e c i d a b i l i t y  of E ) .  

The express ions  a r e  formed from v a r i a b l e s  x, y e t c .  and constant-  

expressions c (A * - - ,A ) by t h e  operat ions  of A-abstraction and app Zicat- 
1' k 

i o n  ( i n  t h e  soca l l ed  pure languages AUT-68, AUT-QE, AUT-SL) and poss ibly  

o ther  opera t ions  ( i n  t h e  extended system AUT-Pi). Expressions formed 

according t o  t h e  r u l e s  and t h e  r e s t r i c t i o n s  ( i n  p a r t i c u l a r  the  type 

r e s t r i c t i o n s ) o f  t h e  va r ious  languages a r e  s a i d  t o  be the  c o r r e c t  express- 

ions  of those  languages, i n  c o n t r a s t  wi th  t h e  (general )  expressions j u s t  

r e s u l t i n g  from u n r e s t r i c t e d  use of the  formation operat ions .  

4.2 Abstract ion and app l ica t ion  

The operat ion A-abstraction leads  t o  abstraction-expressions 

[x:A]B. Generally such an expression can be i n t e r p r e t e d  a s  t h e  function 

l x : ~  -B, with domain A and producing values BUD] when appl ied t o  argu- 

ments D E A .  Here t h e  p o s t f i x  [ D l  belongs t o  t h e  metalanguage; it i s  

s h o r t  f o r  [x/D], i . e .  s u b s t i t u t i o n  of D f o r  t h e  v a r i a b l e  x. 

The appZication operat ion cons t ruc t s  the  appZication eXpressi0n 

{A)B. This expression must be i n t e r p r e t e d  a s  t h e  r e s u l t  of applying t h e  

function B t o  t h e  argwnent A ,  i . e .  the  ob jec t  usua l ly  denoted B(A) o r  

BA. The choice of p u t t i n g  t h e  argument i n  f r o n t ,  between brackets ,  

combines n i c e l y  wi th  t h e  no ta t iona l  h a b i t  of p u t t i n g  t h e  binding var iab le  

x:A i n  f r o n t  too,  between a d i f f e r e n t  kind of brackets ,  and i s  general ly  



preferred in the Automath project. Of course, people grown up with the 

usual X-calculus conventions find it difficult to get used to such a 

new notation. (Admittedly, it would have been consistent with our notat- 

ion for application to put the substitution operator in front too. How- 

ever we do not find this too important because substitution just belongs 

to metalanguage.) 

4.3 Reduction and definitional equality 

The definitional equality is a restricted form of equality, just 

covering certain identifications which in ordinary mathematics are 

understood without any explicit justification. It is defined in a com- 

binatorial, syntactical way, viz. as the equivalence relation generated 

by socalled reduction steps. Each reduction step replaces a part of an 

expression, a redex, by another expression, a socalled contractwn. This 

is the usual terminology in A-calculus, where definitional equality is 

often called convertibiZity. In order that the so-defined relation is 

acceptable as definitional equality, it must clearly be required that 

redex and contractum are intuitively equal. Our notation for reduction 

is 2 .  The reductions associated with abstraction and application are 

B- and n-reduction: 

B-reduction: {A)[x: B I C  2 CIA1 

n-reduction: Cx:B]{x)C 2 C if C does not depend on x. 

There is also associated a reduction (called 6-reduction) to the 

expressions d (Al, ,Ak) where d is a defined constant. For such defined 

constants defining axioms (abbreviations, with parameters) 

are given. Here the postfix [[xi, ,xk] is to indicate that D may depend 

on the variables shown. 

The 6-reduction reads 

where (A1, - * -  ,Ak] stands for [xl , ,X /A ,A the simultaneous 
k 1' k 



subs t i tu t ion  of A - - * , A  f o r  xl , -* ,Xk.  Our 6-reduction i s  d i s t i n c t  from 
1' k 

other 6-reductions i n  the l i t e r a t u r e  (cf . 11.3.2.4) . 
The equal i ty  generated by B ,  q and 6 indeed corresponds t o  the in-  

t u i t i v e  in te rpre ta t ion  of abstract ion and appl icat ion,  and t o  the idea 

of abbreviation. However, cer ta in  r e s t r i c t i o n s  have t o  be f u l f i l l e d .  In 

pa r t i cu l a r ,  q-equality is  only acceptable i f  the C ( i n  the q-redex, 

above) is  a l so  a function, with domain B .  Since i n  the general,  unre- 

s t r i c t e d  expressions such provisions a r e  not necessarily s a t i s f i ed ,  we 

define Q between correct  expressions A and B only, and a l so  require 

t h a t  the  expressions " in between" A and B ( i . e .  v ia  which the conversion 

from A t o  B can be establ ished)  a r e  correct  a s  well. For precise  def i -  

n i t i ons  of reduction and equal i ty  see 11.3-4, f o r  Q see V . 2 .  For the 

addi t ional  operations (with associated reductions) of AUT-Pi see V I I I . l .  

4 .4  Type assignment 

Type assignment takes place together with expression formation. 

The variables  ge t  a type by ~sswnption (of the form x E A ) .  Formulas 

a r e  derived and expressions a re  constructed i n  natural  deduction s t y l e ,  

i . e .  r e l a t i v e  t o  a s e t  ( i n  our case: a s t r i ng )  of assumptions, cal led 

the context of the formula, resp. the expression. Such a context has the 

form 

where a l l  the x are  d i s t i n c t .  (This notion of context i s  only vaguely 
i 

re la ted  t o  the notion of context nowadays used i n  A-calculus theory.) 

I f  5 i s  a context we sometimes write 

t o  indicate  t h a t  an expression o r  formula i s  correct ,  resp. derivable,  

with respect t o  5. Here 5 contains so t o  say the type declarations of 

the variables  on which A (resp. A E B, A Q B )  depends. 

The constant expressions obtain a type by instantiating of ( i . e .  

substitution i n )  a scheme. A scheme cons is t s  of an axiomatic type 

assignment with parameters 



relative to a context 

Only such instantiations c(A . * * , A  ) are admitted, where the A meet 
1 k i 

the type requirements of the context, i.e. 

Then the type assignment to the constant expression becomes 

A list of constant schemes is called a book and the constants c 

are called book constants (to distinguish them from the language con- 

stants).   here are two kinds of constants, viz. pr-imitive constants, 

having a type-assignment only, and defined constants, having a defining 

axiom (as mentioned in 4.3) and a corresponding type-assignment (see 

below). All constants in the book are distinct so each book constant 

has a unique type-assignment (resp. unique defining axiom). If d has 

defining axiom d(xl,-*-,xk) := D and typing ~ ( X ~ , - - ~ X ~ )  E C then, for 
the sake ofthe intuitive interpretation, it must be required that 

D E C w.r.t. the context of the scheme. This is the compatibiZity COB- 

d i t i o n  of de f  and t y p .  For more precise definitions see IV.3.2,1V.3.3, 

v.2 .l. 

4.5 The rules of AUT-68 

As for the application and abstraction rules, we first describe 

the simplest language, now named AUT-68. This language has three kinds 

of expressions: terms (also called expressions of degree 3, or: 3-ex- 

pressions), types  (with degree 2, or: 2-expressions) and a single un- 

typed constant t y p e  (also denoted T, and called a supertype or l-ex- 

pression, of degree 1). Languages with expressions of degree 1, 2 and 

3 only are said to be reguzar. 

The 1-expressions generally serve as types for the 2-expressions, 

but do not have a type themselves. Notice that the word "type" is used 

ambiguously here, viz. to name the 2-expressions and in the sense of: 

"being the type of". Typically, the types are the types of the terms 

and (in AUT-68) type is the type of the types. 



So, i n  AUT-68 there a r e  two cases A E B: e i t h e r  A i s  a term and 

B is  a type, o r  A i s  a type and B type ( 5  means syntac t ica l  i d e n t i t y ) .  

In terms of degrees: i f  A E B, B has degree i then A has degree i + l .  

This property holds generally,  a l so  i n  the i r r e g u h r  languages, l i k e  

AUT-SL, where expressions of a l l  posi t ive degrees a r e  admitted. 

Now we give the term formation ru les  f o r  AUT-68. F i r s t  notice t h a t  

a l l  var iables  have a type, so must be a type variable  (of degree 2 )  or  

a term variable  (of degree 3 ) .  The abstract ion ru l e  reads: i f  from an 

assumption x E A ,  and possibly other assumptions not depending on X ,  it 

can be derived t h a t  B E C, where x is  a teMn ~U.ricrbZe and B is  a term, 

then one can conclude t h a t  [x:AIB E [x:AIC and discharge the assumption 

x E A .  In na tura l  deduction notation 

term abstract ion r u l e  degree (XI = degree ( B )  = 3 

Actually, i n  Automath only the l a s t  assumption i n  the  context i s  allowed 

t o  be discharged. The remaining assumptionsclearly s a t i s f y  the above 

mentioned r e s t r i c t i o n  (of not depending on x ) .  We r e f e r  t o  the f a c t  t h a t  

the  context i s  a s t r i ng  ra ther  a s e t  (and consequently, t h a t  the assumpt- 

ions can be removed according t o  the las t - in  f i r s t -ou t  pr inc ip le )  by 

speaking of the linear natural  deduction character of Automath. In the 

notation of t h i s  t hes i s  the ru l e  becomes: 

with standing fo r  correctness,  resp. de r ivab i l i t y ,  with the super- 

s c r ip t s  indicat ing the  degrees ( fo r  the precise  conventions see V.2.1.1). 

In order t o  guarantee t h a t  the type of cor rec t  expressions are  

cor rec t  too, there must be an abstract ion ru l e  f o r  types a s  well. This 

one reads 



type a b s t r a c t i o n  

r u l e  AUT-68 

Cx E A 1  

C E type 

degree (x) = 3 

Cx:AIC E type 

I n  our n o t a t i o n  

t 2 ~ ,  (x E A ~ C  E type) * CZ:AIC E type 

Then t h e r e  i s  t h e  app l ica t ion  r u l e  f o r  AUT-68: 

a p p l i c a t i o n  

r u l e  AUT-68 

D E A  BECx:AIC 

4.6 I n t e r p r e t a t i o n  

Now something about i n t e r p r e t a t i o n .  With t h e  3-expressions [x:A]B 

and IDIB const ructed above t h e r e  i s  no problem: [x:AIB i s  t h e  funct ion 

Xx:A*B, {D)B i s  t h e  r e s u l t  of applying funct ion B t o  argument D. But 

consider  t h e  2-expression [x:A]C occurr ing i n  t h e  r u l e s  above. Under 

t h e  most convenient i n t e r p r e t a t i o n ,  maintaining t h a t  a type i s  a kind 

of s e t  o r  cZass, and t h a t  t h e  E-relation i s  a kind of element r e l a t i o n ,  

[x:A]C must s t and  f o r  t h e  o b j e c t  u s u a l l y  denoted C o r  n(Ax:A*C) .  
x:A 

I .e. t h e  c a r t e s i a n  product of a l l  t h e  CUD] , f o r  D E A. I n  case C does 

n o t  depend on x ,  t h i s  product reduces t o  t h e  funct ion space A + C which 

i n  type theory would be denoted (AC) o r  t h e  l i k e .  I n  o ther  words, Ix :A]C 

i s  t h e  " s e t "  ( c l a s s ,  aggregate) cons i s t ing  of a l l  t h e  func t ions  B with 

domain A which, when appl ied t o  arguments D i n  A ,  produce values  be- 

longing t o  c U D B .  This  i s  p r e c i s e l y  what t h e  appZ r u l e  says.  So i n  t h i s  

i n t e r p r e t a t i o n  t h e  a b s t r a c t o r  [x:A] has  two d i f f e r e n t  meanings: when 

used with a term it g ives  a func t ion ,  when used wi th  a type it gives  a 

kind of s e t .  O r ,  we can say t h a t  [x:A] has j u s t  one meaning, viz. l x : A ,  

but  t h a t  t h e  n has  been omitted,  f o r  b r e v i t y ,  i n  a s i t u a t i o n  where no 

confusion i s  reasonably poss ib le .  This  is  t h e  standard i n t e r p r e t a t i o n  

corresponding with t h e  no ta t ion  i n  r e l a t e d  typed A-calculus systems and 

i n  AUT-Pi ( s e e  V I I I  .1) . 



However there i s  a second, a l te rna t ive ,  in te rpre ta t ion ,  too. It  i s  

not necessary t o  s t i c k  t o  the idea t h a t  types a r e  s e t s  and t h a t  E i s  a 

kind of element r e l a t i on .  Namely, we can very well i n t e rp re t  Cx:AIC a s  

the function )ix,A*C, i f  only we accept t h a t  a function can a c t  a type. 

Then, the term abstr ru l e  says (i .a.1 t h a t  the  type of a function i s  

again a function, with the same domain, and, conversely, the appl r u l e  

says ( i - a . )  t h a t  the functions of degree 3 a r e  characterized by having 

a function f o r  t h e i r  type, from which t h e i r  domain can be read o f f .  In  

t h i s  in te rpre ta t ion  the conclusion of the term abstract ion r u l e  

(Cz:AIB E Cx:A]C) j u s t  mean V D E A  
(BUD] E CUD]), i . e .  the ru l e  abs t rac ts  

the formula B E C ra ther  than the expressions involved. In algebraic 

terms: the r u l e  can be considered a s  a dis t r ibut ion  ruZe of the ab- 

s t r a c t o r  Cx:Al w . r .  t. the E-relation. 

This,  second, in te rpre ta t ion  has given r i s e  t o  several  extensions 

of the language, v iz .  t o  AUT-QE, t o  socalled +-languages (AUT-68+ and 

AUT-QE+), and even t o  AUT-SL ( i . e .  Nederpelt 's A ) .  

4.7 AUT-QE 

F i r s t  the extension t o  AUT-QE. Since we i n t e r p r e t  the 2-expression 

[x:A]C as a (type valued) function, and s ince we want a uniform method of 

type assignment f o r  both term valued and type valued functions, we 

drop the r e s t r i c t i o n  t o  B of degree 3 i n  the term abstract ion r u l e  of 

AUT-68, thus ge t t ing  the 

general abstract ion ru le :  t 2 ~ ,  (X E A ~ B ( E  C) ) * ~ C X : A I B ( E  CX:A]C) 

So the degree r e s t r i c t i o n  fo r  the variable  x is  maintained. In the new 

r u l e  there is  included (skip the two E-parts between parentheses) the 

abstract ion ru l e  f o r  1-expressions, t o  guarantee t h a t  the types of 

cor rec t  expressions a r e  correct  again: 

So i n  AUT-QE there are  other supertypes than jus t  type, of the 

f orm 

Cx :A I---Cxk:Akltype. 
1 1  



These expressions have originally been named quasi-express<ons, whence 

the name of the language AUT-QE. 

The application rule of AUT-68 is maintained in AUT-QE: 

application rule 1 D E A, B E [x:AlC* {DIB E CUD] 

but is more general here, because it can be used with B of degree 3 and 

2 now (in AUT-68 only with B of degree 3). Besides, AUT-QE has, in 

accordance with the proposed interpretation, another appl rule: 

application rule 11 E E A, B E C E [x:AID * {E)B E {EIC 

Namely, [x:A]D is a function with domain A, so C is a function with 

domain A ,  so B is a function with domain A and can be applied to the 

argument E E A. (In fact, this rule can be derived from appl rule I by 

n-equality, which confirms the agreement with the interpretation.) 

Just like a degree 2 abstr expression of AUT-68 allows different 

interpretation~~viz. as a set or as a function, a degree 1 abstr ex- 

pression of AUT-QE has such different interpretations too. Under the 

first interpretation the expression CX~:A~I***[X k* -A  k ]type stands for 

the object 

n ( n ( - 0 - ( n  type)...)) 
x :A x2:A2 
1 

x .A 
k- k 

This corresponds with the notation of AUT-Pi, see VIII.l. Under the 

second interpretation it stands for the object 

4.8 Type inclusion 

Now let x E A ~ C  E type. Two rules of type assignment are applicable, 

viz. the type abstr rule of AUT-68 and the general abstr rule, giving 

rise to 

[x:AIC E type, resp. Cx:AlC E [x:Altype 

Generally a 2-expression C X  1' -A 1 I*.-[x k' -A  k 1C of AUT-QE has as its 

possible types 



up to, at least Cx :A l - * * [ x  -A ] t ype  . 
1 1  k' k 

This ambiguity of types, which is typical for AUT-QE, is usually imple- 

mented by adding a ruze of type inclusion 

and dropping the type abstraction rule of AUT-68, which now becomes a 

derived rule. In fact, the type inclusion rule is somewhat stronger 

than the type abstraction rule of AUT-68 (or, similarly, the product 

rule of AUT-Pi). See VIII.1.5 and VIII.6.1. 

Clearly the property of uniqueness of types 

is, for 2-expressions A, not valid any more in AUT-QE. This is,however, 

the only case of proper type-inclusion in Automath languages. We intro- 

duce to denote type-inclusion, i.e. 

B E  C:-VA(A E B * A  E C). 

For the precise definition see V.2.13 or V.3.2. The possible types of 

a 2-expression appear to be linearZy ordered under IT, so 

A E B , A E C * B C C  or C C B  

and it is still possible to define a canonicaz type which is minimal, 

w.r.t. C, among the possible types (and hence gives maximal information), 

i.e. such that 

Now the extension to +-languages. Recall that in AUT-68 there were 

abstr expressions of degree 3 and 2, but appl expressions of degree 3 

only. We say the value degrees are 2 and 3, and the function degree 

is 3. Here we use the terminology of v.2.7: B is called the value part 

of [ x : A ] B  and the function part of {A)B. Similarly AUT-QE has value 



degrees  1 ,  2 and 3 and funct ion degrees 2 and 3. Such languages, where 

t h e  minimal value degree is no t  a funct ion degree a r e  named non-+- 

languages. 

However, i f  t h e  a b s t r a c t i o n  express ions  of minimal value  degree 

a r e  f u n c t i o n s ,  it i s  reasonable t o  have an appl  r u l e  f o r  them too: 

app l  r u l e  
+-languages 

D E A, B Q C X : A I C  =, ~ { D I B  

I n  p a r t i c u l a r ,  if D E A ,  ~ [ x : A ] c  then ~ { D } [ x : A I c .  Indeed, by adding t h e  

above r u l e  f o r  B of degree 2 t o  AUT-68 we a r i v e  a t  t h e  +-language 

AUT-68+. And by adding it t o  AUT-QE f o r  B  of degree 1 we a r i v e  a t  

AUT-QE+ (which i s  e s s e n t i a l l y  A X - R ,  t h e  bgit imate fragment of De 

V r i j e r ' s  Ah [ 7 0 ] ) .  I n  p r i n c i p l e ,  t h e  new r u l e  is  a der ived r u l e  f o r  E 

n o t  having minimal value  degree. The words " i n  p r i n c i p l e "  here  r e f e r  t o  

c e r t a i n  problems with  type inc lus ion  and def ined cons tan t s ,  explained 

a t  l eng th  i n  V.1.7, V.3.3 and V.4.2. 

It  w i l l  be shown (V.3.3 , V.3.4 ) t h a t  a +-language i s  an un- 

essen t iaZ  (and even, d e f i n i t i o n a l )  extension of t h e  corresponding 

non-+-language ( s e e  V .3.3 ) : 

i.e. t o  each A i n  t h e  +-system t h e r e  corresponds a d e f i n i t i o n a l l y  equal 

A' c o r r e c t  i n  t h e  smaller  system. 

I n  a l l  t h e  languages now def ined,  t h e  r u l e  

genera l  a p p l i c a t i o n  
r u l e  

B E C, ~ { A I C  =, ( A I B  E { A I C  

is a der ived r u l e .  Al te rna t ive ly ,  t h i s  r u l e  can be adopted i n  t h e  

language d e f i n i t i o n ,  e i t h e r  with t h e  a p p l i c a t i o n  r u l e  I ( i n  the  non- 

+-languages),  o r  with t h e  app l ica t ion  r u l e  f o r  +-languages, t o  generate 

a l l  t h e  app l  express ions  of t h e  va r ious  languages. The n i c e  p o i n t  about 

t h e  genera l  a p p l i c a t i o n  r u l e  i s  t h a t  it ( s i m i l a r  t o  the general  ab- 

s t r a c t i o n  r u l e )  can be considered a s  a k ind of d i s t r i b u t i o n  r u l e ,  viz. 

of t h e  a p p l i c a t o r  { A )  w . r .  t. the  E-relation.  

Though i n  AUT-QE+ we have achieved a f a i r l y  uniform t reatment  of 

express ions  of a l l  degrees ,  we still  have maintained t h e  r e s t r i c t i o n  

t h a t  only a b s t r a c t o r s  [ x : A ]  with degree (z )  = 3, degree(A1 = 2 a r e  



formed. In other words, only term variables are quantified. So there 

is no quantification over type variables and we say that our systems are 

first-order (this term refers to the fact that in the propositions-as- 

types interpretation quantification over types gives rise to higher- 

order logic). Consequently only applicators {A) with degree(A) = 3 

are admitted. We say that the only domain degree is 2, and the only 

argument degree is 3 (A is said to be the domain part of [x:A]B and the 

argument part of {A)B). Apparently there is a certain duplication in 

having both instantiation and application in the system. However, 

because of the aforementioned application restriction instantiation 

cannot be missed: substitution of 2-expressions (for type-variables) 

cannot be performed by means of application so has to take place by 

means of instantiation. (See also 5.6) 

4.10 AUT-SL 

Now we explain how AUT-SL (i.e. Nederpelt's A )  can also be con- 

sidered a result of our extended interpretation of the E-symbol. Namely, 

now that we have accepted that functions can be inhabitabZe, i.e. can 

be the type of other expressions, there seems to be no principal ob- 

jection against allowing each expression to be inhabitable. This is 

indeed the most striking characteristic of A :  there are expressions of 

all positive degrees admitted, so I\ is iPYegulaP (sec. 4.5). (Here is 

an analogy with the Zanguage of set theory where a priori no term is 

excluded from being inhabitable, i.e. from being a set). 

Further, in A all degrees are domain degrees, so all degrees but 

1 are argument degrees, so instantiation can be missed and, indeed, 

has been dropped. Still, we shall not call A a higher-order language 

(IV.1.5.3, VII.l) because any form of type inclusion has been omitted. 

So, AUT-68 and AUT-QE which are based on type-inclusion, are not in- 

cluded in A, and uniqueness of types holds in A. For more information 

about the background of A see VII.1. 

The definition of A either must contain the general application 

rule, above, or for B of degree k, k 2 2, 



In fact, Nederpelt gives an azgorithmic de f in i t i on  of A ,  in terms 

of a type function ~ Y P ,  and in terms of unrestricted reduction 2, in- 

stead of a socalled E-definition in terms of E- and Q-formulas, such 

as the definitions given above. For a discussion of algorithmic definit- 

ion vs. E-definition see V.1.2 and for the equivalence of both definit- 

ions see V . 4 .  

Because of the simple form of the general abstraction and applicat- 

ion rule, the function typ has a very simple definition too, in partic- 

ular 

Nederpelt gives a socalled appzication condition which in our 

notation, for B of degree k would read 

D E A, typk-I ( B )  Q IX:AIE => ~ C D I B  

k- 1 
(where typ stands for k-1 successive applications of the function 

typ), completely in accordance with our application rule for B of degree 
k-1 k, above. By the way, we write, like Nederpelt, typ* for the typ of 

expressions of degree k. 

The language A was invented for theoretical purposes. It is in- 

teresting because it has a very simple and elegant definition and exhi- 

bits some typical Automath features. However, because it is in some 

sense weaker (no type inclusion) than AUT-68 and AUT-QE, results valid 

for A cannot directly be transferred to these, from a practical point 

of view, more important languages. In particular, the " s t r i c t "  norma- 

b i t i t y  of A (proved by Nederpelt) is easier to prove than the "weak" 

normabiZity of AUT-QE (see IV. 3-4 ) because of the weak second order 

aspect AUT-68 and AUT-QE. See IV.1.5 See also VIII.4.2.2 for an in- 

teresting interpretation of these normability results (inspired by 

Ben-Yelles [6] ) . 
Conversely, the facts that A is a +-language, is irregular, and 

has no abstraction restrictions, pose certain difficulties which in 

the theory of AUT-68 and AUT-QE can be avoided. 

The present author has mainly devoted his language theoretical 

attention directly towards the languages actually being in use: 

AUT-68, AUT-QE and AUT-Pi. In this theses we have indeed at some places 

introduced new languages (for technical or expository reasons), but we 



have t r i e d  t o  exhib i t  the precise  connections with ex is t ing  languages. 

Also, we have devoted a chapter ( V I I )  t o  A ,  which deserves some in t e re s t  

of i t s  own. 

For an informal introduction t o  AUT-Pi see V I I I . l .  In  AUT-Pi the 

standard mathematical d i s t i nc t ion  between types (being inhabitable) and 

functions (not  being so)  i s  made by put t ing i n  n ' s  a t  the proper places 

(whence the name AUT-Pi). In VIII.6 the difference has been indicated 

between the r u l e  f o r  inser t ing  n ' s  ( the product mZe) and the ru l e  of 

type-inclusion of AUT-QE. 

4.12 Two higher-order languages 

For completeness reasons we mention two proposals f o r  higher order 

languages. F i r s t ,  De Bruijn once proposed a language AUT-4 [ 141, where 

the proofs come i n  a s  degree 4 expressions (whence AUT-4), instead o f ,  

a s  usual (5.9, 5 .2) ,  a s  degree 3 expressions. AUT-4 would have provided 

an appl icat ion of the higher degrees of i r regular  languages, but has 

never been used o r  implemented. Secondly, the author has introduced a 

language ( l e t  us name it AUT-2) which has expressions of degree 1 and 

2 only, with unres t r ic ted  type-inclusion ru l e  (sec. 4.8) and without 

abstract ion r e s t r i c t i o n s .  This language proved t o  be essent ia l ly  

i den t i ca l  t o  a system of type-assignment t o  A-calculus terms invented 

by Dezani and Coppo[22,23] f o r  qu i te  d i f f e r en t  purposes. These two 

languages a re  not discussed i n  t h i s  thesis .  I t  seems t h a t  (strong) 

normalization f o r  AUT-4 can only be proved by Girard-like methods 8 0 ,  

311,whereas fo r  AUT-2 we have a strong normali'zation proof i n  the s ty l e  

of t h i s  thes i s .  
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1.5 Mathematics i n  Automath 

5.1 Survey of t h i s  section 

Because of the presence of a type (type) of types, the presence 

of type-variables and the generalized type-structure,  people of ten tend 

t o  overestimate the expressive power of ( i . e .  what can be said i n )  the 

Automath languages. Here we r e fe r  t o  the expressive power of the 

languages a s  such, i . e .  t o  what can be said d i r ec t ly  i n  the  basic  

system, without any constants added. ( ~ e c a u s e ,  w i t h  addi t ional  constants,  

a s  we s h a l l  see,  almost anything can be expressed, j u s t  l i k e  i n  the 

language of f i r s t  order predicate logic.)  

Below we sketch what has become the standard development of mathe- 

matics i n  Automath. The emphasis w i l l  be on the inherent l imi ta t ions  

of Automath. Occasionally we make a comparison with closely re la ted  

systems: Se ld in ' s  system of generalized finctionaZity [ 64 ] ,  Sco t t ' s  

system of construct ive va l id i ty  [62] and Martin-L6f's systems of in- 

t u i t i o n i s t i c  type theory [45,46] , and Girard'  s systems fo r  analysis  [31]. 

Throughout we comment on the typ ica l  Automath features .  

5.2 The t -pa r t  and the p-part of Automath 

Let us ,  f o r  the sake of the exposition, divide mathematics i n  two 

par t s :  one p a r t ,  l e t  us  say the object  p a r t ,  dealing with the construct- 

ion of mathematical objects  (resp. types) ,  and one p a r t ,  the  ZogicaZ 

p a r t ,  f o r  reasoning about these objects .  Our framework of Automath 

languages, above, i s  formulated i n  terms of ob jec ts  and types, ra ther  

than i n  l og ica l  terms: there a re ,  indeed, Q- and E-formulas expressing 

f a c t s  about the objec ts ,  but they ju s t  play an auxi l ia ry  ro l e ,  viz.  t o  

control  the  construction of the cor rec t  (sec.  2.6) objects .  

~ol lowing[37,77]  we name the fragment of Automath t h a t  deals  with 

the object  p a r t  the t-fragment ( f o r  t e r m s ,  types and type-valued funct- 

i o n s ) ,  and the fragment of Automath representing the log ica l  p a r t  the 

p-fragment ( fo r  proofs,  propositions,  p red ica tes ) .  Degree i (sec. 4.51 

expressions of the t-fragment and the p-fragment a r e  said t o  be i-t- 

expressions and i-p-expressions respect ively.  



So, whereas the preceding sections suggest how the t-fragment can 

be developed (3t-expressions for objects, 2t-expressions for types), it 

is a priori not clear how the p-fragment will express the logical part. 

Essential is that the E-formula A E B, of the p-fragment, with A a 3p- 

expression and B a 2p-expression, is interpreted as expressing the t ru th  

of the proposition B (i.e. as expressing B itself). So, a proposition 

is true (asserted) if "we have something in it", i.e. if we have a (3p-) 

expression having the proposition for its type. 

There are several ways of interpreting the reazizer  A (we borrow 

this term from Pottinger [ 5 8 ]  who borrowed it from Helman), i.e. the 

expression we have in the proposition B: as an abstract proof construct- 

ion proving B, as a symbolic translation of a natural deduction proof 

figure (with B as its end formula), or as just some indication (some 

reference to the fact) that B holds. If we are interested in constructive 

foundations the first interpretation is appropriate. If we want to study 

proof figures (e.g. in view of normalization properties) the second 

interpretation is the best one. If we just want classical logic the 

third point of view seems to be right, and it also seems justified to 

identify (in the sense of definitional equality) all the realizers of 

one and the same proposition. This identification principle is called 

i r r e  Zevance of proofs [7 7,3 7,20 ] . 
We will explain that the propositions-as-types way, as sketched 

above, of fitting the logical part of mathematics into a typed A-calculus 

framework arises quite naturally from the idea of mechanical proof- 

checking (and, on the other hand, that it is the only way of expressing 

actual reasoning in terms of the E- and Q-formulasl. 

5.3 The t-fragment 

Generally speaking, the systems introduced in sec. 4 are as yet 

still empty because we have not introduced any constants. Here we adopt 

the common point of view that the meaningful objects (resp. types) of 

a theory correspond to its closed expressions (i.e. those not depending 

on variables). One way to construct closed terms is from constants, 

another way is by binding the variables in an expression, i.e. by X- 

abstraction. Since in most Automath languages abstraction over type- 

variables is forbidden we need at least one primitive type-constant 



before we can s t a r t  generating closed expressions. 5. ere h i s  an ex- 

ception: In A the basic  constant T ( t h i s  i s  j u s t  an a l t e rna t ive  notation 

f o r  type) can be used a s  a ground type and we can d i r e c t l y  s t a r t  con- 

s t ruc t ing  functions of type T + T e t c .  ) 

In the Automath pro jec t  it has sometimes been s t a t ed ,  t h a t  there  

is  no e s sen t i a l  difference between a constant without parameters - i . e .  

introduced i n  an empty context - and a var iable .  This i s  formally r i g h t :  

a constant can be conceived a s  a var iable  one does not want t o  g e t  r i d  

o f ,  and f o r  which no subs t i tu t ion  i s  possible.  Conceptually however, 

it seems b e t t e r  t o  maintain the d is t inc t ion .  

We j u s t  sketch very b r i e f l y  how the typed A-calculus framework of 

Automath can be used t o  construct  the objects  (numbers, functions,  

funct ionals)  forming the universe of discourse of ordinary mathematics 

(say,  ana lys i s ) .  One f i r s t  introduces some primit ive type constants 

(2t-expressions) fo r  the types, the  natural  and the reaZ numbers, 

say, by s t a t i n g  a s  an axiom ( i . e .  an axiom scheme i n  an empty context) : 

n t  E type, r l  E type. (of course, i f  one knows a b i t  more one can a l so  

define the r e a l s  i n  terms of the na tura l  numbers, but t h a t  does not  

concern us here.)  Secondly, one introduces some primit ive term constants 

(3t-expressions) fo r  generating the objects  of these types. E.g. i n  

order t o  construct  the natural  numbers one s t a t e s  axioms One E n t ,  

S U C ~ U ~  E n t  + n t  ( the  successor function, which can a l t e rna t ive ly  be 

introduced by a scheme, see below). From these constants we g e t  the 

na tura l  numbers, which we can give a new name by introducing defining 

constants:  two := {one)sucfun, three := {two)sucfun(Q~~onelsucfun~sucfun) 

e t c .  If  one l i k e s ,  one can a l so  introduce primitive constants 

plusfun E n t  + ( n t  + n t )  and timesfun E n t  -t ( n t  -+ n t )  f o r  p lus  and 

times on the naturals .  Additional (equal i ty)  axioms w i l l  be needed t o  

f i x  the proper t ies  of the thus constructed objects ,  but  these ra ther  

belong t o  the log ica l  pa r t .  Similarly,  constants can be introduced 

(with the addi t ional  axioms) t o  generate the objects  of type r l .  

By A-abstraction closed expressions of higher type a r e  constructed. 

These higher types themselves (we already used some of them) a re  a l so  

constructed by A-abstraction ( i n  AUT-QE e t c . )  o r  by A-abstraction and 

product formation ( i n  A U T - P i ) .  E.g. we g e t  n t  -+ r l ,  the type of r e a l  

number sequences, ( r l  -+ r l )  + r l  the type of r e a l  funct ionals  e t c .  

We see t h a t  up t o  now there seems t o  be no p o s s i b i l i t y  t o  introduce 



m n - t r i v i a z  type-valued funct ions:  t h e  higher types  shown a r e  j u s t  

(products  o f )  t h e  cons tan t  type-valued func t ions  

Cx:ntlnt, Cx:n t l (n t  -+ n t )  e t c .  

I n  f a c t ,  t h e  type-valued funct ions  do no t  become e s s e n t i a l  before 

we a r r i v e  a t  t h e  p-part .  However, we give  an example of a  t y p i c a l  type- 

valued func t ion  i n  t h e  t - p a r t  (see  [ 3 7 ]  ) : I n  t h e  context  X E n t  we can 

in t roduce t h e  p r i m i t i v e  2t-constant I  t 0  (x) intended t o  conta in  the  

n a t u r a l  numbers up t o  x, a s  follows 

x E n t t l t o ( x )  E type 

(This cannot become an a c t u a l  subtype of n t  ( c f .  5 .4 ) ,  i n j e c t i o n  funct-  

i o n s  and e q u a l i t y  axioms w i l l  be needed.) From t h i s  scheme we can con- 

s t r u c t  t h e  n o n - t r i v i a l  type-valued funct ion [x:nt11to(x) (a  2t-express- 

i o n ) .  I t  depends of course on the  add i t iona l  axioms what ob jec t s  w i l l  

belong t o  t h i s  type.  

It  i s  an i n t e r e s t i n g  quest ion what higher type o b j e c t s  ( funct ions  

and f u n c t i o n a l s )  can a c t u a l l y  be defined by mere A-abstraction ( e i t h e r  

from o b j e c t  cons tan t s ,  o r  j u s t  from v a r i a b l e s ) :  of course we have 

cons tan t  func t ions  and seZectors A x l - - * X n . X j ,  and we can def ine  composit- 

ion  of func t ions ,  b u t  what e l s e ?  For an answer see  P lo tk in  1541. 

5.4 Some comment on t h e  t - p a r t  

From t h e  examples, above, severa l  c h a r a c t e r i s t i c  f e a t u r e s  and l i m i t -  

a t i o n s  of Automath become c l e a r .  F i r s t ,  t h a t  t h e  whole development i s  

based on typed A-calculus r a t h e r  than on s e t  theory.  More about t h i s  

i n  the  nex t  sec t ion .  Then a  p o i n t  on defined cons tan t s :  from our present  

p o i n t  of view (What o b j e c t s  a r e  a c t u a l l y  const ructed?)  they a r e  i r r e l e -  

van t ,  because they j u s t  serve a s  new names f o r  o b j e c t s  already present .  

From a p r a c t i c a l  p o i n t  of view, however, they form an indispensable 

f e a t u r e  of Automath. 

Another c h a r a c t e r i s t i c  f a c i l i t y  of most Automath languages is  t h a t  

a  funct ion can be introduced i n  two ways, v iz .  e i t h e r  a s  a  s i n g l e  higher 

type cons tan t  o r ,  by a  scheme, a s  a constant  depending on parameters 

( i n  t h i s  case  t h e  constant  r a t h e r  s tands  f o r  t h e  funct ion va lue) .  Above, 

S U C ~ U ~ ,  plusfun and timesfun were introduced by t h e  f i r s t  method. Alter-  

n a t i v e l y ,  one might introduce SUC, PIUS and times by an axiomatic typing 



scheme, i .e .  depending on variables  of type n t :  

z E n t ,  y E nt tp lus(x ,y)  E n t  e t c .  

That these mechanisms r e a l l y  form a duplication i s  shown by the f a c t  

t h a t  they can be defined i n  terms of each other ,  e.g. 

sucfun := Cx:ntlsuc(x),  resp. 

x E nt/-suc(x) := {x)sucfun e t c .  

More about schemes can be found i n  sect ion 5.6. 

Now we a r r ive  a t  some mutually r e l a t ed  cha rac t e r i s t i c  l imi ta t -  

ions of the  Automath languages ( fur ther  elaborated i n  5.7).  F i r s t  t h a t  

hardly any mathematical s t ruc ture  is given beforehand: even the natural  

numbers have t o  be introduced by a s e r i e s  of constants and axioms ( t h i s  

po in t  we have mentioned before) .  

Secondly t h a t  a type must be present  before it can be postulated 

t o  be inhabited, i . e .  a type must be introduced before the  objects  of 

t h a t  type. This cont ras t s  with the common ideas about the se t  theoretic 

hierarchy where s e t s  cannot be constructed unless t h e i r  elements a re  

given (and grasped, a s  one says) .  In  f a c t ,  t h i s  d i s t r i c t i o n  between 

types and s e t s  suggests t h a t ,  a f t e r  a l l ,  the ground types must be 

understood a s  syntac t ic  l i ngu i s t i c  categories  ra ther  than as  ac tua l  

mathematical objects  themselves ~~~~~~~e [ 461 ) . Then, the higher types 

can be understood i n  terms of the ground types. 

A t h i rd  l imi ta t ion  of Automath ( re la ted  t o  the second one, though) 

i s  the  uniqueness of types. In the above development one might think 

it handy i f  the number one of type n t  would be of type r l  a s  well and, 

more general,  i f  n t  would be an ac tua l  subtype of rl ( i n  the sense of 

t, see 4 .8) .  such proper inclusion of types i s  not expressibZe i n  

Automath, and mn-tr iv ia l  intersections of types a r e  mt present e i ther  

(Whether the iden t i f i ca t ion  of the na tura l  number One with the corres- 

ponding r e a l  number would be just i f ied i s  another question. See De 

Bruijn .) 



5.5 The typed A-calculus framework 

Th i s  s e c t i o n  t r i e s  t o  support  t h e  choice of basing Automath on t h e  

concept of f ~ n C t i 0 n  r a t h e r  than on t h e  concept of s e t .  The f i r s t  p o i n t  

i s ,  t h a t  i n  almost  any i n t e r e s t i n g  p a r t  of mathematics some form of 

a b s t r a c t i o n  i s  needed, e i t h e r  a s  A-abstraction, o r  a s  a  comprehension 

miom. (The a l t e r n a t i v e  t o  a b s t r a c t i o n  i s  a  development i n  t h e  s t y l e  of 

combinatory l o g i c ,  a s  i n  von Neumann-Bernays-GBde1 s e t  theory.)  A s  

s t i p u l a t e d  by De Brui jn  [ lo] ,  A can be considered a s  the, n e u t r a l  binding 

opera to r ,  n o t  t o  be explained i n  more p r i m i t i v e  terms. E.g.the comprehens- 

i o n  s e t  I x ~ A )  can be def ined i n  terms of A by, say,  se tof  (1x.A). 

The second p o i n t  i s ,  t h a t  t h e  primitive concept of func t ion  i s  

b a s i c  i n  ordinary  mathematics ( a n a l y s i s ,  say) .  I t  is, of course ,  well- 

known t h a t  the  graph of a  func t ion  can be coded (implemented, say)  a s  

a  s e t  - and we d o n ' t  deny t h a t  the  graph concept i t s e l f  can be c l a r i -  

fy ing -, but  i n  ordinary  mathematics the re  i s  usua l ly  no p o i n t  i n  t h i s  

impzementation. I n  f a c t  it j u s t  shows the  well-definedness of t h e  

funct ion concept ( i . e .  of a  func t ion  on a  given domain) i n  terms of t h e  

commonly accepted formal development of axiomatic s e t  theory - which f o r  

a p r a c t i c a l  mathematician i s  ha rd ly  doubtful  and probably un in te res t ing- .  

Compare [ 1 2 ] .  Simi la r ly  t h e  p o s s i b i l i t y  of implementing o the r  f a m i l i a r  

concepts ( t h e  n a t u r a l  numbers, t h e  r e a l s ,  the  complex numbers) i n  axio- 

mat ic  s e t  theory,  o r  i n  any o t h e r  form, is  usua l ly  of no p r a c t i c a l  i m -  

portance.  

By basing o n e ' s  func t ion  concept on Brl-A-calculus one g e t s  the  

p o s s i b i l i t y  of making explici t  d e f i n i t i o n s  of func t ions  (by X-abstract- 

i o n ) ,  and of making those  i d e n t i f i c a t i o n s  (by d e f i n i t i o n a l  e q u a l i t y )  

t h a t  follow from these  e x p l i c i t  d e f i n i t i o n s .  C lea r ly ,  t h e  graph concept 

of funct ions  g ives  more, v i z .  e x t e n s i o n a l i t y ,  whereas Bq-equality j u s t  

p i n s  down the  func t ion  i n t e n s i o n a l l y ,  i . e .  a s  a  r u l e .  Addit ional  equal- 

i t y  axioms ( n o t  f o r  d e f i n i t i o n a l ,  bu t  f o r  book e q u a l i t y )  a r e  needed 

f o r  ex tens iona l i ty .  We s t r e s s  t h a t  q j u s t  g ives  a  very  weak form of 

ex tens iona l i ty .  According t o  S c o t t ,  the  n-equali ty 1x . f~  = f ( i n  ordinary  

1-calculus no ta t ion)  must n o t  be understood a s  e x t e n s i o n a l i t y  b u t  r a t h e r  

a s  s t a t i n g  t h a t  f i s  a  func t ion .  So, i n  a  typed s e t t i n g  rl seems t o  be 

anyhow j u s t i f i e d :  the  mere cor rec tness  of [x:aI(x}f ( i n  Automath no- 

t a t i o n )  warrants t h a t  f is  a  funct ion.  However, n-equali ty presupposes 

uniqueness of types! 



Above we have taken for granted that the appropriate practical 

function concept is a typed one. Indeed, free, untyped A-calculus is a 

farreachingla priori just formal, extension of this concept (compare, 

e.g., the notations for limits and formal series, in analysis). It is 

an extension useful for studying computations but which does not seem 

very well applicable to "ordinary" mathematics. Compare LCF, being in- 

tended for the former purpose and actually based on the poZymorphic 

typed A-calculus PPA, where the type conventions are not quite as strict 

as in ordinary typed A-calculus. 

We note that these two restrictions of the definitional equality 

(that it just covers intensionaZ equality, between ordinary typed A- 

calculus objects) are essential for its being decidable (in contrast 

with, e .g . , the convertibility in PPA) . 

5.6 Axioms vs. schemes, abstraction vs. abbreviation 

In 5.4 we saw that there are two possibilities to introduce primi- 

tive constants for the construction of functions, either at low type 

level (example: SUC) in a scheme, or in a higher type by an axiom 

(example: S U C ~ U ~ ) .  The difference between the two approaches is that 

from a scheme objects are constructed by instantiation (example: 

SUC(One)), and from the corresponding higher type axiom by appZication 

(example: (0ne)~~cfun). In most logical formalisms the distinction 

between instantiation and application cannot be stated in such an ex- 

plicit form, since their instantiation mechanisms belong to meta- 

language. 

Similarly there are in Automath (usually) two possibilities for 

making expZicit definitions of functions: by A-abstraction and by a 

definitional axiom scherne.These definitions are respectively eliminated 

by application plus B-reduction and instantiation plus &-reduction 

(this duplication is eliminated in Nederpeltfs A ) .  

Apart from the fact that writing schemes allows a form of (sub- 

stitutionaZ) quantification of variables not quantifiable by A (viz. 

type variables), it also allows quantification of more variables at a 

time. However, as one knows, this simultaneous quantification can be 

simulated by successively quantifying one variable at a time. 

So, roughly speaking, what can be done byschemescan also be done 



by A-abstraction.  I n  some sense schemes a r e  simpler than a b s t r a c t i o n :  

h igher  type  o b j e c t s  a r e  avoided. Indeed, i n  t h e  Automath p r o j e c t  a  

schematic in t roduc t ion  of cons tan t s  ( i . e .  SUC i n s t e a d  of S U C ~ U ~  e t c . )  

would g e n e r a l l y  be p re fe r red .  And, r a t h e r  than asking how i n s t a n t i a t i o n  

can be dismissed i n  favour of a p p l i c a t i o n ,  one should ask what a b s t r a c t -  

ion ,  a p p l i c a t i o n  and higher type  o b j e c t s  a c t u a l l y  con t r ibu te .  We th ink  

t h a t  A-calculus only comes i n  when one wants t o  express nested quant i -  

f i c a t i o n s  ( e i t h e r  subst i tut ional  o r  by A-abstraction) such a s ,  e .g . ,  

needed when quan t i fy ing  over func t ions  o r  d e f i n i n g  func t iona l s .  Example: 

t h e  p r o p o s i t i o n  ~ 0 n t ( f )  expressing t h e  c o n t i n u i t y  of f depends on the  

h igher  type  v a r i a b l e  f .  I f  one wants t o  use t h i s  p ropos i t ion  (by in-  

s t a n t i a t i o n )  , higher type o b j e c t s  ( l i k e  EX: r l  I F )  must be s u b s t i t u t e d .  

De Bru i jn  has ,  accordingly ,  conjectured t h a t  up t o  18th century mathe- 

mat ics  i s  express ib le  without A-calculus and, hence, t h a t  t h e  p r i m i t i v e  

Automath language PAL would do f o r  t h a t  sub jec t .  

5.7 More on t h e  language r e s t r i c t i o n s  ( a s  mentioned i n  5.4) 

The f a c t  t h a t  no a r i thmet ic  is  b u i l t  i n ,  d i s t i n g u i s h e s  Automath 

from systems meant t o  g ive  a  foundation f o r  cons t ruc t ive  mathematics. 

In  p a r t i c u l a r ,  we want t o  make a  comparison wi th  t h e  system of S c o t t  

[62]  and Martin-LBf [45] because these  two systems have the  same gene- 

r a l i z e d  type-s t ruc tu re  a s  Automath, and t h e  same way t o  represen t  

reasoning,  v i z .  a  proposit ions-as-types way. 

S c o t t  sketches  a  genera l  r ecurs ive  cons t ruc t ion  mechanism t h a t  

a l lows t h e  d e f i n i t i o n  of t h e  n a t u r a l  numbers from a  f i n i t e  s e t  of given 

ground o b j e c t s .  Martin-Lbf's in t roduc t ion  of t h e  n a t u r a l  numbers is  

more l i k e  ours :  he in t roduces  zero and successor b u t  a d d i t i o n a l l y  he 

has recursion over t h e  n a t u r a l  numbers b u i l t - i n  i n  h i s  language. 

The main d i f f e r e n c e  between b u i l t - i n  a r i t h m e t i c  and a r i thmet ic  

introduced axiomat ica l ly  ( a s  i n  Automath) i s  t h a t  i n  the  case of b u i l t -  

i n  a r i t h m e t i c  one g e t s  the  equat ions  following from the  recurs ive  

d e f i n i t i o n  of a  func t ion  f o r  f r e e ,  i . e .  a s  def in i t ional  equality.  In  

Automath one can a l s o  in t roduce a  constant  intended f o r  p r imi t ive  recurs-  

i o n  b u t  t h e  p o i n t  i s  t h a t  the  a d d i t i o n a l  e q u a l i t y  axioms, needed t o  g ive  

such a  cons tan t  i t s  meaning, concern book equal i ty ,  not  d e f i n i t i o n a l  

e q u a l i t y .  Th i s  l i m i t a t i o n  a l s o  d i s t i n g u i s h e s  Automath from LCF, where 



r e c u r s i v e  d e f i n i t i o n s  of func t ions  is  indeed poss ib le .  

Now we come back t o  t h e  second and t h e  t h i r d  l i m i t a t i o n :  t h a t  a 

type must be p resen t  before  i t s  i n h a b i t a n t s  and, t h a t  i n  Automath unique- 

ness  of types  holds.  These l i m i t a t i o n s  prevent any induc t ive  cons t ruc t ion  

of a type,  i n  a genera l  sense:  both t h e  recurs ive  d e f i n i t i o n  of a type,  

and, even, t h e  cons t ruc t ion  of a new type cons i s t ing  o f ,  e.g. ,  a  f i n i t e  

number of p rev ious ly  given o b j e c t s ,  a r e  impossible. Such previously  

given o b j e c t s  have a type already and it i s  simply no t  p o s s i b l e  t o  s t a t e  

a s  an axiom ( n e i t h e r  a s  an assumption) t h a t  such an o b j e c t  also belongs 

t o  a d i f f e r e n t  type.  I n  AUT-Pi (and i n  S c o t t ' s  and Martin-Lbf's system 

a s  we l l )  t h e r e  i s  t h e  p o s s i b i l i t y  t o  cons t ruc t  binary d i s jo in t  unions 

of previously  given types  b u t ,  even the re ,  t h e  o b j e c t s  of t h e  o l d  types  

cannot be i d e n t i f i e d  wi th  t h e  o b j e c t  of t h e  new types:  i n j ec t ion  funct- 

ions a r e  neeaed. 

5 . 8  A comparison with general ized f u n c t i o n a l i t y  

Uniqueness of types  seems a good s t a r t i n g  p o i n t  f o r  a comparison 

wi th  S e l d i n ' s  system of generalized funetionaZity [ 6 4 ] .  This  i s  a gene- 

r a l i z a t i o n  of Cur ry ' s  systems of basic functionality [ 2 5 ,  261. Basic 

f u n c t i o n a l i t y  has  t h e  u s u a l  funct ion types  a + B ( t h e r e  denoted FaB), 

bu t  general ized f u n c t i o n a l i t y  has  the  generalized type-s t~ucture  of 

Automath and t h e  o ther  two systems, above. Actual ly  we took t h e  word 

"generalized" from Seldin .  The product types  denoted above a s  [x:a]6 

o r  n([x:a]B) o r  I7 B a r e  i n  S e l d i n ' s  system w r i t t e n  a s  Ga(Ax.6). T h i s  
x: a 

is, including t h e  in t roduc t ion  and e l iminat ion r u l e s  f o r  G ( i . e .  our 

a b s t r a c t i o n  r u l e s )  a l l  q u i t e  s imi la r  t o  t h e  product types  of Automath. 

However, an important d i f f e r e n c e  i s  t h a t  i n  S e l d i n ' s  system t h e  

v a r i a b l e s  do n o t  g e t  a f i x e d  type and consequently, the  system r a t h e r  

must be viewed upon a s  a system of type assignment t o  ( c e r t a i n )  terms 

of t h e  type f r e e  A-calculus. E.g. the  i d e n t i t y  I belongs t o  every type 

a -t a (where a i s  a t y p e ) ,  whereas i n  Automath we have d i f f e r e n t  I 's ,  a 
denoted [x:a]x, a t  every type a.  Consequently, a term can indeed belong 

t o  d i f f e r e n t  types.  

I n  f u n c t i o n a l i t y  theory t h e  statement A has a type B i s  denoted 

BA ( t h e  predicate B a p p l i e s  a t  t h e  subject A ,  as  one says)  and i s  it- 

s e l f  an o b j e c t  (ob)  of t h e  system. I n  p r i n c i p l e ,  i n t e r f e r e n c e  of B and 



A (by reduction, where B a c t s  a s  a function, with argument A )  i s  not ex- 

cluded. However, i n  the separated systems, where the  equal i ty  ru l e s  

operate on subject  and predicate separately,  the interference i s  for-  

bidden and BA i s  j u s t  an a l te rna t ive  notation of our A E B. (Notice t h a t  

t h i s  kind of interference i n  the case of Automath, where (except i n  

A U T - P i )  [x:A]B can be both a function and a type, would be disastrous.)  

A point  of difference between Se ld in ' s  system [64] and our systems i s  

t h a t  the type formation ra ther  belongs t o  h i s  meta-language (and i s  l e s s  

r e s t r i c t e d  then ours: he ju s t  respects the a r i t y  ( i . e .  number of argu- 

ments) of the type valued funct ions) .  Seldin proves fo r  h i s  system the 

subject  reduction theorem (our closure theorem) and the normal form 

theorem (our normalization theorem) . 
The systems of func t iona l i ty  a r e  said t o  be systems of i l l a t i v e  

(combinatory) logic.  The word " i l l a t i v e "  now r e f e r s  t o  the presence of 

other basic constants (viz .  F and G )  than j u s t  the  combinators (or ,  

a l te rna t ive ly ,  than ju s t  A-abstraction). Originally,  Curry ra ther  meant 

the word " i l l a t i v e "  t o  stand fo r  in feren t ia l ,  i . e .  a l so  dealing with 

the log ica l  p a r t  (c f .  5.2) of mathematics. In view of the f a c t s ,  t h a t  

the Automath languages a r e  qui te  similar t o  func t iona l i ty  systems, and 

t h a t  Automath i s  indeed intended t o  represent both the object  p a r t  and 

the log ica l  p a r t  of mathematics, it seems ju s t i f i ed  t o  c a l l  Automath 

a system of i l l a t i ve  combinatory logic  (or ra ther  iZZative A-caZcuZus). 

5.9 The p-fragment 

Recall t h a t  the log ica l  p a r t  of mathematics ( the  reasoning) is  

represented i n  Automath by a propositions-as-types method. The standard 

way of developing propositions-as-types i n  the p-fragment of Automath 

is  a s  follows. The propositions enter a s  special  types (2p-expressions 

of type prop ,  where prop is another basic constant, a Ip-expression, 

t h a t  behaves ju s t  l i k e  type). 

We saw t h a t  a proposition is t rue  i f  we have a reaZizer,  a 3p- 

expression i n  it. A proposition B i s  assumed by introducing a var iable  

rea l iz ing  ( i . e .  of type) B, and a proposition B i s  s ta ted  a s  an axiom 

(resp . axiom scheme) by introducing a primitive constant ( resp . primit ive 

constant depending on parameters) rea l iz ing  B.  The implication B * C 

i s  represented by the function type B + C ( i n  AUT-68- and AUT-QE-notation 



[x:B]C). Introduction- and elimination rules for - correspond with the 
abstraction and application rules of Automath. 

The standard development of (classical) logic in Automath starts 

with the introduction of a primitive 2p-constant Con E prop, to repre- 
sent the contradictory proposition, i.e. fahfm. Clearly Con is intended 

to remain empty. So, the negation of a proposition a (i.e. a - fakW'?) 
can be represented by [x:~]co~, which we abbreviate by nOn(a). Hence 

the double negation of a becomes non (non (a) ) (Q Cx: Cy : ~ I C O ~ I C O ~ )  . Then, 
for classical logic, a primitive realizer, called dnl, for the double 

negation law is introduced by a scheme 

a E prop, a E non(non(a))tdnl (a,x) E a 

We also promised some book equaZidy axioms for giving the express- 

ions of the t-part their meaning. To this end a primitive proposition 

eq, for book equality between objects of the same type, is introduced 

by a scheme 

a E type, Q E a, b E +eq(a,a,b) E prop 

together with, e.g., primitive realizers for reflexivity (i.e. in 

eq(a,a,a)), symmetry (i.e. to infer eq(a,b,a) from eq(a,a,b)) etc. 

Predicates are special type-valued, viz. proposition-valued funct- 

ions, formed from propositions by A-abstraction. In constant with the 

type-valued functions of the t-fragment (cf. 5 . 3 ) ,  predicates are 

usually non-trivial type-valued functions. E.g. the property "being 

equal to one" on type nt is expressed by the predicate 

[x: ntleq (nt,one,~) . The (minimal) type (cf. 2.10) of this predicate is 
nt -+ prop, in AUT-QE written [z:nt]prop and in AUT-Pi written 

n(Cx:ntlprop) . 
These typical lp-expressions of AUT-QE and AUT-Pi allow the intro- 

duction of predicate variabZes and, hence, the formulation of schemes 

depending on predicate parameters. An important scheme containing a 

predicate parameter is the axiom scheme forinduction over the natural 

numbers. 

I£ p is a predicate on type cl (having type a -+ prop) then the 

product P(x) (in AUT-Pi this is written n(P), in AUT-QE it is just 
x:a 

P itself) stands for the proposition 'd P(x). Introduction and elimin- x:a 



ation rules for V correspond with the abstraction and application rules 

of Automath. 

5.10 Some comment on the 

The above examples i 

type-variables (and prop- 

wise we would have needed 

p-par t 

llustrate why the formulation of schemes with 

and predicate-variables) are useful. Other- 

e.g. separate dnlls for every proposition, 

separate book-equalities at every type, and a separate induction axiom 

for each predicate on type nt. And it also becomes evident why abstract- 
ion over degree 2 variables is called higher order quantification: 

proposition and predicate variables are 2-variables and abstraction 

corresponds to universal quantification. See further sec. 5.12. 

By using Automath in this propositions-as-types fashion we get an 

almost ordinary many sorted first-order predicate logic, viz. ooer a 

pure (or extended) typed A-calculus. It depends mainly on the axioms 

concerning falsum what kind of logic we get: TninimaZ logic (without 

axioms), intuitionistic logic (with absurdity rule), or cZassicaZ logic 

(as above, with the double negation law, or the like). Additional 

constants and axioms can be added for the introduction of further mathe- 

matical structures (see, e.g. Jutting [37]) . 
We wrote that Automath is an ah0st ordinary predicate logic, 

"almost" because there is one unconventional feature: Expressions for 

proofs (i.e. realizers) can occur inside the expressions for mathematical 

objects and for propositions, i.e. mathematical objects and propositions 

can become dependent on the truth of (other) propositions. Example: Let 

P be -a predicate on type a, let ~!x.P(x) (how this is defined does not 

matter here). Then the miom of individuals [37], which is usual in the 

standard development, introduces a constant (a iota-symbol) ind(a,P,t) 

together with the appropriate axioms, for the unique object satisfying 

P; here t realizes 3:x.P(x). Of course, ind(a,P,tl) and ind(a,P,t2) 

are book-equal. However, irrelevance of proofs is needed to make these 

expressions definitionally equal (cf. 5.2). 

In this way implications a * B (generalized implications, as we 

say) are formed where f3 cannot be stated unless a holds, and similarly 

we can get generalized conjunctions. such propositions are said to 

)elong to generalized logic (see [20,37,77] ) . 



The propositions-as-types development of sec. 5.9 is not the only 

one possible. Alternatively, the propositions can be introduced as 

ordinary types (of type type), or as 3-expressions of a new type b001. 

Since in the first alternative no distinction is made between proposit- 

ions and ordinary types (in fact there is no p-fragment, only a t- 

fragment) the realizers enter the discussion as ordinary objects (con- 

structions) too. This seems to be the proper choice if we want to study 

constructive foundations. Of course, irrelevance of proofs is out of 

the question here. The second implementation, where the propositions 

enter as degree 3 expressions, gives rise to higher order logic. In 

this case the truth of a proposition B is expressed by a formula 

t E B ' ,  where B' is an ordinary type (the "proof-type" of B) associated 

with the proposition B. This "proof-type" of B (usually denoted TRUE(B), 

or (B) or proof  ( B )  ) has to be introduced because B itself is not in- 

habitable (unless we use AUT-4, see 4.12). In Jutting [ 3 7 ]  there is also 

a development in the b001 -style. 

5.11 On propositions-as-types 

In fact, Automath is not just a predicate logic but rather the 

proof system of a predicate logic, because a formula A of the logic is 

not expressed d i r e c t l y  but via a statement of the underlying typed A- 

calculus, of the form t E A. So it is reasonable to ask for the decida- 

bility of the system: proof systems haoe to be decidable. One might 

wonder, though, why we took such a peculiar proof system, this formulae- 

as-types kind of formalization. 

Our main point is that the formulae-as-types way of implementing 

a proof system is a straightforward one. The classical notion of formal 

proof is: a finite sequence of formulae, each of which is either an 

axiom or follows from the preceding ones by application of an inference 

rule. This meagre notion of proof is already decidable but useless for 

our purposes because the decidability is not feasible. For other pur- 

poses as well (proof theory) this notion of proof is considered too 

uninformative . 
The first improvement coming to mind is to provide each formula 

(let us say: l i n e )  in the sequence with additional information: (1) 

a label  (e.g. a mere line number, or a more expressive identification), 



for later reference, (2) some reason, some justification for that line. 

The information (2) has to indicate: (a) what inference rule is used 

for establishing that line, (b) on which previous formulas (indicated 

by their labels) that inference rule has to operate. The axioms in the 

sequence do not get a justification but just a flag AXIOM, say. Notice 

that the justification part of a line can also be conceived as an in- 

struction to operate with the indicated inference rule on the indicated 

preceding lines. If the proof is correct, the formula part of the line 

will be the result of this operation. 

Another, independent, improvement is to allow proofs from asswnpt- 

ions, in natural deduction style. In this case additional information 

must be given with each line to indicate the context in which it is 

valid (i.e. the assumptions on which it depends). 

The proof system we have now arrived at seems to be a natural one 

for mechanical proof-checking: each line consists of four parts, a con- 

text part, an identifier part, a justification part and a fomuZa part. 

Just a slight generalization leads us to Automath. First, we allow the 

justification part to be a compound expression coding iterated use of 

inference rules. This will save a lot of lines in the proof. Secondly 

we allow each theorem from assumptions and depending on propositional 

or predicate variables to be used in subsequent lines as a new derived, 

inference rule. This gives the system on the flexibility and generality 

of ordinary mathematical reasoning. 

Still one step has to be made: to recognize that what happens in 

our proof system is completely parallel with what happens in our typed 

A-calculus framework. That making assumptions amounts to introducing 

variables, that stating axioms amounts to introducing primitive con- 

stants, and that deriving theorems can be conceived as introducing de- 

fined constants. Finally, the abstraction and application rules of the 

typed A-calculus amount to the introduction and elimination rules for 

implication and universal quantification. Then the abbreviation line 

(this is the proper book-and-line format, we would rather write 

x E A, y E ~td(x,~) := D E C or the like) can be understood as "from 

the assumptions A, B the formula C can be derived by using the compound 

instruction D; this theorem can be referred to as line d". 



So, we can explain formulae-as-types as just a practical way of 

implementing a proof-checking system. Fitting the proof system into 

typed A-calculus gives rise to an unusual interpretation of the E-symbol 

but there is no harm in that (compare 4.6). The third interpretation 

of realizers (cf. 5.2) seems appropriate to the above explanation: a 

realizer is a mere indication that its formula holds. 

A completely different question is: would there be any more direct 

way of representing reasoning via the E- and Q-formulas of the under- 
lying typed A-calculus of Automath? The answer to this question (no) 

sheds some light on the particular limitations (see 5.7) of Automath. 

The first point is that the E- and Q-formulas themselves do not allow 
any reasoning. The only E-ass~nptions we can make are the typing assumpt- 

ions for variables, and the only E-axioms we can make are the typing 

axioms for the primitive constants. The Q-formulas are even more im- 

plicit: Q-assumptions are not allowed at all, and the only Q-axioms are 

the abbreviations. (Scott [62] indicates that allowing Q-formulas for 

assumptions would spoil the decidability). For the rest, E- and Q-formu- 

las just hold or not: if they do not hold they cannot even be stated as 

an axiom or as an assumption. Consequently they cannot be negated 

or used in a reasoning ad absurdum. Then, we might look for another trick 

(different from propositions-as-types) to represent reasoning. One idea 

might be to introduce a type of truth-values and to see to it that 

each proposition (or some object associated to it) would be definition- 

ally equal to a truth value. Another idea might be to introduce a type 

for the true propositions (or objects associated to them) and a type 

for the false ones(or objects associated to them). Apart from the fact 

that these proposals simply are not feasible (just try) they would 

imply that all propositions would become decidable (because E and Q are 

SO) and that is not what we want. 

5.12 A comparison with higher order systems 

We have mentioned before that abstraction over type-variables is 

not allowed in Automath. In this respect Automath is distinct from 

both Martin-L6f1s system and Girard's systems. Martin-Lbf distinguishes 

s?TKZ~Z t y p e s  and large types. An example of a small type is the type of 

the natural numbers, examples of large types are: the type V of small 

types (like our type) and the types which represent propositions (in 



t h e  proposi t ions-as- types  s e n s e ) .  Now v a r i a b l e s  ranging over smal l  types  

can be q u a n t i f i e d ,  bu t  q u a n t i f i c a t i o n  over,  e -g . ,  p ropos i t iona l  v a r i a b l e s  

i s  s t i l l  not  permit ted ,  s o  Martin-LBf's system does no t  have higher  order  

l o g i c .  

However, Martin-Lbf's system is higher-order i n  our t e c h n i c a l  sense 

( see  I V . 1 . 5 )  because, by h i s  b u i l t - i n  r ecurs ion  mechanism, a type-valued 

func t ion ,  2' say,  can be def ined such t h a t  e.g. T(0)  = n t ,  T ( n + l )  = 

T ( n )  -+ n t  (where n t  i s  the  type of n a t u r a l  numbers) . Then the  product 

l l ( T )  c o n s i s t s  of func t ions  wi th  va lues  (numbers, func t ions ,  f u n c t i o n a l s )  

of a r b i t r a r y  high compzexity (Seldin  would say r a n k ) .  Note t h a t  i n  

Automath such func t ions  of unbounded f u n c t i o n a l  complexity cannot be 

def ined:  c r u c i a l  i n  the  recurs ive  d e f i n i t i o n  of T i s  the  presence of 

t h e  funct ion Xy:V. (ZJ -+ n t )  (with y a type-variable!)  which t akes  T(n)  

t o  T (n+l )  . 
G i r a r d ' s  systems a c t u a l l y  conta in  higher-order l o g i c ,  because 

q u a n t i f i c a t i o n  over a l l  type-var iables  i s  admitted. E.g. (we use Auto- 

math no ta t ion)  the  o b j e c t  [ a : t y p e l [ x : a b  of type [ a : t y p e l [ ~ : a l a  can be 
a a 

const ructed.  I n  f a c t  Girard would w r i t e  t h a t  DTa.12 .x is  of type  

Aa. ( a  -+ a ) .  

1 .6  The contents of this thesis 

6.1 Th i s  t h e s i s  has  become a comprehensive volume on r e s u l t s  and 

methods i n  the  language theory of Automath: most of t h e  language theo- 

r e t i c a l  ques t ions ,  a s  they a r e  s t a t e d  above, a r e  t r e a t e d  f o r  most of 

t h e  c u r r e n t  Automath languages. 

Since many r e s u l t s  a r e  q u i t e  t e c h n i c a l  we o f t en ,  f o r  b e t t e r  access-  

i b i l i t y ,  g ive  a double exposi t ion.  F i r s t  an  informal,  h e u r i s t i c  one, t o  

exp la in  the  i d e a s ,  followed by a more r igorous  one wi th  some (sometimes 

many) t e c h n i c a l  d e t a i l s .  I f  one l i k e s ,  one can sk ip  the  l a t t e r .  

Most chap te r s  a r e  almost independent and se l f -conta ined:  they have 

t h e i r  own in t roduc t ions ,  d e f i n i t i o n s  a r e  repeated e t c .  For many r e s u l t s  

some d i f f e r e n t  proofs  a r e  g iven,  and some known theorems from [51 ]  and 

[ 7 0 ]  g e t  new proofs .  

The discuss ion i s  mainly d i r e c t e d  towards the  Automath languages 

-and the  Automath p r o j e c t .  However we th ink  t h a t  some r e s u l t s  may be of 

more genera l  i n t e r e s t :  t o  A-calculus and, by the  proposit ions-as-types 

isomorphism, t o  proof-theory. 



6.2 This  t h e s i s  ( a p a r t  from t h e  in t roduc t ion)  can be divided i n t o  th ree  

p a r t s :  (1 )  a g e n e r a l ,  preparatory  p a r t  i n  a t y p e - f ~ e e  s e t t i n g  (Chs. I1 

and I I I ) ,  ( 2 )  a  p a r t  on pure ( see  1.10) typed systems, with a p p l i c a t i o n  

t o  AUT-68, AUT-QE and AUT-SL (Chs. I V - V I I )  , (3)  a p a r t  on t h e  extended 

(1.10) language AUT-Pi (Ch. V I I I )  . 
Ch. I1 d e a l s  with t h e  pre l iminary d e f i n i t i o n s :  eXpPes-Sion-S, sub- 

s t i t u t i o n ,  reductions, de f in i t ional  equali ty .  The express ions  a r e  a l -  

ready i n t e r n a l l y  decorated wi th  type l a b e l s ,  bu t  a typing r e l a t i o n  i s  

n o t  y e t  de f ined  and, hence, t h e  types do not  r e s t r i c t  t h e  expression 

formation.  Various p r o p e r t i e s  a r e  introduced and discussed i n  a gene- 

r a l  s e t t i n g  : normalization and strong normazization, cZosure, Church- 

Rosser and postponement. The poss ib le  in te r fe rence  of t h e  va r ious  kinds  

of reduc t ion  i s  analyzed,  i n  connection with t h e  l a t t e r  two p r o p e r t i e s .  

F i n a l l y  t h e  important reduction-under-substitution lemma of type-free 

A-calculus i s  proved. 

I t  is advised not t o  miss 11.0.4.2: we in t roduce some handy bu t  

s l i g h t l y  unusual n o t a t i o n a l  conventions ( i n  p a r t i c u l a r  on t a c i t  ex i s t -  

e n t i a l  q u a n t i f i c a t i o n ) .  

ch.  111 d e a l s  wi th  t h e  i s o l a t e d  study of one s p e c i f i c  kind of re -  

duc t ion ,  v i z .  &-reduction ( s e e  4 .3) .  A Church-Rosser proof i s  given,  

and var ious  ways of proving s t rong  normalization a r e  ind ica ted .  P a r t i c -  

u l a r l y  i n t e r e s t i n g  i s  De B r u i j n ' s  s t rong normalization proof f o r  6-re- 

duc t ion ,  which simply c a l c u l a t e s  t h e  m m i m m  length of a reduc t ion  

sequence. 

6.3 Each of t h e  chapters  I V ,  V ,  V I  i s  devoted t o  one s p e c i f i c  aspect  

of t h e  pure  typed systems: ( s t rong)  normalization,  c losure  and Church- 

Rosser ( c f .  2.7) r espec t ive ly .  Ch. I V  s t a r t s  with an in t roduc t ion  on 

typed A-calculus systems i n  general .  Like Nederpelt i n  [51]  we use t h e  

following s t r a t e g y  t o  prove ( s t rong)  normalization f o r  our languages: 

f i r s t  we in t roduce a genera l  system of normabZe express ions  ( f o r  s h o r t :  

a  normable system) then we prove (s trong)  normazization f o r  t h i s  system; 

f i n a l l y  we prove t h a t  both AUT-SL ( i . e .  A )  and a l i b e r a l ,  comprehensive 

ve rs ion  of AUT-QE ( inc lud ing  a l l  t h e  cur ren t  ve rs ions  of AUT-QE and 

AUT-68) a r e  normable. 

There a r e  given t h r e e  new proofs of strong B-normaZizati0n fo r  

normable systems. Because t h e  usual  pure f i r s t - o r d e r  (see  p. 29) typed 

systems a r e  c l e a r l y  normable, these  proofs  a r e  q u i t e  genera l ly  appl icable .  



Like Nederpe l t ' s  proof of s t rong  normalization i n  [ 5 1 ] ,  these  proofs  

a r e  no t  based on a not ion of computabil i ty.  

Ch. I V  a l s o  con ta ins  the  p r e c i s e  d e f i n i t i o n s  of book, con tex t  and 

degree ,  and t h e r e  is def ined a typing r e l a t i o n  ( o r  r a t h e r :  a  typing 

f u n c t i o n ) .  However, i n  t h e  normable express ions  the  typing r e s t r i c t i o n s  

on t h e  express ion formation a r e  no t  f u l l y  respected,  bu t  only a weak 

form of them. 

6.4 ~ h .  V g i v e s  a framework ( t h e  E-definition) f o r  genera t ing t h e  

c o r r e c t  express ions  and formulas of the  var ious  Automath languages. I t  

mainly concen t ra tes  on the  r e g u h r  languages ( s e e  4.5)  AUT-QE, AUT-68 

and t h e i r  v a r i a n t s .  

Then the  cZosure proofs a r e  given: f i r s t  of AUT-QE with Bq-reduct- 

ion  ( s o  without 6 )  then of some more l i b e r a l  v e r s i o n s  AUT-QE+, AUT-QE* 

with  f u l l  reduct ion.  Severa l  unessential-extension r e s u l t s  a r e  presented.  

Since the  c l o s u r e  proofs  of Bq(6)-AUT-QE a r e  t e c h n i c a l l y  somewhat com- 

p l i c a t e d ,  we a l s o  i n d i c a t e  how, e.g. ,  6-AUT-QE and Bqb-AUT-68 allow a 

simp Zer c l o s u r e  proof .  

I n  t h e  l a s t  s e c t i o n  of Ch. V we prove - a n t i c i p a t i n g  the  Church- 

Rosser r e s u l t  of Ch. V I  - the  equivalence of t h e  E-definition with the  

a lgor i thmic  d e f i n i t i o n  ( see  2 .6 ) .  Quite some a t t e n t i o n  i s  pa id  t o  the  

choice of a typing funct ion and a domain funct ion f o r  t h e  va r ious  

languages. F i n a l l y  we make a few remarks on practical v e r i f i c a t i o n  of 

Automath languages. 

6 .5  In  Ch. V I  we prove the  Church-Rosser proper ty  f o r  the  pure  Automath 

languages. In  p a r t i c u l a r  we solve  the  BQ-Church-ROSS~P problem caused 

by the  presence of t h e  type-labels (which a r e  themselves express ions)  

i n s i d e  the  a b s t r a c t i o n  express ions  i n  Automath. Nederpelt [51] f i r s t  

ind ica ted  t h i s  BQ-problem and c o r r e c t l y  conjectured t h a t  Bn-Church- 

Rosser holds i n  t h e  c o r r e c t  expressions.  Except f o r  the  Bn-case, t h e  

Church-Rosser p roper ty  f o r  pure systems can be proved i n  t h e  genera l ,  

u n r e s t r i c t e d  express ions  ( a s  ind ica ted  i n  Ch. 11.6) .  

In  f a c t ,  we f i r s t  prove Bq-Church-Rosser f o r  a weak form of n-re- 

duc t ion ,  j u s t  s u f f i c i e n t  t o  cover the  q-reductions needed i n  t h e  v e r i -  

f i c a t i o n  of J u t t i n g ' s  Landau-translat ion.  Afterwards we t a c k l e  f u l l  

n-reduction. 



Resuming, chs .  IV-VI show tha t  the pure Automath languages s a t i s f y  

the three desirable properties (c f  . 2 . 7 )  . 

6 . 6  Ch. V I I  d e a l s  exc lus ive ly  with t h e  language theory of Nederpel t ' s  

A (o r :  AUT-SL) . Here our p o i n t  of depar tu re  ( i n  c o n t r a s t  with Ch. V )  i s  

t h e  algorithmic definition.we in t roduce t h e  soca l l ed  degree-norm correct 

expressions.  We show t h a t  closure and Church-Rosser can d i r e c t l y  be 

proved from t h e  a lgor i thmic  d e f i n i t i o n ,  with t h e  he lp  of t h e  big t ree  

theorem. W e  give  two new proofs  of t h i s  theorem, t h e  f i r s t  one being a 

mere extension of the  second s t rong  normalization proof of Ch. I V ,  t h e  

second one r a t h e r  based on t h e  f i r s t  s t rong  normalization proof i n  I V  

and making use of t h e  book-keeping pairs from de  V r i j e r ' s  proof of t h e  

big t r e e  theorem f o r  h i s  system X A  [ 7 0 ] .  

F i n a l l y  we compare var ious  ve rs ions  of A :  with and without constants 

( resp.  defined cons tants ) ,  t h e  single-line version and t h e  book-and- 

context version e t c .  

A s  regards  t h e  t h r e e  ce lebra ted  d e s i r a b l e  p r o p e r t i e s  f o r  A ,  Ch. V I I  

j u s t  d u p l i c a t e s  t h e  Chs. I V - V I .  

6.7 Chapter V I I I  d i scusses  extended systems, i n  p a r t i c u l a r  AUT-Pi .  I n  

t h e  f i r s t  s e c t i o n  t h e  a d d i t i o n a l  type forming operations: binary union 

(e), d i s j o i n t  sun ( Z ) ,  cartesian product ( n ) ,  t h e  a d d i t i o n a l  term 

forming operations: i n j ec t ion  (i and i2) , plus (e) and pairs (<- ,->) , 
1 

and t h e  a d d i t i o n a l  reductions: +, E ,  T, a a r e  introduced i,nformally, 

and t h e  connection with f u l l  i n t u i s t i o n i s t i c  predicate logic i s  ex- 

h i b i t e d .  

We generate  AUT-Pi by an E-definition and prove t h e  closure prope17z$. 

we t a c k l e  strong normalization a s  i n  I V  (and V I I ) :  we extend t h e  notion 

of form and def ine  two systems AUT-Pi* and AUT-Pi1 which a r e  extended 

normable. For t h e s e  systems we prove a v a r i e t y  of s t rong  normalization 

r e s u l t s .  F i r s t  we show t h a t  the  methods of I V  immediately covex t h e  

f3m-p-case, but  t h a t  t h e  presence of +-reduction r e q u i r e s  add i t iona l  

a t t e n t i o n  ( t h e  soca l l ed  dead end s e t  becomes unmanageable). 

Three new proofs  f o r  s t rong  ~r+qu-normalization a r e  presented,  two 

of them making use of some a d d i t i o n a l  t echn ica l  reduct ions  (perT??Z.itati~e 

and improper reduct ions) ,  t h e  t h i r d  one us ing computability. Then these  

s t r o n g  normal izat ion r e s u l t s  a r e  t r a n s f e r r e d  t o  AUT-Pi. 



However, f o r  fuzz ( i . e .  Bn+nUE-) AUT-Pi t h e  language theory i s  not 

ye t  f inished, f u l l  Church-Rosser i s  simply fa lse ,  and f u l l  strong normaZ- 

i za t ion  we have not been able t o  s e t t l e  (though we s t r o n g l y  be l i eve  i n  

i t ) .  

6.8 The r e s u l t s  of t h i s  t h e s i s ,  even when p e r t a i n i n g  t o  type-f ree  X -  

c a l c u l u s ,  a r e  der ived by syntac t ic ,  combinatorial methods ( i n  c o n t r a s t  

wi th  the  model t h e o r e t i c  and recurs ion  t h e o r e t i c  reasoning o f t e n  used 

i n  X-calculus nowadays). 

Another p o i n t  about methods is ,  t h a t  we have been ab le  t o  avoid 

t h e  not ion of residual (and we d o n ' t  employ t h e  underlining method of 

Barendregt [ 2 ]  e i t h e r ) .  Cf. t h e  reduct ion-under-subst i tu t ion lemma i n  

11.11. 

F i n a l l y  we mention t h a t  (except  i n  V I I I ,  t he  l a s t  proof)  we have 

not used any not ion of computability o r  t h e  l i k e  i n  our s t rong  normal- 

i z a t i o n  p roofs ,  bu t  have r e s t r i c t e d  ourse lves  t o  a  p r i o r i  elementary 

methods ( c f .  IV.1.6.3). 

6.9 Now we l i s t  some language t h e o r e t i c a l  s u b j e c t s  which we th ink  t o  

r e q u i r e  f u r t h e r  a t t e n t i o n .  

In  view of 6.7 a  f u r t h e r  a n a l y s i s  of t h e  d e f i n i t i o n a l  e q u a l i t y  i n  

AUT-Pi i s  needed. I n  p a r t i c u l a r  a  dec i s ion  procedure i s  wanted (though 

n o t  abso lu te ly  necessary,  s e e  2.8) t h a t  does no t  r e l y  on Church-Rosser 

(a  suggestion i s  made i n  VIII .6 .2) .  O r ,  a l t e r n a t i v e l y ,  a  new reduct ion 

r e l a t i o n  may be ind ica ted  t h a t  genera tes  &-equal i ty  and does s a t i s f y  

Church-Rosser. 

Secondly, some more work on the  comparison of languages would be 

welcome. E.g. t h e  precise connections between AUT-68 and AUT-QE have 

never been made e x p l i c i t .  Here we do not  mean t h e  connections between 

t h e i r  r u l e s ,  bu t  r a t h e r  between what can be said i n  t h e s e  languages. 

To be s p e c i f i c ,  we th ink  t h a t  AUT-QE books can be t r a n s l a t e d  i n t o  

AUT-68 books, and t h a t  AUT-synt might p lay  a  r o l e  i n  t h i s  r e s p e c t  a s  

well .  

Another p o i n t  deserving i n t e r e s t  i s  t h e  r o l e  of t h e  "extensionaZ" 

reduct ions  q, o and E. Notably, we th ink  t h a t  these  reduct ions  can be 

avoided by f i r s t  translating (performing rl-expansion e tc . )  and a f t e r -  

wards performing t h e  corresponding introduction-elimination reduct ions  



6, n and + (compare [37, sec .  4.1 . I ] ) .  Actual ly  we have. t r i e d  t h e  q- 

case  b u t  g o t  s t u c k  i n  t e c h n i c a l  d i f f i c u l t i e s  with t h e  type- labels .  

I n  '6111.2.7 we desc r ibe  a  natural extension of AUT-Pi, which never- 

t h e l e s s  causes our t reatment  of s t rong  normalization t o  f a i l  hopeless ly .  

This i s  an i n t e r e s t i n g  p o i n t  of study too.  

F i n a l l y  we mention some s u b j e c t s  t h a t  f a l l  somewhat ou t s ide  t h e  

scope of t h i s  t h e s i s  b u t  a r e  very important f o r  t h e  a c t u a l  implementat- 

ion:  (1) i terated references e t c .  ( s e e  3.4),  ( 2 )  AUT-synt, (3)  strings- 

and-telescopes. Work i n  t h i s  d i r e c t i o n  has been done by Zandleven, De 

Brui jn ,  J u t t i n g  and Wieringa ( s e e  3 . 4 )  but  we th ink t h a t  f u r t h e r  study 

is  required.  



CHAPTER 11. MISCELLANEA 

Section 0 of this chapter gives some comment on methods (inductive 

definition and inductive proof) andintroduces somenotationalconventions. 

The sections 1-4 form a brief introduction to the various A-cal- 

culus systems considered in this thesis. The sections 5-7 contain some 

general considerations on the closure property, the Church-Rosser prop- 

erty, (strong) normalization and postponement (for a combination of 

reductions). Also some results of this kind are stated, and a proof of 

the Bq-Church-Rosser property for untyped A-calculus is included. 

In the sections 8 and 9 the Church-Rosser property and post2onement 

are discussed for the specific reduction relations considered. 

Section 10 defines the concept of multiple substitution, and 

section 11 proves a lemma (the reduction-under-substitution lemma) 

which has interesting applications in untyped A-calculus. 

11. 0. Preliminaries 

0.1. Inductive definitions 

Throughout this thesis many notions (predicates and relations) are 

given by so-called ordinary inductive definitions. An ordinary inductive 

definition of, e.g., the predicate P consists of a finite set of induc- 

tive cZauses or rules of the form: 

"if P (al and P (a2) . . . and P (ak) then P ( $(al, . . . ,ak) ) " , 
where k 2 0, $ is a k-ary operation and al , . . . ,a are variables. *) 

k 
In such an inductive definition it is, without further notice, 

intended that P(a) holds, only if this follows from iterated applica- 

tion of the rules. We may assume that there is at least one clause 

with k = 0 and $ a constant - a starting clause -. We say that P is 
inductively generated from the starting clauses by closure under the 

other clauses. 

It will be clear how inductive definitions of binary relations, 

or of several notions simultaneously have to be interpreted. With in- 

ductive definitions of (partial) functions, we have to be more care- 

ful, of course. 

*) In fact, the definition of computabiZity in VIII. 5.3 is of a more 
general nature. 



0.2. Inductive proofs 

Let < be a partial order and let < be well-founded, i.e. there are 

no infinite (strictly) descending sequences a > a2 > ... . Call b a 
2escendant of a if a > b; b is a direct descendant of a if a > b and 

there is no c in between. If we can show, for all b, 

(Va<bP (a) * ~ ( b )  

then we can conclude V P(a). This is called proof by induction on <. a 
If there are no infinite (strictly) increasing, bounded above, 

sequences a1 < a2 < ... < b either, then for all b, b is either an 

endpoint - i.e. minimal with respect to < - or b has a direct descendant. 
So, in this case, if for all b, c, 

b endpoint * ~ ( b )  , 
and 

( ~ ( b )  A b direct descendant of c) * P(C) 
then Va P(a). This principle of proof is also induction on <. 

Call < finitary, if each a has only a finite number (possibly zerc! 

of direct descendants. If < is finitary and well-founded and has no in- 

finite increasing, bounded above, sequences, then by the lemma of 

Brouwer-Konig, for each a there is a maximum to the length of descending 

sequences starting in a. Call this maximum B(a). Then the various in- 

ductive proofs of P(a) can simply be reduced to mathematical induction, 

viz. to induction on B(a). 

0.3. Induction on definitions 

Let P be given by an ordinary inductive definition. If, for each 

clause in the definition of PI as above, 

then, clearly, P (a) * Q (a) for arbitrary a. 
This kind of inductive proofs can be considered as proofs by in- 

duction on the finitary, well-founded partial order generated by the 

definition of P (in fact, this order pertains to the objects a ZabeZZed 

Wfth a derivation of P(a). The a (with labels) are the direct descen- i 
dants of $ (a . . ,a ) (with its label) ) . 

1'' n 
We shall speak about proofs by hhction on P I  or over P or on the 

length of proof of P (a) . 



0.4. Notational conv~ntions 

0.4.1. Syntactic variables 

Syntactic variables are the variables of our meta-language, denoting 

syntactical objects such as, e.g., the expressions of an Automath language. 

Often we reserve some specific syntactic variables (possibly indexed 

or primed) to denote exclusively objects of a specific syntactic cate- 

gory. E.g. C, r denote expressions, x, y denote variables, 8 denotes 

books etc. 

0.4.2. Logical symbolism 

We freely include logical symbols in our meta-language, to shorten 

and to clarify the discussion. As an example of our notational conventions 

concerning the logical symbolism consider: 

A 2 B ,  A 2 C - B 2 D ,  C 2 D  

the so-called Church-Rosser property. Written out in full, it would 

read 

VA VB Vc((A 2 B A A  2 C) * 3  (B2D A C > D)) . 
D 

So, the conventions are: 

(i) * binds loosely, the comma denotes A 
(ii) free variables are tacitly quantified: by an existential quanti- 

fier if their first occurrence shows up after the main =+symbol, 

otherwise by a universal quantifier. 

0.4.3. Reasoning about inductive definitions 

Let P be a predicate given by an ordinary inductive definition. Let 

>l,...,4m and Y1,...,Y be additional inductive clauses for P. Let P' n 
be generated by adjoining @ to the definition of P (so clearly 1' 
V (P ( a )  * P' (a) ) ) . we say that Ql , .. . ,am are derived rules of P if 

G 

V_ (P ( a )  - P' (a) . -.. 
Let P" be generated by adjoining Y ..., Y to the definition of P. 1 ' n 

Then, the rules Y ..., Y are derived rules of P' if and only if 
1' n 

Va (PW(a) * P1(a)). As an easy shorthand notation for this situation we 
write (sic) 

4 Yl,...,Y 
m n 

(ie, by adjoining @ l,...,@m, the rules Y1,...,Y become derived rules) 
n 



I I. 1. E x p r e s s i o n s  

1.1. Here we d e f i n e  our universe  of d iscourse ,  t h e  expressions of ge- 

ne ra l i zed  typed A-calculus. The express ions  a r e  formed from variabZes 

and cons tan t s  us ing var ious  opera t ions  such a s  a b s t r a c t i o n ,  a p p l i c a t i o n  

e t c .  We take  ( a s  i n  de Brui jn  [ l o ] )  X a s  our only v a r i a b l e  binding 

opera t ion  and denote t h e  o ther  opera t ions  by so-called b a s i c  cons tan t s ,  

such a s  a b s t r ,  a p p l  e t c .  

1 .2 .  Var iables  and cons tan t s  

The cons tan t s  a r e  d i s t ingu i shed  i n  b a s i c  o r  language cons tan t s  

and t h e  book cons tan t s .  The l a t t e r  f a l l  a p a r t  i n  p r imi t ive  and defined 

constants .  A l l  cons tan t s  have a  c e r t a i n  a r i t y ,  t h e  number of arguments 

going with them. The a r i t y  of a  cons tan t  $ i s  denoted I f  I .  
There is  only  a  small  number of b a s i c  cons tan t s ,  a s  l i s t e d  below 

a r i t y  0  : t y p e ,  p r o p  

a r i t y  1 : p r o d ,  sum, p r o j l ,  p r o j 2  

a r i t y  2 : a p p l ,  a b s t r ,  p l u s ,  i n j l ,  i n j 2  

a r i t y  3 : p a i r  

I n  c o n t r a s t  with t h i s ,  any alphanumeric s t r i n g  can se rve  a s  a  

v a r i a b l e  o r  a  book cons tan t .  The s y n t a c t i c  ca tegor ies :  v a r i a b l e s ,  

p r i m i t i v e  cons tan t s ,  def ined cons tan t s ,  and b a s i c  cons tan t s ,  a r e  

assumed t o  be mutually d i s j o i n t .  

We use x , y , z , u , v  a s  s y n t a c t i c  v a r i a b l e s  f o r  v a r i a b l e s ,  f f o r  con- 

s t a n t s ,  c f o r  book cons tan t s ,  p ,  4 f o r  p r imi t ive  constants ,  d f o r  de- 

f i n e d  cons tan t s  and C, r ,  A , .  . ,A,B,C,. . , a, B,y,. . . a s  s y n t a c t i c  v a r i a b l e s  

f o r  expressions.  

1.3. The express ions  a r e  induc t ive ly  defined: 

(i) var iab les :  X i s  an expression 

(ii) A-expressions: Ax*C i s  an expression 

(iii) cons tan t  expressions:  1. I f  ( = 0 * f i s  an expression 

2 .  I f  1 = k f ( X I , .  . . ,I ) i s  an expressior. 
k  

1.4.  Various systems of express ions  can be def ined i n s i d e  t h i s  franie- 

work by specifying t h e  s e t  of ( b a s i c )  constants .  Thus we have free, 



i . e .  untyped A-calculus with appl a s  i t s  only cons tan t ,  t h e  abbreviatSor. 

salcuZus LSP (Ch. 111) with book cons tan t s  only and, of course,  the  

Automath languages. 

I n  t h e  l a t t e r  languages, t h e  A-expressions a r e  not  p r e s e n t  a s  such, 

bu t  on ly  i n s i d e  a b s t r a c t i o n  express ions:  a b s t r  ( Z 1  ,Ax-C ) . And only  
2 

such a b s t r a c t i o n  express ions  abs t r  (1 C ) a r e  al lowedwherez i s  a 
1' 2 2 

A-expression. 

The Automath languages A U T - 6 8 ,  AUT-QE and A have type (and 

poss ib ly  p r o p ) ,  a b s t r  and appl a s  t h e i r  only b a s i c  constants ,  and a r e  

c a l l e d  t h e  pure  Automath languages. Besides t h e s e  b a s i c  constants ,  AUT-Pi  

has a l l  t h e  a d d i t i o n a l  opera t ions  mentioned, such a s  p r o d ,  S U M ,  plus,  

i n j l  e t c .  

: .5 .  We use t h e  o rd ina ry  Automath no ta t ions :  

T f o r  type, IT f o r  p rop ,  'l7 f o r  prod and 1 f o r  sum 

{AIB f o r  appl (B,Aj , [x:AIB f o r  a b s t r  ( A , x z * B ) ,  

A ( l )  
f o r  pro j 1 (A) , A ( 2 )  f o r  projZ(A), el,B,C> f o r  pa i r !A ,B ,C)  

9' (A,B) f o r  i n j l ( A , B ) ,  i2(A,B)  f o r  i n j Z ( A , B )  
" 1 

and A @ B f o r  plUS(A,B) 

I n  f r e e  A-calculus simple jux tapos i t ion  i s  used t o  denote app l i ca t ion :  

2.4 f o r  {AIB. 

1.6. I n  {A)B we c a l l  A t h e  argument p a r t  and B t h e  funct ion p a r t .  

I n  [~:Alz we c a l l  A t h e  domain p a r t  and B t h e  value part. 

The domain p a r t  A of [x:AIB and f u r t h e r :  t h e  A of <A, B,C>, t h e  

B of il (A,B) and t h e  B of i2(A,B) a r e  j u s t  type-labels,  p r e s e n t  i n  

o rde r  t o  f i x  t h e  type of the  expression.  For an  explanat ion we r e f e r  

t o  1.4.2 and VIII.1.3.In case  we a r e  not  i n t e r e s t e d  i n  t h e  type of t h e  

express ion,  we simply leave o u t  t h e  type- labels ,  w r i t i n g  CXIB, <BIZ> 

- ( A )  , i ( A )  r e spec t ive ly .  
2 

The symbol @ i s  assumed t o  have l e s s  binding power than t h e  

o t h e r  symbols f o r  express ion formation. Addi t ional  parentheses  a r e  in-  

s e r t e d  whenever u s e f u l  t o  avoid ambiguity. 



1.7. S t r i n g s  

- 
Expression s t r i n g s  C l , . . . , C  a r e  denoted by C ,  v a r i a b l e  s t r i n g s  

k 
x . . . x by 2 .  The empty s t r i n g  i s  n o t  a p r i o r i  excluded. The nutti- 

k 
p z i c i t y  of a s t r i n g  C . . . , E k  i s  k and i s  denoted by / ? I .  So we can 

1 
rephrase  c l a u s e  1.3. (iii) 2 by 

I f ]  = * f ( C )  i s  an express ion 

Fur the r ,  i f  121 = k ,  121 = k then 

{AIB i s  shor thand f o r  {Ak) ... {Al}B, BZ f o r  t . .  . (BA1) ... A ) and k 
[ Z : ~ I B  f o r  Tz, :A, 1.. . Cxk:AklB. 

Sometimes, by abuse of no ta t ion ,  we t r e a t  v a r i a b l e  s t r i n g s  a s  s e t s ,  
- 

w r i t i n g ,  e.g. y E x i n s t e a d  of : y i s  among X1 ,..., e t c .  
k' 

1.8. Length, subexpress ions  

I n  agreement wi th  0.3, induct ion on t h e  d e f i n i t i o n  1.3 is  c a l l e d  

induc t ion  onexpress ions  o r ,  a l s o ,  on t h e  s t r u c t u r e  of express ions .  

Counting v a r i a b l e s  and cons tan t s  a s  s i n g l e  atomic symbols, t h e  lexgth  

R ( C )  of an  express ion  C can be def ined by: 

S i m i l a r l y ,  r i s  s a i d  t o  be a subexpression of C, f o r  s h o r t  

r c C ,  according t o  t h e  following induc t ive  d e f i n i t i o n :  

(iii) r c C =+ r c f ( C 1  , .. . , Z i t . .  ., C k )  (i = 1 , .. . , k )  . 
i 

Clear ly ,  c i s  a p a r t i a l  o rde r .  We say t h a t  C i s  a direct subexpress<ol; 

of Xx*C and t h a t  Ci i s  a d i r e c t  subexpression of f ( C 1 , .  . . , C k )  . 
We want t h a t  t h e  Automath express ions  a r e  c losed under t ak ing  s ~ b -  

express ions .  So, when d i scuss ing  these ,  i n s t e a d  of (ii) we include (ii') 

and we r e s t r i c t  c l a u s e  (iii) t o  cons tan t s  f d i f f e r e n t  from abstr .  I n  

t h i s  c a s e  A and B a r e  t h e  d i r e c t  subexpressions of [x:AIB. 



1.9. Occurrences, suggestive dots 

If C c r, then C can have several occurrences inside r .  Such oc- 
currences can be distinguished by their positions inside r ,  e.g. like 

in Nederpelt [51, p.181.we shall treat occurrences in an informal way. 

Two occurrences are disjoint if they have no occurrences of symbols in 

common. 

Often, to denote an arbitrary expression with one or possibly 

more specific occurrences of a subexpression C we write: 

... C... , resp. ... C...C... 
The meaning of these suggestive dots will be clear from the context. 

We formulate the fundamental property of subecrpressions in terms 

of suggestive dots: if ... C...r... is an expression then one of the 

following alternatives holds 

(i) C and r disjoint, or (ii) C c r, or (iii) r c C. 

Notice that these cases do not exclude each other. 

11.2. S y n t a c t i c  i d e n t i t y ,  a - e q u a l i t y  and s u b s t i t u t i o n  

2.1. Free and bound variables 

The free variables and the binding variables of an expression can 

be defined informally, as follows: 

i i )  the first occurrence of x in XX*C is called a binding occurrence; 

C is called the scope of the binding x. 

(ii) an occurrence of 2, not being a binding occurrence, is called 

free if it does not fall inside the scope of a binding x. 

(iii) a free occurrence of x in C is calledbound in Xx*C (by the bind- 

ing x) 

(iv) x is a free variable of C (resp. a binding variable of C) if there 

is a free (resp. binding) occurrence of x in C. 

The set of free variables of C is called FV(C). If we write 

... x...~... , we intend an expression with some free occurrences of x. 
For a string t ,  FV (i) = U FV (xi). 



2 . 2 .  S y n t a c t i c  i d e n t i t y  and a -equa l i ty  

By E we denote s y n t a c t i c  i d e n t i t y ,  i . e .  symbol-for-symbol-equality, 

of express ions ,  modulo a-equal i ty ,  i . e .  renaming of boundvar iables .  

So a name-carrying express ion i s  considered t o  represent a c e r t a i n  

r m e  free ske le ton  - o r ,  a l t e r n a t i v e l y ,  an equivalence c l a s s  of  

a-equal name-carrying express ions  -. Our p o i n t  of view,*) v i z .  of simply 

i d e n t i f y i n g  ... ( X X * . . . X . . . ~ . . . ) . . .  and ... (Xy*. ..y...y... I . . .  can be 

j u s t i f i e d  by r e f e r r i n g  t o  Curry [ 2 5  1, Nederpelt [ 51 1 o r  de  Bru i jn  

[ l o  1. The l a t t e r  r e fe rence  g i v e s  a t r e a t m e n t  of a formalism of  

nameless dunpies ( s e e  I . 3 ) ,  which i s  a c t u a l l y  used i n  t h e  cur ren t -  

l y  implemented v e r i f i e r  f o r  Automath languages. 
- 

The n o t a t i o n  a extends t o  s t r i n g s :  ? r ,  i f  I C I = 17 1 and, f o r  - 
i = , ,  1 ,  . Fur the r ,  C r means: not  ( C  = r ) ,  and s imi la r -  

1 i' 
l y  f o r  s t r i n g s .  

2 .3 .  Now t h a t  we have in t roduced = we r e t u r n  t o  t h e  not ion of subex- 

p ress ion .  We say t h a t  C i s  a proper  subexpression of I', f o r  s h o r t  

C sub r ,  i f  C c r and C f r .  C l e a r l y ,  S U ~  i s  t h e  t r a n s i t i v e  r e l a t i o n ,  

i n d u c t i v e l y  genera ted by t h e  r e l a t i o n  ... i s  d i r e c t  subexpression of 

... . W e  have such p r o p e r t i e s  a s :  

C c r , r a v a r i a b l e  o r  cons tan t  * C E I' 

And we can make t h e  fundamental p roper ty  of subexpressions mcre 

p r e c i s e :  i f  C c A ,  r c A then p r e c i s e l y  one of t h e  following a l t e r n a -  

t i v e s  holds  : (i) C and r d i s j o i n t ,  (ii) C and I' a r e  t h e  same occurrence 

(SO C - r ) ,  (iii) C S U ~  r ,  o r  ( i v )  r sub C .  

2.4. S u b s t i t u t i o n  

By C t x / A ]  we denote t h e  r e s u l t  of  s u b s t i t u t i n g  t h e  express ion A 

f o r  a l l  f r e e  occurrences  of x i n  C.  S i m i l a r l y  by t h e  opera tor  [s/i] 
we denote simuZtaneous s u b s t i t u t i o n  of Ai f o r  t h e  f r e e  occurrences of 

- - 
xi, f o r  i = 1, . . . , k (where k = Ix 1 = 1 A 1 and a l l  xi a r e  mutually d i s -  

t i n c t ) .  The n o t a t i o n  extends t o  s t r i n g s  i n  a s t r a igh t fo rward  way. One 

has  t o  t a k e  c a r e  t h a t  no f r e e  v a r i a b l e s  of t h e  s u b s t i t u t e d  express ions  

come under t h e  "wrong inf luence"  and become bound a f t e r  s u b s t i t u t i o n .  

For d e f i n i t e n e s s  we g ive  t h e  d e f i n i t i o n  of simultaneous s u b s t i -  

t u t i o n .  Let  C* l o c a l l y  abbrev ia te  C[z/z]. Then by induct ion on C ,  we 

* )  Actual ly  i n  Chs. I V ,  "11 and V I I I  t h e r e  a r e  used c e r t a i n  methods 
which a r e  no t  completely compatible wi th  t h i s  approach. 



* 
d e f i n e  C , a s  follows: 

* 
(i) a .  y P xi 3 y :I Ai 

b. y L z = s y *  := y 

- 
(ii) Y ' x, v i=~ , . . . , [~ l  - (xi E N ( C )  =s y P F V ( A ~ ) )  + 

(Xy*Z) * :I h y * C X  - otherwise  rename y i n  Xy-C - 
( i i i ) a .  f* :E f 

- * 
b. f ( f ) *  : = f ( C )  . 

Sing le  s u b s t i t u t i o n  [x/A] amounts t o  t h e  c a s e  (21 = 1 above. 

Sometimes, i f  t h e  2 a r e  no t  r e l e v a n t  o r  c l e a r  from t h e  context ,  

then we w r i t e  

C [ l J  i n s t ead  of c [ ~ / ~ J  . 

2.5. Two fundamental s u b s t i t u t i o n  p r o p e r t i e s  

S u b s t i t u t i o n  proper ty  I: I f  a l l  f r e e  v a r i a b l e s  of C a r e  among 

S u b s t i t u t i o n  proper ty  11: I f  no f r e e  v a r i a b l e s  of 2 a r e  among y 
and 2 and y have no v a r i a b l e s  i n  common, then  

~uij/^Bnui/;S~ = c ujF/Zinr~/Zj[~/;Snn 

Both p roofs  a r e  by induct ion on C .  To i l l u s t r a t e  I ( i n  t h e  

c a s e  of s i n g l e  s u b s t i t u t i o n ) ,  l e t  C r ...y... . Then 

1[2/Bj E ... B.,, i ...(... s...)... and t h e r e  a r e  no f r e e  v a r i a b l e  occur- 

rences  o u t s i d e  B. So CU~/B]UX/AD = ... (...A,..)... = Cuy/Bb/AJJ q.e.d. 

And t o  i l l u s t r a t e  11, ( i n  t h e  ,case  of s i n g l e  s u b s t i t u t i o n  the  condi t ions  

read:  y FV ( A )  and y x ) ,  l e t  C I . . .y.. .X.. . . Then 

ZIIy,/BI) e . . .B.. .x.. . = . . . (.  . .x.. . ) .  . .x.. . , 
C[y,/B][x/AJ = ... ( . . . A . . . ) . . . A . . .  . Further  CUx/AD = . . .y . . .  A. . .  and 

C[cc/AJl[y/B[x/A]] I . . . (. . .A. .  . )  . . .A.. . q.e.d. 

2.6.  S u b s t i t u t i o n  and subexpressions 

* - - 
Let ,  again, C C[X/AD. Then of course ,  i f  C E . . . r.. . then 

* 
i ... r* ... . And about t h e  "converse" quest ion:  where do occurrences 



of subexpressions i n  C* a r i s e  from? Le t  C* = ... T . . .  . Then p r e c i s e l y  

one of t h e  fo l lowing a l t e r n a t i v e s  holds:  

(i) 1 = . ..T . * = r ,  f o r  some r0 c L ,  o r  
0 

(ii) c r . . . x . .  . . , Z* ... A , .  . . ... ( . . . T . . . )  ..., T sub A .  f o r  some i. 
1 1 1 

(1.e.  r occurs  a s  a proper subexpression i n s i d e  one of t h e  s u b s t i t u t e d  

occurences A .  ) . 
1 

I f ,  e .g. ,  r = f (a)  then (i) s p e c i a l i z e s  t o :  

I 1  - 3 .  E l  ementary and one-s t ep  r e d u c t i o n s  

3.1. The r e l a t i o n s  of d e f i n i t i o n a l  e q u a l i t y  of express ions  w i l l  be 

de f ined  induc t ive ly .  We s t a r t  with elemefitary reduc t ions ,  then d e f i n e  

o ~ g - s t e p  r e d u c t i o n s ,  proceed t o  more-step redue t io r sand  f i n a l l y  t o  

d e f i n i t i o n a l  e q u a l i t y .  Since  we only  d i s c u s s  pure ly  s y n t a c t i c a l  as-  

p e c t s  here ,  a l l  t h e s e  r e l a t i o n s  a r e  def ined on t h e  f u l l  un ive r se  of 

express ions .  

3.2. Elementary reduc t ions  

3 .2 .1 .  6- and n-reductions 

These a r e  t h e  u s u a l  A-calculus reduc t ions ,  a s s o c i a t e d  with the  

b a s i c  cons tan t s  a b s t r  and a p p l .  

B :  IA1Cx:BIC elementary reduces t o  CUA3 

q: [x:B](x)C elementary reduces t o  C , i f  x # FV (33 

I n  f r e e  A-calculus, with t h e  a l t e r n a t i v e  no ta t ions ,  these  elementary 

reduc t ions  read 

6: (AX-C)A elementary reduces t o  CUA] 

n :  Ax*Cz elementary reduces t o  C i f  x 4 FV (c ' )  



3.2.2. T- and a-reductions 

These reduc t ions  a r e  a ssoc ia ted  with p a i r  and p r ~ j l ,  ?r0j2 .  

Here v i s  intended t o  suggest  "project ion"  and a s t ands  f o r  " s u r j e c t -  

i v i t y  of pa i r ing" ,  a f t e r  Barendregt C31. 

v: 4 , B >  
(1  

e l .  red .  t o  A 

d , B >  
( 2 )  

e l .  red .  t o  B 

o :  y 1 )  t A ( 2 ) >  
( o r f  with type- label f  <B,A 

(1) (2 )>)  

e l .  red.  t o  A (However, s e e  VIII.2.5.1.) 

3.2.3. +- and €-reductions 

These reduc t ions  a r e  a ssoc ia ted  with P I U S  and i n j .  

+: A B @ C e l ;  red.  t o  {A)B 

E: (Cx:A1{i1 (x,D)}B) Q (Cx:Cl{i2(x,E ))B) e l .  red .  t o  B ,  
i f  a: & FV(B). 

A s  an  a l t e r n a t i v e  ve r s ion  of +, s u i t a b l e  f o r  t h e  case  where a l l  

plus-expressions a r e  of the  form [x:AIB e Cy:C]D, we have ( t h i s  i s  + 
conbined with 6 )  

+'  : { i l  (E,F) )(Cx:A]B Q Cx:ClD) e l .  red.  t o  BIE], etc.. 

Ii. t h e  chapter  on AUT-Pi, some f u r t h e r  reduct ions  connected with Q 

xi11 be introduced,  t h e  permutative reductions. 

Here 6 i s  intended t o  suggest  "definitionaZN. This  r educ t ion  i s  

of course assoc ia ted  >with def ined constants ,  f o r  which a defining 

c i o m  i s  given.  

6:  d (c )  e l .  red.  t o  A U ~ / ~ J  , 
- 

i f  d i s  a def ined cons tan t  with de f in ing  axiom d (z) F A  - where F V  ( A )  c x -. 
This kind of 6- o r  d e f i n i t i o n a l  reduct ions  must no t  be confused 

with Curry 's  6-reduction C251 , Church's 6 ( i n  Barendregt e t  a l .  C51) , o r  

the  &-reduction proposed i n  S tap les  C651. 



3.3. I n  a l l  t h e  d e f i n i t i o n s  of elementary reduc t ions  above, t h e  l e f t  

hand s i d e  i s  c a l l e d  redez and t h e  r i g h t  hand s i d e  i s  c a l l e d  the  con- 

;rac?fl of t h e  reduction.  Elementary reduc t ions  a r e  a l s o  c a l l e d  

c o n t r a c t i o ~ s .  

We use  some terminology l i k e  i n  Prawitz '  theory of n a t u r a l  de- 

duc t ion  systems [591: a b s t r  and p a i r  a r e  the  negative, and i n j l ,  i n j 2  

a r e  t h e  pos i t ive  introduction operat ions .  Fur ther  a p p l ,  p r o j l  and proj2  

a r e  t h e  eZim%ation opera t ions  .*'~orresponding-ly , B- , n- and +-reduct- 

ions  a r e  c a l l e d  t h e  introduction-elimination (I .E.  ) reduct ions .  The 

reduc t ions  0 ,  a and E a r e  c a l l e d  t h e  extensionaz ( e x t )  reduct ions .  

3.4. One-step reduc t ions  

We consider  t h r e e  k inds  of one-step reduct ions  >,  generated ic- 

d u c t i v e l y  from t h e  elementary reduc t ions  by c e r t a i n  monotonicity r u i e s .  

A s u b s c r i p t  o r  a combination of s u b s c r i p t s  i n d i c a t e s  which of the  

elementary reduc t ions  a r e  included.  E.g. > is  a one-step reduct ion 
606 

generated from elementary B-, q- and &-reduction.  The t h r e e  kinds of 

one-step reduc t ions  d i f f e r  by t h e  monotonicity r u l e s  used i n  t h e i r  

def 

t h e  

i f  

n i  t i o n s .  

For > ,  a n d t h e o t h e r r e l a t i o n s  between express ions ,  def ined he re ,  
- - 

n o t a t i o n  extends  i n  a s t r a igh t fo rward  way t o  s t r i n g s .  E.g. 2 > r 
- 
C = 1 a n d  f o r  i = l . . . ,  Ci > Ti. 

We d e f i n e  C > C '  by induct ion on t h e  s t r u c t u r e  of C.  F i r s t ,  or- 

dinary one-step reduc t ion  has t h e  following c lauses  

(i) i f  C elementary reduces t o  C '  then C > C' 

(ii) i f  C > C '  then Xx*C > A x - C '  

(iii) i f  C > r then f ( C l r . . . , C i 1  ..., C k )  > f(,.. , C i - l I r , C i + l , .  . . I  
i 

(i = l,...,k). 

Secondly, t h e  d i s jo in t  one-step reduc t ion  has  an a d d i t i o n a l  c l ause  

10) C ' C ,  

and i n s t e a d  of (iii) 

( i i i t ) i f  > C '  then  f ( C )  > f( i ' )  

F i n a l l y ,  t h e  nested one-step reduc t ion  has t h e  c lause  ( 0 )  - re-  

f l e x i v i t y  -, t h e  monotonicity ru les  (ii) and (iii') - j u s t  l i k e  t h e  

d i s j o i n t  one-step reduc t ion  -, but  i n s t e a d  of (i) it has  ( i f ) ,  with 

i n d u c t i v e l y  g iven elementary reduct ions:  

5 e  opera t ion  P ~ U S  f a l l s  somewhat o u t  of t h i s  c l a s s i f i c a t i o n .  



- and s i m i l a r l y  i n  f r e e  A-calculus - 
.rr: A > A ' ,  B > B '  * <A,B> 

(1) > A ' ,  ~ I B ( ~ )  
> B' 

a: A > A '  - 4  
(1)' A ( 2 ) > >  A '  

+: A > A ' ,  B > B' ,  C > C' =+ 

6:  i f  d i s  a defined cons tan t  with de f in ing  axiom d(z):=A 

( F V ( A )  c;) then!  > !' *d(C) > AU&/!'D 

3 . 5 .  I f  C > r and a c t u a l l y  some con t rac t ions  t ake  p lace  i n  the  reduc- 

t i o n  s t e p  (e.g. when it i s  an ordinary  one-step reduct ion)  then I' is  

a i 3 r e c t  r educ t  of C. By induct ion on C it appears t h a t :  (1)  the  s e t  

of d i r e c t  r educ t s  of C is f i n i t e  (provided t h e r e  a r e  only  f i n i t e l y  

many de f in ing  axioms f o r  each def ined cons tan t )  and e f f e c t i v e l y  con- 

s t r u c t i b l e ,  so  c e r t a i n l y  (2) C > I' i s  decidable .  

3.6.  The d i s j o i n t  and t h e  nes ted  one-step reduct ions  a r e  so-cal led  

c,~r?~;ound ( a f t e r  Curry) o r  special (Nederpelt  [5 11 ) one-step reduct ions .  

T r o e l s t r a  [69] speaks about "c lever  counting of con t rac t ions" .  

The terminology can be explained a s  follows: whereas ordinary  one- 

s re?  reduct ion c o n t r a c t s  p r e c i s e l y  one redex,  both s p e c i a l  r educ t i cns  

s l low t o  c o n t r a c t  several (poss ibly:  none) r e d i c e s  a t  a  time. I n  t h e  

" , 3 i s j o i n t  case" these  simultaneously contracted r e d i c e s  have t o  be 

d i s j o i n t ,  bu t  i n  the  "nested case" they may a l s o  occur i n s i d e  each 

o t h e r ,  i . e .  nested.  

3 . 7 .  Le t ,  i f  p is  a reduct ion r e l a t i o n ,  p denote t h e  " d i s j o i n t  vers ion"  - 
=f c ,  i . e .  t h e  c losure  of p under ( 0 )  , (ii) and (iii') and l e t  p denote 

the  nested ve r s ion  of p ,  generated by (01, ( i t ) ,  (ii) and (iii') . 
Let  us  w r i t e  > f o r  ordinary  one-step reduct ion.  Then d i s j o i n t  on- 

1 - - 
s t e p  reduct ion i s  > and nes ted one-step reduct ion i s  >,. Clear ly ,  

1 



i . e .  if an induc t ive  d e f i n i t i o n  con ta ins  t h e  r u l e s  ( 0 )  and ( i ' ) ,  then  

(i) i s  a derived rule .  And, under t h e  same i n t e r p r e t a t i o n  

SO, we have: 

And, s i n c e  c los ing  once more under a r u l e  has no e f f e c t  

3.8. S u b s t i t u t i o n  and one-step reduc t ion  

The p o i n t  of t h e  s p e c i a l  reduct ions  l i e s  i n  t h e i r  behaviour under 

s u b s t i t u t i o n .  For each of t h e  one-step reduc t ions ,  we have proper ty  I :  

Proof: By induc t ion  on B > B', using t h e  s u b s t i t u t i o n  p r o p e r t i e s  I arid 
- 

I1 i n  ' the case  of 6- and B-contractions r e s p e c t i v e l y .  i 

And, p roper ty  11: 

Proof:  By induc t ion  on B. Not ice  t h a t  poss ib ly  severa l  s u b s t i t u t e d  

occurrences  of A (which a r e  d i s j o i n t )  have t o  be con t rac ted .  - - 
i 

So, by 3.7, we have 

Combining t h e  reduc t ions  i n  B and 2, t h e r e  is p roper ty  

I V :  

Proof:  By induc t ion  on B > B'. I n  t h e  case  of c l ause  ( O ) ,  use  proper ty  

I1 and 3.7.  E 

So, by 3.7 again ,  w e  have 



I I. 4. Reductions and definitional equality 

4.1. Reduction sequences 

Le t  > be a one-step reduct ion.  Then a (poss ib ly  i n f i n i t e )  sequence 

of express ions  C 
1 

> C 2  > ... > Ck > ... i s  c a l l e d  a reduction sequence 

of C1 wi th  r e s p e c t  t o  >. Reduction sequences with r e s p e c t  t o  a r e  

ordirzary reduc t ion  sequences. I f  each C i n  t h e  sequence i s  a d i r e c t  
k+ 1 

reduc t  of C then t h e  reduct ion sequence i s  a s t r i c t  o r  proper re-  
k 

duct ion sequence. So, e.g.,  ordinary  reduct ion sequences a r e  s t r i c t .  

4 .2 .  Reduction t r e e s  

The s t r i c t  r educ t ion  sequences of an express ion 1 can be arranged 

i n  a (poss ib ly  i n f i n i t e )  f i n i t a r y  l a b e l l e d  t r e e ,  t h e  reduction t ree  of 

X . We th ink  of r educ t ion  t r e e s  a s  growing downward: l a b e l  t h e  r o o t  

with Z ,  a t  t h e  f i r s t  l e v e l  below come a l l  t h e  d i r e c t  r e d u c t s  e t c .  

4 . 3 .  .'lore-step reduction (or  j u s t :  reduction) , denoted 2, i s  def ined a s  

the  t r a n s i t i v e  and r e f l e x i v e  c losure  of i . e . :  

(i) C >  C ' - C 2 C 1 ,  
1 

(ii) C ? C ,  

(iii) C L C ' ,  C '  2 Z" * C 2 C" . 
Again, s u b s c r i p t s  going with 2 i n d i c a t e  which elementary reduct ions  

a r e  included.  

I f  C 2 r ,  r i s  a reduct of C. Clear ly  r i s  a reduc t  of  C i f f  e i t h e r  

C - r o r  t h e r e  i s  anord ina ry  reduct ion sequence from C t o  r. I n  t h e  

l a t t e r  case  r i s  a proper reduc t  of C .  

* 
4.4.  Le t ,  i f  p i s  a r e l a t i o n ,  p be i ts  r e f l e x i v e  and t r a n s i t i v e  c losure .  

* 
So, by d e f i n i t i o n  2 i s  j u s t  > Of course,  2 s a t i s f i e s  a l l  t h e  mono- 1' 
t o n i c i t y  c lauses :  

C 2 r I+ ... C . . .  1 ... r . . .  

and 



whence 

4.5. We w r i t e  r < C f o r  C > r ,  C ) r f o r  no t  ( C  > I?). S i m i l a r l y  f o r  2.  

We d e f i n e :  C 4 r : C 2 A  5 r f o r  some A .  

So, C + r i f f  C and r have a  common reduct .  

4 .6.  As u s u a l ,  t h e  r e l a t i o n  = (poss ib ly  wi th  s u b s c r i p t s  = 
i3 

, = B n  e t c . )  

of  de f in i t i ona l  equali ty  (o r  j u s t :  equal i ty )  i s  t h e  equivalence r e l a t i c c  

i n d u c t i v e l y  genera ted from 2 ( resp .  
> i 3 ~  

e t c . ) .  
B r! 

Again, = s a t i s f i e s  a l l  t h e  monotonicity r u l e s :  

C = r =s ... C... = ... r . . .  
and 

- - * 
= u (=) u (=) w = 

* - 
C l e a r l y ,  = is  j u s t  t . 1.e .  C = l7 i f  f o r  some k > 0 and some :, 

4.7 .  I n  some cases  we r a t h e r  consider a  r e s t r i c t e d  form of =. Let  k be 

a s e t  of  express ions .  Then, we d e f i n e ,  f o r  C E A,  r E A , 

C - r : u C C A 1  +...+ A + f o r  some A l  E A , . . . , L k  E A .  
A k 

So , i f  > and + a r e  t h e  r e s t r i c t i o n s  of > and C t o  A,  r e s p e c t i v e l y ,  
A A 

then 



4 . 8 .  The r e l a t i o n s  =, + and 2 (and, i f  A i s  recurs ive ly  enumerable, - 
A 

and + ) a r e ,  i n  view of t h e  r e c u r s i v i t y  of >, by t h e i r  d e f i n i t i o n s  
A 

r e c u r s i v e l y  enumerable, and, ir,  c o n t r a s t  with >, not  a p r i o r i  de- 

c idab le .  

Indeed, i n  f r e e  A-calculus e q u a l i t y  and reduct ion a r e  no t  r e -  

c u r s i v e  ( S c o t t ,  i n  Barendregt [ 4 ] ) -  Below we s h a l l  in t roduce Some 

p r o p e r t i e s  which imply the  d e c i d a b i l i t y  of t h e  va r ious  not ions .  

4 .9 .  An ordinary  reduct ion sequence C F AO > A1 >...> Ak r i s  a 

?a:?: reduction sequence i f  a t  l e a s t  one of the  s t e p s  A > A i s  an 
i i + l  

elementary reduct ion.  We s a y - t h a t  C main reduces t o  r ,  f o r  s h o r t  

Z 2 r .  I f  f o r  j < k ,  t h e  reduc t ion  sequence from C t o  A i s  no t  main, 
MR j 

then r i s  c a l l e d  a f i r s t  main reduct of C .  

I t  i s  j u s t  the  main r e d u c t i o n s t h a t a f f e c t  t h e  "outs ide  form" of 

express ions:  i f  f and f 2  a r e  d i s t i n c t  cons tan t s  and f (F) 2 f (F) 
- 1 1 2 

+. -nen f ( Z )  Z M R  f 2  (T) . 
Expressions (and t h e i r  "leading" cons tan t s ,  such a s  f i n  f1 ( E ) )  1 

a r e  s a i d  t o  be imune  i f  they do no t  main reduce. E.g., t h e  p r i m i t i v e  

cons tan t s ,  i n j l  and i n j 2  a r e  immune f o r  a l l ,  and t h e  defined cons tan t s  

and i n t r o d u c t i o n  cons tan t s  (sec .  3.3.) a r e  immune f o r  I.E. reduct ions .  

11.5. Some important  properties 

3.1. Below we in t roduce some important  p r o p e r t i e s ,  such a s  c losure  ( C L ) ,  

s t rong  normalization (SN) and t h e  Church-Rosser proper ty  ( C R )  . ~ l l  

these  p r o p e r t i e s  (and some connected concepts,  such a s  normal form, 

Length of reduct ion t r e e  ( 8 ) )  a r e  def ined r e l a t i v e  t o  a reduct ion re -  

laZion 2 (and poss ibly  a one-step reduct ion > ) .  Now, p r e f i x e s  o r  sub- 

s c r i p t s  going with t h e  introduced not ions  i n d i c a t e  what elementary 

z ~ 3 x t ~ o n s  we included i n  t h e  intended reduct ion r e l a t i o n .  So we speak 

3 b 0 1 ~ t  a-closure,  56-SN, f3q-CL, 8 e t c .  
5176 

5 . 2 .  The c losure  proper ty  

- - 
2. L . I .  A s e t  A cf ex2ressions i s  closed w. r .  t .  2 ( o r  j u s t :  closed) , i f  

i t  s a t i s f i e s  C L ,  t he  cZ0sure property ( a f t e r  Nederpelt)  : 



(do not  confuse CL with "combinatory log ic" )  

We a l s o  d e f i n e  CL one-step cZosure, f o r  a one-step reduc t ion  > :  1 ' 

- - 
For each of our  one-step reduc t ions  > > and > we have CL1 =+ C L .  

1 ,  1 1 ' 
The c r u c i a l  p o i n t  i n  a proof of CL i s  o f t e n  t o  prove cZosme 

1 
under s u b s t i t u t i o n :  

( i n  most of  t h e  cases  a d d i t i o n a l  r e s t r i c t i o ~ s o n t h e  C l t  ..., C have t o  k 
be imposed). 

5.2.2. C lea r ly ,  i f  A i s  c losed ,  then "Aisprec ise ly theequiva lence  r e -  

l a t i o n  genera tedby > ( s e e  4 . 7 ) .  P roofsby  induc t ionon  ( t h e d e f i n i t i o n  c f )  
A 

2 ( o r  onreduc t ion  t r e e s ,  i f  these  arewell-founded) r e q u i r e  t h a t  t h e  

system under cons ide ra t ion  i s  c losed.  

I f  2 and 2 '  a r e  two reduc t ion  r e l a t i o n s ,  2 * > ' ,  and A i s  c losed 

w . r . t .  2 '  then A i s  c losed w . r . t .  2 .  

5.2.3. Le t  7 be a s t r i n g  of cons tan t s .  C a l l  C an  ?-expression i f  t h e  

cons tan t s  of C a r e  among 7. The ?-expressions a r e  c losed under sub- 

s t i t u t i o n ,  so  they s a t i s f y  CL1 (provided t h a t  t h e  de f in ing  axioms do 

no t  con ta in  cons tan t s  o u t s i d e  71, s o  they s a t i s f y  C L .  S i m i l a r l y ,  t h e  

f u l l  universe  of express ions  i s  c losed under s u b s t i t u t i o n  ( a s  we a l -  

ready t a c i t l y  assumed) s o  it i s  C L .  Free A-calculus, and t h e  va r ious  

systems of Automath express ions  a r e  CL too  (sec .  . l . 4  ) . 
Clear ly ,  t h e  s e t  of  r educ t s  of an express ion i s  c losed.  I n  chapter  

IV , w e  prove t h a t  t h e  so-cal led  normable express ions  form a closed 

s e t .  I n  chapter  V andVII I  we prove t h a t  va r ious  systems of so  c a l l e -  

correct Automath express ions  a r e  c losed.  

5.3.  Normalization and s t r o n g  normal iza t ion 

5.3.1. We d e f i n e  ( r e l a t i v e  t o  a r educ t ion  r e l a t i o n )  

(i) C i s  i n  normal form (o r  j u s t :  normaz) i f  not  C > 1 

(ii) Z has a normal form i f  Z = r f o r  some normal r 
(iii) c normaZizes ( o r  j u s t :  N ( c )  ) i f  c r f o r  some normal r 
( i v )  C strongzy normalizes (o r :  SN ( C )  ) i f  a l l  proper reduct ion se- 



quences of C te rminate .  

(v)  A s e t  A of express ions  i s  s a i d  t o  be N (resip.%) i f  

5.3.2. C lea r ly ,  C i s  normal i f f  C does not  reduce p roper ly  i f f  C does 

not  con ta in  r e d i c e s .  So t h e  property of being normal is  decidable .  

Of course ,  C normal * SN ( C )  * N ( C )  +. C has  normal form. 

I f  SN ( C )  then t h e  reduct ion t r e e  of C is  well-founded, so  (by t h e  

Brouwer-K6nig lemma) it i s  f i n i t e .  Hence, i f  SN(C) then we can de f ine  

? (1) a s  t h e  l eng th  of t h e  reduct ion t r e e  of C ,  i. e .  t h e  maximum length  

of proper r educ t ion  sequences s t a r t i n g  i n  C .  And, i f  SN(C) ,  then t h e  

r e l a t i o n  C 2 r is  decidable .  

5.3.3. C a l l  a  r educ t ion  sequence C > C1 > ... secured i f  f o r  some k ,  

,I i s  SN- Then SN(C) i f f  a l l  the  reduct ion sequences of C a r e  se- k 
cured i f f  a l l  t h e  d i r e c t  r educ t s  of C a r e  SN. 

By monotonicity,  we have: SN(z),  r c C * SN(r) .  

Ccnversely, i f  (1) r sub C * SN(T') and (2)  a l l  f i r s t  main reduc t s  of 

2 a r e  SN, then SN(C) - because a l l  i t s  reduct ion sequences a r e  secured -. 

5.3.4.  Le t  A and A' be s e t s  of express ions ,  A c A ' .  Let  2 and 2' be 

reduct ion r e l a t i o n s ,  with 2 * 2'. Let  A' be SN with  r e s p e c t  t o  2'. Then 

A is SN with r e s p e c t  t o  2 (compare 5.2.2).  So, i n  o r d e r  t o  conclude SN 

fer a v a r i e t y  of s e t s  A and reduct ion r e l a t i o n s  2 it i s  s u f f i c i e n t  t o  

prove SN f o r  t h e  "union" of these  systems. 

A s  f o r  p roper ty  N ,  t h e  impl ica t ions  r a t h e r  work i n  t h e  o t h e r  d i -  

r ec t ion :  l e t  2' and 2" be reduct ion r e l a t i o n s ,  2 i s  t h e  "union" of 2' 

3rd 2". If A is  c losed w . r . t .  2', N both w . r . t .  2' and 2", and we have: 

, 3  no-ma1 w . r .  t. 2' , C 2" r )  * ( r  normal w . r .  t. 2' ) then A i s  N w . r .  t. 2. 

5.3.5. I t  i s  well-known t h a t  f r e e  A-calculus does n o t  6-normalize (e.g. 

consider B : E AA with  A : Z  X x - z . ~ )  and t h a t  not  n e c e s s a r i l y  N ( c )  SN (1) 

:e. g. consider (Ay -A) B )  . 
However, t h e  c o r r e c t  expressions of a l l  t h e  Automath languages do 

s t r cng ly  normalize under a l l  t h e  assoc ia ted  reduct ions:  chapter  I11 

j r s v e s  E-SN, chapter  I V  d e a l s  mainly with 6-SN and chapter  V I I I  proves 

=he s t rong  normalization of AUFPi w . r . t .  a l l  t h e  reduct ions  considered 



(and t h e  permutat ive  reduct ions)  except  E .  

5.4. Church-Rosser p roper ty  and Church-Rosser theorem 

5 . 4 . 1 .  W e  d e f i n e  ( r e l a t i v e  t o  a reduct ion r e l a t i o n ) :  

(i) (Chrch-Rosser  p roper ty )  : C R ( C )  i f  A < C 1 r e A t r 
(ii) (h7eak Church-Rosser p roper ty )  : CR1 (1) i f  A C r * A t r 
(iii) Church-Rosser theorem (C-R-thm) f o r  A: i f  C E All '  E A then 

c = r * c t r  
( i v )  Weak Church-Rosser theorem f o r  A :  i f  C 6 A ,  r E A then 

z -  r - z t r  , 

A 

(v) A i s  C R  ( resp .  CR1)  i f  C E A * C R ( C )  ( r e sp .  CR1 ( Z )  ) . 

5 .4 .2 .  C l e a r l y ,  CR * CR1 ( f o r  t h e  converse impl ica t ion  s e e  6 .1 .5 . ) ,  and 

(C-R-thm f o r  A)  * (weak C-R-thm f o r  A ) .  And, i f  A i s  c losed then 

( A  s a t i s f i e s  t h e  weak C-R-thm) (A i s  C R I  . 
* * 

Since = i s  + and - i s  ( tA)  ( sec .  4.71, t h e  C-R-thm ( resp .  the  
A 

weak C-R-thm) a s s e r t s  t h e  t r a n s i t i v i t y  of t ( resp .  tA) . 
I f  A s a t i s f i e s  the  C-R-thm, C E A ,  C has normal form r E A then 

C 2 r ,  so N ( c )  . Hence, i f  C E A ,  C has  normal forms r E A and A E A 

then r E A .  Conversely, i f  A i s  N and, f o r  normal C,r E A we have 

Z = r * C 5 r , then A s a t i s f i e s  the  C-R-thm. 

5.4.3. Anyhow, i f  CR(C) ,  C 2 r ,  C L A ,  both r and A a r e  normal then 

r E A (uniqueness of normal forms) . Hence, i f  C R ( C )  and N (c) then we 

can d e f i n e  t h e  normal form, n f ( C ) ,  of C. Conversely, i f  A i s  closed 

and N and a l l  c E A have j u s t  one normal form then A i s  C R .  

5.4.4. I f  A is  N and C R  then,  f o r  a l l  1 E A, nf  (1) can be e f f e c t i v e l y  

computed, s o  t h e  r e l a t i o n  t i s  decidable .  So, i f  A i s  N and A s a t i s -  
A 

f i e s  t h e  C-R-thm ( resp .  t h e  weak C-R-thm) then t h e  d e f i n i t i o n a l  equa- 

l i t y  = ( r e s p .  - ) i s  decidable  on A. 
A 

5.4.5. F i n a l l y ,  l e t  A and A '  be s e t s ,  A c A ' .  I f  A '  i s  C R  ( r e sp .  C R 1 ,  

e t c .  ) then A i s  s o  too (compare 5 .2 .2  and 5.3.4) . 



11 6.  CR continued 

6.1. How t o  prove CR 

6.1.1.  Here follow some elementary cons ide ra t ions  on two p o s s i b l e  

methods of proving C R ,  v i z .  wi th  and without making use  of SN. The 

f i r s t  method, i . e .  with use of SN, reduces t h e  CR-problem t o  C R  The 
1 ' 

p o i n t  of t h i s  i s  t h a t  C R  i s  usua l ly  e a s i l y  v e r i f i e d .  A case  a n a l y s i s  
1 

of CR w . r . t .  our l i s t  of elementary reduct ions  follows i n  sec .  11.8. 
1 

The second method, without use of SN, employs our "nested" one-step 

reduct ions .  

For more complete comment on CR-proofs, we r e f e r  t o ,  e .g.  [ 2 ] .  

6 . 1 . 2 .  For good comparison of the  methods we in t roduce a s l i g h t l y  more 

genera l  s i t u a t i o n .  Le t  + be some binary  r e l a t i o n  ( th ink  of a reduct-  
* 0 

i o n  r e l a t i o n )  . Let  + ( resp .  +) be t h e  t r a n s i t i v e  and r e f l e x i v e  ( resp .  

t h e  r e f l e x i v e )  c l o s u r e  of +. Let  B + - A  s tand f o r  A + B e t c .  Le t  1 be 

an expression.  We d e f i n e ,  f o r  + and C :  (with q u a n t i f i c a t i o n  conventions 

a s  i n  sec .  11.0.4.3) 

0 0 

! i diamond p r o p e r t y  : r + - c + A * ~ + c ' + - A  
* * 

(ii) p l a n k  p r o p e r t y  
0 

: r + - C + A * r + C f + - A  
* * 

(iii) weak p l a n k  p r o p e r t y  : r +- C : A * r + C '  +- A 
* 

( i v )  weak diamond p r o p e r t y :  r +- C + A * r + C 1  : A 

where t h e  terminology r e f e r s  t o  t h e  geometry of the  i l l u s t r a t i n g  d ia -  

grams intended.  

We say t h a t  t h e  p roper ty  holds i n  A ,  i f  a l l  C E A s a t i s f y  t h a t  

p roper ty  - but  it i s  not  required t h a t  t h e  r ,  A and C '  mentioned a r e  

themselves i n  A t o o  - . 
* 

0.1.3. Let us  abbrev ia te  t h e  diamond proper ty  f o r  : by (i) . Then it 

i s  c l e a r  from t h e  d e f i n i t i o n  t h a t  (i) * ( i v ) ,  t h a t  (ii) * (iii) * ( i v )  
* 

and t h a t  (i) * (iii). Fur the r ,  i f  A i s  c losed under +, then by in-  
* 

duct ion on ( t h e  d e f i n i t i o n  o f )  + : ((i) holds i n  A * (ii) holds i n  A ) ,  

and: ((iii) holds i n  A 3 (i) * holds i n  A ) .  So i n  a closed (under +) s e t  A: 

* 
(diamond proper ty  f o r  +) * (diamond proper ty  f o r  +) . 



* 
6.1.4. But i f  A i s  c losed under +, and a d d i t i o n a l l y  + i s  well-founded, 

* 
then we can say more: ( i v )  holds i n  A * (i) holds i n  A .  Proof:  assume 

* 
t h a t  ( i v )  holds  i n  A .  By induc t ion  on t h e  well-founded r e l a t i o n  + we 

prove t h a t  t h e  diamond p roper ty  f o r  , i . e .  ( i ) * ,  holds i n  A .  
* * * * 

C E A ,  r + C + A .  We w a n t a  C '  with r + C '  + A .  I f  C - r ( o r  C r 

simply t a k e  C '  Z A ( resp .  Z '  E T ) .  Otherwise (it i s  advised t o  
* 

diagram),  f o r  some I. i I ,  A l  C ,  r + T1 + 1 - + A i  : A .  By ( i v )  
* * 1 

some L' T1 -+ C; f A l  . By t h e  induct ion hypothesis  appl ied  t o  r l  
1 ' * 

we f i n d  i , A' with r : I.; 2 Pi -+ A; : A .  F i n a l l y ,  by t h e  induc t ion  
1 

hypothes is  a p p l i e d  t o  Ci we f i n d  t h e  d e s i r e d  C '  with 
* * 

Y I: I': + Z '  A: + A ,  q .e .d .  So, i n  . t h i s  case:  
1 L 

(weak diamond p roper ty  f o r  +) * (diamond proper ty  f o r  $1. 

6.1.5.  Now we come back t o  t h e  o r i g i n a l  s i t u a t i o n :  
* 

reduc t ion  then  t h e  diamond p roper ty  f o r  -+ i s  j u s t  

we t a k e  o rd ina ry  one-step reduc t ion  f o r  + then t h e  

t y  i s  p r e c i s e l y  CR1 .  

So 6.1.4. provides  t h e f i r s t m e t h o d  of proving 

SN and CR1 then A i s  C R .  

So, l e t  

A )  then 

draw a 

f o r  

and A l  

i f  + i s  one-step 

proper ty  C R .  And i f  

weak diamond proper-  

C R :  I f  A i s  c losed ,  

And 6.1.3.  provides  t h e  second method, a s  follows: c a l l  a com- 

pound one-step reduc t ion  > sui table  i f  (1 )  = o 2 ( i . e .  > * > *>,  * ?  
1 

and (2 )  > s a t i s f i e s  t h e  diamond proper ty .  Once such a one-step reciuc- 

t i o n  has  been i n d i c a t e d ,  one can apply 6.3 and prove C R .  Indeed, t h e  

common CR-proofs ( f o r  f r e e  A-calculus, where SN does no t  hold) work 

i n  t h i s  way - i . e .  they can be rephrased along these  l i n e s  - . 

6.2. A survey of r e s u l t s  

6.2.1. The a n a l y s i s  i n  sec .  11.8 of CR y i e l d s  a t  l e a s t  -i .e. a s  long a s  we 1 
do n o t  use  SN - some negat ive  r e s u l t s  concerning C R .  These negat ive  

r e s u l t s  a r e  of two kinds:  f i r s t  t h e r e  a r e  t h e  problems with t h e  type- 

l a b e l s  which were f i r s t  mentioned by Nederpelt [ ~ l . ~ . 7 1 1  i n  connection wich 

6rl-reductions. A s  a r e s u l t  BVCR s implydoesno t  hold i n t h e  f u l l u n i v e r s e  

of express ionsbu t  only f o r  t h e  c o r r e c t  Automath express ions  (chapter  I:, 

chapter  V I ) .  Analogous problems a r i s e  from a s - r e d u c t i o ; ~ ~  and +€-re- 

duc t ions  (chap te r  V I I I )  . 
The second kind of negat ive  r e s u l t  i s  more se r ious :  it appears 

t h a t  f o r  any reduc t ion  r e l a t i o n  including BE-reductions, CR i s  f a l s e ,  



even if t h e  type l a b e l s  a r e  ignored. More about t h i s  i n  chapter  V I I I  

t oo  ( V I I I . 6 ) .  

6 . 2 . 2 .  Now we mention some f a c t s  which show t h e  relevance of our com- - - 
pound reduc t ions  > and > F i r s t ,  > ( i . e .  d i s j o i n t  one-step 6-re- 

1 1 '  116 
duc t ion)  i s  s u i t a b l e  ( i n  the  sense of 6.1.5) f o r  &-reduction (chapter  

111, sec .  3 .3) .  Secondly, by t h e  way, t h e  d i s j o i n t  one-step reduct ion 

genera ted by weak reduct ions  is  s u i t a b l e  f o r  weak combinatory l o g i c  
w 

(Rosser,  i n  T r o e l s t r a  [69]). Fur the r ,  > i s  s u i t a b l e  f o r  B-reduct- 
1 , 8 

i o n  i n  f r e e  A-calculus ( T a i t ,  Martin-LBf, i n  Barendregt [2]  ) and i n  t h e  
N 

genera l i zed  typed A-calculus (Nederpelt [ 5 1 ] ) .  I n  f a c t ,  > i s  s u i t a b l e  
1 

f o r  t h e  combination of a l l  t h e  elementary reduc t ions ,  except o and E,  

provided we l eave  o u t  the  type- labels .  This  was proved f o r  Bqr-reduc- 

t i o n  by Mann [ 431  ; he a l s o  ind ica ted  t h e  problem with u a s  explained - 
i n  sec  I1 8.4. Below we prove the  s u i t a b i l i t y  of  > f o r  f r e e  A-cal- 

1, Brl 
c u l u s ,  s impl i fy ing t h e  proof of Mann. 

6.3.  A proof of 6q-CR i n  f r e e  A-calculus 

- 
6.3.1. Th i s  p r o o f v i a  the  s u i t a b i l i t y  of > f o r  f r e e  A-calculus 

1 1 Brl 
(which f a c t  was claimed by Barendregt [21 ) i s  j u s t  s l i g h t l y  more in-  

volved than i n  t h e  6-case, i n  c o n t r a s t  wi th  Mann's proof which is  un- 

n e c e s s a r i l y  complicated. A s  explained i n  sec .  6.1.5, t h e  s u i t a b i l i t y  

i s  s u f f i c i e n t  t o  prove CR.  

6.3.2. The express ions  a re :  va r i ab les  x, 1-expressions Ax-A, app l i ca t ion  

express ions  BA. By wr i t ing  A ' ,  B '  we i m p l i c i t l y  in tend  t h a t  A > A ' ,  

B > B ' ,  e t c .  The elementaryreductionsare, a s i n  sec .  

( "  z F V ( A )  * Ax9Ax > A ' .  From sec.  3.8 we r e c a l l  

p roper ty  V: BUA] > B'BA' 1. 

6.3.3. I f  Ax-A > B then e i t h e r  (1) B 2 Ax*A', o r  (2  

6.3.4. I f  BA > C then e i t h e r  (1)  C E B'A', o r  ( 2 )  B G AX-D, C E D ' U A ' ] .  

So, i f  (Xx.D)A > C then e i t h e r  ( l a )  C E ( A x * D ' ) A f ,  o r  ( l b )  D E EX, 



C 5 E'A', o r  (2 )  C D ' U A ' ] .  

6.3.5. Now we j u s t  have t o  prove t h e  diamond proper ty :  

A l  < A > A2 =$ A1 > A3 < A*.  We use  induc t ion  on A .  I f  A - X then t h e r e  

is  nothing t o  prove.  I f  A i s  a ?,-expression o r  an a p p l i c a t i o n  expression 

then we must conf ron t  t h e  va r ious  p o s s i b i l i t i e s  ( ( I ) ,  r e sp .  ( l a )  and 

( l b ) ,  and (2)  of 6.3.3,  r e sp .  6.3.4) of reducing A t o  A and A with 
1 2 

each o t h e r .  I n  both  cases  (A i s  A-expression o r  no t )  t h e  combination 

( 1 ) v .  (1)  ( i . e .  A > A l l  A > A2 both by " i n t e r n a l "  r educ t ion)  , ( 2 ) v .  (2)  

( i . e .  A > A A > A2 both  by an "outs ide"  reduc t ion)  and ( l a )  v. (2 )  
1 ' 

a r e  j u s t  s tandard.  

6.3.6.  So, l e t  ( ( l b ) ~ .  ( 2 ) )  A - XX.(AY.D)X, X # w(D) A1 - l x * D ' u y / ~ D ~  

A 2  z El Ay*D > E . Applying t h e  ind.  hyp. t o  Ay * D  we f i n d  A j  with 

Xy-D' > A j  < E. s i n c e  x j! EV ( D l  ) , Xy-D' E Az-L)'[y/x], s o  A 3  does t h e  

work. 

6.3.7.  And, l e t  ( ( l b ) v . ( 2 ) )  A -(Xx*Ex)D, X # FV(E) ,  A1 E'D', 

A2 z FUD"], Ex > F,  D > D M .  Applying t h e  ind.  hyp. t o  EX and t o  D we 

f i n d  H and D"' wi th  F > H < E'x,  D '  > D"' < D". By t h e  s u b s t i t u t i o n  

p roper ty  FUD" lj > HUD"'] < (E'x) [D '  ] - E'D' (because x (C W (E' ) ) . So 

11.7. Combined reductions 

7.1.1. I n  some cases  d e s i r a b l e  p r o p e r t i e s ,  such a s  N, SN and CR, f o r  a 

combination o f  reduct ion r e l a t i o n s  2 and 2 '  can appropr ia te ly  be 

proved by f i r s t  consider ing 2 and 2' s e p a r a t e l y  and then use  c e r t a i n  

connections between 2 ,  2 '  and t h e i r  "union". An example of t h i s  can 

be found i n  sec .  5.3.4 (second h a l f )  . 
I n t e r e s t i n g  ques t ions  on t h e  connections of 2, 2 '  and t h e i r  "union" 

a r e  whether 2 and 2 '  c o m t e  ( c f .  sec .  7.2 below) and whether >'-post- 

ponement holds  ( c f .  sec .  7 . 3  below) . 

7.1.2. L e t i  and j s t and  f o r  (combinations o f )  elementary reduct ions ,  

and l e t  i j  r e f e r  t o  t h e i r  "union". E.g. i f  i denotes  Bq and j denotes 

6 then i j  s t and  f o r  Bq6 . We w r i t e  > > 2 e t c .  f o r  t h e  corres-  i' l , i l  i 

ponding (one-step) reduct ions .  We use  S e t c .  i n  t h e  usua l  sense.  i 



We say t h a t  C > > r r  resp .  
' i 2 j  

r ,  i f  f o r  some A ,  C > .  A > .  I' 
i j 1 1 

resp .  C  > .  A 2  r .  S i m i l a r l y  2  z and 2 . 2  . 
1 j  i j  1 j  

The no ta t ion  C I.< r i s  used f o r  r > > C e t c .  
1 j  j - i  

7.2.1. Church-Rosser f o r  combined reduct ions  

I n  S t a p l e s  [65] *) w e  f i n d  some ingenious const ruct ions  f o r  proving 

t h a t  a  combined system is  C R .  Here we r e s t r i c t  ourse lves  t o  some simple 

p r o p e r t i e s .  

We assume t h a t  A ,  a  s e t  of express ions ,  is  i j - c losed  ( i . e .  closed 

under r . . ) ,  and t h a t  a l l  express ions  considered a r e  elements of A .  
13 A x 

Clear ly ,  ( 2 . 2 . )  i s  j u s t  2  so  i f  2 . 2  s a t i s f i e s  t h e  diamond 
1 3  i j '  1 j  

proper ty  then we have i j - C R  - because 2 . 2  is  a  s u i t a b l e  one-step re -  
1 i 

duct ion f o r  2. . , i n  t h e  sense  of sec.  6.1.5. 
13 

We say t h a t  2 .  and 2 commute i f ,  f o r  a l l  C  ( q u a n t i f i c a t i o n  a s  
1 j  

i n  0.4.2) r 

~ h u s ,  i f  i - C R ,  j-CR and 2 and 2 commute then ij-CR. 
i j  

7.2.2. When do 2  and 2  commute? 
i j  

We g ive  an  a n a l y s i s  analogous t o  sec .  II .G.l .Define,  f o r  one-step 

reduct ions  > and > 
i j  ' 

(i diamond property : r < . c >  A + r  >i C 1  < .  A 
3 3  

(ii) trapezium property : r < .  C > A - r 2 C '  < .  A 
3  i i 3  

(iii) plank property : r < .  c z  ~ a r 2  c1 < .  A 
3  i i 3  

! iv)  weak plank property : r < .  c 2  A 2 C' 5 .  A 
3 i i 3  

iv )  weak diamond proper ty:  r < . c >i A a r r C I  < A 
I i j  

A s  i n  sec .  6.1.3 , (i) * (ii) (iii) ( i v )  @ (2i and 2 commute) a (v)  . 
j 

And i f  ij-SN, > and > s a t i s f y  (v )  then a l s o  2 and 2 commute 
i j i j  

( a s  i n  sec .  6.1.4) . 

7 .2 .3 .  So, j u s t  a s  i n  t h e  case  of ordinary  C R ,  t h e r e  a r e  two p o s s i b l e  

ways of proving t h a t  2  and 2  commute ( v i z .  with and without SN). 
i j  

With SN, it i s  s u f f i c i e n t  t o  prove t h e  weak diamond proper ty  f o r  > 
1  ,i 

and > . But without SN, we r a t h e r  look f o r  a  compound reduct ion > 
1  , j  i 

* See a l s o  de  ~ r u i j n  [19] 



such t h a t  > and, say,  > s a t i s f y  a t  l e a s t  t h e  trapezium proper ty .  
i 1 ,j 

7.2.4. The a n a l y s i s  of sec .  8 provides  us  with t h e  weak diamond pro- 

p e r t y  f o r  a l l  combination of q-, rr-, 6-, 6- and +-reduction ( b u t f o r  t h e  
0 

type- labe l s ,  of c o u r s e ) .  Let  > s tand  f o r  t h e  r e f l e x i v e  c l o s u r e  of 
1 ,i 

( i . e .  c o n t r a c t  one o r  ze ro  i - r e d i c e s  a t  a t i m e ) .  Then sec .  8.8 
> I  ,i 

0 0 0 

a l s o  shows t h a t  a l l  combination of > > and > s a t i s f y  t h e  
1 ,  o l , +  0 

diamond p roper ty ,  and t h a t  a l l  combinations of > ( resp .  with 
116 

> , > and > s a t i s f y  t h e  trapezium proper ty  (modulo t h e  type 
l , r l  l , n  1 ,+  

l a b e l s ) .  I n  t h e  Bq-case t h i s  g i v e s  an  easy a l t e r n a t i v e  proof of Bn-CR 

(compare sec .  6 .3  ) f o r  t h e  f r e e  A-calculus, v i z .  from B-CR ( e .g .  by 

t h e  Tait-Martin-L6f method) and q-CR (which i s  t r i v i a l  from e.g.  n-SN). 

A simple v a r i a n t  of  t h e  CR-proof i n  sec .  6.3  (o r  r a t h e r o f  t h e  

CR-proof i n  chapter  111, sec .  3 . 3 )  shows t h a t  3 and > s a t i s f y  
- 118 

t h e  trapezium proper ty :  r < C > A + r C' < A .  A l t e r n a t i v e l y ,  - 1,B 116 1 1 6  
one can prove t h a t  > and > toge the r  s a t i s f y  t h e  diamond proper ty .  

116 1 1 6  
Resuming, q-, rr-, 6-, 6- and +-reductions commute wi th  each o t h e r  

( b u t  f o r  t h e  t y p e - l a b e l s ) .  

7 .2 .5 .  Fur the r ,  sec .  8.8 y i e l d s  some negat ive  r e s u l t s  about t h e  com- 

muting of r educ t ions ,  even i f  we ignore  t h e  type- labels .  F i r s t  t h e r e  

i s  t h e  BE-problem. 

Secondly, t h e r e  a r e  t h e  problems with a and c :  n e i t h e r  a nor E 

commutes wi th  any o t h e r  reduct ion.  

7.3.1. Postponement 

For some c a s e s  of i , j  no "new" i - r e d i c e s  a r e  c rea ted  by j-reduc- 

t i o n s ,  and t h e  i - con t rac t ions  i n  an i j - r e d u c t i o n  can be c a r r i e d  o u t  

f i r s t .  Th i s  p;operty i s  c a l l e d  i j -postp~nemenk,  f o r  s h o r t  i j - P P .  We 

say t h a t  C s a t i s f i e s  i j-PP i f  

and we say t h a t  i j -PP holds i n  a s e t  A i f  a l l  C E A s a t i s f y  i j - P P .  
C 

C l e a r l y  we have i i - P P .  Use t h e  index i f o r  t h e  "converse" i - r e -  

duct ion:  

f 4- 
C 2i I' :H C 5 r .  S i m i l a r l y  > e t c .  

i i 



f 
Then i j - P ?  i s  s t r o n g l y  connected wi th  i j  -CR. I n  f a c t ,  i n  a closed 

(ander 2 .  . )  s e t  A, ij-PP i s  equivalent  wi th  t h e  proper ty  
1 3 

i . e .  2t and 2 commute i n  t h e  sense of 7.2.1. 
3 i 

7 . 3 . 2 .  When does postponement hold? 

Let  us  conf ine  t h e  d iscuss ion t o  a c losed (under 2 ) s e t  A .  Since 
i j 

the  ques t ion  of i j-PP j u s t  amounts t o  t h e  ques t ion  whether 2 and 2: 
i 3 

ccmiute,  we can simply follow the  development i n  sec .  7.2. Define, f o r  

one-step reduc t ions  > and > 
i j 

( i) trapezium proper ty  I : C > > r + C 2 .  > r 
j i 1 I 

(ii) trapezium proper ty  11: C > . > r * C > . 2  r 
I i 1 j 

Since  both trapezium p r o p e r t i e s  imply i j -PP,  it i s  s u f f i c i e n t  

f o r  ij-PP t o  i n d i c a t e  a s u i t a b l e  one-step reduc t ion  > ( resp .  > . )  
j I 

s a t i s f y i n g  trapezium proper ty  I ( resp .  11). 

~ u t ,  i f  we have i-SN, we can do with a weaker form of ( i i ) ,  

So, assuming i-SN, we can use  induct ion on t h e  well-founded re-  

l a t i o n  > .  and prove i j-PP, a s  follows: l e t  C 2 . 2  r .  I f  C 2 I- t he re  
I. J i j 

i s  nothing t o  prove. Otherwise, C 2 . >  r 2 r ,  f o r  some r l .  By 
J 1 1 i 

{iv), Z > C 2 r l .  By t h e  induct ion hypothes is  appl ied  t o  C1 we 1 , i  1 i j  
fir5 t h a t  Z1 Z i t j  r q.e.d. 

7 . 2 . 3 .  Some r e s u l t s  

The f a c t  t h a t  f3q-PP holds belongs t o  t h e  t r a d i t i o n  of t h e  f r e e  

A -ca lculus .  Nederpelt '  s proof ( i n  [ 5 l ]  ) shows t h e  trapezium proper ty  I - 
f o r  t h e  combination of > and > . A s  Nederpelt p o i n t s  o u t ,  Curry ' s  

118 1117 
proof i n  [25] which ins tead  aims a t  t h e  trapezium proper ty  I1 f o r  a - 
ccnpound one-step B-reduction (with > ) is  d e f e c t i v e  (though > 

1117 1, E 



would have worked) . 
From sec. 9.2.4 it is clear that the following combinations of 

reductions satisfy property (iii) of sec. 7.3.2: of > with > , of 
1 16 1 tn 

> with> , and of > with > Assuming some weak type re- 
1 110 1,6+ 1,n. 

strictions (clearly satisfied by correct Automath expressions) we also 

get property (iii) for > with > and for > with > . This, 
1 1 8  1 , u 1  1 ,n 1 t'l 

together with the appropriate SN-assumptions, yields that the com- 

bination of the I.E. reductions (sec. 3.3) 6n+ with the ext-reduc- 

tions u and 0 allows postponement of these ext-reductions. 

Alternatively, we can extend Nederpelt's construction to these - 
cases, with the nested version > (and get PP without resorting to 

1 ,no' 
SN) . 

Anyhow, €-reduction is an exception: its postponement is not pos- 

sible, viz. in combination with B+-reduction. 

7.3.4. As an application of PP in general, we give the following theorem: 

if i-SII, j-SN and ij-PP then ij-SN 

Proof: Let C be an expression. By induction on the i-reduction tree 

of C we show that all ij-reduction sequences of C are secured. Let 

C rl > r2 . . . . By PP, for all kt C 2.2 
1 j rk 

. The j-reduction 
tree of Z is finite, so, if for all k, 1 2j rk, the reduction sequence 

is finite (whence secured). Otherwise, for some proper i-reduct 1' and 

some r in the reduction sequence, C' 2 r. By induction hypothesis, i j 
C' is SN, so r is SN so the reduction sequence is secured q.e.d. 

7.3.5. In fact it is more straightforward to prove the theorem from 

property (iii), section 7.3.2. (which holds in all our PP-cases), 

directly: 

If i-SN, j-SN and property (iii) holds (i.e. 2 2 * > ) then j 1,i 1,i ij 
ij-SN. 

Proof: Let C be an expression, let C rl r2 ... . Again, we 
use induction on the i-reduction tree. If the reduction sequence just 

contains j-reductions, then it is finite, by 

C 2 ,  r > 
3 k l,i rk+~ 

. By (iii), for some C', C 

BY the ind. hyp. C' (so r ) is ij-SN, and k+ 1 
secured q.e.d. 

As a corollary of this, we have 6-SN =+ 

j-SN.Otherwise, for some k, 

> C' 2 
l,i ij 'k+ls 

the reduction sequence is 



7.4.1. Weak postponement 

For some cases of i,j, indeed no essentially new i-redices are 

created by the j-reductions, but if one starts with carrying out the 

i-contractions, possibly too many i-redices are contracted. We say 

that wea;: ij-postponement (weak ij-PP) holds, if for all C , 

In particular, as sec. 9.3.1 shows, we have only weak 6 B -PP . 
There are two relevant ways of proving weak ij-PP, viz. with and 

without use of i-SN. First, without i-SN. We introduce some properties: 

' i C > .> r * C > . >  I r (a kind of weak trapezium 
I i 1 j 1 

property I ) 

iii) C 2 > r * C > 2 2 .  (a kind of plank property) 
j i i j  1 

Assume that i- and j-reduction commute. Clearly, (iii) implies weak 
. . LJ-PP , and (by induction on 2 , )  (i) implies (ii) . Further, if > . sa- 

3 1 
tisfies the plank property for CR (< t * 2 .  < .  ) , then (ii) implies (iii) . 

i i 1 1  

So: if 

1 > sat is fie,^ the plank property for CR, 
i 

! 2 )  i and j commute, 

: 3 )  property (i) holds, then we have weak ij-PP 

(hence without using SN). 

Then, with SN. We introduce a weak form of property (iii) sec. 7.3.2. 

;.ssume that i-reduction and ij-reduction commute. Then (iv) gives, by 

induction on > . ,  
3 

Ey induction on i-reduction trees, we get: 

if (1) i-SN, ( 2 )  i-CR, (3) i and j commute (so, with i-CR, i and ij 

commute) , (4 )  property (iv) holds then weak ij-PP. 

'.4.2. As a corollary of (1) i-CR, (2) i and j commute, (3) weak ij-PP, 

, 4 )  i-N (i.e. i-normalization) we get: C 2 ,  r * i-nf(1) 2 .  i-nf(r). 
3 3 

An alternative way of getting the latter property (which, in turn, in- 

piies weak ij-PP) avoiding the question whether i and j commute, is 



from: (1 )  i - C R ,  ( 2 )  i - N  , ( 3 )  weak i j-PP and ( 4 ) :  f o r  a l l  C, 

r 1 2 ,  n = . r  X I S  c .  
j 1 i i j  

7 . 4 . 3 .  Sec t ion  9 . 3 . 4 l e a r n s  us t h a t  6j-PP holds f o r  a l l  r educ t ions  j  

except +reduct ion.  This  can be proved e i t h e r  from 6-SN (Chapter 111) 

and p roper ty  (iii) s e c t i o n  7.3.2 o r  without 6-SN, by showing trapezium 

proper ty  11 (sec .  7.3.2) f o r  7 and > 
116 l , j '  

Fur the r  6 commutes with a l l  reduct ions  b u t  a and e .  For t h e  l a t t e r  

two reduc t ions ,  however, we can prove (wi th  o and E i n  t h e  r o l e  of j ) :  

So, assuming 6-CR and 6-N, f o r  a l l  reduct ions  j  bu t  8 we have a l ready :  

c r r 6-nf ( c )  r 6-nf ( r )  
j  j 

F i n a l l y ,  we have weak 6i3-PP1 with use  of 6-SN and p roper ty  ( i v )  

above, o r  a l t e r n a t i v e l y  from proper ty  (i) above ( q u i t e  simple,  with 

> and > ) .  So, i n  t h i s  case  too ,  i f  6-N and 6-CR then 
l l &  110 

7 .4 .4 .  For t h e  r e s t ,  weak postponement i s  j u s t  what we g e t  i n  t h e  

following s i t u a t i o n :  l e t  D l  and D2 be d i s j o i n t  s e t s  of d e f i n i t i o n a l  

cons tan t s ,  l e t  2 , resp .  2 denote t h e  reduc t ion  r e l a t i o n  genera- 
6 ~ 1  6 ~ 2  

t ed  by c o n t r a c t i n g  cons tan t s  from D ( r esp .  D ) exc lus ive ly .  I f  
1  2  

d e f i n i n g  axioms of t h e  cons tan t s  i n  D do not  conta in  cons tan t s  
1  

the  

i n  D: - 
then we have weak 6 6 -PP.  

D2 

11.8. An informal analysis  of CR1 

8.1. I n  presence of SN, t h e  weak CR-property C R  i s  s u f f i c i e n t  f o r  C R  
1  

( s e e  sec .  6.1.5). Anyhow, f o r  the  h e u r i s t i c s  of a CR-proof an a n a l y s i s  

of CR1 i s  indispensable .Let  i and j  i n d i c a t e  kinds of elementary re -  

duc t ion ,  such a s  8, q e t c .  Let  C be an  express ion,  with an i-rePex 

B c C and a  j-redex S c C .  By c o n t r a c t i n g  R t o  R' ( resp .  S t o  s ' )  we 

g e t  i >, r ( r e s p .  C > A ) .  We want t o  f i n d  o u t  whether h a n d  C 
1  , I  

have a  common reduc t  C '  and i f  so ,  by what kind of and by how mazy 

c o n t r a c t i o n s ,  1' can be reached from I' and A .  I n  the  informal d i s c u s s i c ~  



below a l l  p o s s i b l e  cases  a r e  sys temat ica l ly  t r ea ted ,accord ing  t o  t h e  

r e l a t i v e  p o s i t i o n s  of t h e  r e d i c e s  R and S. 

8.2.  The f i r s t  p o i n t  i s  of course,  t h a t  e i t h e r  ( a )  R and S a r e  d i s -  

j o i n t ,  (b )  R : S,  ( c )  R s u b  S o r  (d )  S s u b  R . I n  case  ( a ) ,  the  con- 

t r a c t i o n s  j u s t  commute: 

l- = - ... R...S... > r z ...;it... S... > 
1 ,i 1 , I  

C '  = ... R' . . .S t  ... < A E ... R. . .S r . . .  < , C . 
1 .i 111 

AS f o r  case  ( b ) ,  i f  we assume t h a t  

( * )  f o r  each d e f i n i t i o n a l  cons tan t  on ly  one de f in ing  axiom i s  given,  

=hen a l l  elementary reduct ions  a r e  mutuazly exclusive. 1 .e .  i f  Ri-con- 

t r a c t s  t o  R' and R j -con t rac t s  t o  S' then i and j  r e f e r  t o  t h e  same 

kind of r educ t ion  and R' : S ' .  So, under assumption ( * I ,  which i s  in -  

deed f u l f i l l e d  i n  t h e  Automath system of abbrev ia t ions ,  i n  case  (b )  

f o r  a common reduct  we can t ake  C '  I'(E A ) .  

Case ( c )  i s  discussed i n  sec.  8 .4  and f u r t h e r .  Case (d) can of 

course  be reduced t o  case  ( c )  by interchanging i and j, R and S. 

8 .3 .  About express ion v a r i a b l e s  i n  schemes f o r  reduct ion 

The elementary reduc t ions  a r e  formulated i n  schematic form, i . e .  

with meta-variables f o r  express ions  i n  them. For ins tance ,  i n  t h e  

scheme of @-reduct ion "(A}[z:B]C elementary reduces t o  c U A D "  ( i n  

sec .3 .21) ,  t h e  meta-variables A,B,C a r e  t h e  expression v a r i a b l e s  of 

t h e  scheme. 

For each of the  schemes, a l l  of i t s  expression v a r i a b l e s  occur 

(of course:)  a t  l e a s t  once i n  t h e  lef t -hand s i d e  ( redex) .  Let  X be an 

express ion v a r i a b l e  of a scheme f o r  reduct ions .  We d i s t i n g u i s h  t h r e e  

cases  : 

(i) X disappears i n  the  contractum (such a s  B above) 

(ii) X occurs j u s t  once i n  t h e  contractum, poss ib ly  the re  i s  sub- 

s t i t u t e d  i n  X (such a s  C above). 

(iii) X i s  poss ib ly  muZtipZied by s u b s t i t u t i o n  (such a s  fi above). 

For a l l  kinds of reduct ions ,  except a and E,  the  expression var-  

i a b l e s  occur p r e c i s e l y  once i n  the  redex. To these  two except ional  

cases  we r e f e r  a s  the  ' b i n  reductions (because of t h e  twin occurrences 



of  t h e  meta-var iable ,  e .g.  of X i n  <X( ,x f2)> ) . 

8.4. Case ( c ) .  Le t  R S U ~  S,  S  j - con t rac t s  t o  S ' .  Dis t ingu i sh  t h e  f o l -  

lowing cases :  

( c l )  R c X f o r  some ins tance  X of a meta-variable of t h e  j-redex 

(c2) no t  ( c l )  , so  R forms an essentiaZ part  of S (such a s  [x:B]C 

i n  {A)[x: BIC)  . 
Now, u n l e s s  j  r e f e r s  t o  a  twin reduct ion and R c X for some in-  

s t a n c e  X of a  twin occurrence,  i n  c a s e  ( c l )  t h e  j-redex i s  no t  s p o i l t  

by t h e  i - con t rac t ion .  For common reduc t  C '  we t ake  t h e  r e s u l t  of simply 

c o n t r a c t i n g  t h e  modified (by t h e  i n t e r n a l  i - con t rac t ion)  j-redex i n  r .  
From A we can reach C '  by i - con t rac t ing  nothing ( i f  X d i sappears ,  i . e .  

case  (i) , sec .  8 .3)  , i - con t rac t ing  one poss ib ly  modified (by sub- 

s t i t u t i o n )  occurrence of R ( i f  X occurs  once, i . e .  c a s e  (ii) , sec .  8.3) 

o r  i - con t rac t ing  poss ib ly  more d i s j o i n t  occurrences of R ( i f  X mul t i -  

p l i e s ,  case  (iii) , sec .  8.3) . So C > l  r > ~8 7 
1 , i  A < I , ,  

z 
l , j  - 

(where > i s  d i s j o i n t  one-step i - reduct ion)  . 
1 ,i 

Examples : 

(1) j i s  B,  X "occurs once", use s u b s t i t u t i o n  p roper ty  I ,  sec .  3.8: 

(2) j i s  6 ,  X "mul t ip l i e s" ,  

I n  c o n t r a s t  wi th  t h i s ,  i f  j r e f e r s  t o  a  twin c a s e  and R c X f o r  

some " twin v a r i a b l e "  X I  then t h e  j-redex is  s p o i l t  by t h e  i - c o n t r a c t i o c  

indeed - b u t  can be r e s t o r e d  by i - con t rac t ing  t h e  o t h e r  twin a s  wel l .  

So, s i n c e  twin v a r i a b l e s  occur j u s t  once i n  t h e  contracturn (case  ( i i) ,  

sec.  8.31, f o r  some r ' ,  C ' ,  C > l , i  r r '  > Z' c l r i  A I. 
1 , j  

Hence, i n  t h i s  case  i and j not commute. An example (where j  r e f e r s  



8.5. Case (c2): R is an essential part of S. Notice that there are 

two possibilities: 

(1) j is an 1.E.-reduction, i is the corresponding ext-reduction. 

(2) i is an 1.E.-reduction, j is an ext-reduction. 

Case (c21). Here are three cases, n v. 6, a v. n and E v. +. In 

the first two cases there is no problem, even if type-labelsare pre- 

- A, so we can take C '  5 r too. sent: r = 

( p =  1 or p = 2). 

The case of E v. + is more complicated. First, there is an additional 

E-reduction needed. Secondly, there are problems with the type-labels. 

- \ 

=-; R 3 ( C x:B I{il (x,D1) 1C) e ( I x:B21Ci2(~,D2) IC) , 3' E C , 1 

So,  ln this case, r < C > A > A' with r 5 A' but for the 
1 , ~  I t +  1 t B  

-. cdpe Zabels. Hence, without type-labels, C '  : I' A' can serve as a 

carnmon reduct. But with type-labels type-restrictions have to be im- 

posed in order to guarantee that D [A] and D are definitionally 
P 3 

equal (and may have a common reduct). 

- - 
2 .0 .  Case (c22) covers 6 v. Q,T v.0, + v. E and B v. E .  In the first 

b-o cases CR holds but for the type-labels. In the third case addi- 
1 

t~2nai ?-contractions areneeded (compare with 8.5, E v. + ) ,  but in the 

f s u r t h  case CR (so CR) simply does not hold at all. 
1 

! 2 - )  [x:A]C < Cx:A]{x)[x:B]C > [x:B]C 
118 

x # FV(B) . 
1 1 1 7  

Sc here, r 2 A but for the type-labels. Regarding n v. a, the situation 

csnpares with the twincase in 8.4:an additional T-reduction is needed. 

I -:I <P,A,E>< <P,A,<&,A,B>(2)> 
1 









































































































In the third place, we mention de Vrijer's definition method of 

Ah in [ 7 0 ]  . He starts with the simultaneous introduction of the correct 
E- and Q-formulas, and after that defines correctness of expressions in 
terms of E, Q and typ.  

1.2. Some general points on the language theory 

A priori it is not clear that the various definition methods gener- 

ate the same structure (of correct expressions, with typing and equality). 

So one might think that the language theory has two aims, viz. (1) 

proving the equivalence of the various formulations, and (2) proving 

that the generated structures satisfy some specific desirable properties 

(sec. 1.3). 

However these aims can hardly be separated: properties are first 

?roved for one formulation, then the equivalence is established and 

finally the properties are transferred to the other formulation, via 

the equivalence. 

A simple example of this situation: for the system given by the 

algorithmic definition, decidability is just a matter of termination 

of the algorithm, i.e. normalization (as Nederpelt points out [51]). 

So, by the results in Chapter IV, if a system can be proved to be 

equivalent to the "algorithmic one", it is decidable. 

As a second illustration, we sketch roughly how the development 

below is organized. For the terminology see 11.4.7 and for the kind of 

reasoning see 11.5.4, where for A we take t now. 
We work with three systems: I and I1 are given by an E-definition 

and I11 is the algorithmic definition. The three systems essentially 

just differ as regards their Q-rules. In system I, Q is defined to be 
the equivalence relation generated by >L (but realize that Q and 1 
are introduced simultaneously). This is the restricted "technical" 

version of the E-definition, which we present in section 2, and take 

as the starting point for the development in section 3. In system 11, 

is -I-* i-e- 
the transitive closure of + . This is the liberal form t 

of the E-definition, which we think is most suitable for practical 

purposes, as a reference manual, say. 

In system 111, the algorithmic definition, which we give in section 

4, 0 is defined to be just + . t 



We say that a system satisfies CLif its correct expressions remain 

correct under reduction, and that it satisfies CR if its correct ex- 

pressions are CR. Clearly, both I and 111 are contained in 11, since 
11 has more liberal rules for Q. Further, if I satisfies CL then I and 
I1 are equivalent, as is proved by induction on the definition of 

correctness in system I1 (see sec. 2.11.2). Also by induction on 

11-correctness it is proved that I1 and 111 are equivalent, if I11 

satisfies CR. Now, in section 3 we prove that I satisfies CL, and in 

Chapter VI we prove (roughly) CL 4 B~G-CR (for the f3G-case we know CR 
already). This gives CR for 11, so CR for 111, so it shows that all the 
three systens are equivalent, and satisfy CL and CR. 

An approach, alternative to the one sketched above, is given in 

Chapter VII. There the algorithmic definition serves as a starting 

point and CL and CR are proved simultaneously, using induction on 
socalled big trees .  

1.3. What are the desirable properties? 

As desirable properties for the structures of correct expressions 

generated, we mention: 

subs t i tu t i v i t y :  correctness of expressions and formulas is pre- 

served under substitution with correct expressions of the right 

types. 

closure (CL) and preservation of types (PT) : correctness of 

expressions and formulas is preserved under reduction. 

the Church-ROsser property CR, and the weak Church-Rosser theorem 

(see Chapter 11.sec.5.4) : A Q B * A .I. B 

(strong) normalization ( S )  N and decidabiZity 

properties for Q, which show that Q behaves as an equality, 
such as: 

- the lefthand-equality rule LQ: A E B ,  A Q C * C E B 

(the righthand-equality rule is included in the definition) 

- monotonicity rules:  A Q B ,  C Q D - 1A)C Q {BID, etc. 

uniqueness properties 

- uniqueness of types: A E B ,  A.E C * B Q C 
- uniqueness of domains U D :  [x:A]B Q [x:C]D ~9 A Q C (and B Q D) 

- extended uniqueness of domains E U D :  Cx:AlB E Cx:CID - A Q C 

(and B E Dl. 



Of course in the presence of type-inclusion (in AUT-QE), only restricted 

forms of uniqueness of types and property LQ (see sec. 1.7) are valid. 

It depends on the choice of a definition method and on the 

language defined, which of the above properties are basic and which 

can be derived from these basic ones. Anyhow, SN, 6q-CR and 66-CR we 

know already. The discussion below starts with substitutivity (sec. 2.9) 

and ends with pq-CR (Chapter VI) and decidability (section 4, as sketched 

in 1.2). In between, (ii) and (v) and (vi), which turn out to be connected, 

are considered more or less simultaneously. In fact, first PT, LQ and 
UD and the property of 

(vii) souzd appzicability SA: (A)Cs:BlC correct * A E B 
are proved simultaneously, by a careful induction on degree. Then follows 

ane-step closure CL1 by induction on correctness, and finally CL, by 
induction on 2. 

1.4. Some points on closure 

Apart from the specific role which closure plays in our discussion, 

LC is of course important as a technical property, in view of 11.5-6. 

Zompare, e.g. IV.2: the point of the generalization from the correct 

sxpressions to the normable expressions, lies precisely in the fact 

chat the normable system is "large enough" to prove closure for it in 

a relatively easy fashion (in contrast with closure for the correct 

expressions), and small enough to prove (strong) normalization for it, 

n t h  the help of closure. 

The normalization properties and CR are nicely preserved under 

certain forms of taking subsystems(II.5.2.2 and 11.5.3.4). So it is 

r~fficient to prove these properties for some "large" systems: norma- 

lization for the normable expressions, 66- and 716-CR for all the ex- 

sressions, and $$-CR under fairly general conditions in Chapter VI. 

The closure property however, in spite of 11.5.2.2, poses a 

separate problem for each particular language, because correctness 

is defined in terms of reduction. 

Further we must stick to a particular definition, since in the 

proof of closure we often apply induction on the definition of correct- 

ness. Only after closure has been proved, some important derived rules 

foilow and equivalence with the alternative definitions can be estab- 



l i s h r l ? .  

Never theless ,  we t r y  and give  a uniform t rea tment  of t h e  va r ious  

l a n g ~ a g e s  he re ,  by s p l i t t i n g  up the  c l o s u r e  proof i n  the  p a r t s ,  common 

t o  a l l  t h e  languages ( e  .g .  s u b s t i t u t i v i t y ,  C L 1  * CL, e t c .  ) , and the  

p a r t  s p e c i f i c  f o r  each p a r t i c u l a r  language, i . e .  t h e  proof of SA, UD, 

PT and L Q .  The s p e c i f i c  p a r t  i s  given q u i t e  e l a b o r a t e l y  f o r  t h e  "worst  

case" ,  6 ~ - A U T - Q E  (and i t s  e x t e n s i o n s ) ,  i n  sec .  3.2 and 3 .3 ,  and j u s t  

sketched f o r  t h e  simpler languages, such a s  86-AUT-QE, Bn-AUT-68 e t c .  

( sec .  3 . 4 ) .  I n  f a c t ,  f o r  t h e  simpler languages the  s p e c i f i c  p a r t  

simply vanishes ,  i n  which case  t h e  whole c losure  proof b o i l s  down t o  

the  simple c l o s u r e  proofs  i n  Girard [31] and Martin-Lof [ 4 5 ] .  

1.5.  Summary 

Sec t ion  2 s t a r t s  with a l i s t  of induc t ive  c l a u s e s  f o r  establishing 

c o r r e c t n e s s  of express ions ,  E- and Q-formulas, r e l a t i v e  t o  c o r r e c t  

book and con tex t ,  a s  i n  the  previous chap te r .  E-def i n i t i o n s  for  p a r t i c ; l l s -  

languages a r e  s p e c i f i e d  by i n d i c a t i n g  (1 )  a reduct ion re la t io r i  (5-re- 

duct ion wi th  o r  without 6 and 17) , (2 )  p o s s i b l e  degree r e s t r i c t i o n s ,  

(3)  a p a r t i c u l a r  s e t  of r u l e s  from t h e  l i s t .  I n  order  t o  avoid con- 

f u s i o n  we r e s t r i c t  ourse lves  here  t o  t h e  regu la r  languages ( i . e .  de- 

g r e e s  only 1 ,  2 and 3 ) ,  from 8-AUT-68 t o  BnG-AUT-QE+. Then we prove 

some simple p r o p e r t i e s  (renaming of con tex t s ,  s u b s t i t u t i v i t y ,  c o r r e c t -  

ness  of c a t e g o r i e s )  and g ive  a s h o r t  d i scuss ion  of some of t h e  r u l e s .  

Sec t ion  3 d e a l s  with t h e  a c t u a l  proof of c losure  and t h e  connect€, 

p r o p e r t i e s  ( i . e .  ( i i ) ,  (v), ( v i )  and ( v i i )  above) f o r  t h e  whc-s range 

of r e g u l a r  languages,  a s  f a r  a s  t h e s e  p r o p e r t i e s  a r e  v a l i d  ( x i  view cf 

type- inclus ion)  . F i r s t ,  h e u r i s t i c  cons ide ra t ions  ( sec .  3.1) p o i n t  

o u t  how t h e  connections can be,  and how t h e  proof might be organized 

i n  t h e  more complicated cases  (such a s  Bq-AUT-QE). Secondly, t h e  proof 

is a c t u a l l y  c a r r i e d  o u t  f o r  Bq-AUT-QE ( s e c .  3 .2 ) .  Af ter  t h a t ,  v l  a 

an u??esse??tiaZ extension r e s u l t ,  a l l  the  p r o p e r t i e s  a r e  t r a n s f e r r e d  

t o  3qC-AUT-QE+ ( sec .  3 . 3 ) .  F i n a l l y ,  it i s  shown, t h a t  f o r  a l l  the 

simpler languages (Bq-AUT-68, B6-AUT-QE(+) , e t c .  ) e a s i e r  proofs  car. 

be given,  which use the  more l i b e r a l  E-def in i t ion I1 ( see  1.2) i n -  

s t e a d  of I a s  a s t a r t i n g  p o i n t  ( sec .  3 .4 ) .  

we claim t h a t  t h e  r e s t r i c t i o n  t o  degrees 1 ,  2 and 3 i n  t h e  c losure  

proof of Bq-AUT-QE i s  n o t  e s s e n t i a l ,  and t h a t  t h i s  proof can b~ e a s i l y  



adapted for A ( + ) ,  using the results on norm-degree-correctness in 

VII.2.2. 

Section 4 contains the details of the equivalence proof sketched 

in 1.2 above. First it is shown how, in principle, the verification of 

correctness can be reduced to the verification of equality. Typ-functions 

for the various languages are discussed. Then we present the algorith- 

mic system (like system I11 above) and an "intermediate" system (like 

system 11). However, the situation is more complicated than sketched 

above, because the equivalence proofs in 4.3.2 and 4.3.3 are also used 

for proving the socalled strengthening ruZe superfluous (see below). 

Finally some remarks on the actual verification are made (sec. 4.4). 

1.6. Complication 1: the strengthening rule 

Of course, if an expression or a formula is correct relative to 

a book and a context, its constants are in the book and its free 

variables are in the context. The strengthening rule is connected with 

the converse question: In systems such as I, I1 above, which have rules 

for the transitivity of Q, it is a priori not clear that a correct 

equality A Q B can be established via expressions containing only 

variables and constants occurring in A or in B .  So it might be possible 

that a proof of correctness of A, or of A E B needs correctness of 

expressions containing variables and constants outside A (and B). 

Now for the sake of proving q- one-step-closure we have included 

a postulate, the strengthening rule, in our definition, which allows 

to skip "redundant" variables from the context. This appears to be a 

nasty rule because it might spoil the nice order on the correct ex- 

pressions induced by the definition of correctness. See, e.g., sec. 

2.10.3 and 2.14.1. 

The proof that the rule is superfluous, runs roughly as follows: 

let bI, bII and kIII stand for the correctness predicate in system I 
(as in 1.2, with strengthening rule), system I1 (as in 1.2, without 

strengthening rule), and the algorithmic system I11 (without strengthe- 

ning rule) , respectively. As in 1.2. tIII * tII (set. 4-3 -2) By CL 
for system I (sec. 3) , we have tII * 1,. 

Since in the algorithmic definition strengthening is provable as 

in Nederpelt [51]), by Cf? (for I, so for 11, so for 111, in Chapter 

VI) we can conclude I * tIII , which closes the circle (sec. 4 -3.3) . 



1.7. Complication 2: definitional 2-constants in the presence of type- 

inclusion. 

The rule of type-inclusion in AUT-QE allows us to infer A E T 
from A E [z:a]r. This shows how uniqueness of types gets lost in AUT-QE 

(bxt only for 2-expressions A). For the restrLcted form which we can 

prove instead we refer to sec. 3.2.6.1. 

A peculiarity, due to the combination of definitional 2-constants 

and type-inclusion, is that rule L Q  is violated too in AUT-QE. 

Example: if a E r, A E [x:a]r (relative to empty context, say), then 

the scheme 

L - Z : = A * ~ E T  (also with empty context) 

is correct in AUT-QE. NOW d Q A, A E Cx:al~ but not d E Cx:a]~. 

So, in AUT-QE, definitional 2-constants are not only used as abbrevia- 

tions but also for cutting down the type of the expression abbreviate6. 

As a consequence of this,definitional 2-constants in AUT-QE can lead 

to unessent ial  extensions,  which are not definitionaz extensions (sec. 

3.3 .2) .  

One might wonder why we do not take more liberal variants of 

AUT-QE, which allows d E [x:a]r as well. I n  fact, we mention such a 

variant AUT-QE* somewhere for technical reasons (~ec.3.3.11)~ but we 

do not think that this way of ignoring the typ of a definitional con- 

stant is suitable for practical purposes. 

Part of our motivation runs as follows: 

First, we do not want it for definitional 3-constants, where the defir'i- 

tion part can stand for a long proof, and the typ represents a shcrt 

theorem (1.5.2). So, we do not like it for 2-constants, for the sake cf 

uniformity. 

Notice, however, that the definition of p for the weakly normable 

expressions ( I V . 4 . 4 . 1 )  actually ignores the typ of the defined con- 

stants and only takes the def into account (otherwise p could change 

by reduction) . 

V .  2 .  On the  E-defini t i o n  

2.1. The book-and-context part of the E-definition 

2.1.1. The correct expressions with respect to a book and a context 



form a system of admissible expressions, i.e. a restricted pretyped 

system, in the sense of IV.3. The correctness of books, contexts and 

expressions is defined simultaneously with the correctness of 

E-formulas A E B and Q-formulas A Q B. 

The symbol k stands for correctness; the notation for the correct- 
ness of contexts (w.r.t. 81, expressions, E- and Q-formulas (w.r.t. 8 
ar,d j )  is respectively 8;C kr a;[ /-A, 8 ; ~  FA E B and 8 ; ~  bA Q B. 
The symbols E and Q are assumed to bind tighter than 1. 

2.1.2. For brevity we sometimes write "8;C /-A E/Q B" instead of 

" 8  ; E ;A E B respectively 8; 5 /-A C B " ,  and "8 ; &A (E/Q B) " instead of 
"l3;:r.L: respectively 8;5 /-A E B resp. 8;C /-A Q B". So statements containing 

this kind of shorthand have to be read two or three times, each time 

with a different interpretation. 

2.1.3. As in IV.3, if B;s:A then A is a 8;~-expression and hence has ' 

a degree. ~f 8;C LA EB or 8;C kA QB then B is a 8;~-expression and has 

a iegree, too. The rules for the formation of books and contexts are 

reclsely as in m.3.3.2. The two additional restrictions (see IV.3.3.3) 

are as follows: 

: i )  (tnhabitabze degree condition) an expression a can only act as the 

typ of a constant in a scheme or as the typ of a variable in a 

context, if its degree is 1 or 2. 

( 2 )  (compatibiZity of def and typ) in a scheme 5 * d ( 2 )  := A * d (z) E r 
it is required that 8 ; ~  F A  E r ,  where 8 is the preceding book. 

2.2. Some notational conventions 

2.2.1. We often assume implicitly a fixed correct book 8 and a fixed 

context 5, correct w.r.t. 8. I.e., if B;El~C then we write 

and just 

A E/Q B for 8 ; 5 k A E / Q B  

(so for formulas we omit the b-symbol in this case). 

2.2.2. At some places in the definition the degree of expressions is 

explicitly displayed as a superscript: 



k i ~  (E/Q B) o b A (E/Q B )  and degree (A) = i 

2.2.3. Formulas like A E A2 Q A3 E A4 are used as abbreviation for 
1 

A1 E A 2  and A 2  Q A3 and A E A 4  etc. 
3  

2 . 3 .  The expression-and-formula part of the definition: expressions 

The rules for the correztness of expressions and formulas fall 

apart in six groups labeled I to V1. We start with group I (correct- 

ness of 1-expressions) and group I1 (correctness of non 1-expressions). 

I. correctness of 1-expressions 

1 
1.1. T-rule: /- T 

2 1 1 
1.2. abstraction rule: b a, x E a  A * /- [x:alA 

1 
x . 3 .  application rule: A E a ,  t B Q Cx:alC - ~'{AIB 

- 
1.4. instantiation rule: if the scheme of d is in 6, with context 2 E ? ,  - - -  

and d is a I-constant then i E BCy/Bl * !-ld(~) 

1 
Notice, that the degree of A is indeed 1, if b A is derived by the 

above rules. 

11. correctness of non-1-expressions 

11. A E B *  k A  

2.4. The expression-and-formula part: E-formulas 

The rules of group 111, below, in combination with rule 11, alsc 

serve as the formation rules for the non-1-expressions. Group IV con- 

tains the type modification rules. 

111. Formation of non-1-expressions 

111.1. copy rule: 5 E ..., x E a,... *x E a 

111.2. abstraction rules: if k 2 a  then 

i+l 
111.2.~~. x E a I- B E C * ki+'~x:al~ E [x:alC 

1 2  
So of the latter are two versions, III.2.B and III.2.B . 



111.3. application rules: if A E a then 

III.3.A. B E Cx:alC 4 {AIB E CUx/AD 
III.3.B. B E C E Cx:alD * {AIB E {AIC 
111.4. instantiation rule: if the scheme of C is in 8, with context 

y E 23, then 

Note: Below we shall prove A E B - t B (correctness of categor-ies), 
which is not explicitly required here. 

IV. Type modification rules 

IV.1. type conversion: B E C, C Q D * B E D 

1v.2. type-inclusion: B E [~:~]C~:@IT * B E [G:~]T 
(where [;:GI stands for [xl;at]. . .[x -a- I) 

k' K 

2.5. The expression-and-formula part: Q-formulas 

The rules for the correctness of Q-formulas form group V. 

V. Correctness of Q-formulas 

V.1. reflexivity: FA * A  Q A 

v.2. Q-propagation: A Q B, t-C, (B > C or C > B) * A  Q C 

Note: this is indeed the most restricted version of Q, see sec. 1.2. 

2.6. The strengthening rule 

This is a technical rule, which we use in the proof of 0-CL, but 

afterwards, i.e. after having proved CL and (with help of CL)CR, as in 
sec. 1.6, prove superfluous. It is called strengthening rule because 

it permits to remove assumptions from the context. We say that is 

a subcontext of 5, for short q s u b  5, if the sequence of E-formulas 

of q is a subsequence of the sequence of E-formulas of 5. So, 

VI. The strengthening rule 

If Bico , E o  s u b  5, Eo 1 2  E o and V Qj r FV(A) -9 z ) ,  then 
Y 



2.7. Degree considerations 

2.7.1. Degree restrictions play a minor role in the E-definition. It 

is rather intended that the degree specifications ofthe various languaoes 

(see below) are satisfied automatically by a suitable choice of the 

rules of the E-def initions . 
We define (the notion of being a domain degree, etc.): 

+[z :  aIB * a has domain degree and B has value degree. 

b{A}3 * A  has argument degree and B has funct ion degree. 

2.7.2. The degree specifications for the regular  languages AUT-68, 

AUT-QE and AUT-QE+ are: 

(1) degrees admitted 1, 2 and 3, inhabitable degrees 1 and 2, 

domain degree 2 and argument degree 3 

(2) value and function degree are as in the following scheme 

AUT-68 AUT-QE AUT-QEt 

function degree 3 213 1,213 

value degree 2,3 1,2,3 lI2,3 

Languages where all value degrees are also function degrees, are said 

to be +-Zanguages: AUT-QE+ (and AUT-68+, AUT-QE*, to be defined later). 

Consequently AUT-68 and AUT-QE are non-+-ZangLUZges. 

2.7.3. No matter what rules are chosen, by induction on (i.e. cr 

the definition of correctness) it follows that 

A E B 4 A not of degree 1 

So no application expressions {CD with degree (C) = 1 and no in- 
- 

stantiation expressions c(C)where some C has degree 1, are formed, 
j 

and the rules 111.4 and III.3.A. do not give rise to substitution 

with 1-expressions (in the categories). Hence, also by induction on -, 



2.7.4. This shows, together with the explicit degree restriction in 

the rules 1.2 and 111.2, that the expressions formed and the substitut- 

ions involved are weakly degree correct (cf. Ch. IV.4.4.2). The inhabit- 

able degree restriction guarantees that only expressions of degrees 1, 

2 and 3 are formed. So, the specifications of 2.7.2.(1) are fulfilled and 

A E B * degree (A) = degree (B) + 1 

A Q B * degree (A) = degree (B) 

and all the substitutions generated by the rules are degree correct: - 
If 2 is substituted for x then, for all i, degree (A.) = degree (xi). 

1 

2.8. Specification of the languages 

2.8.1. The rules 

The difference between the definitions of the various regular 

languages only concerns the rules of abstraction, application and type- 

inclusion. A11 the other rules, and 'also 111.2 . B ~  (for abstraction 

expressions of degree 3) and III.3.A (application) are present in each 

of the definitions. 

For the r e s t  the situation is as follows 

AUT-68 AUT-QE AUT-QE+ 

1 1 1 . 2 . ~ ~ ~  1.2 1 abstraction III.2.A III.2.B , 1.2 
application III.3.B III.3.B, 1.3 

type incl. rule no Yes Yes 

Note: Below it will turn out that 

(1) III.2.A is a derived rule of AUT-QE and AUT-QE+. 

(2) III.3.B and IV.2 (type-inclusion) are derived rules of AUT-68. 

1 
So, after all, in AUT-68 all the rules except III.2.B , 1.2 and 1.3 
are valid; RUT-QE and AUT-QE+ have additionally 111.2 .B1 and 1.2 

and, besides, AUT-QE+ has 1.3. 

2.8.2. The reduction relation 

For definiteness we agree that > in the Q-rule V.2 stands for - 
disjoint one-step reduction > So it satisfies the monotonicity con- 

1 ' 
ditions, e.g. 



with the important consequence that 

In any case the reduction relation includes 8-reduction, but we leave 

open the presence of q- and 6-reduction. Of course, if no definitional 

constants are in the book then there is no &-reduction. 

We assume that AUT-68 has no definitional 1-constants (because, 

modulo the elimination of abbreviations, the only 1-expression in AUT- 

68 is r). 

The rules of strengthening will only be present in languages with 

q-reduction. 

2.9. The substitution theorem 

2.9.1. For the E-definition (in contrast with the algorithmic definitior 

it is easy to show the substitutivity: correctness of expressions and 

formulas is preserved under correct substitutions, i.e. substitution 

with correct expressions of the right types. 

For technical reasons we start with a weak form of substitution, 

conpare a-reduction. 

- - - - 
2.9.2. Theorem (renaming of contercts) : I f  5 X E a and 1 ' Z z [X/Z ' ] , 

- 
all z! are mutually distinct, then (with 5 '  : Z  X' E a ' )  

1 

and the correctness proofs of both sides of the implication sign are 

equally long. 
" 

proof: induction on k.  - 

2.9.3. An easy corollary of this is the weakening theorem, the converse 

of strengthening: if c0 S U ~  5 then 

5 I-, CO I-A(E/Q Bl* 5 t.4 (E/Q B )  
- 

Proof: induction on 6 FA (E/Q 5 )  . 0 
L 

As a corollary of this we can prove that in a derivation of 

correctness the application of strengthening can be postponed to =he 

end of the derivation. 



2.9.4. NOW we come to the simuZtaneous substitution theorem: if 

n y E i, then 
B E BBy/Bn, ntC(E/Q D )  * CUy/BII (E/Q D[~/EJ 1 

Proof: By induction on n !-C(E/Q Dl. We treat just some of the cases, 
distinguished according to the last rule applied in the derivation. 

* 
Abbreviate CU;/BD to C . 

i 2 i+ 1 
Last rule is III.2.B : Assume qk C1 and q ,  z EC1 k C2 E D2. By the 

2 * * 
ind. hypand by 2.7.4, C1. By the copy rule z E C; 1 z E C1 (if 
necessary, i.e. if z in 5, rename the implicit context 5 to 5'). Now, 

by weakening, we can apply the ind. hyp. with the extended substitution 
i+ 1 

[y,z/l,z]to n,z E C1 kit1c2 E D2. This gives z E C; k C* E D; and, 
i * * 2 

by III.2.B , k[z:C1]C2 E CZ:C;]D;. q.e.d. Possibly one must first re- 

nane 5 '  back to 5 again. 

Last rule in V. 2 : Assume n kc1 Q C2 , q C3 , C2 > C3. By the ind. hyp. 
* * * 

--* Q C; and kc;. Since C 
'1 > c,. kc; Q c3, q.e.d. 

2 . 9 . 5 .  Corollary (single substitution theorem) : 

A E a, x E ~~B(E/Q C) * BUx/AII (E/Q CUz/AII ) 

2.10. Some easy properties 

2.10.1. On abstraction 

In addition to the remark in 2.3, after rule 1.4, we can say that 
1 

the last inference in a proof of /- A must be rule VI.1 or one of the 
1 

rules I. In particular, if 5 k Cx:alA, this can only follow from 
1 0 

S , Z  E a A for some 5 with 5 s u b  5 (since s u b  is transitive). So 
O 1 

application of VI. 1 gives 5 I E ak A. Similarly, if kitl~ , the last 
0' 

rule in proving this is VI.l or 11. So in the proof of correctness of 
- i+l 
i9 p 

A we can retrace some M E B, where to s u b  5.  Hence if 
- i+l i+ 1 
io i Cx:alA, in its derivation we can find 5, x E ak A E B for 
some B and 5 ,  with to s u b  5. By application of I1 and VI.l we get 
, z E a \-A. Resuming we have 

2.10.2. Correctness of categories 

In the rules of the definition, having A E B as their consequence, 



it is not explicitly required that k B .  For the copy rule this correct- 

~zz s s  oJ -a-l;egoi>ies follows from weakening, for I I I . 2 . A  from the T-rule, 

for 111.3. A from the single substitution theorem (use induction on /-) , 
for 111.4 from the simultaneous substitution theorem etc. So, we have 

correcti.;ess of categories 

2.10.3. Abstraction again 

i 
Assume that 5 X E u k A, 4 of value degree, degree(a) = 2. If 

0' 
i = 1 then from 1.2 we infer 5 C C X : ~ ] A .  If i > 1 then, as above, we 

0 'i 
can retrace some 5 X E a ,  C 2 k ' A  E B  with 5 sub 5 and the transition 

1 ' 0 1 
from 5 x E a, c2kA to z E u/-A follows from applicationsd strength- 

1 " 
ening. By the weakening theorem, we can extend the context to 

s E a ,  C2,x1 E a, with some new x'. By the substitution theorem we 

can infer 5 x E a, c 2 ,  x '  E a ~ A [ X / X ' ]  E B [ X / X " .  In case we can 
1 

apply I I I . 2 . B  (this depends on the language under consideration) we 

get cl, x E a, 5 b [ X : a I A  E C x : a l B .  Otherwise the language is AUT-68, 
2 

i = 2, B 5 T and application of I I I . 2 . A  gives 5 x E a ,  52k[s7:a1fi  E T . 1 ' 
Anyhow, rule I 1  and iterated use of strengthening give 5 k[z:ulA. 

0 
Resuming, 

(degree(u) = 2, f i  of value degree, x E a F A )  @ k[z:aIA . 
Note: the results in 2.9 and 2.10 are also valid, and simpler to prove, 

if n-reduction (and strengthening) is not present. 

2.11. On the Q-rules 

2.11.1. Clearly Q is the equivalence relation generated by > ,-, i.e. 
the restriction of > to the correct expressions. So A Q B means pre- 

cisely that 

/-A and FB and there are correct C ..., C such that 1 ' k 

A > C1 > ... < Ci-l < Ci > Ci+l > . . . < Cj-l < Cj > Cj+l> . . . < C k < B 

(where possibly, in view of strengthening, the C .  in between are correct 
1 

w.r. t. extended contexts) . 



2.11.2. An alternative rule of Q-propagation is 

v.2' A Q B ,  I - C , B + C - A Q C  

If the language definition has this rule, Q becomes - ,-. i.e. ($,-I* 

(sec. 1.2,II. 4.71, i. e. the transitive closure of the restriction of f 

to the correct expressions. 

So, no matter what other rules there are in the definition of 

correctness, 

and. 

CL, v.2 * V.2' 

2.11.3. An even stronger rule for Q, also including reflexivity is 

v.2" 1-A, B A =  B*A Q B 

Assuming the (full) CR-theorem, i.e. CR for all, not just the 
correct expressions, which is the case if Q-reduction is not present, 

we get: 

(V.1, V.2') * V.2" 

2.12. On type-conversion 

2.12.1. The Q-formulas (and the q-rules, see below) can be avoided, 

completely by reformulating IV.1, the type-conversion rule to 

Iv.1': A E.B, FC, (B > C o r  C > B )  * A E C 

And, corresponding to V.2' rather than to V.2, 

1v.1": A E Bl kc, B + C *A E C 
As in 2.11.2, IV.1" * IV.1' and CL, IV.1' * IV.1". 

Corresponding to V.2" is the alternative rule 

IV.1"' : A E B, 'B  = C, IC * A  E C 

2.12.2. The system with Q-formulas, Q-rules V.1 and v.2, and rule IV.1 

is indeed a conservative extension of the system without Q but with 
the corresponding type-conversion rule instead. First we have 



respectively 

IV.1, v.1, V.2' * IV.l", 

respectively 

IV.1, V.2" =+ IV.1"' , 

so the Q-system is an extension of the Q-less one. 

Secondly, the expressions and E-formulas, correct in a Q-system 

are also correct in the corresponding Q-less system. 

2.12.3. Notice, that in the presence of TI, rule IV.1"' (so rule V.2" 

too!) is inconsistent in the sense that it gives rise to anomalies 

such as self-application. This fact is connected with the B~~-CR-~roblm, 

solved in Chapter VI. 

Example: if a E T then k[x:a]a and k[y:[x:alala. Further 

[x:a]a = (by 6) Cx:alEx~Cy:Cx:alala = (by n) Cy:Cx:alala. 

So, if f E [x:a]a then {f)f E a . 

2.13. On type-inclusion 

2.13.1. Iterated use of the rule of type-inclusion gives 

- -  - -  
A E [s:a][y:B]~ * A E [;:~IT 

This shows that AUT-68 is a sublanguage of AUT-QE: all the correct 

books, contexts,expressions and formulas of AUT-68 are also correct 

in AUT-QE. 

proof: Rule III.2.A, not in the definition of AUT-QE, can be derived 
1 

from III.2.B and IV.2. For, let x E a FB E T. Then I-[~:alB E [x:al? 

so F[x:alB E T, q.e.d. 

2.13.2. Conversely, rule IV.2 is (vacuously) a derived rule of AUT-68, 

because all the correct AUT-68 1-expressions &reduce to r. 



2.14. The form of derivations 

2.14.1. We called the rules I11 the formation rules of non-1-expressions. 
i+ 1 

This is because, in a proof of cot A, we can retrace some S!-A E B 

and 5 FA E C, such that (i) the last rule applied in proving 5 FA E C 
1 1 

is the formation rule of A, i .e. one of the rules 111, (ii) the tran- 

sition from 6 FA E C to 5 FA E B is by iterated use of VI.2 and type 
1 

conversion, (iii) the transition frorntt-A E B to 5 FA is by using 
0 

VI.2, 11, and VI.l. So, in case there is no type-inclusion applied, 

e.g. if i > 1, we have (use weakening) 5 FB Q C. Below we introduce 
1 

a symbol covering the relation between B and C in case type-inclusion 

is involved. 

2.14.2. The new relation E can be defined as follows 

(iii) C is transitive 

Clearly, C is a reflexive and transitive relation on the correct 

expressions, including Q and type-inclusion, which on the non-l-ex- 
pressions coincides with Q (use 2.10.3). The type modification rule 

can now be contracted to one rule 

IV. A E B ,  B E  Ca.4 E C  

Ar.d, for 5 B and C as in 2.14.1 we have 5 tC C B now. 
1 1 

2.14.3. So, in a proof of [x:a]B E D we can retrace 
x E at-a E C with [x:alCC D. 

Similarly, in a proof of {A)B E D we can retrace either 

(i) B E [x:a]C with C[A] C D, A E a I Or 

{ii) B E C E [x:a]E with (A)C C D, A E a . 
- 

And, in a proof of c(C) C D we can retrace some 



2.14.4. Above, we used already 

t[x:a]~, x E a t A Q B [x:alA Q Cx:a]B 

The other monotonicity rule 

a Q 6, tCx:al~ + Cx:alA (7 Cx:BIA 

follows by induction on Q, using the substitution theorem. 
However, we do not know yet 

A Q B , C Q D =, {AIC Q {BID 

and consequently, it is a priori not clear that (uniqueness of types 

for 3-expressions) 

This (and its weaker counterpart for 2-expressions) will not be proved 

before the next section (3.2.4, 3.2.6). 

2.15. On the application rules 

2.15.1. In AUT-68,where no 1-abstraction expressions are formed, the 

rule III.3.B is vacuously a derived rule, viz. there are no B with 

B E C E Cx:alD. 

Since, in AUT-QE and AUT-QE+, 

2 k Cx:alC [x:a]C E [x:a]D 

we can restrict the rule III.3.A 

A E a, B E Cx:alC * {A)B E CUAD 

to the case where degree (C) = 1. 

2.15.2. As an alternative to III.3.B (and to III.3.A if 1.3 is present) 

we mention 

III. 3. B' : (AIC, B E C * {AIB E {AIC 

The following equivalences hold 

(1.3, 111.3.A, 111.3.B) @ (1.3, 111.3.B') 

(III.3.A, III.3.B) (III.3.A1 111.3.~') . 



Proof: e.g. t h a t  131.3.8 i s  a  der ived r u l e  i n  presence of 1.3 and 

111.3.3'. Let  A E or, B E [x:alC. By 1.3 (and III.3,B1, i f  degree (c )  = 2), 

L{A-i[z:ci]C. By t h e  s i n g l e  s u b s t i t u t i o n  theorem FCEA]. So by 111 .3 . E '  

and typo-conversion { A  ]B E CBA], 

2 , 1 5 . 3 .  Notice t h a t  i n  the  presence of n-reduction r u l e  III.3.A by it- 

s e l f  i s  s u f f i c i e n t ,  because 

Proof: assume A E a, B E C E Ez:alD. Then x E u k x E a, so  by III.3.A; 

z E a i (x)C E D and by a b s t r a c t i o n  k[x:or](x}C E Cz:alD. By I1 and 

t y p e - c ~ n v a r s i o n  6' E Cx:al{x)C (Z & FV(C)), so by III.3.A. !A)B E (AjC, 

q.e.d.  

2 , 1 6 .  An E-def in i t ion  f o r  A and A+ 

2 . 1 6 . 1 .  In  o rde r  t o  adapt the  E-def in i t ion t o  A and A+ we must f i r s t  

drop the i n h a b i t a b l e  degree condi t ion,  and t h e  r e s t r i c t i o n  t o  a of 

degree 2 i n  the a b s t r a c t i o n  r u l e s  1.2 arid 111.2. The r u l e  of type- 

inc lus ion  and r u l e  II1.2.A must be skipped b u t  111.2 .BI i s  permitted 

f o r  a l l  i. A s u i t a b l e  combination of a p p l i c a t i o n  r u l e s  i s  1.3 and 

XIL.3.B' f o r  A+, and IIX.3.A and III.3.B' f o r  A. An a l t e r n a t i v e  f o r  

111.3.3' is  an extended form of III.3.B 

A E a, B E C1 E ... E Ck E Cx:a]D * (AIB E {A]C1 . 

2 . 1 6 . 2 .  Degree considera t ions  f o r  A and A+ a r e  indeed more involved 

than those  i n  2 . 7 .  O f  course  xe can show weak degree cor rec tness ,  a s  

i n  2.7, but  we must know more i n  order  t o  e s t a b l i s h  degree cor rec t -  

ness .  See Ch.  VII, see .  2.2. 

Th.e va r ious  p r o p e r t i e s  proved above,such a s  s u b s t i t u t i v i t y ,  co r rec tness  

of c a t e g o r i e s ,  e t c .  e t c .  siillply .;o through f o r  t h e  E-versions of A and 

3.c. 



V.3 .  The actual  c losure  proof 

3.1. Heuristics 

3.1.1. The first idea which comes to mind about proving c~osure, CL 

CL : t . 4 ,  A 2 B * L B  

is simply to prove one-step closure, CL1 

CL1: bA, A > B *I-B 

by induction on FA and then use induction on 2. 

Among the possible ways of one-step'reduction we distinguish the main 

or "outside" reductions 

(6) {A)[x:BIC > CIA4 

( n )  x ,d FV(A) Cx:al{x)A > A 

(6) d(A)  > def(d)BAB 

and the "inside" reductions which follow by the monotonicity rules 

So we assume that > stands for disjoint one-step reduction. Now 

consider, e.g.,the appl-case where the correctness of {A)C follows 

from A E a, B E [x:aIC. Here the induction hypothesis, CL1 applied to 

A and to B, just tells us that LA' and IB ' (where A > A ' , B > B ' )  , 
which is of course not enough to conclude C C A f ) B ' .  This suggests that 

we need preservation of types, PT 

PT: A E a , k B ,  A > B * B E a  

or at least one-step preservation of types, PTI 

PT1 : A E ~ , C B , A > B * B E ~  

additionally. Similarly with the const-case of one-step reduction. 

3.1.2. So the next idea is to combine CL and PT to 

CLPT: IA(Ea), A 2 B *CB(E a) 



(as the conjunction of the version with and the version without paren- 

theses) and to use the same induction. 1.e. first prove 

CLPT1 : LA ( E  a), A > B *LB(E a) 

by induction on correctness and then use induction on 2.  

This works fine with all the inside reductions. E.g., consider once 

more the appl-case: A E a, B E [~:ajC, A > A ', B > B '. Now the induc- 
tion hypothesis gives us A' E a, B' E [x:a]C and {A')B1 E CUA']. Since 

> is disjoint one-step reduction, CUA] > C[AP] SO CUA] Q C[A '1 so 
C.4r}3r E CUAD, q.e.d. The other cases of inside reductions are treated 
similarly, using some facts from the previous sections. 

Then the outside reductions: 8 and T- do not cause major difficulties 

either. For 6 use the simultaneous substitution theorem and the 

compatibility of def and typ, for Q use the strengthening rule. But 

there is a problem with E-outside reduction. For, in order to conclude 

C:U.A] from L{A)Cx:B!C, we seem to need soundness of appZicability, SA 

which would allow us to use the single substitution theorem. 

3.1.3. Let us try to find out about SA. So consider the assumptions 

which can lead to the correctness of {AI[x:BIC. 

E.g. A E a, [x:B]C Q Cx:alD (resp. [x:BIC E Cx:alD). Then 
SA amounts to uniqueness of domains, UD 

resp. extended uniqueness of domains, EUD 

EUD Cx:BIC E Cx:aID * B Q a 

or: A 3 ,  [s:B]C E D E Cx:alE (these are the assumptions of rule 

II1.3.B). As in 2.14.3, for some J?, Cx:B]C E CZ:BIFCD (and in fact 

[.c:,.:jlF Q D). So, in this case SA seems to require the left-hand 

e+uZity m Z e  LQ 

which would give Cx:BIF E Cx:alE and, by EUD, A E B. 

However, LQ * PT. SO, it appears that we cannot do SA separately 

beforehand (i.e. not if III.3.R is present) and then proceed with 

CLPT as sketched above. 



3.1.4. In order to simplify matters, we first forget about type-inclu- 

sion. Then we may hope to be able to prove U?ziqUenes~ of types, UT 

UT: A E a , A E B *  a Q B  

~f we assume UT then UD *EUD and, besides, LQ and PT turn out to be 
equivalent. This may suggest us to incorporate the proof of SA in the 
proof of CLPT 
But we do not have UT yet. If we try to prove UT by induction on the 
length of A, we come again in trouble with rule III.3.B. For, let 

A1 E a, A2 E B E ix:alD, A E C E Cx:alC. The ind. hyp. just gives us 
2 

B Q C here, but we need more, viz. something like 

(this is one half of the third monotonicity formula of sec. 2.14.4). 

Since a proof of (*)requires LQ in turn, UT cannot be isolated either. 
We might try to combine SA, UTand CLPT, i.e. to prove the necessary 

instances of SA andUTin the course of the proof of CLPT . A proof 
1 

along these lines is indeed possible even if type-inclusion is presenG 

but it has a complicated structure and it cannot easily be extended 

to languages with higher function degrees, such as A and A+. 

3.1.5. Thus we prefer the alternative approach sketched below, which 

essentially runs as follows: first prove PT UT and LQ by induction 
1 ' 

on degree, then prove SA and UD, and afterwards proveCLas indicated 

in 3.1.1. To this end we distinguish degree-i-versions of the various 

properties 

First notice that: PT: , UTI * L Q ~  

and that : L$ * (*i) 

hence : L Q ~  , t1 



We assume that the language under consideration is a non-+-language 

(see sec. 2.7) . Then it is relatively easy to show U D ~  and UT~" 
(ignoring type-inclusion), where k is the lowest value degree. Now let 

i+ 1 
us try to prove PT, by induction on correctness, where we assume 

PT:, LQ' and UT'+" for j ri. An instructive example is the appl-case 
i+ 1 i+ 1 

of inside reduction: A > A', B > B', 1- {A}B, 1- {A3B1. It is no 

restriction to assume that both {A}B and {A')Br originate from the 

extended application rule of 2.16.1: A E a, A' E a', B E 5 E . . . 
E L? E [x:a]D, B' E C; E ... E Cb E rx:a7Dr with degree (D)  =degree !Dl)= 

f, 
i+ 1 

k and R = R ' .  Then by the ind. hyp. we have B' E C,, so by UT 

Q s' and by C; E C2. Then follows C Q C; and C' E C etc. - 1 1 k2 2 3 
Finally we have [x:alD Q Cx:aqD1 and by UD a Q a' so A' E a. Hence 
:J . . 113 I E {Ar}C1 < {A]C , so {A')Br E {A)C1, q.e.d. 

!+ 1 i+ 1 i+ 2 
From PT~+' and UT we get LQ , and UT . So by induction, 

1 
we get PT LQ, (*)  and UT. 

1' i+ 1 i+l ' 
3.1.6. It is clear that SA can be distilled from the proof of PT 

1 ' 
but it can alternatively be given as follows. First, we have 

i+ 1 
so we have UD. Now let 1 {A}Cx:BIC. Then (see sec. 2.15.2) either 

.4 E ! :1 ,  [z:BlC E [x: alD, or [x:BlC E E, I-{AIE. Further [x:B]C E [x:B]I'. 

So by UT we have either [x:BIF Q Cx:alD, or [x:BlF Q E. Hence, either 
by UD we have a Q B, or by ( * )  we have I-{A)Cx:B]F. So from LQ, UD and 
UT we get 

S A ~  + SA~+' 

and by induction SA. 

3.2. Closure for Bn-AUT-QE 

3.2.1. For definiteness we present a rather detailed version of our 

closure proof here for 8n-AUT-QE, i.e. AUT-QE without definitional 

constants and without &-reduction. So the admitted degrees are 1 ,  2 

and 3, the value degrees are 1, 2 and 3, the domain degree is 2 and 

the argument degree is 3. 

The function degrees are just 2 and 3, so Bn-AUT-QE is a non-+- 

language. So the reasoning of sec. 3.1.5 is valid, but for additional 

problems due to the presence of type-inclusion (viz. that UT is not 



true and that not immediately (PT * LQ) and (UD * EUD)) . These 1 
problems are overcome by the introduction of a "canonical type" in 

sec. 3.2.4. below. 

This canonical type also plays a role in the q-case of PT 
1 

Later we include definitional constants and 6-reduction, and applica- 

tion expressions of degree 1, thus extending our result to BqG-AUT-QE+ 

(in section 3.3) . 
A closure proof of BTI-AUT-68 can easily be imitated from thepmof 

below and is in fact somewhat easier because there is no type-inclu- 

sion. 

3.2.2. We specify a set of rules (in shorthand, omitting contexts) for 

Qq-AUT-QE, which according to the properties in 2.10-2.15 are equiva- 

lent to the rules indicated previously. 

(ii) ..., x E a, ... I-x (E a) 

(viii) CAI A > B or B > A, LB * A Q B (where > is disjoint 
one step Bq-reductiod 

(ix) A Q B Q C *  A Q C  

1 
(xi I-A + A C T  

(xii) x E a CA C B + Cx:alA C Cx:aIB 

(xiii) AC B E  C * AC 5' 

(xiv) strengthening 

3.2.3. On 1- expressions and type-inclusion 

3.2 .3 .1 .  Since there are no 1-application expressions and no defini- 
- 

tionalconstants all 1-expressions are of the form [Z:E]T, with x 



1 1 
possibly empty. And, if k [x:alA, I- [X:BIB, [x:aIA > [x:BIB, then 

a > B, A > B so a Q 8 and x E a \-A Q B. So, by induction on Q, we can 
show UD 1 

Then, by induction on C ,  we get 

1 I- Cx:alACCx:BlB 3 a Q B (andx E a \ - A C  B). 

i 
3.2.3.2. We introduced UT , uniqueness of types for expressions of 
degree i (i > 1) , 

U T ~  I - i ~ ~ ~ , ~ ~ ~  ~ B Q C  

For i=3 this will be proved below, but for i=2 it is simply false 

in view of type-inclusion. Now we define 

B U  C : o B C C  or C C  B 

Below we shall prove that the new symbol covers the relationship 

between B and C whenever A E B and A E C. 
Clearly on the non-1-expressions is just Q. We have 

Further satisfies a strengthening rule, and is substitutive: 

A E a , x E a C B C 3 C *  B U A D U C U A D  

3.2.3.3. We also want to show 

1 k B C for some A, A C B and A C C 

- -  - -  
Proof:+ is trivial. So let B 7 A C C. Then A r [ ~ : ~ I [ ~ : ~ ~ I C X : ~ I T ,  

3 r [z:y, ][y:z, IT, C 5 [;:?,IT (or similar with B and C interchanged), 

3.2.4. The canonical type 

i+ 1 
3.2.4.1. It is possible, for each A with )- k to indicate an a such 

0 

that 

(1) a is a minimal representative - w.r.t. 1- of the categories 
0 

of A, i.e. 

A E a and: (A E a  a C a) 
0 0 



We call this a the cantyp of A (with respect to a context). The 
0 

definition of cantypislike the definition of typ given previously 

(sec. IV.3.2), but slightly modified in order to stay in the correct 

fragment, as follows: 

(i cantyp(z1 = typ(x) 
(ii) can typ ( p  ( R )  : typ ( p )  uA D 

(iii) cantyp(Cztl~1B)~ fx:alcantyp (B) - w.r.t. to extended context- 

cantyp(CA)B) I c;t[A] if degree (B)=2 and cantyp(B) E 

[x:ulC 

3.2.4.2. Clearly, typ(A) 2 cantyp(A) so property (2) above is 

immediate. 

Now we prove a lemma corresponding to property (1). 

Lemma : if L Q ~  and bi+l A E a then A E cantyp(A) C u 

Proof: By induction on the length of A .  The more interesting 

cases are 

cantyp(A) C [x:a Icx C a ,  q.e.d. 
1 2  

hyp., A2 E cantyp(A2) t Cx:allC so cantyp(A2) z Cx:a; lCf . Hence cantyp(k'> 
is indeed defined, a Q a;, z E a kCf C C, so {A1]A2 E CfflAl]Ctu, q.e.d. 1 3 1 

(iii, A = {A1)A2, A1 E al , I- A2 E B E Cx:u11C, [A1 IB Q a. By the 
i 

ind. hyp. A E cantyp (A ) Q B .  By L Q ~  we can use property ( *  ) of sec. 2 2 
3.1.5 and get cantyp(A1 Q {AIIB Q a, q.e.d. 

3.2.4.3. Corollary: (i) b2 A E B, A E C B O C (this is, for .A of 

degree 2, the desired property of 0). 
L 

(ii) I- [x:alA E [x:BIB a Q 8 ,  x E a 1-A E F (this 
2 

includes EUD ) 

(iii) S A ~  
1 

Proof: (i) LQ is -vacuously fulfilled, so B 3 cantyp(A) C C, so 

by 3.2.3.3. B c. (ii) and (iii) are immediate. 



3.2.5.1. Now that we have introduced cantyp we can use it in the proof 

of PT. we define the property of preservation of cantyp. 

i 
similarly PCT:; PCT is the conjunction of all the PCT . 

2 
We first prove some lemmas for PCT . 

3.2.5.2. Lemma (substitution lemma for cantyp): let B* stand for 
2 3 3[r/.4]. Thenz E a, y E B 1- C ,  1- A E a cantyp(c)* E cantyp(c*) 

- * 
where the cantyp's are taken w.r.t. (x E a, E B) and (,; E B ) resp. 

Proof: Induction on C. Note that c&, because degree (x) =3. Some 
* 

cases are: (ii C E Cz:C 1C cantyp(c)* : Cz:~;lcant~~(~~) (w.r.t. 
- 1 2 '  

u E a, 9 E 8, z E C i (by ind. hyp.) iz:C~lcantyp(c;) (w.r.t. 
- 1 
y E B*, z E c*) E cantyp(c*) , q.e.d. 1 

* * * 
i i i )  C IC }C cantyp(c)* 5 DfCID I D IC1] where 

1 2' 
cantyp(C,) E Cz:yID and, by ind. hyp., [Z:-{*ID*? ~ a n t ~ ~ ( ~ l ) ,  so 

z * * 
cantyp(C ) r D [CID as well, q.e.d. 

2 3 
3.2.5.3. Corollary: x E a 1 C, b A E a * cantyp (c) [ A ]  E cantyp (CIA]). 

2 
3.2.5.4. Corollary (6-PCT ) :  

1 
2 1 {A)[x:BlC * cantyp({A)Cx:BIC) Q cantyp(C[IA]). 

2 
Proof: BY SA we have A E B, so even cantyp(IA}Cx:BlC) r cantyp(C)[A] z 

cantyp(cljA]) . 

L 
3.2.5.5. Lemma (n-PCT 1 :  

1 

~-~[x:al{z}A, z p! FV(A) * cantyp (Cz:allr}A) Q cantyp (A) 

3.2 .5 .6 .  Theorem: PCT; 
2 

Proof: let I- A, LA A y.4 '. For a main reduction use 3.2.5.4 or 
3.2.5.5. For inside reductions use induction on the length of A. 

Some cases are: 



li) A ~X:A IA A' [x:A;]A;, A1 > A' A2 > A;, BY ind. hyp. 1 2' 1 
cantyp ([X:A~ I A ~ )  Q cantyp (Cx:AllA;) E [x:Allcantyp(A;) Q [x:Arlcantyp(~ I), 

1 2 
by the substitution property 3.2.5.3. 

(ii) A - CA11A2, A' - IAr)A' A > A' A > A'. Since {A )A is 
1 2, 1 1' 2 2 1 2  

oorrect, A1 E all A2 E cantyp(A2) : Cx: BIC C Cx:al ID. So a Q B. 1 
Similarly A' E a;, A; E cantyp(Af) 5 [x:BrlC' C [x:a;1Df. so a' Q e ' .  

1 2 1 
By the ind. hyp. [x:bJC Q [x:B1~C', so CIA1l Q Cr[A1J Q C'fA;], q.e.d. 

2 2 
3.2.5.7. Corollary: (i) PTl, (ii) L Q ~ ,  (iii) UD . 

3.2.6.1. By L Q ~  we can apply 3.2.4.2 to expressions of degree 3 now. 
3 

we get: (i) I- A E a * A E cantyp(A) Q a 
3 3 

(ii) UT : k A E a, A E B * a 0 B (i.e. a Q B) 

(this is the announced property of 0 for A of degree 3). 

(kii) S A ~  (e.g. as in 3.1.6) 
3 3 3 

Notice that by UT the properties PCT and PT are equivalent. 

3.2.6.2. We introduce CLPT~: 

and similarly C L P T ~  
1' 

Here follow some lemmas for CLPT 3 
1 ' 

3 3 
3.2.6.3. Lemma (B-CLPT1) : I- CA1Cx:BIC E D * CtAD E D 
Proof: Let A E a, rx:BIC E F E Cx:alG, {A)F Q D, and let x E B LC EH, 

3 2 
[x:Bl H Q F. By SA we have A E B and by (* ) {A)rx:BIB (! ( A I F .  BY th? 

substitution theorem for correctness CUA] E H[AD Q D. 

3 3 3.2.6.4. Lemma (17-CLPT1): 1- Ix:al{x)A E B, x jf Fv(A) * A E B 

Proof: cantyp (Cx: a1Cx)A) 5 Cx:alCx)cantyp ( A )  Q cantyp (A) (by n-reduc- 
tion) , by strengthening CAI  so by 3.2.6.1 A E B. 

3.2.6.5. Now we are ready for CLPT. 
Theorem: (CLPT1) : IA (E a) , A > A ' * LA ' (E a) 
Proof: If A > A ' is a main reduction use SA, strengthening, P T ~  and 

the preceding two lemmas. Otherwise use induction on the length of A. 

(i) A - Cx:a ]A A' E Cx:afIA' a > a;, Al > A;, x E a 1 (E a2), 
1 1' 1 1' 1 1 

([x:a la Ca). By ind. hyp. La; and x E a; I-A; (E a2). 
1 2  



So t[x:arj~' (E [x:a;la2 Q [x:a la Ca) - read this twice, one time 
1 1  1 2  

with and one time without the symbols in parentheses - .  
(ii) A -{A }A A'S (A;)Air A 1  > A r ,  A > A r  

1 2' 1 2 2' A1  k 2  
[.Z:'X 1 IC, c U A D C ~ . B ~  ind. hyp. A; E all 3 E [x:alIC. SO A r  E c [ A ; ]  Q 

CIA, 1. 
(iii) As in (ii) , 

. - ! I  E all A' E B, so A' 
1 2 

(iv) A Z p (B 
l l * * .  

~31~'..., Bk E BklBl 
" 2 
a scheme. By ind. hyp. 

aBrnr so ~(B;~...~B; 
' k 

3 .2 .6 .6 .  Corollary: (i 

but A2 E B E [x:al IC, {Al IB C a. By ind. hyp. 

E CA;)B Q {A1)B. 

Bk). A' p(B ',... ,Br). B > Br, B1 E B1, B2 E 
1 k 

. - - I  BkVl ], PIED C a, where y E B * p(yjE P is 

B; E B; E B IB II Q B~[B;D.. . B; E B ~ W I  3 
1 -  

E PUB;, ..., B;] Q PUB]. 

CLPT, (ii) LQ, (iii) UD. 

3.2.6.7. Corollary (Rule V. 2 ' , sec, 2.11) : IA, /-Br A .C B * A Q B 

3.3. Extension to Bn6-AUT-Q.E+ 

3.3.1. Now we consider Bn6-AUT-QE+, i.e. Bn-AUT-QE extended with 1- 

application expressions, with definitional constants and with defini- 

tional reduction. The additional rules are 

1.3: 
1 1 A E a, B Q [x:alC 3 1- (AIB 

- - - 
(vi' ) : A E &[A], x E a * d(x) := D (*d(G) E E) is a scheme * 

(cf. sec. 3.2.2 and sec. 2.3 respectively) . 
If we try to repeat the previously given proof, we first come in 

trouble because not all the compound 1-expressions are abstraction 
1 

expressions anymore. This makes the proof of UD from sec. 3.2.3 fail- 

though the property itself reinains valid. Furthermore there is the 

problem with definitional 2-constants and type-inclusion (mentioned 
L 

in sec. 1-71, which makes LQ fail. 

Below we give an indirect proof instead which runs as follows: 

first we show (secs. 3.3.3 - 3.3.8) that the indicated extension is a 
so-called unessential extension. Then we use this fact to transfer the 

desired properties from Bn-AUT-QE to the new system (sec. 3.3.9). 

Finally (in sec. 3.3.11) we briefly discuss an even larger system than 



3.3.2. Some terminology 

Consider two systems of correct expressions with typing and equa- 

lity relation, ( k , El Q) and ( I- +, , E+, Q+) respectively. 
(t-+, E+, Q+) is an extension of (I-, E, Q) if 1- * b E * E+ and +' 
Q Q+, i.e.: 8 bresp. 8; 1 resp. B; F, F A  (E/Q B) * 

I-+ resp. 9; E I-+ resp. 8; 5 I-+ (E+/Q+ B). 

We further just write t+A E/Q B instead of \-+A E+/Q+ B. The "new" 

system I- is said to be conservative over the "old" system if all + 
new facts about old objects are old facts, i.e. if 

UEo I-A, I-B, b+L E/Q B * I-A E/Q B. 

An extension is unessential if no "essentialLy new" objects are 

formed, i.e. if all new objects are equal to old ones. This means 

that the new system can be transZated into the old one by a mapping-* 

working on expressions, books and contexts, such that 

UE2 8 I-+ resp. 8; <I-+ resp. B; &+A * 
- 

~ - t  resp. 8-; 5 1- resp. 8-; 5- LA- 

Clearly unessen'tial extensions are conservative. Property UE3 

means that new formulas imply their old counterparts. Unessential 

extensions also satisfying UE3', the converse of UE3, 

UE3 ' t+A. I-+B, ti;- E/Q B- * C+A E/Q B 

are called def in i t ional  extensions. 

In a definitional extension new formulas are equivalent to old 

ones. ~ l l  unessential extensions satisfy the Q-part of UE3: but for 

the E-part we need property LQ for the larger system (at least if the 
smaller system satisfies LQ). For that matter, if the +-system 

satisfies LO, we have 

and : UEO, UE1 UE2 * UE3 



3.3.3. The translation 

Of course, we take 8~-AUT-QE for our smaller system C and we take 
B~I~-AUT-QE+ as the extension k+. We are going to prove that 1 is an + 
unessential (but not a definitional) extension. 

For an expression A we intend its translation A- to be the normal 

form w.r. t. a certain reduction relation 2-. In order to make A- well- 

defined and in view of UE1, UE2 we require 

(0) 2- normalizes and satisfies CR 
(1) 2- just affects the new elements of expressions (1-application 

parts and definitional constants) and removes them 

(2) >-is part of the reduction relation of the new system and 

satisfies CLPT 
- - 

For contexts 6 - x E a the context 5- is simply 2 E a- (where the 
-- 

meaning of a is clear). Similarly schemes for primitive constants 

C*p (2 )  E 8 are translated into c* p(z) E 8-. But schemes for defini- 

tional constants have to be omitted in the translation. 

Before fixing 2- we define i3-reduction 2' i-reduction of degree 
i' 

j (where i is 8, n, 6 or a combination of these). This is the reduc- 
tion relation generated from ezementmy ij-reduction , defined as 
follows : 

A elementary ij-reduces to A' if A elementary i-reduces to A' 

and degree(d)=j.. The corresponding one-step reduction is denoted > j 
i' 

Notice that for degree-correct A the degree of A' above is j as well 

(cf. sec. 2.7). 

Now, in view of requirement (1) above, we define 2-to be the re- 
1 

duction relation generated from 2 and 2 
B 6' 

3.3.4. Notice that 6'-reductions cannot be inside reductions. Strong 

normalization for B1 is easy to prove even without using normability. 
From Ch.111 we recall 6-SN and 6-CR. As in Ch.11, secs.6, 7, 8 , w e  can 

1 1 
show that B -CR holds, and that B commutes with all other reductions 

2 2 1 
(such as 6 , 6, i-~ ) except 0 . 

So 2-commutes with all kinds of reduction but rtl, and we have 

2--SN and &-CR (whence requirement (0) above) . 
Clearly &normal forms do not contain defined constants anymore; 

a simple normability argument shows that2-removes the 1-application 



parts as well. 

3.3.5. A further property we want >-to satisfy is CLPT. since 6-CLPT1 

follows from the simultaneous substitution theorem (cf. 2.9.4) we j u s t  

want to know SA 1 

1 \ 

I-+{A}Cz:BlC * I-+ A E B 

or, equivalently, UD 1 

Here turn up the problems with 1-expressions, announced in 3.3.1. 

To overcome these we seemingly modify our system: 
1 

(1) we exclude v -reduction 

(2) we change our 1-application rule into 

where r ed -  is 2 restricted to the correct expressions, i.e. generated - 
by 

1 
C+A, L+A: (A >S A ' or A > A ') * C+A r e d  A '. 6 - 

Clearly 1.3. * I.3'., so the modification is a restriction. 
However, after having proved &-cLPT (whence UE1, see sec. 3.3.6) , UE2 & 

UE3 (sec. 3.3.7) for the modified version, we shall be able to show 
1 1 

that both I. 3 and i-i -equality: I- A, A > A', -t 
!-+Ar * \-+A Q A are 

17 
derived rules. Hence.the two versions of 1 are equivalent, and we + 
have t-he desired properties for the original +-system. 

3.3.6.1. For the modified system the property SA' is clear, so we have 

the theorem (>=cLPT) : \-+A (E a) , A 2 A ' * L+A ' (E a) 
1 

Proof: Since we know 6-CLPT, and 2 is j u s t  5 on the non-1-expressions 
B 

we only need to consider A of degree 1. Use, e-g., a double induction, 

viz. (1) on B(A) - i. e. the length of the >--reduction tree of A, (2) 
on length(n) . The only interesting case is when A 5 {A1 ]A2, A1 E a, 
A r e d  Cx:alC. ~f A LA; then A > A' so by 6-CLPT A; E a. 
2 - 1 1-6 1 

If A2 2 A' then by the ind. hyp. and by &-CR: A' r e d  ;z:a'1Cr, 
2 2 - 

[x:a;C r e d  - Cx:A'lCr. So A; E a' and k+{A; IA; .  If A2 [x:A 3.4 then 
1 

3 4 
.Al E A3 (this is SA ) and k+A4!Al]. 

Since a reduction A 2 A' starts with an inside or with an out- 

side reduction, we are finished by the first ind. hypothesis. 



3.3.6.2. Corollary 

3.3.7. Theorem (UE2 

rule I. 3'. Then Bt 

and UE3) : Consider the system without t- and with 

, resp. B; EC+, resp. B;S1-+A (E/Q B) * 

Proof: By induction on I- using t.CLPT. The interesting rules are 
+I 

(i) appl. rule 1.3': let &+A E a, k+B r e d  - Cx:alC. By ind. hyp. 
I I 

- - 
I-.? E a . Clearly B- r [x:~-Ic- and by ind. hyp. LB-, so x E a- 1 C-, 
so b (1.4)~)- C-UA-], q.e.d. 

- - 
(ii) instantiation rule (vi ' ) : let contain a scheme y E 6' * d (y )  : = 

(possibly followed by * d ( y )  E C). Let P be the book preceding this 
- - - -  1 

scheme. By ind. hyp. B1; y E B ID-(E C-), Now if 8;E F B  E B c B D ,  then 
- -- -- 

by ind. hyp B-;c- I-B- E (BUED) - B CB I l r  SO 8-; EL ( d ( E )  ) -  E - -- 
z CB D ( E  (c3aj)- E C-[IB-j), q.e.d. 

- 
(iii) Q-rule: let t+A Q 8, C+C, B > C. By ind. hyp. LA 0 E - I  LC-. 

Since >_ commutes with all other reductions, except possibly n1 which - 
we have forbidden, we find B- 2 C- so by CL for 617-AUT-QE FB- 0 C- 
andl-A- Q C-, q.e.d. The case that C t B instead is completely similar. 

3.3.8.1. Now we prove that 1.3. is a derived rule in the modified 
1 

system. So assume t+A E a, t+B Q Cx:alC. BY 3.3.7 1 - l ~ -  Q ~x:a-lC-, 
- 

whence B must be [x: BIB with b a- Q B and t +a Q B. Further, by 
1 

3.3.6.1.. -+B r e d  - B- and by I.3'C+{A)B1 q.e.d. 

1 
3.3.8.2. Similarly, n -equality is a derived rule. ~etl- A, I- A' 

1 + + 
'i. > A '. We :an assume that degree(A) = 1. By induction on length (A) 

we prove that 1 +A Q A'. The interesting case is when A E [x:a I(x)/J', 1 
s k FV(."I)). AS in 3.3.8.1., x E C A' r e d  Cx:a 1A withx ,dFv(a2). 1 + - 

1 
2 1 

By SA x E a 1- a Q a2 and by strengthening a 
1 + 1  + 1 Q a2. So ]-+A c) 

[ J ' : u  7tZ Q Cx:a21A1 0 A', q.e.d. 
1 1  

3.3.8.3. Hence the system with 1.3 and nl-equality is equivalent to 
1 

the system with I. 3' and without n -equality. So we have SA' , L-CLPT, 
UE1, UE2 and UE for the original system of BQ~-AUT-QE+ now. 

3 



3.3.9. The proof of CLPT 

3.3.9.1. As in 3.2.6.5, we can prove CLPT from outside-CLPT1, by 1 
induction on correctness. Clearly 6-CLPT (and a fortiori6-outside- 

CLPT1) is included in>-CLPT, - so we just need 5- and n-outside-CLPT 
1 ' 

3 In the next section we infer PT and SA from our UE-result, which 
2 2 

leaves us to prove the B - and T- -case of outside-PT only. These two 
1 

cases are dealt with in 3.3.9.3. 

3.3.9.2. Consider the properties mentioned in 3.1.5. In this section 

we distinguish 

and the larger 

is clear that 

U T ~  

the two versions of a property (viz. for the smaller 

system) by providing the latter with a + below. ~t 

* U T ~  

whence 

and 
3 

LIT+, 

UT: , 
3 ?T+ and 

The property UD is also preserved in passing to the larger system, and 
in fact, as in 3.2.3.1, 

k+Cx:alA Q Cx:elB* !-+a Q 6 ,  (x E a I-+A C! B) 

3 3 1 i 
By LO+ we have ( * + I .  SA+ we knew already. Now we show SA+ for ifl: let 
i 

k+{A I[x:BIC. Since iZ1, ( ( A  KX:BIC)- ? {A-}CX:B-IC-, so by UE 
3 2 ' 

and by SA, LA- E B-. Hence by LQ + again, we have 
SA: for i#l as well. 

3.3.9.3. In sec. 3.2.5 we used cantyp in proving 8- and T--outside-PT 2 
1 ' 

The same procedure applies in the +-system, but with typ (defined as 

in IV.3.2) instead of cantyp now. In particular we have 

(ii' typ (d ( A )  typ (d) IjZD 

for defined constants of degree 2 and 3 now 

and (iv) typ({A)B) E {A)typ(B) 

for both B of degree 2 and 3. 

As in 3.2.4.2 we get 

2 
k c  A E a * t + A  E typ(Aj C a 

and, 



So, as in 3.2.5.4 and 3.2.5.5, we get 

C:IAH~:BIC + ~Y~({AHX:BIC) Q ~ ~ ~ ( c u A D )  

whence 8-outside-PT and 
+,If 

2 
I-+Cx:alIxlA, x ,d FV(A) * typtCx:alCxlA) Q typ(A) 

whence q-outside-PT 
2 
+, 1 -  

3.3.10.1. In 3,3,,9.2 we have carefully avoided the properties which 
2 2 

do not hold in the larger system, in particular LQ and ( *  ) .  For a 

counterexample let d(x) be defined by x E T * d(x) := [y:xh, with 

typ(d) E T. If a E T ,  then d(a) Q [y:a]a E [y:a]-r, but certainly not 

J(il) E Cy:a]r, so not L Q ~ .  If, furthermore, A E a, then k(A)Cy:ala 
2 

but not I-{A}d (a) , whence not ( *  ) . Consequently, the +-system is not 
a definitional extension of the old system. 

3.3.10.2. Besides, if we stick to our counterexample, 

:; E I(a) C.2 E Cy:ala, so z Ed(a)t.(A}z E a, but not 

n E < ( u )  1 CAld(a) (E typ ({Alz)). This shows that typ applied to 3- 

expressions can lead us out of the correct expressions (in contrast 

wlth the situation in the smaller system), and that not: 

2 
3.3.10.3 In the next section we restore ( * )  and L Q  by a further ex- 

tension of the language. But first we give a theorem stating some very 
2 2 

weak versions of LQ to hold in BUG-AUT-QE+ instead of LQ . Recall 
the symbol from sec. 3.2.3 and the result (sec. 3.2.4.3, 3.2.6.1) 

for OWAUT-QE: 

1A E B, C.A E C I-B 0 C. 



Proof: BY UE we get IA- E B-, LC- E D-, LA- Q C-. BY L q  for 
- 

q-RUT-QE we get L C  E B- so k ~ - 0  D-, so L+B Q B-• D- ? D, 
i.e. 1 .:-' 0 Dl i.e. B C D or D C R, q.e.d. + 

3.3.11.1. The aforementioned anomalies can partially be removed by 

properly extending Bv6-AuT-QE+ to a language ~~~-AUT-QE*. In this 

new system we first replace the application rules by 

(1) 3 Q Cx:alC, A E a 3 l- {AIB 

(2) B E C, b{AIC 3 k iAIB E {AX 

Rule (1) is simply 1.3 without the restriction to degree 1. Rule 

( 2 )  is 111.3 .B' (sec. 2.15) . So, indeed, AUT-dE* extends AUT-QE+. 

3.3.11.2. By this modification 

Furthermore, by Q-reduction we 

B E Cx:cilC 5 B 

we gain the property 

so it is a proper extension. 

get 

Q Cx:cil{x IB, which yields property ( * )  

for the new system. 

Our counterexample, however, shows that there are still problems: 

L Q ~  does not hold, so we do not yet have a definitional extension of 

AUT-QE. Besides, now the new 2-expressions (e.g. {A b(a) in the 

example, which is correct now) do not have a correct typ, and not 

even an E-formula. 

3.3.11.3. The following theorem shows that the difference between AUT-QE+ 

and AUT-QE* just lies in the particular role of the definitional 2- 

constants, and that AUT-QE* is an unessential.extension of AUT-QE+' 

(though it is no definitional extension). 

Theorem: Let \ *  stand for correctness in AUT-QE*, and let A' be the 
2 - 

fi -normal form of A. Then 1 *A (E/? B) * C+Ar (E/? B ' )  (so LA-(E/Q F: ) ). 

Proof: Induction on *. 

3.3.11.4. A drastic way of combining 2-constants with type-inclusion 

and still preserve LQ, is to add LQ explicitly to the language defini- 
tion, or at least something like 

2 
t 2 ~ , C E B ,  A r  C *  A E B  

6 



Adding this rule to Bn6-AUT-QE+ produces the smallest defini- 

tional extension of AUT-QE which includes Bn6-AuT-QE+, and it gives 

us AUT-QE* plus all the missing E-formulas. 

An alternative way of defining this new system (We s t i l l  c a l l  it 

AUT-QE*) is by ignoring the type-assignment part of definitonal 2- 

schemes, and by defining the typ of a definitional 2-constant to be 

the typ of its definiens (compare the definition of u in IV.4.4). 

From the latter definition of this new system it will be clear 
2 

that our desirable properties (except UT , of course) can be proved 
for it by the same methods as used in the closure proof of AUT-QE+. 

3.3.12.1. Up till now we have, for definiteness, just compared 

Qq-AUT-QE with Bt-16-AUT-QE+ (and Bn6-AUT-QE*), i.e. we made the exten- 

sion in one step and added the definitional constants and the l-appl- 

expressions simultaneously. One can as well, of course, consider 

intermediate languages like Bq-AUT-QE+ and Bq6-AUT-QE. 

Thenone notices that the problems with * , LQ' and typ are ex- 
2 

elusively due to the &(in particular 6 ) and not to the + in 
2nd-AUT-QE+. Thus Bq-AUT-QE+ satisfies LQ and ( * I ,  and is a neat de- 

finitional extension of Bq-AUT-QE,.whereas Bq6-AUT-QE has all the un- 

pleasant features of BqB-AUT-QE+.I~ fact, @TI&-AUT-QE+ is a definitional 

extension ofBq6-AUT-QE, and Bq&-AUT-QE can only be made into a 

definitional extension of 60-AUT-QE (call this new system from now 

on AUT-QE') by adding a rule like in sec. 3.3.11.4. 

3.3.12.2. If one takes AUT-68 instead and adds an application rule: 

(compare 3.3.11.1, rule (1)) one gets the corresponding +-language. 

(i.e. smallest value degree = smallest function degree), AUT-68+. 

These systems are easier to handle than AUT-QE: both AUT-68 and 

AUT-68+ satisfy UT, LQ and ( * ) ,  even in the presence of definitional 

constants, and AUT-68+ is a definitional extension of AUT-68. 

Without definitional constants, AUT-68+ is already contained in 

AUT-QE, but Bnd-~UT-68+ is not contained in 8q6-AUT-QE. It is 

contained, though, in the system AUT-QE' of 3.3.12.1. 

Closure for AUT-68+ can, e.g., be proved by the methods of the 

next section (see 3.4.5) . 



3.4. Some easier closure proofs 

(for simpler languages) 

3.4.1. There are various ways of proving closure for simpler languags, 

such as sn-AUT-68 or 66-AUT-QE. First,.one can take the closure proof 

of the previous sections and adapt it to the language under considera- 

tion. Since 0-reduction, type-inclusion and liberal degree specifica- 

tion (in particular for function degree) are responsible for many 

technical details in the proof, the simpler languages allow some 

obvious simplifications. E.g. if a language lacks n-reduction we can 

clearly skip the q-closure part and, besides, we can freely use CR. 

Or, if a language has more restricted function degrees (AUT-68 vs. 

AUT-QE, non-+-languages vs. +-languages), we have to push SA, LQ, UD 

etc. through less degree levels. And, if a language lacks type-inclu- 

sion (AUT-68 and Nederpelt's A), we simply have PT * LC), and do not 

need to introduce something like cantyp for this purpose. 

A second approach is suggested by the fact that our language de- 

finition contains some technicalities which are only introduced to 

make the closure proof (i.e. this kind of closure proof, for a 

complicated language like 60-AUT-QE) possible. In particular, I intend 

the use of the restricted Q-rule V.2 instead of the more liberal V . 2 ' ,  

i.e. the use of the restricted system type I, instead of the liberal 

system type I1 (see sec. 1.2.). Recall that after having proved 

closure for I, I and I1 can be proved to be equivalent, and that, 

after all, we are more interested in system I1 than in system I. 

Now it turns out that, for the simpler languages, the modifica- 

tions in the language definition (and the detour via system I) are 

superfluous, and that we can give a direct closure proof for a type 11 

language definition. 

Such direct closure proofs are presented below for all theregular 

languages which either lack n-reduction, or have just function degree 

3 : 6 (6) -AUT-68 ( + I  , 6 (6) -AUT-QE (+) and Bn ( 6 )  -AUT-68. A mere sketch is 

given for Bn (6) -AUT-68+ (for the definition of AUT-68+ see sec. 3 .3 .12)  

3.4.2. So we give these languages by an E-definition with Q-rule 

v.2': A Q B ,  B + C ,  C C *  A Q C  



which a priori is stronger than V.2 but later turns out to be 

equivalent. The properties in secs. 2.9, 2.10 such as the substitxtim 

;heorem, correctness of categories, and the property: a of domain 

degree, A of value degree, x E a bA * /- [x: a 1 A simply go through. 
As in sec. 3.1., we essentially just need SA for proving closure. 

So below we confine ourselves to SA and, in connection with this, 

UD for the various languages. We start with the q-less languages. 

3.4.3.1. Theorem: UD for n-less languages 

Proof: Let [x:aIB Q [x:alC. Then by CR, [x:a]B t [x:alC so a J- 4 and 

2 .i :, whence a Q f3 and x E a I-B Q C. 

1 2 
3.4-3.2. Corollary: SA for B(6)-AUT-QE+, SA for B(6)-AUT-68+. 

Proof: Let A E a, h:BIC Q Cx:alD. Then B Q a so A E B. 

3 .3 .3 .3 .  LetC be defined as in sec. 2.14. We need a lemma: 

--;. C GI G 2 CZ:EID * F  2 C;:~IC with l & l  = IBI and a t B (i.e. 
1 4 3  
1 

a 1B2, etc.) 
1' 2 

Proof: Induction on C. 

2 3 
3 .4 .3 .4 .  Corollary: SA for 6 (6) -AUT-QE (+) , SA for 4 i 6) -TAUT-68 (+) 

Proof: Let A E a, Cx:BlC E Cx:a]D. Then Cx:BlC E [x:BIF C rx:alD. so 

by the previous lemma B Q a and A E B. 

3.4.3.5. NOW in order to get S A ~  for B -AUT-QE (+) we need a lemma 

again. Notice that the proof of this lemma fails when there are 

definitional constants. 
2 

Lemma:/- A E B, B 2 C~:810, A 2 [~:;Ic, la1 = 1?51* J- B 
Proof: Induction on the length of A. The interesting cases are: 

- - 
(1) '2. z [x :a IA A 2 CX -a IC, xl E al (-A1 E B1, Cxl:allB C 

1 1 1' 1 2- 2 1 
3 2 [X -B11C; :8 ID. /i2( = IF2/. By 3.4.3.3 a i 4 and B 2 

I 
2 2 - 1 1 1 

IS~:B;IP~ with B2 t 8;. By the ind. hyp. a i ' so a 4 B and - 2 2 2 2 
Y - (a ' $ 2 '  t ( B  ,B ) : E l  q.e.d. 

1 2  
( rr  .4 = A , A E Y, A, E IZ:YIB~, B ~ U A ~ ~  c B 2 [;:Em. 

By 3.4.3.3 again, B [A 1 2 [;:g ' ?D~ with i '. Because B has 1 1  1 
degree 1 and A has degree 3, B 2 Cz:B ID with R 1 2 it. 

1 1 0 0 0 1 



larly, since A has degree 2, if (Al A2 2 C;:~IC then A 
- 2 - 2 >  - - 

1 :  I w i t i ~  [A 11 2 i, c UA 1 2 2. BY the ind. hyp. a0 I B~ 0 0 0 1 0 1 
5 ; u.4 D 4 B u.3. 1 2 and by CR a I , q.e.d. 

0 1 0 1 

3 
3.4.3.6. Corollary: SA for 6-AUT-QE (+) 

Proof: Let.; E a, [x:BIZ E D E [x:alF. Then [x:B]C E [x:BIG Q D wheme 

; 2 [z:3'JGr with B 2 Br. By the lemma B C a, so B Q a and A E B. 

3.4.3.7. So we have SA for B (6) -AUT-68 (+) and 6-AUT-QE (+) . In order 
to tackle the B6-case of AUT-QE we first prove 6-CLPT, which give us 

an unessential extension result. Then we can either extend SA directly, 

or first extend the lemma 3.4.3.5 to B6-AUT-QE+ and proceed as before. 

3.4.4.1 Now consider Bq-AUT-68. We cannot use CRanymore. 
2 

Theorem: UD for Bq-AUT-68. 

Proof: All 2-expressions are of the form [;:GIy or [zIp(?). So if 
2 I- A 2 [x:B]B, then A - Cx:alA, with a 2 B. By ind. on Q we can prove: 

2 1 
2 

if b A Q Cx:41B then A 5 Cx:alA with a Q B . This gives UD . 
1 

3.4.4.2. Corollary: SA for Bq -AUT-68 

Proof: Immediate. 

3.4.4.3. The same proof works as well for Bq6-AUT-68, as follows. 
2 

Lemma: I- A )  Cx:alA C ~ B ,  A I B  * B  2 Cx:BIBl, a 4 6 .  6 1 6 
Proof: Since 2 commutes with 2, [x:a]A1 2 [x:a ']A; < E I R. BY 

6 -6 
&-advancement (set. II.9.3), B C 2 [x:arr]A;' ~6K~:u'lA' 1' Here the re- 

duction C 2 [x:afrlArl does not contain &-reductions so C E .rz: ell? with 
1 1 

fi 2 a" I ctr 5 a, q.e.d. 

3.4.4.4. By the simultaneous substitution theorem we have 6-CLPT 

again. Then by induction on Q we can prove: 

This gives us U D ~  whence SA, as before. 

3.4.5. It is possible to extend these results (for Bq (6)-AUT-68) to 

the corresponding +-language Bq(6)-AUT-68+, but it is rather 

complicated. We can use a mixture of the methods in 3.4.4.3 and 
L 

3.4.4.4 and the methods in sec. 3.3. Thus we start with leaving n - 



reduction out of consideration, and restricting the appl-rule of 
2 

degree 2 to: A E a, b B 2 Cx:PIC, a 2 B * k{A JB. 
Later on these two restrictions prove to be immaterial. For the 

2 2 
restricted system SA is immediate and 6 -closure is guaranteed. Then 

2 2 
we need&-B -advancement and the fact that 6B -reduction commutes 

with 2 ,  and get: 

2 t- F Q CX:BIB + F  2 CX:~IA, a Q B. 
6 B 

2 3 
This yields UD , and SA and we are finished. 
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V.4. The equ 

d e f i n i t  

i va 

i o n  

lence o f  the E - d e f i n i t i o n  w i t h  the a l g o r i t h m i c  

4.1. Introduction 

4.1.1. Since in the E-definition the correctness of expressions and 

formulas (relative to a correct book and a correct context) was 

given by an ordinary inductive definition, the correctness relation 

is a priori just recursively enumerable and not necessarily recursive 

i.e. effectively decidable. 

In this section V.4, though, we prove the decidability and 

discuss some related topics. First we give some introductory considers 

tions leading to a sketch ofadecisionprocedure (secs. 4.1.3-4.1.6). 

The whole verification process is, in principle, reduced to the 

verification of Q-formulas, for which the decidability follows from 

the normalization property N and the Church-Rosser property 

(compare sec. I1.5.4).We can use normalization freely because we 

proved N for a very large system in IV.4.5, but BTI-CR we do not know 

yet. Therefore we assume throughout V.4 property CR for the co~~e,?t 

expressions, for the proof of which we refer to Ch. VI. 

4.1.2. Then (sec. 4.2.2) we present the actual algorithmic definition, 

to be adapted for the various languages by a suitable choice of a re- - 
duction relation, of a typing function cantyp and of a domain function 

dom for the computation of domains (sec. 4.2.3., 4.2.4). 

The equivalence proof in sec. 4.3 is organized as sketched in 

sec. 1.2 and 1.6, with the following effects: 

(1) the strengtheningrule can be skipped from the E-definition 

(2) the E-systems are decidable 

(3) the algorithmic system satisfies the nice properties of the E- 
system: closure etc. 

The final sections concern the verification of Automath languages 

in practice. This is a matter completely different from the 

theoretical decision procedure discussed before. Particularly some 

remarks are mac?eon suitable reduction strategies for deciding Q- 

formulas. 



4.1.3. Deciding Q and C 

No matter whether a system has Q-rule V.2 or 0-rule V.2', there holds 

Proof: a. By induction on Q, using CR. 
c. This is precisely rule V.2' so either it holds by definition 

or it follows from CL. 0 

So, by N (as in 11.5.4) , for correct A and B, A Q B is decidable. 
In ~(q)-AUT-QE all I-expressions are of the form CZ:EIT. 

We have 
1 I- A C  r - !-'A 

and (sec. 3.2.3.1). 

1 'A C h:B1B1 <* A Cr:alA 1 ' a Q 6 and 3; E o t A  1 C Bl. 

So, for correct 1-expressions A and B, A C B is decidable (use induc- 

tion on the length of B). Since on non-1-expressions C is just 0, 

this is true for A and B of other degrees as well. 

Let /- stand for correctness in B(r7)-AUT-QE, 1- for some larger 
- + 

1 
system, like Bn6-AUT-QE+ or 6q&-AUT-QE* and let denote the B &-  

normal form. By UE (secs. 3.. 3.2, 3.3.3) we have. 

b+A E B t A C+Bl CA- C B- 

So, in the larger systems, too, A E B is decidable, for correct A and 
- - u. 

4.1.4. Deciding E-formulas 

In principle, E-formulas A E B, for correct A and B are going to be 

decided by the equivalence 

A E B - typ(A) C B 

which reduces the E-formula to a C-formula. 

However, there is some trouble with t yp .  First, typ can lead us 

out of the correct expressions of the language we consider. There 

are two ways to solve this problem: first one can introduce for each 

language a specific modified type-function catltyp (for: ca?zonicaZ 

type) which does not suffer from this defect. Then we get what we 

want (as in 3.2.4 for AUT-QE) 



A E B - ]-A, tB, cantyp(A) C B 

Alternatively, one can use the fact that the new, possibly in- 

correct expressions created by typ in general are correct in some 

larger system (e.g. the corresponding +-system). Then one can decide 

the E-formula in the larger system: 

where I+ stands for correctness in the larger system. 
If we make sure that t+cantyp(A) Q typ(A) then, by conservativi- 

ty, the two approaches are clearly equivalent. 

A second difficulty with typ occurs exclusively in AUT-QE' and 
2 2 

AUT-QE*. These languages have the rule: t B ,  E D, B >6 C * 
I B  E D l  and for the new category D of B the property t~p(B) C D (even 

if typ(B) is correct) is not necessarily true anymore. 

This problem can be solved by taking a type-function which first 
2 2 

eliminates all the 6 -constants. For a 6 -constant d we have then 
2 

cantyp (d (2) ) : cantyp (6 -nf (d  ( f l )  ) ) . 

4.1.5. Deciding correctness of expressions 

All correct expressions relative to a correct B and a correct 5 have 

to be 8; c-expressions, i.e. the constants have to be in 8 and the 

free variables have to be in 5. The verification of compound 

expressions can roughly be described as: verify the subexpressions, 

plus their possible type- and degree-restrictions. E.g. for abstr- 

expressions use the equivalence 

[X : a ]A a, ci of domain degree, x E a ] - A ,  A of value degree. 

For the subexpressions B in c;E) there are type-restrictions 
prescribed in the scheme of c ,  viz. if the context of the scheme is 

y E 3 then 

l c ( 8 )  - B E ?[ED (i.e. B1 E B l r  B2 E B2IB11 etc.) 

To verify the right hand-side first verify CB Since bel 
1' 

(it occurs in B ) ,  we can decide 3 E B1 as indicated above. Then 
1 

check I-B2. Since B 1 E B1 and y l  E til  I-B2 we know kB2[BlD SO we can 

tackle the next E-formula etc. 



4.1.6. Verification of application expressions 

Now we discuss the type-restriction implied in the correctness 

of JAB. We restrict ourselves to AUT-68 and AUT-QE here. 

Define a to be a domain of B if 

(i) B E Cx:alC for some C, or (ii) B E C E Cx:alD for some C, D. 

Then, in view of the formation rules for appl-expressions, we 

have the equivalence: 

b{A)B * kB, B has a domain a, A E a 

The arbitrariness w.r.t. the domain can be somewhat reduced by 

another property of uniqueness of domains, viz. 

if a and a are domains of B then a Q a  
1 2 1 2  

(which will be proved below, 4.2.4.2). This allows us to modify the 

equivalence: 

C{A)B L B ,  B has a domain, and \d (P has a domain a *A E c$ 
a 

i.e. we need just one domain to check the type-restriction. 

If one fixes a particular procedure for the computation of some 

domain of an expression, one can define a domain function dom 

(specific for each language). E.g. for AUT-68 one might inductively 

define 

62-  nf (cantyp (B) ) - Cx:alC * dom (B) - a. 
NOW define an extended reduction relation +, as follows: 

(i A > B * A - t B  

(ii) A + typ (A) 

(iii) + is transitive. 

Then, an alternative way to compute a domain of an expression B, 

is to perform a more or less specified search through the +-reduction 

tree of B until one possibly encounters an abstraction expression, 

say [x:alC; if so, this a is some domain of B. Certain restrictions 

(specific for each language) have to be imposed upon the search in 

order to guarantee that not too many expressions get a domain in this 

way. 

Just like property N (at least 6 L - ~ )  is crucial in the definition 

of dom above, the well-foundedness (i.e. property SN) of -t is needed 



for the termination of the second procedure. This will indeed be 

proved below (4.4.11) . 
As a whole, the situation with the two possible ways of finding 

a domain can be very well compared with the two ways of deciding a 

Q-formula: either one can compare normal forms (use N) or one can 
.search for a common reduct in the respective reduction trees (use SN) 

4.2. The algorithmic definition 

4.2.1. Now we give, guided by the considerations in the preceding 

sections, the algorithmic definition of correctness. Apart from the 

compatibility condition of def and typ (see below), the book-and- 

context part of the definition is as usual (see IV.3) and will be 

omitted. So we just define the correctness of expressions and 

formulas (new notations k E , qa and Cat with the subscript for 
a' a 

"algorithmic") in terms of reduction, dom and cantyp (sec. 4.2). Later 

we discuss the choice of cantyp and dom for the various regular 

languages (4.2.3, 4.2.4). 

4.2.2.1. Let 8; 5 k . The conventions for omitting 8 and 5 in 
a 

8; 5 k A are as in v.2.1. . Degrees are indicated as superscripts and 
a 

defined as usual. The compatibility condition reads: def(d) Ea typ(d). 

4.2.2.2. Formula part of the definition 

Let A and B be B ;  5-expressions (so not necessarily correct). We 

with the straight forward extension to strings: A qa 8. 
(ii) A C  B ,  if degree(l3) =-  1 : -  

1 1  a 1 1  
B 6 -nf(n) s C;:~IA~, B a -nf(B) a CX:BIT, a Q 8. a 

(iii) A C B, if degree(B) # 1 : * A Qa B 
a 

(iv) A E B :  ++ cantyp(A) C a B  
a 

with a straightforward extension to strings A E B. 
a 

4.2.2.3. Expression part of the definition 



(ii) : * x occurs in 5 

(iii) Cac;B1 ,... , B )  : * kaBlr..., k a Bm , C occurs in B and, 
m 

if the scheme of c has context y E E then B E E 15j. a 
(iv) A E B : - cantyp (A) Ca B 

a 
with a straightforward extension to strings 2 E B 

a 

4.2.2.3. Expression part of the definition 

(ii) !- X: * x occurs in 5 
a 

(iii) 1 C (B1 , .. . ,Bm) :- a B1 , .. . , I- B c occurs in 8 and, if 
a m r -  

the scheme of c has context y E ? then B Ea BEBU. 
(iv) 5 l-a[~:olA :- 5 /-) and E l  x E u CA and A has value degree. 

(v) ka{A}B :r b: A , baB, B has function degree, A E d~m(B) 
a 

4.2.3. The choice of cantyp 

4.2.3.1. For our purposes (see 4.1.4) we require that, for correct A, 

cantyp(A) is as well correct, is a category of A, i.e.A E cantyp(A), 
and is minimal with respect ,to C: A E B * cantyp (A) C B. 

This leaves us still a lot of freedom for our choice of cantyp: 

e.g., as long as different definitions of cantyp yield definitionally 
equal results, they are equally good to us. In some languages ~ Y P  
itself meets the requirements mentioned above, viz. Bq-AUT-QE+ and 

Nederpelt's A .  In most languages, however, typ causes some problems, 

e.g. there are correct expressicns with incorrect ~ Y P ;  then we choose 

cantyp to be some suitable modification of typ. 

Below we give a survey of the difficulties with typ, and how 

these can be solved by cantyp. 

4.2.3.2. We start with the languages where the trouble with typ is 

due to mere degree restrictions. 

2 
(1) 1311-AUT-68: if l- [ x : a l B  then its typ is not correct in AUT-68, but 

is a typical AUT-QE-expression. Then cantyp of this exyession has to 

be T .  lurther, typ ((A }B) where degree (B) = 3, is incorrect in AUT-68 

but correct in AUT-68+ (so, see 3.3.11.2, in AUT-QE) . In cantyp ( ( A  }B) 

we have to remove the a9plicator ( A ) ,  so we can define cantyp(IA1B) 5 

CUA], where cantyp(B) Z [x:a]C. This is the same idea as in 3.2.4, but 



now for 3 of degree 3. 

[2) .-.:-1-AUT-QE and ;?,rl-AUT-68+: Application of typ to {A }B of degree 2 

yields AUT-QE+ expressions. For AUT-68+ cantyp of these expressions 

il~s to be T. For AUT-QC .we remove { A )  from cantyp, by @-reduction as 

in 3.2.4 (and in (1)). 

4.2.3.3 Now we add definitional constants. This gives rise to the 
2 

interference of 6 -constants and type-inclusion, discussed before in 

3.3.10-3.3.12. 

(3) 606-AUT-68: Consider the example of 3.3.10 which is also correct 

in AUT-68. There occurs an {A $3 of.degree 3 such that typ({A)E) does 

not belong to AUT-68 (of course not, as in (I)), does not even belong 

to AUT-QE and AUT-QE+, but does belong to AUT-68+, AUT-QE' (3.3.12.1) 

and AUT-QE* (3.3.11). Again, we must remove the applicator in Cantyp, 

but we cannot be certain anymore that cantyp(B) is an abstr-expression. 
2 

Therefore we define cantyp(1A D) Z CUA3, where 6 -nf (cantyp(B1) 5 

Cz:alC. 

(4) Bq6-AUT-QE(+) : The same expression typ((A)B) of ( 3 )  is again in- 

correct here. Now the applicator is allowed in cantyp, but we need the 
2 
6 -reduction in order to remove the effect of the type-inclusion: 

2 cantyp ({A 13) - {A )(ti  -nf  (cantyp(B) ) ) . 
(5) Bq6-AUT-68+: This language has 2-expressions {A )B (see 3.3.11.2), 

the typ of which is incorrect in all the languages, and even not 

normable, e.g. {Ah. The cantyp of such CAIB must be T. 

(6) Bq6-QUT-QE' and Bq6-AUT-QE*: Here we have the same {A $3 of degree 

2 of AUT-68+. Besides, the typ of a degree 2 definitional const-ex- 

pression (even if typ is correct) need not be a minimal category 
2 

anymore. Therefore we define cantyp ( J  (2) ) : ~Cantyp (6 -nf (d  (2) ) ) . Then 
for the cantyp of (A }B of degree 2 we can simply take (A kantyp ( B )  in 

1 
AUT-QE*, whereas in AUT-QE' we must take CUA] where 6 -nf(cantyp(F)) : 

Cz:alC. 

4.2.3.4. Resuming: we have three types of difficulties, viz. 

(i) In AUT-68 (+) the only 2-expression is T ,  so the typ of 2-ex- 
pressions can be incorrect. Remedy: define cantyp to be T. 

(ii) In non-+-languages (AUT-68, AUT-QE and AUT-QE') the typ of ( A  13 

of minimal function degree (say: i) is incorrect. Remedy: create 
i-1 

an abstr. expression by taking the (86) -normal form of 
i-1 

cantyp(B) and remove (A) by another $ -reduction. 



2 
(iii) In languages with 6 -constants and type-inclusion typ produces 

incorrect appl-2-expressions (AUT-QE(+)) or appl-1-expressions 

(AUT-QE' and AUT-QE*). Besides, in AUT-QE' and AUT-QE* the 
2 typ of a 6 -const-expression is not necessarily a minimal 

2 
category. Remedy: remove the 6 -constants after (AUT-QE (+) ) or 

before (AUT-QE' and AUT-QE*) taking cantyp. 

4.2.3.5. In view of the arbitrariness of cantyp (4.2.3.1) we need 

only three different definitions of cantyp, one for the AUT-68- 

family, one for the restricted AUT-QE languages AUT-QE and AUT-QE+, 

and one for the liberal AUT-QE branch (AUT-QE' and AUT-QE*). Since 

the above list of difficulties is exhaustive, for the rest (e.g. for 

variables and const-expressions) the definition of cantyp differs 

only as regardsthe following clauses: 

for AUT-68 and AUT-68+ 

degree (B) = 2 - cantyp ( B )  : 7 .r 
2 2 

degree (B) = 3, B 6 -nf (cantyp(B) ) - Cx:aIC * cantyp ((A }B) :: 

for AUT-QE and AUT-QE+ 
1 1  

degree ( B )  = 2, B 6 -nf (cantyp ( B )  ) - [x:alC * cantyp ((A IB) :- 

for AUT-QE' and AUT-QE* 
2 

degree (d)  = 2 * cantyp (d  (z) ) : 3 cantyp ( 6  -nf (d (2)  ) ) 
1 1  

degree@) = 2, 6 6 -nf(cantyp(B)) r Cx:alC * cantyp 
CUA 1 

4.2.3.6. That the proposed definitions of cantyp actually satisfy the 

requirements of 4.2.3.1 can be proved directly for the E-systems using 

the results (CLPT,  LQ, UE etc.) from section 3, but will become clear 

as well in the course of the equivalence proof, below. 

4.2.4. The choice of dom 

4.2.4.1. We start with a recapitulation of the appl-rules for the 



various languages. F i r s t ,  the appl-rules of AUT-68 ( ( 1 )  A E a ,  

3 E [x:aIC * /-{A IB) and of AUT-QE ( ( 2 )  A E a ,  B E C E [x:a]D * 
I- {;l)3) a re  simply va l id  i n  a l l  the languages (though ru l e  ( 2 )  i s  

i vacuously so i n  AUT-68 (+) ) . Then, addi t iona l ly ,  r u l e  (3 ) 
i (.A E a ,  !- 3 Q [X : a IC * I- {A IB) ; t h i s  r u l e  is  with i = minimal value 

degree necessary fo r  defining the +-languages AUT-68+ ( i = 2 ) ,  AUT-QE+ 
i 

and AUT-QE* ( i = l ) .  For languages s a t i s fy ing  LQ , where i is not the 
i 

minimal value degree, r u l e  (3 ) is  a derived ru le .  Indeed, fo r  such i 
i 3 

i s  [x:alC E [x:alD so by L Q ~  B E [z :cr lD.  Hence, r u l e  (3  ) is 
2 2 

anyhow va l id ,  r u l e  (3  ) is va l id  i n  the  AUT-QE languages without 6 - 
1 constants ,  f u r the r  i n  AUT-68+, AUT-QE' and AUT-QE*, and ru l e  (3  ) i s  

va l id  i n  AUT-68(+)(vacuously) , AUT-QE+ and AUT-QE*. Alternat ively 
i 2 

formulated, r u l e  (3  ) i s  always va l id  but for :  r u l e  (3 ) i n  AUT-68 
2 1 

and AUT-QE(+) with 6 -constants,  and: r u l e  (3 ) i n  AUT-QE and AUT-QE'. 

4.2.4.2. So, f o r  ce r t a in  languages we must extend the de f in i t i on  of 

domain from 4.1.6 with the clause : (iii) B Q [x: alC =, a is a domain 

of 2.  The s e t  of domains of an expression is  c l ea r ly  closed under 0: 

a a domain of B, a Q a2 * a2  a domain of B. 
1 1 

The converse of t h i s  is  the announced uniqueness property,  which we 

prove here f o r  the  enlarged notion of domain: 

a and a both domains of B * a l  Q a2.  
1 2 

Proof: From 3.2.3.2, 3.2.4.3, 3.2.5.7 we r e c a l l  the propert ies  of ?,T- 

AUT-QE 

1 l- Cx:a11C O [x:a I D  * a 
1 

2 1 Q a2 ( t h i s  includes U D  ) 

2 k Cx:cc1lC E [x:a 2 I D  * a 1 Q a2 (EUD') 
2 c C X : ~ ~ I C  Q C X : ~ ~ I D  e a 1 Q a2  (uD') 

3 
Now l e t  !- [x:a 1 I C  E [x:a 2 ID. Then a l so  /-3[x:a1]C E [x:a 

7 
UT' we ge t  [x:u21D Q [ i : a l l F  and by UD-:  a l  Q a2: So we have EUD- as - 

3 
well.  Further k [x:al1C Q [x:a21D. Then a l so  C ' C X : ~  1 I C  E [ i : u  1 IF 

3 
and by LQ [s:a21D E [x:ol IF. SO by E U D ~  : ol Q a?. This amounts t o  
-, 

UD'. These r e s u l t s  can a l l  be extended t o  the extensions of Bq- 
1 

AUT-QE by t r ans l a t i on  (e.g. 6 6-reduction) i n t o  @n-AUT-QE, a s  follows: 

l e t  1-+[x:u ]C E/O [x:a 15, where I+ stands fo r  correctness i n  the 
1 2 - 

larger  system. BY UE, 1 [ x : a ; l ~ -  E / O  [x :a ; l~- ,  cor rec t  i n  Bn-AUT-QE, 



- - 
so by one of our (E)UD results: a Q al Q a2 Q a2. Of course, in AUT- 1 
63 (+) these (E) UD results are also valid. 

Now we treat the various possibilities for a and a to be a 
1 2 

domain of B. 

(1) Cx:allC Q B Q Cx:u21d. use UD. 
2 

(2) [x:allC Q BE C X : ~  ID. ~f necessary, translate (e.9. by 6 - 2 
reduction) into a language satisfying LQ: Cx:a-Ic- Q B- E 

1 
[x:~;ID-. Then by LQ we get [x:a;IC- E Cx:a;l~-, and can use EUD. 

(3) Cx:allC Q B E D E Cx:a21F. Use LQ: Cx:allC E D E [x:a IF. 
3 

2 
But also [x:a IC E Cx:allG and by UT : [x:allG Q D we arrive in 

1 
case (2) again. 

(4)  B E [x:alIC, B E [x:a21D. Then [x:a ICO [x:a ID so a Q a 2 .  1 2 1 
3 

( 5 )  B E [x:allC, B E D E [x:a21F. By UT : [x:a 1C Q D we are again 1 
in case (2) . 

( 6 )  B E C E [x:allDr B E F E [x:a21G. By U T ~  we get C Q F. Translate 
- 

into a language satisfying LO. This gives C Q F- E [Z:CY;]G- 
and by LQ C- E CX:~;IG-. It also gives C E CX:~;ID-, and case 

(4) applies. 

4.2.4.3. It would be nice if the notation of domain of an ex~ression 

was preserved under Q: B Q C, a a domain of B * a a domain of C. This 
is indeed true for languages satisfying LQr but not for the others, 
viz. Bnb-AUT-QE and Bn6-AuT-QE+. By CLPT, there holds 

B 2 C, a a domain of B * a a domain of C 

i.e. the notion of domain is preserved under 2 .  So the converse direc- 
L tion (C r B, in particular with 6 -reduction), fails in Bn6-AUT-QE(+). 

For all the languages we have 

B Q C, a a domain of B * a a domain of C- 

2 
where C- is the 6 -normal form of B. 

- 
Proof: BY the translation wearrive in a language satisfying LQ, so 

from B- Q C-, a a domain of B- we get the desired result. 
As a corollary of this, we get 

B Q C, a a domain of B, C has a domain * a domain of C. 



4.2.4.4. In view of the above remarks we still have a lot of freedom 

in defining a domain function dom which picks some expression from 

the set of domains. Dom is going to be defined in terms of cantyp and, 
i 

just like cantyp, in terms of 62-reduction and (86) -reduction, where 

i is the minimal value degree. 1.e. by application of cantyp and these 

reductions we arrive at an expression which we call the domain normaz 

j b m ,  dnf. ~i the dnf is an abstr-expression then we read off the 

domain dom from it: 

Otherwise, dom is simply not defined. 

The rules for computing dnf are for the non-+-languages: 

2 2 
(1) AUT-68: dnf (B) : B 6 -cantyp (B) 

(2) AUT-QE ( '  ) : (i) degree (B) = 3 * dnf (B) : 
2 

8'6'-nf (cantyp(& -nf (cantyp(B1) 1 ) .  
1 1  

(ii) degree (B) = 2 =+ dnf (B) : - B 6 -nf (cantyp (B) ) 

2 1 
The 6 of AUT-68 and the B of AUT-QE(') were only added in order 

to cover the corresponding +-languages too. Now, we can deal with the 

+-languages by simply adding a rule for B of minimal value degree: 
i 

degree(B) = i, i is minimal value degree * dnf(i3) :- (86) -nf (B). 
This rule gives us AUT-68+ from AUT-68, AUT-QE+ from AUT-QE and 

AUT-QE* from AUT-QE ' . 

4.2.4.5. That dom(B), as defined above, gives us a domain if R has 

one, and gives us nothing otherwise, can be proved directly, but will 

also become clear in the course of the equivalence proof. 

4.3. The equivalence proof 

4.3.1. As announced before, the equivalence of the algorithmic defini- 

tion with the E-definition will also prove the superfluity of the 

strengthening rule. To this end we use, along with the algorithmic 

definition system 111, two distinct versions of the E-definition, 

system I and system 11. Here, system I is the system of sec. 2: it 

has the strengthening rule and it has Q-rule V.2. System 11, however, 

lacks the strengthening rule and has Q-rule V.2' instead. 

By CL for system I, we have: str., V.2 -(str., V.2') =+ V.2' , SO 



system I1 is c l e a r l y  included i n  system I. 

Below we denote correctness  i n  I ,  I1 and I11 respec t ive ly  by { , 
t o  and k; hence t h e  inc lus ion  of I1 i n  I becomes: I-,* I - .  

Now t h e  equivalence o f , t h e  t h r e e  systems is  shown by addi t ional ly  

proving =b t o  (sec .  4.3.2) and k * la  (sec .  4 .3 .3) .  
a 

4.3.2. The j- * t -par t .  
a 0 

4.3.2.1. We f i r s t  formulate t h e  theorem, which we want t o  prove. 
1 i+l 

Theorem: I f  B k a resp.  8; 5 Fa  resp.  B ; E  k aA resp.  B ; S  k A then B ?- 
a 

1 i + l  
resp.  8 ;  5 oA resp.  B ;c A E cantyp ( A )  . So t h e  theorem implies 

t h a t  cantyp i s  well-defined on t h e  non-1-expressionsofthealgorithmic 

d e f i n i t i o n .  The proof of t h e  theorem i s  by induct ion on ?- and 
a 

depends of course  on dom and cantyp, i . e .  Qn t h e  language we consider. 

However, l a r g e  p a r t s  of t h e  proof can be done f o r  a l l  o r  some of the  

languages toge ther .  

4.3.2.2. Some p r o p e r t i e s  

( 1 )  k o A r  LOBl A Qa B * koA Q B 
Proof: t h i s  i s  simply r u l e  V.2'. 

( 2 )  k $ 4 I o~161-nf  ( A )  Q A 

Proof: By t h e  simultaneous subst .  theorem 6-CLPT holds. Further SA 1 

1 
can be-proved a s  i n  3.3.6.1-3.3.8.2, o r  holdsvacuously so B -CL.  By 

- 

1 1  66-CR and B6-N t h e  8 6 -nf i s  well-defined. 

(3) Let koA, koB, A E a  B. Then F O A L  B 
1 1  

proof:  For 8  of degree 1 ,  by ( 2 )  b oA Q B 6 -nf ( A )  S [ ~ : ~ I A ~ C  I;:& 
1 1  

4 [::BIT 2 f3 6 - n f  (B) Q B so 1- A 1 B. I f  degree(B)# 1 t h i s  i s  (1) 
0 

Proof: apply (3)  . 
(5 )  The -system s a t i s f i e s  CR 

0 
Proof: =b k and we assumed CR f o r  k . 
(6 )  Strengthening f o r  Q:  

i' t$ Q Br t 1 sub  E r  k o A r  El kOB * El kOA Q B 
Proof: By ind.  on Q we g e t  A + B so koA Q B. 



4.3.2.3. Proof of the theorem, part 1 

We only need to give the inductionstep for those clauses'in the 

definition of f which differ from the corresponding clauses in the 
a 

definition of f We start with the easy cases. 
0' 

(1) the compatibility condition 

let 5*d(G) :=A * d(;) E B be a correct scheme according to the 

algorithmic definition, i. e. 5 FaA, 5 kaB and A .E B. By the ind. 
a 

hyp. 5 kOA E cantyp(A1, LOB, SO by (4)  above 5 k0A E B, q.e.d. 

(2) expressions (easy cases) 

(i) T: trivial 

(ii) variables: let 5 b then by the ind. hyp. 5 to, so for x 
a 

in 5, 5 1 E typ (x) E cantyp (x) . 
(iii) const-expressions, except 62-const-expressions in AUT-QE' 

and AUT-QE*: let the scheme of c be in B with context 

y EB. Let t B 
a 1'"" 

1 I! and E BUBO. By the ind. hyp. 
a m a 

Cofi, E cantyp (B1) , I- oB2 E cantyp(B2) etc. Further y E 6 I- a 

s o y  E B C 0  so ~ O B l l  y1 E B 1 f O B Z  etc. Sok B E B1 and 
0 1 

by the subst. theorem 6 (B 1, so 1 0B2 E B2[IBlD etc. up 
0 2  1 

to 1 E E B~IBR. m e  conclusion ii 0u (El (E typ ( c )  [ E D  I 0 m - 
cantyp (c (B) 1 )  . 

2 
(iv) abstr-expressions: let 5 1 a and 5, x E a 1 aA, A of value 

a 2 
degree. By the ind. hyp. 5kOa and 5, x E akoA(E cantyp(A)), 
For A of degree 2 in AUT-68 (+) this is 5 ,  x E a oA E T 

which yields 5 O[x:aIA E T - cantyp ([x:alA) . Otherwise, 
we get 5 t OCx:alA (E Cz:alcantyp (A) cantyp ([x:a]A) ) . 

4.3.2.4. Some more properties 

Before discussing the remaining clauses we prove some more 
1 1  

properties of f First something aboutr. Of course, the B 6 -nf's 
0' 

of 1-expressions are of the form [;:;IT. As in 3.3.6-3.3.8 (leave n 1 

out of consideration, restrict the appl-1-rule) we can prove, even 

without using CR 

and, by induction on C, 



1 1 1  - -  - -  1 1  
koA C B s 6 6 -nf (A) i Cx:aICy:ylr, 8 6 -nf (B) z I !- oi Q 8. 

1 1 1  
so we get: FOA C Cx:BIB1 - 6 6 -nf(A) : Ix:a]A ,. 1 ' boa Q 8, x E a kAICEl 

Proof: E.g. in AUT-68(+) there is nothing to prove. Anyhow, the cases 
2 

A Z T ,  A a variable or A an easy const-expression ( i . e .  not a 6 -const- 

expression in AUT-QE' or AUT-QE*) are immediate. For the rest we 

proceed by induction on (1) the length of €i2-reduction tree of A. ( 2 )  

the length of A. 
2 

Abstraction expressions are easy. If A is a 6 -const-expression 
2 2 

in AuT-QE' or AUT-QE*, by 6-CLPT and the first ind. hyp. 06 -nf (A) E - 
cantyp(6'-nf (A) ) - cantyp (A) (C B) . Then by the extra type modification 

2 
rule of these languages we get boA E cantyp(A) (C B), q.e.d. Now let 

1 1  
A = {A }A we have 1- A E a, A E cantyp(A2) C [x:aIC. So B 6 -nf 

1 2' 0 1 0 2 
(cantyp(A2)) 5 [x:alIC1 with a q a, x E al PC1 C C. We want 1 
k oA E cantyp(A) ? C1[AID (C B) . If the formula A E B in the assumption 

comes directly from CUA J/ C B we get C [A 1 C CIAl C B 4.e.d.. Other- 
1 1 1  

wise A L2 Dl 1 OD E B (i. e. the extra rule of AUT-QE ' and BUT-OE* has 
6 2 2 

been used). This D 2 {D ID with A 
1 2  

"6 Dl' A 2 2 6 D 2 1  koD1 " 1  

and kOD2 E cantyp (D2) Q p16'-nf (cantyp(02) z Ix:a21C2 C Cx:o 1C 
1 1  

(apply one of the ind. hypotheses to D2), and by the first ind. hyp. 

!-,D E cantyp(D) z C2UD11 Q C2[lA1D C CIBA1!I. So, by the type mod. rule, 

koA E CIIIAID. g.e.d. 

4.3.2.5. Proof of the theorem, part 2 

Now we prove the induction step for the two remaining cases. 

2 
(1) 6 -const-expressions in AUT-QE' or AUT-QE* 

2 
As in 4.3.2.3. (iii) we can get F d(B) from padtB). Then by the 

0 
lemma t- od (@ E cantyp (d (8) ) . 

(2) appl-expressions 
3 

Let 1- A, k aB, B of function degree, A Ea dom (B) . By the ind. 
a 

hyp. ~2 E cantyp (A) + dom (B) , b B~ ( E  cantyp (B) . For the 
computation of cantyp and dom in the various languages see 

4.2.3.5 and 4.2.4.4 respectively. 
3 2 2  

(i) AuT-68 (+) , I- B: B 6 -nf (cantyp (B) ) - Cx:aIC, dom(B) - a. 
0 

By 6-CLPT k oB E [x:a]C and k SO A E a and 
0 



u 
2 2 2  2 

(ii) AUT-68+, 1 3 B 6 -nf (B) E [x:a]C. We have SA ( s e e  e.g. 
0 

cantyp ({A 1B) 
1 1  2 

(iii) AUT-QE (+I  , 1 3 ~ :  B 6 - n f  (cantyp (6 -nf (cantyp (B) ) ) ) z 
0 

[x:aIC, dom(B) .: a .  By 6-CL and t h e  lemma i n  4.3.2.4 
2 t oB E 6 -nf (cantyp ( B )  E Cx:alC SO I- OEA IB E 

2 
EA ) ( 6  - n f  (cantyp (B) ) ) - cantyp (CAIB) . 

3 
( i v )  AUT-QE' and AUT-QE*, 1 B: A s  (iii), but  from 

2 
0 

1- ,ti - n f  (cantyp (B) ) E Cx:alC we i n f e r  now !- ocantyp (B) E 

(v) AUT-QE, c L ~ :  Like (i) but  decrease  t h e  degrees by 1 
0 

( v i )  AUT-QE+ and AUT-QE*, : l i k e  (ii) , but decrease the  

degrees by 1. 

This  f i n i s h e s  t h e  proof of t h e  theorem i n  4.3.2.1. 

4.3.3. The k * La-par t  

4.3.3.1. We formulate our theorem. 

Theorem: I f  8  1 resp.  B ; 5  k resp.  8;5 +A then 8  la resp.  B ; <  la resp.  

8 ; t  1 A .  Fur the r ,  i f  8 ; ~  !-A E B then A E B.  
a a 
The proof w i l l  be by induct ion on 1. We j u s t  d i scuss  AUT-QE, 

because wi th  AUT-68 everything is  completely s i m i l a r  o r  somewhat 

e a s i e r .  

4.3.3.2. F i r s t ,  we need some p r o p e r t i e s  

(1)  Strengthening holds i n  t h e  b -system 
a 

Proof: n o t i c e  t h a t  t h e  d e f i n i t i o n  of cantyp only r e f e r s  t o  t h e  

r e l e v a n t  p a r t s  of the  c c n t e x t ,  i . e .  t o  assumptiors concerning a-y 

occurring f r e e  v a r i a b l e s ,  and t h a t  t h e  o ther  not ions  i n  t h e  

d e f i n i t i o n  of cor rec tness  do not  r e f e r  t o  t h e  context  a t  a l l .  

Hence, s t rengthening can be proved by a simple induct ion on l a -  

( 2  j on P C T ~  (preservat ion of cantyp)  : I n  3.2.5,  we proved Bq-outside- 
2 2 PCT f o r  Bq-AUT-QE. However 6-outside-PCT i s  wrong, so f c r  AUT- 
1 1 



2 2 
QE(+) with 6 -constants we can only get re6tricted PCT : 

2 2 
if 1. A, A 2 B not using 6 -reduetian then cantyp (A) Q cantyp (B) 

In order to prove this, start with 1 L~ E a * F A  E cantyp iA) II a 
(e.g. as in 4.3.2.4). Then, as in 3.2.5, one can prove: 
2 2 1 A, A 2 B not by 6 -reduction =s cantyp(A1 Q cantyp(B). 

2 2 
Restricted PCT gives us restricted LQ for AUT-QE (+) : 

2 
if b A, B E C, A Q B without using 62-reduction then A E C 

Z 
(3) However, in AUT-QE' and AUT-QE*, full PCT is still valid and 

L 
hence LQ holds (this was already implicitly claimed in 

3.3.11.4). 

Proof: In AUT-QE' and AUT-QE* we have 

2 2 
6 -nf (cantyp (A) a cantyp (6 -nf (A) ) 

2 2 2 
So, let A 2 B. Then 6 -nf (A)> 6 -nfl,B) without using 6 -reduction, 

2 2 
so by restricted PCT we have cantyp(6 -nf (B)). 

4.3.3.3. Proof of the theorem 

Note that the F A  E B * A Ea B part of the theorem, for A of 
2 

degree 2 follows from A E B * F A  E cantyp (A) C B (in 4.3.3.2 (2) 

and 4.3.3.2.(4)). The proof is by induction on k. We first discuss 
some of the clauses for the formation of expressions: 

2 
(i) abstr-expressions: let b a, x E a FA1 (E B1). By the ind. hyp. 

2 
/-,a, x E a kaAl, (A1 Ea B1, i.e. cantyp(Al) Ca B1), SO 
!--aCx:alA1, (cantyp(Cx:alA1) E Cx:alcantyp(Al) E [x:a]B 1 ' SO 

Cx:alA E Cx:alB ) ,  q.e.d. 
1 a 1 

(ii) const-expressions: let y E be the context of the scheme of c, 

I-B E EuBn. BY the ind. hyp. kaEl Ea E @ D ,  so Fae(B). I£ c is 
2 

not a 6 -constant i6 AUT-QE' or AUT-QE* then ~antyp(c(B)) Z 

typ ;c) UB] so certainly cantyp ( c  (k C typ (c i  6 @ ,  q.e.d. Other- 
a 

wise use the remark above. 
3 

(iii) 2-appl-expressions: let I- A E a, 1-B E ~x:~Ic. By ind. hyp. 



, 3. 
r ..-., Ca3, cantyp(A1 + a, cantyp(B) a Cx:aIC. 

1;l 
SO 5 -nf(cantyp(B)) E [x:a'ICr, dom(B) - a' J- a. BY CR, 

Cr; 15 Ea CIIAD, q.e.d. 
3 

(iv) 3-appl-expressions: let 1 A E a, FC E Cx:alD. By the ind. hyp 
2 2 

!- 2, cantyp (A) r a, bag, cantyp (B) r C. BY 6 -CLPT, 1- 6 -nf (C) 
E [x:alD. BY the 1 -  3 kg-part, COB E cantyp(B) so !-B E 

cantyp (B) , so l- cantyp (8) so l- b2-nf (cantyp (B) ) . Further 
2 2 2 
6 -nf (cantyp(B)) J- 6 -nf (C) without using 6 -reduction, so by 

restricted LQ, 1 6L-nf (cantyp (B) ) E Cx:crlD and cantyp 
2 1 1  ? 

(6 -nf (cantyp(B))~ [Ia Cx:alD. 1.e. 6 6 -nf (canty~(6 -nf !cantyp(E))))= 
Cx:ar ID', a + a' 5 dom (B) . Hence ba{A IB. Further {A kantyp (E) i. 

{A 1.: a'nd {A 1(6~-nf (cantyp(B) ) 4 {A ic so anyhow cantyp(iA B )  4 

{A E, q.e.d. Finally we discuss the type modification rules and 

the strengthening rule. 

(v) Type modification: let /-A E B, B c C. By the ind. hyp. kaA, 

A E B, i.e. cantyp(A) C B and by 4.3.3.2. (4) B E a  C. Use CR 
a a 

to get A E C q.e.d. 
a 

(vi) Strengthening : Use 4.3.3.2. ( 1 ) . 
This finishes the proof of the theorem 3 l- and the proof 

a 
of the equivalence of the three systems I- ,  1 0, b a. SO we do 
not distinguish between k ,  LO and Ta any more and have 

and C {A )B 3 cantyp (A) J- dom (B) . 

4.4. The actual verification 

4.4.1. Before discussing the actud  verification we make some con- 

cluding remarks on the formal decidability of the Automath languages. 

First, on the weZz-definechess of the decision algorithm suggested 

by the definition of l- in sec. 4.2, in particular the well-definedness 
a 

of cantyp and dom. Cantyp and dom are partial functions, so by well- 

definedness we understand: (1) it is decidable whether an expression 

has a cantyp (or a dom) (2) if it has one, this is effectively 

computable. All this is already implicitly included in the equivalence 

proof. E.g. the ta 4 !- -part states that cantyp on the correct non- 0 



1-expressions delivers a correct expression again. In the course of 

the decision process cantyp and dom are required of correct expressions 

only. E.g. before settling cantyp(A) Q B (in the verification of /! E ) we 

first check ?-A, and before settling A E dom(B) (in the verification 

of {AB) we first check F B .  The definitions of cantypanddom just 
i 

computation of degrees, and computation of B 6-normal forms where i 
i 

is the minimal value degree. Notice that B -.N in this case, and in 

fact for all i <  3, can even be proved without using normability. 

4.4.2. Our second remark concerns the normability. Below we make sure 

the normability result of sec. IV.4.4., as we claimed already several 

times, actually covers the regular languages, viz. by proving that 

the system of sec. IV.4.5 contains our most liberal language AUT-QE*. 

Let us abbreviate the system of sec. IV.4.5 by system IV. Theorem: 

System IV contains AUT-QE*. 

Proof: This system avoids Q-formulas as indicated in 2.12. For the 

rest it is like our system k with type-modification rule V.2' o r  
(sec. 2.11) and without strengthening, but of course with much weaker 

degree restrictions. The expression formation rules are the familiar 

rules of AUT-68 and AUT-QE, except perhaps for the appl-rules which 

are most similar to the rules in 3.3.11 for the first version of AUT- 

QE*. We only consider the 1-appl-expressions. Let (in AUT-QE*) 
1 1 

.-I E a, /- B Q Cx:alC. By 6 6-reduction we get B t [x:arICr which 
1 

Y Q a'. The substitution theorem and SA' (and hence f3 6-CL) are as 

usual valid in system IV, so using induction on AUT-QEk-correctness 

we get (in system IV) A E a', P B  2 Cx:af1C' so ] - { A )  B, q.e.d. 

4.4.3. From our axiomatic introduction in sec. 11.1.3 the actual 

nature of expressions does not become very clear, viz. that they are 

just some well-structured symbol-strings. In view of this fact, a 

verification process for the correctness of expressions must be able 

to perform the following task: given a correct book and a correct 

context (mere symbolstrings as well), each symbol-string must, in a 

finite amount of time, either be recognized as a correct expression 

(relative to book and context) or be rejected. 

The verification of such a string can be analyzed in several 

stages, e.g.: (1) bracket structure has to be correct, (2) the free 



variables have to occur in the context and the constants have to occur 

in the book (after this stage the constants in the string can be 

assigned an arity, variables and constants get a degree and possibly 

a t y p  and a d e f ) ,  (3) the arity of each constant has to fit the arity 

of theargument string going with it (only after this stage we can 

speak of expressions in the sense of sec. II.l), (4) degree restric- 

tions (and possibly norm restrictions) must be satisfied, (5) the 

type restrictions have to be fulfilled (i. e. of the argument A in ( A  
- 

and of the argument string C in c ( ? ) .  

Here it is just stage (1) which represents the context-free part 

of the verification. The stages (2) - (4) are literally context-dependert, 
but still trivially recursive. After passing stage (3) an expression 

is pretyped. From our point of view stage (5) is the interesting part 

of the verification. 

The actually running verification program for Automath languages 

at Eindhoven University has indeed been organized along this lines 

(see Zandleven [ 7 5 1 ,  Jutting [ 37 I ) .  There is a first pass with a 
"syntax-chezker" covering stages (1) and (2). This pass is optional 

since there is a next pass with a "translator" covering stages (1)-(4) 

(but without checking norm-restrictions). And finally there is the 

"pro~essor~~, operating on the result of the translator, which covers 

stage (5). 

4.4.4. First we discuss the verification of definitional equalities 

A + B. As in the case of 6-equality (sec. 111.6.2) we do not want to 
compute normal forms but rather design a strategy which after a few 

reduction steps in A or B either results in common reduct of AandE 

(if this exists), or enables one to conclude that it does not exist. 

As explained in sec. 111.6.3, when confronted with certain A and 

B during the decision process, we have to answer the following ques- 

tions: (1) shall we do an outside reduction, (2) if so, on which of 

the expressions? The form (or: shape) of A and B (i.e. whether they 

are abstr-, or appl-expressions etc.) plays a crucial role here. E.g. 

if A and B are both in i m z e  f o m  (see 11.4.9) then there is no choice: 

there is simply no outside reduction possible. So either we can 

immediately decide our definitional equality (if A and B are of 

different shape, or if A and B are atomic) , or we have to spzit  up 



(or: decovpose) the equality into the equalities of the corresponding 

subexpressions of A and B. But if A and B have different form, not 

both immune, then an outside reduction is required. 

The basic construction aim for a decision strategy is of course 

to minimize in most of the cases the total number of reduction steps 

required for a conclusion: A is equal to B or not. There is of course 

uncertainty about what happens in most of the cases, but the intuitive 

(and possibly questionable) ideas on this subject, underlying the 

algorithm in the next sections, can be summarized as follows: 

generally, the definitional equalities arising in the course of the 

verification and offered to the decision process, are trme, and a 

common reduct can be reached in rehtively few steps. 

4.4.5. We define new, restricted relations > > (h for head reduc- 
- - h' -h 

tion) and > > which precisely cover: (1) outside reduction steps, 
h' -h 

(2) the reduction steps needed in order to make new outside steps 

possible. The relations are given by a simultaneous inductive defini- 

tion: 

- - 
(i) 8 2 Cx:alC * IAIB >h CIA8 

h 

(ii) d( ?I >, de f  (d) Qcl 

(iv) .4 >- B * A >h B 
h 

- 
(v) > (resp. > ) is the reflexive and transitive closure of >- 

-h -h h 
(resp. 

>h) 

- - 
1.e. >h and 2h are just q-less versions of > and 2 Clearly 

h h ' 
A r B * A 2 B, and if A >- B (or A > B) then B is a first main 

h h h 
reduct (see sec. 17.4.9) of A. 

Remark: This reduction does correspond to the head reduction common 

in the literature [ 4 1  , i.e. to the "first half of" the so-called 
normal reduction [ 25 I. A reduction A 2- B consists of mere simple 

h 
head contractions, i.e. {A1 1;. .{Ak IB > {Al 1.. . {Ak I C where B > C is 

an elementary 66-reduction, and even only such of these that their 

reduct eventually becomes a new simple head redex. 

The unrestricted reduction D 2 C in clause (iii) is put there 

on purpose: it is of course possible that internal contractions are 



needeclin order to remove free variables from an expression. 
- 

The main property of 2 (or 2 depending on whether q-reduction 
h h' 

is present) is: if A 2 B then A 2 C 2 B where the reduction from C 
h 

to B consists solely of internal reductions. So if A 2 B and A, B 

have different shapes, then A > A' 2 B. 
h 

4.4.6. The intuition formulated in 4.4.4. leads us to the idea that a 

sensible decision process for definitional equalities must search for 

a common reduct (i.e. an affirmative answer) rather than normalize, by 

means of t (in order to get a negative answer), and that during the 
h 

reduction process the definitional constants must be saved, i.e. left 

intact, as much as possible. 

The strategy presented below (corresponding to what is actually 

implemented in Eindhoven [ 75 I) can indeed be characterized by the 

following principles: 

(1) decomposition is preferred above main reduction 

(2) B-reduction is preferred above 6-reduction (is preferred above n- 

reduction) 

(3) reduction of a "younger" definitional constant is preferred above 

reduction of the "older" one (see sec. 111.6.3). 

For example, if there is to be decided whether { A  J- <C]D, the 

process first tries decomposition: B 1 D and A J- C .  If this succeeds, 

i. e. B 2 F 5 D, A 2 G 5 C then we have a common reduct { G  p. Only 
after this has failed, an outside reduction is attempted on one of the 

expressions: e.g. {AIB >h E l  i.e. B 2 Cx:alF, E r FI[Al, and the new 

question to be decided is E 4 (CB. Was no outside reduction possible, 

then the other expression is tackled: {C)D >h E is tried, possibly 

resulting in a new question {A)B 1 E. And, when confronted with the - 
question {A C d ( C )  , the process tries to main reduce the appl-ex- 

pression rather than the other one. 

4.4.7. The inductive d e f i n i t i o n  of > and 2 can be read as a 
h h 

recursive algorithm for deciding questions of the form A 2 B ,  gB ( A  >h B ) ,  
h 

(A 2h [x:B1]B2) etc. We give our algorithm for deciding 4 also 

form of an inductive definition. Here are the rules: 

( 0 )  Exchange: B 1 A *:A J- B 

(i) Variable, T: A 2 x*.: A J-x, andA 2 -r w:A 4 - r  
h h 

(ii) Prim: (A ah p,(?) , .F 1 E )  -:A 1 p(B) 



(iii) Appl-appl, decompose: B J- Dl A J- C *: {A}B J- {CD 

(iv) Appl, @-red: {AIB > C * (C J- D w:{A)B J- D) 
h 

(v) Def-def, decompose: B J- ? =+:d(B)  J- d (C) 
(vi) Def, &-red: d(B) > C* (C J-D-:d(g)J-D) 

h 
(vii) Abstr-abstr, decompose: a B, A 4 B @: Cx:aIA EX: BIB 
(viii) Abstr, n-red: [x:aIA >h B - (B J- C w: [x:aIA C C) 

The notation B J- ? is used in the ordinary sense, i. e. B1 J- CIt 

B J- C etc. The clauses (i)-(viii) are given in their order of 
2 2 
priority, they have to be tried successively until a clause applies. 

Clause (0 )  must only be applied, and of course only once: (1) if 

none of the rules (i)-(viii) applies, (2) if by the exchange a rule of 

higher priority among (i)-(viii) can be made to apply, (3) in case 

the question d ( A )  J- e(B) is presented, where e is a "younger" 

definitional constant than d .  The clauses containing a bi-implication 

((i) , (ii) , (vii)) are terminal: if application of one of these rules 
does not lead to an affirmative answer, a negative conclusion about 

the presented definitional equality can be drawn. In contrast with 

the other clauses, e.g. clause (iii) : if not (A J- C), so not (A J- C 

and B J. D) then it is of course very well possible that rule (iv) 

produces a common result of {A)B and {C}D. Further, a negative con- 

clusion can be drawn if after exchanging still no clause applies at 
- 

all. If n-reduction is not allowed then one has to read s- and 2 
h h 

instead of > and 2 and rule (viii) has to be skipped. 
h h 

4.4.8. It should be clear that the algorithm above on the correct 

expressions indeed corresponds with J - .  The only interesting point is 

the bi-implication in clause (vii), which makes that clause (viii) 

never has to be applied to a pair of abstr-expressions. This is 

justified by our property UD (for correct expressions only) from the 

previous sections. 

We also have to show the termination of the algorithm (this 

shows the decidibility of J- once more). First, the questions con- 

cerning > and 2h (e. g. whether A > [x:B 1B for certain B1, B2) are 
h h 1 2  

decidable on behalf of SN. Secondly, the procedure sketched above 

(for deciding A C B )  is easily shown to terminate by induction on 

( 1 ) 6 (A) + 0 (B) , (2) & (A) + R (B) - where 8 stands for length of 
reduction tree and It stand for length of expression -. 



Clearly the q-rule (viii) is equivalent to: 

By a careful implementation of the handling of bound variables - this 

falls outside the scope of my thesis - there can be guaranteed that 
whenever during actual verification an equality Cx:alA t B is offered 

to the decision procedure, B does not contain free occurrences of the 

same free variable X! This enables us to modify (viii) into the 

simpler rule (viii' ) : A J. {X }B * [~:alA J. B, which avoids the nasty 
internal reductions in the course of an outside q-reduction completely. 

The termination of the algorithm is still guaranteed with this new 

rule; we can even use the same induction as before, because it can be 

shown that rule (viii') never will be applied with a B such that 

Z >h Cg:BlC. 

4.4.9. In accordance with our views on the actual verification process 

it may be sensible to provide the decision procedure with a device 

which gives a warning in the following cases: (1) if the decision 

process requires too much time, or rather: too many reduction steps 

(2) if a question d ( 2 )  J d ( ? )  or 30 J {F % is posed and not - 
(3  t 2)  , resp. (D t G and not (A J. F)) has been concluded. 

The warnings in case (2) can be partly motivated by the idea 

that most defined constants in an Automath-book are "XI-constants" 

(see 111.5.5.3, 111.6.3) and that most functions in an Automath-book 

are AI-fiozctwns, where D is a XI-functwn if: D t [x:a]F =S x E FV(F). 

The following example shows however that this motivation is not quite 

satisfactory: D r G [x:al~I~kc, A [y:Blp(y,v), F - [y:Blp(y,y). 
4.4.10. Now we discuss the verification of E-formulas. Since the 

definitions of cantyp in 4.2.3, with their computation of normal forms, 

are very unpractical, we prefer the alternative approach sketched in 

4.1.4. Besides,the latter approach avoids the different definitions of 

cantyp  and is by uniformity easier to implement for several languages 

simultaneously. 

AS our "universe", the large language which we use to decide our 

E-formulas, we take AUT-QE*. Let denote correctness in AUT-68, AUT- 

68+, AUT-QE or AUT-QE+ and let stand for correctness in AUT-QE*. 

One easily proves by induction on A, using LQ, CLPT etc. for I-*,  the 



important properties: (1) FA * t*typ(A), and - unless A is a 2- 
expression in AUT-68(+) - 

(2) I-A +. typ (A) 2 cantyp(A) . 
This justifies the equivalence mentioned in 4.1.4. 

except, trivially, the degree 2 case of AUT-68(+) 

2 2 
C A E B w  I - A , B - . r  

The +-procedure of sec. 4.4.7 can be adapted in order to decide 

i and simultaneously by making some obvious modifications, e.g.: 

- clause (0) becomes: B +/C/3 A :- A +/7h B 

(where "B +/47 A" reads "B + A resp. B C A resp. B 7 A", etc. ) 

- to clause (i) there is added: degree (A) = 1 * A C T 

- clause (vii) becomes: a .C 6, A +/VJ B M: EX alA J./C/J [x: BIB 

etc. 

We do not bother to give a practical algorithm for deciding E in 
AUT-QE' and AUT-QE*, because we think that these languages are of 

mere theoretical purpose. 

4.4.11. Rather than computing domains via the domain normal £oms 

( d n f ' s )  of sec. 4.2.4.4. we use the alternative approach of 4.1.6 of 

searching through the+-reduction tree of an expression. Recall that 

- is generated by (I ) ordinary reduction, (2) taking typ. We promised 

the following theorem. 

Theorem: + is well-founded on the correct expressions 

Proof: As long as we stay inside the correct expressions we can use a 

double induction, viz. (1) on degree, (2) on 0 (=length of reduction 

tree). For, reduction preserves degree and decreases 8, and taking 

typ decreases degree. We must be a bit careful with applying typ to a 

degree 2 AUT-QE* expression - such as, e.g., can originate by taking 
typ of a degree 3 AUT-QE expression - because an incorrect and even 

not normable I-expression might arise. A typical example is {A h. 
1 However, this does no harm to the well-foundedness, because B -SN can 

be proved, without using norms at all, for all degree correct ex- 

pressions. 

Also, we have another uniqueness result (compare 4.2.4.2). 

Theorem: A correct, A -+ [x:a]C, A -+ [x:BID * a + 6 



Proof: For 3-expressions A we even have a kind of CP\-result A 2 A' * 
typ (c; ) + typ (A ' ) . Now let degree (A) = 2, and let A 2 A ' . In AUT-68 (+) 

and AUT-QE (+) this gives t*typ ( A )  7 typ ( A  ' )  , but in AUT-QE* this is 
not generally true, because t~p(A) and typ(Ar) need not be correct. 

Luckily such incorrect 1-expressions (see the proof of the previous 

theorem) never reduce to an abstr-expression. So by UD we still get 

the desired result. 

4.4.12. The internal q-reductions included in -+ are of course useless 

during domain computation where one only wants to reach an abstr-ex- 

pression. So in an algorithm for domain computation we rather employ 

a restriction of -t which we name -+ and is generated by head reduction 
- h 
2h and taking typ. 

In general unrestricted search through the -+ -reduction tree can 
h 

be permitted - provided the degree restrictions are respected. However, 
the 2-expressiorsof AUT-QE and AUT-QE+ form an exception. Here the 

search for an abstr-expression has to start with taking typ. Otherwise 

too many expressions would get a domain, which would give rise to 

typical AUT-QE* appl-expressions. 

Besides, unrestricted search can be very unpractical. E.g. in 

AUT-68(+) one never needs to inspect 1-expressions: if the 2-ex- 

pressions in the -+ -reduction tree fail to produce a domain, going to 
h 

the 1-expression by taking typ will not help. In general it is no good 

strategy to start the domain computation with reduction, unless we are 

obliged to because the expression under consideration is already of 

minimal value degree. 

So, a simple and probably rather practical strategy for AUT-68(+) 

and AUT-QE(+) may run as follows. Let A be the expression we start 

with. Take typ until one arrives at an expression of minimal value 

degree. Then reduce (with 2-) until one possibly finds a domain. If 
h 

this does not succeed, A can still have a domain if it is a 3-ex- 

pression of AUT-QE(+), otherwise A has no domain. In the indicated 

case unrestricted search of the -+ -reduction tree of typ(A) is 
h - 

required, to be executed as follows: one-step reduce (typ(A) > B ) ,  
h 

then take typ, then reduce (with 2;) . If this does not yield a domain, 
one-step reduce B once more etc. The well-foundedness of -+ guarantees 

the termination of this procedure. 



CHAPTER VI. THE Bn-CHURCH-ROSSER PROBLEM OF 

GENERALIZED TYPED A-CALCULUS 

VI.l. Introduction 

1.1. The problem with BQ-CR in Automath-like languages was first pointed 
out by Nederpelt ([51], p.71). Let x 9 FV(B), then 

and the question is whether [x:a]C and [x:B]C have a common reduct, i.e. 

whether 6n-CR1 holds. In untyped A-calculus this case of CR is particu- 
1 

larly trivial, because without the type-labels there just remains 

and for the common reduct we can simply take  AX.^ itself. If 

[x:a]{x)[x:~]C is not necessarily correct, a common reduct does not need 

to exist, for a and 6 can be any expressions. 

Nederpelt conjectured already that for correct expressions fin-CR 
(SO 6n-CR ) does hold. This we shall prove below, making free use of the 

1 
results of the previous chapter, in particular sec. 3. So, if 

~[x:~]{x}[x:B]c then by SA we know a Q 6 SO [x:alC Q [x:B]C; but we know 
nothing about a common reduct. 

It is possible that certain versions of the algorithmic definition 

allow a proof of ~ q - C R  But then it is not so easy to infer CR, because 
1 ' 

we do not yet know CL for the algorithmic system. An alternative to the 

approach below is presented in the next chapter. There CR and CL are 
proved simultaneously for an algorithmic system, by induction on so- 

called big trees. 

1.2. Below we concentrate on Bn-reduction and leave 6-reduction out of 

consideration. It is easy to extend our result to 6q6-CR, since 6 com- 

mutes with Bq-reduction: 

and, of course, 6-CR holds. 



We start (in sec. 2) with a partial solution of the Bn-problem, 

for q-reduction of degree 2, which works for regular langages only. 

Then (sec. 3) we prove full ~n-CR. 

VI.2. A first result concerning 8n-CR for regular languages 

2.1. We prove the Church-Rosser property for regular languages with a 

reduction relation 2. generated by B-reduction and n2-reduction, i .e. 

11-reduction of degree 2: degree (A) = 2, x $! FV(A) * [x:a] {x)A > 2  A. n 
The motivation for studying this restricted Bq-reduction lies in 

the fact that the actual verification of mathematics in AUT-QE (in 

particular, of Jutting's Landau-translation, see [37]) just required 

this specific type of n-reduction. 1.e. the Automath texts offered to 

the verification program appeared to be correct B~I~~-AUT-QE. 

2.2. Heuristics 

The idea is to proceed in two stages. First we consider a seemingly 

weaker form of n2-reduction which is tailor-made to avoid the critical 

Bn-case mentioned in the introduction. For this restricted 6q2-reduction 

we prove CR. Afterwards (sec.2.5) it is shown that full fin2-equality is 

equivalent to the restricted form. This can be compared with the situ- 

ation in sec. V. 3.3.8 - where ql-equality turned out to be provable. 
How to define the restricted form of rpreduction? 1.e. under which 

conditions do we permit the reduction of [x:a]{x)A to A? Clearly, we 

require : 

Further, that A is not of the form [y:B]C - to avoid the critical case -. 
But this is not enough. Consider, e.q., [x:a]{x)F, where F 2 [y:F1]F2, 

x f? FV(F). So we require: 

i.e. A does not reduce to an expression of the form [y:B]C. 

Thirdly we want to preserve the substitution lemma 



a t  l e a s t  f o r  D  of degree 3, so we fur ther  require  

This shows why the method works fo r  regular languages only. 

Condition ( 2 )  can now be weakened t o  

o r ,  i n  the presence of &-reduction, to:  A $2 [ y  : @]C. B 6 

2.3. The de f in i t i on  of the r e s t r i c t e d  reduction re la t ion  

For def in i teness  we give a formal def in i t ion :  

(1) > i s  the d i s j o i n t  one-step reduction generated by the ele-  

mentary reductions: 

(i) {A)[x:B]C > C[A] 

(ii) x $! F V ( A ) ,  A $2 [y:B]C, degree(A) = 2 + [z:a]{x)A > A 
B 

( 2 )  2 is  the t r ans i t i ve  closure of > 

2.4. The proof of C R  f o r  the r e s t r i c t e d  reduction 

2.4.1. Subst i tut ion lemma I: (i) A > A '  * BEAD > BI[A'] 

(ii) A 2 A '  * B[A] 2 BI[A'] 

Proof: A s  usual,  by induction on B and 2 respectively. 

2 .4 .2 .  Weak ~ ~ - f 3 j - ~ o s t ~ o n e r n e n t :  i f  i f 3  and A i s  degree correct  then 

i j i j i A r  B * A >  C 2  D 5  B 
B B B B  

j  i Proof: I f  a 6 -contraction produces an essent ia l ly  new B -redex 

then i=3  o r  i = j .  If i = j  there is  nothing t o  prove, so unless i=3  
j  i i 

we have A > B * A >i 2' c si B. SO, using -SN, B ~ - C R  
118 B B 

and 63 commute we ge t  the desired property, 



2.4.3. Something about 62 (for degree correct expressions) 

(i) ~egree(B) = 2, B > [y:C]D * B r2 [y:C1 ID' 
6 

(ii) If degree(B) = 2, degree(A) = degreetx) = 3 then 

B[x/AD z2 [y:C]D - B z2 [y:C']D1 B 6 

Proof: (i) Let B 2 [y:C]D, degree(B) = 2. By Bq-postponement and 

weak ~ ~ - ~ ~ - ~ o s t ~ o n e m e n t  we get B r2 F z3 G 1* H 2 [y:C]D. Then 
B B B l l  

H, G,  F are abstractions expressions, q.e.d. 

(ii) Use the square brackets lemma (11.11.5, IV.2.4) and the 

previous property. 

2.4.4. Substitution lemma 11: if degree(A) = degree(x) = 3 and A, B are 

degree correct then 

(i) B > B1 * BI[x/A]I > B'[x/AD 

(ii) B B' * B[x/AD >- B8[x/A] 

Proof: (i) By induction on B. The crucial case is when 

B E [ y : ~ ~ ] { y ) B ~ ,  y $!' Fv(B2), B [y:ClD, degree(B1 = 

= degree (B2) = 2. Of course, y 6! FV (B2(Al ) , degree (B2[A] ) = 2 and, 

by 2.4.3.(ii) B2[AD $; [y:CID. So BRAD I [y:B1[ADl{ylB2[Al > B2UAI 

q.e.d. 

(ii) By induction on 2.  

2.4.5. Theorem (CR for the restricted reduction): if A degree correct 
1 

then 

A > B , A > C * B C C  

Proof: Let A > B, A > C. By induction on A we define a common re- 

duct D of B and C. The crucial cases are 

(i) A {A1)[x:A2]A3, B I A3[A1D (by 6-red.), C {A~)[x:A;]A$ 

(by monotonicity). Take D E A$[A;] and use the substitution lemmas. 

(ii) A 5 {A1)[x:A2]{~)A3r B 5 {A;)A~ (by rpred. and monotonicity) , 
C E {A1)A3 (by 6-red.). Simply take D Z B. 

(iii) A [x:A~]{x)A~, B 5 A2 (by n-red.) , C 2 [X:A{]{X}A~ (by 

monotonicity) . Clearly degree (Ah) = degree (A2) = 2, x e FV (Ah). 



I f  A '  >2 [y:C1]C2 then A i  2 [y:C1]C2 SO by 2 .4 .3 . ( i )  
-6 

A, r2 [y:C{]C{. Hence A;  #2 [y:C1]C2 SO D 5 A h  can serve  a s  t h e  
B B 

common reduct .  

2.4.6. Corol lary:  If A degree c o r r e c t  and normable then C R ( A ) .  

Proof: By induct ion on the  reduct ion t r e e  of A .  

2.5.  The extension t o  f u l l  8n2-reduction 

2.5.1. From now on we l a b e l  the  not ions  r e f e r r i n g  t o  t h e  r e s t r i c t e d  

reduc t ion  r e l a t i o n  with a subscr ip t  o. Thus we w r i t e  > 2 and + , and 
0' 0 0 

by to we denote correctness  i n  AUT-QE(+) with an e q u a l i t y  r e l a t i o n  Q0 

generated,  e .g . ,  by 

By 2.4.6. we have 

On t h e  o ther  hand t h e  no ta t ions  without a s u b s c r i p t  have t o  be 

i n t e r p r e t e d  i n  terms of " f u l l "  @n2-reduction. Thus, we w r i t e  1 f o r  

cor rec tness  i n  AUT-QE(+) with e q u a l i t y  Q, generated by 

Below we sketch t h e  equivalence of t h e  two systems. The impl icat ions  

>o * > SO to * t and Qo 4 Q a r e  immediate. 

F i r s t  we go through some theory of t h e  o-language (i .e . with to 
. The theorems about renaming ~ f , c ~ n t e x t s  and weakening (see  

) a r e  s t i l l  v a l i d .  We have a r e s t r i c t e d  s u b s t i t u t i o n  theorem: 

(q l  , E g) , a l l  y i n  y have degree 3 ,  and B E then 
i 

So we have t h e  s i n g l e  s u b s t i t u t i o n  theorem: i f  degree@) = 3 then 

t o  B E B , y E 6 koC (E/Qo D) * t0cI BD ( E/Qo DQ BD . 



i i 2 
Hence, from SA we can i n f e r  2.4 f3 -CLPT, a s  usua l .  Now SA works pre-  

c i s e l y  a s  i n  t h e  previous  chapter  (V.3 J . 4 )  s o  we may assume f32 - CL. 

2.5.3. The proof t h a t  I- =, to and Q * Qo goes by induct ion on 1. The 

only  i n t e r e s t i n g  case  i s  when t 2 [ x : a l { x ) ~ ,  x $! F V ( A ) ,  A >* [x:A1]A2. 
B 

Then r12-reduction i s  poss ib le ,  b u t  r e s t r i c t e d  reduct ion i s  not .  So from 

/-A one g e t s  ~ [ x : ~ ] { x ) A  Q A and we l i k e  t o  show t h a t  t o [ x : a ] ( x ) ~  Qo A 

holds  a s  we l l .  BY t h e  i n d ,  hyp. ~ o [ x : a l { x ~ ~  and  to^, and by B2-CL 

A Qo [x:A11A2 and [x:a]{x)A Qo [ x : a l { x ) [ ~ : A ~ I A ~  Qo [x:alA2. By SA2 
a Qo A 1  s o  by t h e  s u b s t i t u t i o n  theorem Ix:aIA2 Qo [x:A11A2r whence 

[x:a]  {x)A Qo A .  

2 .5 .4 .  So t h e  o-language i s  equ iva len t  with t h e  f3~2-language, f o r  which 

t h e  p r o p e r t i e s  C L ,  PT, SA e t c .  can be proved a s  i n  the  previous  chapter .  

Now l e t  A Q B. By t h e  equivalence A Qo B and by C R  A J., B, s o  a f o r t i o r i  

we have C R  f o r  a l l  f u l l  .Bn2-reduction. 

Extension t o  t h e  corresponding &-language i s  p o s s i b l e  a s  i n  sec .  

v.3.3.  

VI . 3 .  A proof of CR f o r  f u l l  ~ n - r e d u c t i o n  from c losure  and s t rong 

normal i za t ion  

3.1.  The assumptions 

3.1.1. I n  c o n t r a s t  wi th  the  proof i n  t h e  previous  s e c t i o n ,  t h e  sequel  

does n o t  presuppose r e g u l a r i t y  of t h e  language. So, a f t e r  having proved 

CL f o r ,  e .g . ,  Nederpel t ' s  h ,  t h e  p r e s e n t  proof a p p l i e s  t o  t h i s  language. 

We assume t h a t  co r rec tness  of express ions  and e q u a l i t y  formulas i s  

def ined r e l a t i v e  t o  a c o r r e c t  book 8 and a con tex t  5. The book i s  f ixed  

throughout t h i s  s e c t i o n  and omitted i n  t h e  no ta t ion .  

Below we in t roduce an extended reduct ion r e l a t i o n  and a corres-  

pondingly extended e q u a l i t y .  Since we want t o  r ese rve  our usua l  nota- 

t i o n s  2, Q f o r  these  new r e l a t i o n s ,  we w r i t e  2, and Qo f o r  t h e  ordinary  

f3n-reduction and t h e  corresponding e q u a l i t y  r e l a t i o n ,  generated e .g . ,  by 

by 

5 /-A, E FB, A 2, C 5, B * 5 FA Qo B. 



We use our ordinary shorthand notation, writing 

~ I A  f o r  5 , 1 1 1 ~  and 

A Qo B f o r  5 IA Qo B e t c .  

3.1.2. Fordefini tenesswe give a l i s t  of the propert ies  which we assume 

through t h i s  sect ion and use i n  the proof. 

(1) Strengthening, and i n  pa r t i cu l a r  the following consequence: 

i f  11 (~10~111) then 

( 2 )  Soundness of equal i ty  w . r . t .  abstract ion,  

a Qo 6 ,  x E a IA Qo B [x :~IA Qo [x:BIB 

(3) w . r . t .  appl icat ion,  

A Q, B, C Qo D * {AN Qo {BID 

( a  consequence of LQ,  see below) 

( a l so  a consequence of L Q )  

( 5 )  closure: k A 1  A 20 B * ~ B  

(6) SA,  so ( t h i s  concerns d i r e c t l y  the c r i t i c a l  611-case) 

~ [ x : ~ ~ I x ) [ ~ : B ~ c  * x E a l a  Qo 6 

( 7 )  strong normalization (with 'respect t o  2,) : IA * SN (A) . 

Remark: the propert ies  (3) and ( 4 )  depend on L Q .  A s  we know (see V.3.3.10) 

LQ f a i l s  i n  AUT-QE(+) with &-reduction, but CR for  these languages can 

be proved i n  two ways: 



(1) From CR f o r  AUT-QE(*) 

( 2 )  By f i r s tproving  CR f o r  a &- less  version, and then extend the  

r e s u l t  by using UE. 

3 .2 .1  Heuristics 

We saw t h a t  i n  the c r i t i c a l  case of Bq-reduction the two d i r e c t  

reducts of [x:al{xl[x: B1C a r e  syntac t ica l ly  equal ( r )  but  fo r  the domains 

a and 6 which are j u s t  def ini t ional ly equal (Q,). Below we define the 

r e l a t i on  M which precisely covers t h i s  kind of syntac t ic  s imizari ty  

intermediate between 5 and Qo. 

I t  would be straightforward t o  t r y  and prove a modified CR-property 

by proving -postponement, i . e .  

However there i s  a problem with the l a t t e r  property i f  A [ x : ~ ~ ] { x } A ~ ,  

B E [x:a]{x)C, 3: f! FV(C), A 1  fir C. For it is  possible t h a t  x E F V ( A ~ ) .  

So we take a d i f f e r en t  approach. We define an extended reduction re la -  

t i on  > which i s  d i s j o i n t  Bq-one-step reduction, enriched by the clause 

A M B A > B (elementary w - reduction) . 

This means t h a t  i n t e rna l  contract ions i n  the domains fo r  the bookkeeping 

ofreduction s teps  a r e  ignored. For the new reduction r e l a t i on  we can 

simply prove CR1. Further there holds a cer ta in  version of 2-SN, which 

gives us C R .  

3 .2 .2 .  Structure of the  proof 

We poin t  out the difference with the approach i n  sec. VI.2. There 

we f i r s t  r e s t r i c t e d  our reduction r e l a t i on ,  proved CR f o r  the  r e s t r i c t ed  

reduction and then extended the r e s u l t  t o  the or ig ina l  reduction. On the 

other hand, here we s t a r t  with proving CR fo r  the extended reduction 

r e l a t i on  2, and afterwards we s t i l l  must prove CR f o r  ro. In f a c t  we 

f i r s t  prove modified uniqueness of >-normal form, i . e .  uniqueness with 



respect to M : A Q B, A and B >-normal *A M B. And then, using the 

equivalence of Qo and Q, uniqueness of 2,-normal form. So we have 2,-CR. 

For a comparison of kO- and >-normalisation see sec. 3.7.1 below. 

3.3. Definition of the extended reduction relation 

3.3.1. By simultaneous inductive definition we introduce the syntactic 

simiZarity M, the extended reduction relation 2, with one-step reduction 

>,and the extended definitional equality Q, between correct expressions, 

as follows. 

I. Elementary reductions 

(1) {AI[x:B]C > C[Aj ( B-reduction) 

(2) [x:B]{x)C > C if x $2 FV(C) (n-reduction) 

(3) A w B * A > B  (w - reduction) 

11. Monotonicity rules 

111. (1) 2 is the transitive closure of > 

(2) Q is the equivalence generated by > 

3.2.2. Some remarks concerning the definition 

3 . 3 . 2 . 1 .  It is not necessary to define the above notions simultaneously. 



For in view of 3.4.3. below, we might as well have taken instead of IV.(2) 

3.3.2.2. Except for the rules 1.3 and 11.2, the rules of I and I1 are 

the ordinary rules for ; , disjoint one-step Bn-reduction. Rule 1.3 
1,617 

can be considereda strong form of the reflexivity rule A  > A .  Rule 11.2 

is one half of the usual monotonicity rule for abstr. expressions. The 

other half can be derived using IV.1, IV.2 and 1.3: if a > a' then 

a  Q a ' ,  further A  m A  so 

3.3.2.3. If we had defined > to be the corresponding "nested" one-step 

reduction we might have been able to prove the diamond property for >. 

Then we could have avoided the appeal to SN when deriving CR from CR1. 

3.4. Some easy properties 

3.4.1. By simultaneous induction on definition 3.3.1., using the sound- 

ness of Qo w.r.t. expression formation, we get 

if A  > A' or A  2 A' or A  Q A' or A  M A '  then A  Qo A' 

3.4.2. From 3.3.2.2. it is clear that t satisfies all the monotonicity 

rules and that 

and A  Qo B * A  Q B 

3.4.3. So combining this we have Qo w Q. 
As a corollary we have the monotonicity rules 3.1.2.(2)-(4) now also 

for Q. The monotonicity of fir is immediate. Further fir is an equivalence 

relation. 



3.5. On --reduction and normalization 

3.5.1. I n  c e r t a i n  A-calculus systems ( see ,  e.g.[25]) renaming of bound 

v a r i a b l e s  i s  n o t  ignored - l i k e  we do here  - b u t  formalized i n  t h e  form 

of a-reduction: 

Then ( s e e  our d e f i n i t i o n  of s u b s t i t u t i o n ,  sec . I I .2 .4)  it i s  poss ib le  

t h a t  a-reductions a r e  needed before some &reduction can be c a r r i e d  out .  

I n  such systems, a s u i t a b l e  d e f i n i t i o n  of proper  reduct ion sequence is: 

a sequence i n  which only a f i n i t e  number of a- reduct ions  occur. 1 .e .  

a reduct ion sequence C 1  > C2 > ... i s  proper i f  from a c e r t a i n  Cn on, 

only a-reductions a r e  appl ied.  S imi la r ly  C is normal if only a-reduc- 

t i o n s  of C a r e  poss ib le .  

3.5.2. Here we t r e a t  t h e  =-reductions analogously, a s  extended a-re- 

duct ion,  and c a l l  them improper reductions.  Proper reduct ion sequences 

a r e  reduct ion sequences i n  which only a f i n i t e  number of such improper 

reduct ions  occur. An expression i s  now SN i f  a l l  i ts  proper reduct ion 

sequences terminate  and normal i f  only improper reduct ions  a r e  poss ib le .  

So 

A i s  normal, A 2 A '  * A  w A'  . 

3.5.3.  I n  3.5.1. we mentioned t h e  p o s s i b i l i t y  t h a t  a-reductions created 

new 6-redices. For --reductions t h i s  i s  not  the  case.  Let > ( resp .  >17) 6 
denote t h e  d i s j o i n t  one-step reduct ion generated by t h e  r u l e s  I . ( 1 )  

( resp.  I . ( 2 ) )  and 11 of 3.3.1. So, e.g., A > A' i f  some 6-redices not  B 
ly ing i n s i d e  a "domain" a r e  contracted.  Then we have;indeed, 6 = - 
postponement 

However n FY -postponement f a i l s  because fir -reductions can c r e a t e  new 

q-redices ( see  3 .2 .1 . ) .  For tunate ly  we have fil 17-postponement ins tead  

3.5.4. Now we can prove SN ( i n  t h e  sense of 3.5.2 ) .  Let a proper 



reduction sequence X1 > C2 > ... be given. If no B-step turns up then 
the sequence terminates because from some C on only n-steps are applied, 

n 
which decrease the length of the expression. Otherwise, for some n, by 

M 17-PP 

By o-SN, i.e. SN with respect to 2,, 8 (C) is defined for correct C and B 
eB(Z1) > eB(r'). So by induction on 0 we can prove SN. B 

3.6. CR for L 

3.6.1. Substitution lemma I: If I~UA], t a ~ ' n  then 

(iv) A M A' * BEAD a aA'] 

Proof: All parts can be proved separately by ind. on B using the 

monotonicity rules for >, 2, Q and f i r .  

3.6.2. Substitution lemma 11: If F ~ A J  and ~B'[A] then 

Proof: By simultaneous induction on the definition of >, 1, Q and 

M .  



3 .6 .3 .  Main lemma ( C R  ) :  I f  A  c o r r e c t ,  B  < A  > C  then B  + C .  
1  

proof :  By ind.  on A .  I f  A  FJ B  then f o r  t h e  common reduc t  D  we can 

t a k e  D 3 C.  Simi la r ly  i f  A  a C .  I n  case  A  % { A  }A B  E { B 1  )B2 , 1  2' 
C :  {C  )C B  < A 1  > C l l  B  < A  > C  t h e n b y t h e i n d .  hyp. a n d b y  

1  2' 1  2 2 2  
monotonocity of r we f i n d  a common reduc t  {D )D with B t Dl 5 C 1 ,  1 2  1  
B  2 D2 < C 2 .  Simi la r ly  i f  A  3 C ( A 1 , .  . . , A k ) .  

2  
Fur the r  d i s t i n g u i s h :  

(i) A  : { A  ) [ x : A 2 ] A 3 ,  B  z { B 1 } [ x : B 2 I B 3 ,  C  A  [ A  1 ,  A 1  > B1, 1  3  1 
A2  Q B2, A3 > B3. BY the  s u b s t i t u t i o n  lemmas above. 

B  > B  [ B  ] < A 3 [ A 1 J  s o  take  D  E B  [ B  ]. 
3  1  3 1  

(ii) A  : { A 1 } [ x : A 2 ] { x ) A 3 ,  B  r { B  )A (by n-red.) , C r { A  )A (by 1 3  1 3  
6-red. ) , x ft? FV (A3  ) , Al  > B1 . Then C  Z B  and take  D  5 B.  

(iii) A : [ x : A  ]A B Z [ x : B  ] B  C  5 [ x : C  ]C 
1  2' 1  2' 1  2' A1 Q B1 l  A1 Q C1 

B2 < A  > C 2 .  By ind.  hyp. B  2 D 5 C  s o  t ake  e .g .  2  2  2  
D [ x : B  ]D 

1  2' 

( i v )  A [ x : A l ] { x ) A 2 ,  B  Z [ x : B 1 ] { x ) B  C  r A2 (by n-red.) , 
2  ' 

x ft? F V ( A ~ )  , Al  Q B 1 ,  A2  > B2 .  I t  i s  easy t o  see  t h a t  

A  2 . D  M B  Clear ly  a: ft? FV (D ) s o  
2  Br, 2  2' 2 

B  M [ x : B 1 ] { x ) D 2  > D 2 A2 2 C.  SO take  D - D  
2  2  ' 

( v )  A  I [ X : A ~ ] { X } [ X : A ~ ] A ~ ,  B  5 [ x : A 1 1 A 3 ,  C z [ x : A  ]A 3 ,  x f F V ( A ~ ) .  

This  i s  the  c r i t i c a l  case .  By assumption (6 )  from 3.1 .2  A  Q A 1 2  
s o  we can take  D  E B  % C .  

3.6.4. Theorem ( C R )  : I f  A  c o r r e c t  then C R ( A )  

Proof:  By SN we can de f ine  0 ( A )  t h e  maximal number of proper r e -  

duct ion s t e p s  i n  reduct ion sequences of A .  Use induct ion on @ ( A ) .  

Let  B 5 A  2 C.  The cases A  B  and A  fir C a r e  t r i v i a l .  Otherwise, 

f o r  c e r t a i n  proper r educ t s  B  and C 1 ,  A  > B1 2 B ,  A  > C  t C. F i r s t  
1  1  

apply 3 .6 .3 .  t o  g e t  B  2 Dl 2 C 1 .  Then apply the  ind.  hyp. t o  B 1 ,  
1  

C1 and D  1' 

3.6.5. C o r o l l a r i e s :  I .  A  Q B  * A  + B  

11. s i m i l a r i t y  of normal forms: 

A Q B ,  A  and B  normal * A  M B  



3.7. CR for so 

3 . 7 . 1 .  Call an expression o-normal if it is normal with respect to I,, 

i.e. if it does not contain 0- or n-redices. So, if A o-normal then 

there are no reduction steps A > B or A >,, B possible. But it might 
6 

be possible - as long as we do not have CR - that after some --re- 
ductions new n-redices are created. So a priori we do not know whether 

A is normal. 

But, if A is o-normal and A does not have abstraction form and 

A 2 B then this reduction is an internal, and not a main reduction. 

E.g. A - { A  )A @ B Z { B  )B  and: . 
1 2  1  2' 

3 .7 .2 .  Theorem (uniqueness of o-normal form): Let A and B be o-normal, 

then 

A Qo B * A  - B 
Proof: By induction on the sum of the lengths of A and B. Let 

A Qo B ,  so A Q B ,  so A I C  S B. Distinguish the following cases: 

( 1 )  Both A and B are abstr-expressions, [ x : A  ] A  resp. [ x : B  ] B  
1 2  1  2' 

BY prop. 3 . 1 . 2 . ( 2 ) .  Al  Qo B1. x E A l t A 2  Q0 B2. BY the ind. 

hyp. A1 2 B 1 ,  A2 r B S O A  = B. 2  

(2) Neither A nor B are abstr-expressions. Then A and B and C 

have the same form. E .g. if A = { A  }A then C 2 {C1 )C2, so 
1  2' 

B  E { B  }B  with A1 2 Cl S B1 and A2 2 C2 r B2. So A1 Q E l ,  
1 2  

A2 Q B2 and A Qo B ,  A2 Q0 B and by the ind. hyp. 
- 1  

A 1 = B 1 , A  - B  
2  2' 

( 3 )  A  has abstr. form and B has not. Then A 5 [ x : A 1 ] A 2 ,  

A2 2 {"ID2' x 6 FV(D2)  I A1 Q Dl , and 
A r [ x : D 1 ] { x } D 2  > D2 I C  ri B. By CL, x E D ~ / - { X ) D ~  and by 

3 . 1 . 2 .  ( 3 1 ,  x E ~~t { x } D 2  Q { x } B .  SO x E A ~ ~ A *  Q { x } B  and 

both A and { x ) B  are o-normal. By the ind. hyp. A = { x ) B .  
2  2  - 

Clearly x f F V ( B ) #  so A is not o-normal, contradiction. So 

this case does not occur. 



3 . 7 . 3 .  Corollary (CRk 

(i) A correct, A ko B, A Z0 C * B Z0 D So C 

(ii) A Qo B * A  ro C So B 

3 . 7 . 4 .  Now we can conclude 

A o-normal * A normal 

For, if A o-normal, A m B > C (i.e. A is not normal) then n 
A a . . .[X:A~IIX)A,. . . , x E FV(A,), B E . . . [X:B,I{XIB~. . . , 

g FV(B,), A~ Q B,, x E A , ~ A ,  Q B,. BY CR, B 2 2, A,, so 

FV (A ) c FV (B ) , impossible. 
2 2 



CHAPTER VII. THE ALGORITHMIC DEFINITION AND THE THEORY OF 

NEDERPELT'S A: THE BIG TREE THEOREM, 

CLOSURE AND CHURCH-ROSSER 

VII.l. Introduction and summary 

1.1. The history of A 

A further unification of the concepts underlying AUT-68 and AUT-QE 

led Nederpelt and the Bruijn [49, 5 0 ,  9 I ,  after the construction of an 
intermediate version A-AUT, to the introduction of the language A or, 

as de Brui jn names it, AUT-SL, for: single line Automath. 

First Nederpelt noticed that via a suitable translation instant- 

iation, i.e. substitution in constant-expressions e(xl, ..., X ) ,  could 
n 

be replaced by appZieation and that, by this translation, 6-reduction 

reduced to 0-reduction. We used this fact for one of our proofs of 6-SN 
in 111.5.4. However, in order to cover substitution with 2-expressions, 

as is allowed in Automath languages, the restriction to argwnent degree 

3 and domain degree 2 had to be dropped. This would in combination with 

type-inclusion have given a higher order system, so to avoid normability 

and normalization problems, one had to skip type-inclusion. Then, a 

further streamlining of the definition was attained by dropping the 

restriction as to inhabitable degree as well, thus allowing expressions 

of any degree. 

BY the aforementioned translation and the relaxation of the degree 

restrictions it became possible to dispense completely with constants 

and schemes: constants could be translated into variables, schemes could 

be turned into assumptions and a book could be transformed into a con- 

text. Besides, quantification over all free variables was allowed now, 

so all assumptions x E a from a context could be converted into ab- 

stractors [x:a]. 

Thus, a statement B ; c t A  expressing the correctness of A w.r.t. 

book 8 and context 5  could be translated into the correctness of a 
- -  - -  

single expression [p:~][x:a]A', where the abstractor strings [p:El and 
[z: E ]  and the expression A  ' are intended to symbolize the translations 
of 8, 5 and A  respectively. 1.e. a whole book reduces to a single line. 

For details of the translation see 6.2.1, 6.3.3 and 6.4.6. 



Resuming, Nederpelt's A - as defined in his dissertation - is 
characterized by the following three features: no degree restriction at 

all, no type-inclusion, and single-line presentation. His definition is 

a typical algorithmic definition - for the terminology see V.1.1. - 
which, due to these simplifications, is remarkably short and elegant. 

Nederpelt introduced his norm as a measure of functional complexity and 

proved normability, normalization and strong normalization for his 

system. He just conjectured, in the introduction to this thesis, that 

the system satisfied closure and Bn-Church-Rosser. 

1.2. The present treatment 

The discussion in the previous chapters: starting from the E-defi- 

nition (V.2) , first proving closure (V.3) and en-Church-Rosser (VI) , 
and finally proving the equivalence with the algorithmic definition 

(V.4), though concentrating on the socalled regular languages AUT-QE and 

AUT-68, applies to Nederpelt's language as well, which shows that this 

conjectures were justified. 

Here we choose an altogether different approach. Below we start with 

the algorithmic definition of correctness (VII.2). We follow Nederpelt 

but for his single-line presentation: we fit the system into the book- 

and-context framework of the previous chapters. Whereas the definition 

of the constant-less part of the language (sec. 2.1) simply can take 

place in the pretyped expressions(see IV.31, it turns out that adding 

constant-expressions (sec. 2.2) requires the introduction of degree- 

norm correct expressions (2.2.4). 

Then both ~ederpelt's conjectures are proved directly from the 

algorithmic definition, using the socalled big-tree theorem (BT). This 

theorem states that, on the correct expressions - and, in fact, on the 
* 

much larger domain of normable expressions - the partial order + gene- 

rated by S U ~  (i.e. taking proper sub-expressions), by 2 and by taking 

typ is well-founded. So 6T is an SN-result for an extended reduction 

relation and, hence, implies ordinary SN. The big tree theorem was first 

formulated and proved by de Vrijer 1701 for his regular language AX. 
Section 3 below contains the closure proof of h without constants, 

serving as a motivation for 6T. Section 4 contains two different proofs 

of BT, and in sec. 5 we prove closure and CR for the constant-less part 
of An. In sec. 6 we give some equivalence proofs: of the systems with 



and without (definitional) constants, and of the single-line version 

with the book-and-context presentation. As a result we get the various 

nice properties for all these systems. 

V11.2 The definition of A and An 

2.1 The part without constant expressions 

2.1.1 Both A and An are systems of ahiss ibZe expressions in the sense 

of- IV. . The correctness of books and contexts is standard (see 
so we just present the part of the definition concerning the correct- 

ness of expressions. A simplification compared with e.g. AUT-QE is that 

no degree restrictions are imposed. If in the definition below > (resp. 

2 ,  resp. +)  is interpreted in terms of Bn-reduction then we get An 

otherwise just A. 

The function typ is defined as in IV.3.2, degrees are as in IV.4.4.2 

Throughout sec. 2.1 we follow Nederpelt and do not admit constant- 

expressions. Later on (secs. 2.2, 2.3) we show how the language can be 

extended with the formation of constant expressions. 

2.1.2 By taking typ of a non-constant-expression A the degree is de- 

creased by one (see 1V.3 and IV.4 ) ,  so by successively taking typ one 

arrives at a 1-expression. This 1-expression is called tJ'p*(A). So, 

typ* (A) :I A if degree (A) = 1 

typ* (A) :: typ*(typ ( A )  ) otherwise. 

Now let B be correct and let 5 be correct w.r. t. 8. We use the con- 

ventional shorthand: V I A  instead of 8; 5 ,VIA , typ instead of c-typ etc. 
Of course, as long as we do not form constant-expressions, the pre- 

sence of the book 8 is completely irrelevant. Now correctness of non- 

constant-expressions is defined as follows: 

(i t 
(ii) /-x if a: among the variables in 5 

(iii) t [ x : a ] ~  if I-cr and x E crt~ 



(iv) ~{A)B if FA, F B ,  typ(A) 2 a, typ*(B) 2 [x:a]C for some 

a, C. 

2.1.3 So correct expressions are pretyped expressions satisfying the 

socalled application condition: in appl. expressions (A)B the expression 

B has a domain (to compute from t~p*(B)) corresponding with the typ of 

A. In the next section where we also introduce constant-expressions, an 

additional condition concerning instantiation will be imposed. 

There are various alternative, equivalent, formulations of the 

application condition possible. E.g. one can replace "typ(A) 2 a" by 

"tyP(A) i a". In A (i.e. without 11-reduction) we have CR, so it is even 

sufficient to require typ(A) = a and typ*(B) = [x:a]C, in other words: 
* 

typ (B) = [x:typ(A)]C - where = is full definitional equality (see 

11.4.6-7, V.2.11) -or, anticipating certain results of sec.6.2.6,we might 

restrict the computation of the domain of B by requiring 
1 

typ*(B) r [x:a]C (compare V . 3 . 3 ) .  
B 

2.1.4 Since norms are preserved under taking typ and under reduction 

(see IV.3.4) the correct expressions are strictly normable. This can be 

shown by induction on the definition of 1. E.g. that {A)B is strictly 

normable if it is correct: By ind. hyp. A and B are normable, so 

P ( A )  5 ~(typ(A)) u(a) and P(B) 5 p(tYP*(B)) - u([x:alC) 5 [u(a) lu(C), 

so {A)B is normable, with p ( { A  }B)  p (C) . 
Hence the correct expressions are SN and the system is decidable. 

2.2 Introducing constant-expressions; degree-norm correctness 

2.2.1 We allowed the presence of a book containing schemes for the 

constants. Now we can simply introduce constant-expressions by adding 

the instantiation rule : 

- 
That is, in a constant-expression c ( B ) ,  the arguments B have to 

i 
satisfy the instantiation condition typ(Bi) + fiiuBn. 

However, we have to make sure that ~ Y P *  is still well-defined, 
particularly that taking typ still decreases the degree by one. E.g. 

typ(c(3) ) (E typ (c) [[El E vl[g] ) and typ(c) (E y)  must have the same degree. 





Here t h e  n o t a t i o n a l  conventions a r e  j u s t  l i k e  those w . r . t .  o rdinary 

norms: we w r i t e  d n  ins tead  of 6-dn and e .g . ,  c l ause  (iii) would i n  f u l l  

read l i k e  t h i s  : 

Further  a context  i s  dnc i f  a l l  i t s  type p a r t s  a r e  so ,  and a book i s  

dnc, i f  a l l  t h e  contexts  and t y p ' s  of it a r e  dnc. 

2.2.5 A degree-norm v can be t r a n s l a t e d  i n t o  an ordinary norm v* by 

rep lac ing  a l l  occurrences of numbers by T. Notice t h a t  ( v + l ) *  : v*, so  

dn ( A )  * - ( A )  . This shows t h a t  dnc-ness impl ies  s t r i c t  normabili ty.  

Fur the r ,  degree(A) can a l s o  be const ructed from d n ( A ) ,  f o r  d n ( A )  

ends p r e c i s e l y  i n  the  degree of A .  

We c a l l  a s u b s t i t u t i o n  [[;/ED dnc i f  dn(B. ) - dn(y i ) ,  f o r  
- 1 

i = l ,  . . . , ( y  I . Clear ly  dnc s u b s t i t u t i o n s  a r e  degree c o r r e c t .  

Degree-norm correctness  i s  preserved under dnc subs t i tu t ions :  

if y E r k= 1 y 1 , t~~ . . . . IB~,  y dnc and ;/B] dnc then 

proof :  By induct ion on t h e  d e f i n i t i o n  of d n ( y ) .  

This  g ives  us the  following c o r o l l a r i e s :  

( 1)  C dnc, degree (c) 1 1  typ (C)dnc, dn ( t y p  (C)  )+1 r d n  (C) 

( 2 )  C dnc, C r D * D  dnc, d n ( D )  5 d n ( C )  

( 3 )  C dnc, degree(c)11 * degree( typ(C)  ) + I  = degree(C) 

( 4 )  C dnc, C 2 D * degree ( D )  = degree (C) . 

So typ* i s  t o t a l  on t h e  dnc expressions and, s ince  dnc-ness i s  c l e a r l y  

decidable ,  typ* i s  well-defined on a l l  t h e  expressions,  i n  the  sense of 

v.4.4.1. 

2 . 2 . 6  Now we a r e  ab le  t o  show t h a t  correctness  implies degree-norm 

cor rec tness .  



[x:a]C are dnc as well. NOW dn(type(B)) dn([x:alC) : [dn(a)+l]dn(C) 5 

[dn (typ (A) )+ildn(C) - [dn(A) ldn (C) , while dn(typk(B) ) and dn(B) just 
differ as to their "end number" so dn(B) Z Cdn(A)lv for some v .  Hence 

{AIB is dnc. 

Or, let; E E * c(y)  E y be a scheme, let t ~ ~ , . . . , t ~ ~  (withk=lg/) 

and let the B. satisfy the instantiation condition: typ(Bi) i. B~~B]. By 
1 

ind. hyp. the B ,  and the Bi are dnc. Now dn(B1) E dn(typ(~~))+l 2 
1 

dn(Bl)+l z dn(yl) , so Uy /B 1 is a dnc substitution. SO 
1 1  

dn(B ) I dn(typ(B ))+I = dn(6 BB ])+I E dn(B2)+i t dn(y2). SO 
2 2 2 1 

Iyl ,Y~/B~ , B ~ J  is dnc, etc. Hence c(B)  is dnc. 0 

So typ* is also total on the correct expressions, and correctness 

is well-defined. Further, the above proof shows that the system with 

constants is strictly normable as well, so (using SN) it is decidable. 

2.3 Introducing definitional constants 

2.3.1 After the formulation of instantiation and application condition, 

it will also be clear how the conrpatibiZity condition of def and typ 

for the formation of definitional constant schemes has to read: 

typ (def (d) ) + typ (d) , for definitional constants d. 

2.3.2 The scheme of a definitional constant d is defined to be dnc, if 

dn(def (d)) E dn(typ(d))+l, and for the corresponding d(B) we define 

dn (d (B) ) : E dn (typ (d) ) +l 

provided [G/B] is dnc, where 5 E is the context of the scheme. 

SO, still dn (d(B) ) E dn(typ(d) r dn(typ(d)U@ )+I 5 dn(typ(d(5) ) ) + I ,  

and degree-norms remain preserved under reduction: dn (d (B) ) Z 

dn (typ (d) ) +l 5 dn (def (d) ) z dn (def (d) ) . And, by induction on correct- 
ness, we can prove that correctness implies degree-norm correctness. 

~ . g .  let the scheme of d be correct, then kdef (d) , so def (d) dnc, and 
dn(def (d)) E dn(typ(def (d)))+l, and 1-typ(d) so typ(d) dnc, 

dn(typ(d)) E dn(typ(def(d))) and dn(def(d)) 5 dn(typ(d))+l, q.e.d. 



VII.3 The closure proof for A 

3.1 What to prove 

The decidability of the Automath languages is one of the major 

aims of the language theory. By using an algorithmic definition we got 

the decidability of A and An, both with and without constants, directly 

from normalization (see 2.1.4 and 2.2.6). So one might wonder what else 

there is to prove. 

First there are both Nederpelt's conjectures, the Church-Rosser 

property (CR) for A q ,  and the d o s u r e  property (CL). We define 

A main lemma for B-CL (and 6-CL) is the s u b s t i t u t i v i t y  o f  correct-  

ness:  substitution with correct expressions of the right types preserves 

correctness. Formally: 

Other properties which play an important role in the proof of CL, 

are sound appZicabiZity (SA) , preservation o f  typ (PT) , o f  typ* (P*T) and 

of domain (PD). We write 

SA(A): A 5 {B)[x:C]D * typ(B) + C 
PT (A) : A 2 B * typ (A) + typ(B) (degree (A) +I, degree (B) S1) 

PXT(A) : A 2 B * typ* (A) + typ* (B) 
PD(A): A [ x : B ] C ,  A 2 [x:D]E B J. D 

The properties PT 
1' 

CL1, P*T1 and PD are the respective one-step 
1 

variants of PT, CL, P*T and PD. 
The above properties are not mere technicalities from the closure 

proof, but are also meaningful from the point of view of in terpre ta t ion .  

E.g. SA is characteristic for the fact that the Aut-languages do not 

allow "proper inclusion" of type, and PT (resp. P*T) expresses the nice 
behaviour of typ (resp. typ*) w .r . t . definitional equivalence. 

Further, these properties serve to establish the correspondence 



between t h e  p r e s e n t ,  a lgor i thmic  systems and t h e  E-systems, and between 

t h e  ve rs ions  with and without cons tan t s  ( s e e  6.2,  6 . 3 ) .  

3.2 Some simple f a c t s  

3.2.1 Throughout t h i s  sec t ion  VII.3 we j u s t  d i scuss  h without constants .  

So we may assume CR, and P D ( A )  ( f o r  a l l  A )  and SA(A) ( f o r  c o r r e c t  A )  

a r e  immediate. 

By induct ion on IA one a l s o  proves e a s i l y  t h a t  \-A impl ies  t typ(A)  

(SO t t ~ p ( t ~ p ( A ) )  ,.. . , t t y p * ( A ) ) .  This  i s  no t  easy any more f o r  a  system 

with constants .  This  proper ty  i s  c a l l e d  ~~PrectneS.!? of type.!?.  

3.2.2 A s  with t h e  E-systems ( see  V.3.1), we prove CL from CL by ind.  
1  

on 2. For t h e  B-outside case  of CL we need s u b s t i t u t i v i t y  and SA. Pre- 
1 

viously  s u b s t i t u t i v i t y  ( i . e .  t h e  s u b s t i t u t i o n  theorem, V.2.9) was easy 

and SA was r a t h e r  involved, bu t  here  SA i s  easy and s u b s t i t u t i v i t y  is  

q u i t e  complicated. 

F i r s t  some p r o p e r t i e s  of s u b s t i t u t i o n ,  which a r e  v a l i d  a l ready f o r  

pretyped expressions.  Let A be a <-expression, l e t  B be a  (<,x E a , ~ ) -  

expression.  Let  C* denote C[x/A] . Then 

w r i t t e n  o u t  i n  f u l l ,  

Both f a c t s  a r e  proved by ind.  on t h e  length  of B .  Notice t h a t  (1 )  and 

( 2 )  a r e  v a l i d  f o r  each r i g h t  monotonic, r e f l e x i v e  r e l a t i o n  ins tead  of 

J ,  so  e.g.  f o r  2. 

3.2.3 The problem with s u b s t i t u t i v i t y  is t h a t  t h e  condi t ion typ(A) 4 2 

is c l e a r l y  n o t  s u f f i c i e n t .  We would a l s o  l i k e  t o  know something about 

typ*. I n  f a c t  we have t h e  following theorem (modified subst.,  f o r  s h o r t  SC) : 



proof: By induct ion on IB. E .g. t h e  a p p l i c a t i o n  case .  Le t  t ~ ~ .  C B ~  , 
typ(B1) 2 8, typ*(B2) 2 [y:BlC. By ind.  hyp. IB; and IB;. By ( 1 ) .  

3.2.4 Corol lary:  

Another consequence of (1 )  i s  PT ( A )  f o r  c o r r e c t  A ,  i . e .  
1  

Proof:  Assume f o r  d e f i n i t e n e s s  t h a t  > is  d i s j o i n t  one s t e p  

reduc t ion  ; 
1 ' 

The proof is by induct ion on t h e  length  of A .  For example: 

3.3 H e u r i s t i c  considera t ions  

3.3.1 A t  f i r s t  s i g h t  SA, PT1 and cor rec tness  of types seem t o  g ive  a  

good s t a r t i n g  p o s i t i o n  f o r  proving C L .  I n  a  way t h i s  i s  t r u e :  we only 

have t o  f i n d  t h e  r i g h t  induct ion and t h e  r i g h t  induct ion hypothesis .  

L e t  us  f i r s t  t r y  t o  prove C L  ( A )  by induct ion on the  length  of A ,  
1  

o r  r a t h e r  by induct ion on the  r e l a t i o n  "being a  subexpression o f " ,  f o r  

s h o r t :  by induct ion on subexpressions. We i n t e r p r e t  CL i n  terms of 
1  

d i s j o i n t  one s t e p  reduct ion.  For t h e  appl .  case  of i n s i d e  reduct ion the  

ind.  hyp. i s  no t  s t rong  enough, we a d d i t i o n a l l y  need P*T So ins tead  
1 ' 

we t r y  t o  prove CL1 and P*T1 toge the r ,  again  by induct ion on subexpress- 

ions .  NOW everything i s  a l l r i g h t  with the  i n s i d e  ,reductions,  b u t  with 

o u t s i d e  B1 we s t i l l  come i n  t roub le :  A : {A1 )[x:aY2,  SA gives  

typ(A ) C a  b u t  i n  view of t h e  previous  s e c t i o n  we a l s o  want 1  

typ*(Ai) C t y p x ( a ) .  



3.3.2 So l e t  us see under what conditions we might prove t h i s  tYP*- 

requirement. F i r s t  not ice:  i f  we knew CL already, then we could use PT 
1  

t o  prove PT ( f o r  cor rec t  expressions),  e.g. by induction on 2. The in- 

duction s t e p  runs a s  follows: l e t  k ~ ,  A 2 B 2 C. By CL we g e t  IB and 

by ind. hyp. typ(A) G typ(B) J. typ(C) whence by CR: t Y p ( A )  G t y p ( C ) ,  

q.e.d.  An a l t e rna t ive  proof of PT(A)  from CL works by induction on the 

reduction t r e e  of A (by v i r tue  of S N ( A ) ) ,  f o r  short :  by induction on 

reducts. Viz. l e t  IA, A 2 C. I f  A C then typ ( A )  - tyP (C)  . Otherwise 

f o r  some B, A > B 2 C. By PT1 typ(A) G t y p ( B ) ,  by CL IB and by ind. 
1  

hyp. typ(B) + typ(C), so by CR typ(A) + t y p ( C ) .  

3.3.3 Further from PT we can prove P*T, or  ra ther :  

by induction on degree(A) + degree(B), a s  follows. I f  degree(A) = 1 

then degree (B) = 1 too so typ* ( A )  - A G B 5 typ* (B)  . Otherwise, 

degree (B)  ) 1 e i t h e r ,  so  we can apply PT t o  A and B. By CR we g e t  

typ(A) G typ (B) , by correctness of types t t y p ( ~ )  , t t y p  (B) so  by the 

ind. hyp. ~ Y P *  ( A )  + ~ Y P *  (B) , 9.e.d. An a l t e rna t ive  proof of P*T from 

CL and PT i s  by induction on +, the order generated by (1) "being a  

proper reduct o f " ,  ( 2 )  "being the typ of"  ( a s  i n  V. ) .  So the i n -  

duction on + includes the induction on reducts mentioned before. That 

+- i s  indeed well-founded w i l l  become c lear  i n  the sequel. 

The proof looks l i k e  t h i s .  Let IA, l e t  A 2 B. By CL b~ and by PT 

typ(A) 2 F 2 typ(B). By correctness of types ~ ~ Y P ( A ) ,  t t y p ( ~ )  and by 

the ind. hyp. ~ Y P *  (A)  G typ* ( F )  + typ* (B) , and by CR ~ Y P *  ( A )  G typ* ( B )  . 

3 . 3 . 4  In  sect ion 3.2.2 we announced t o  prove CL from CL1 by induction 

on 2. However, t h i s  can be in te rpre ted  i n  t w o  ways: 

(1) t o  prove FA, A 2 B * IB, by induction on A 2 B, i . e .  on the 

number of reduction s teps  between A and B, 

( 2 )  to  prove C L ( A )  by induction on the reduction t r e e  of A ,  i . e .  

by induction on reducts.  Both inductions work, but the second one has 

an advantage: we j u s t  need C L I ( A ) ,  but  can f ree ly  use CL(B) i n  the 

course of the proof,  fo r  each proper reduct d of B: 



3.3.5 Now it becomes probably p l a u s i b l e  t o  t r y  and prove C L  ( A )  d i r e c t l y  

by an induc t ion  on z, t h e  order  generated by +- (3.3.3) and by sub. I n  

t h i s  way we combine t h e  induct ion on subexpressions (3.3.1, f o r  t h e  

" ins ide"  cases  of C L 1 ) ,  on reducts  (3.3.2,  t o  prove P T ) ,  and on + (3.3.3,  

t o  prove P*T) . 
I n  order  t o  make t h e  induct ion work we need t h e  well-foundedness 

of : on t h e  c o r r e c t  express ions ,  i . e .  t h e  soca l l ed  big tree theorem BT. 

Sect ion 3.4 con ta ins  t h e  proof of CL a s  sketched above, assuming 

BT, sec t ion  4  i s  devoted t o  t h e  proof of BT. 

3.4 The a c t u a l  c losure  proof 

3.4.1 Def in i t ion  of -+ 

-+ i s  t h e  r e f l e x i v e  and t r a n s i t i v e  r e l a t i o n  generated by 

* 
3.4.2 Def in i t ion  of + 

i s  t h e  r e f l e x i v e  and t r a n s i t i v e  r e l a t i o n  generated by 

3.4.3 The big tree of an expression A i s  t h e  reduct ion t r e e  of A w . r . t .  
* 

t h e  extended reduct ion r e l a t i o n  +. We assume t h e  big tree theorem BT, 
* 

which s t a t e s  t h a t  + i s  well-founded on t h e  c o r r e c t  expressions (and, 

hence, t h a t  t h e i r  b i g  t r e e s  a r e  f i n i t e ) .  

3.4.4 Lemma: Let  FA, CL ( A )  . Then PT ( A )  (degree ( A )  1) 

Proof: AS i n  3.3.2, e.g. by ind. on reduc t s ,  using PT1 and C R .  



+ 
3.4 .6  Lemma: Let t ~ ,  C L  ( A ) .  Then P * T ( A ) .  

Proof: By BT we can use induction on +. Let A  5 B. If degree(A) = 1  

then degree(B) = 1  too and there is nothing to prove. Otherwise, 

degree ( B )  1  either, so by the previous lemma PT ( A )  , i .e. 
t y p ( A )  2 F I t y p ( B )  . By C L  and correctness of types b t y p ( ~ ) ,  

t t y p ( B )  and by the ind. hyp. t y P * ( A ) '  C typ* ( F )  C typ* ( B )  . Now use 
CR. 

3.4.7 Theorem: IA * C L ( A )  

* 
Proof: BY BT we can use induction on +. Let \A, A  2 B. If A  5 B 

then there is nothing to prove. Otherwise A  > C  2 B with C  a proper 

reduct of A .  We want I c .  The interesting cases are: 

( 1 )  A  = { A 1 ) A 2 ,  C  = { C  I )C 2 ,  FA1,  t Y P ( A 1 )  2 a ,  FA2,  

t y p * ( A 2 )  2 [ x : a l D ,  A1  > C 1 ,  A2  > C2.  By ind. hyp. kc1, kc2 

By PT1 t y p ( A 1 )  j. t y p ( C 1 ) ,  so by CR t y p ( C 1 )  + a.  NOW by the 

+ 
ind. hyp. we can assume C L  ( A  , so P*T(A2) and 

2  

t y p * ( A 2 )  C t y p * ( c 2 ) ,  and by CR t y p * ( C 2 )  C C x : a l D ,  q.e.d. 

( 2 )  A  r { A 1 1 C x : a l A 2 ,   FA^, t ~ x : a l A ~ ,  t y p ( A 1 )  C a. By ind. hyp. we 

+ 
can assume C L + ( A ~  ) , CL ( a ,  so ~ Y P *  ( A 1 )  C typ* (a), and by 

substitutivity ( 3 . 2 . 4 )  t~ [ A  Z C ,  q.e.d. 
2  1 

V I I . 4  T h e  B i g  T r e e  T h e o r e m  

4.1 Introduction 

For the definition of the extended reduction relations -+ and we 

refer to sec. 3.4. Both definitions make use of t y p ,  so + and : are 
only defined on pretyped expressions, i.e. expressions with a context. 

Notice: taking subexpressions often requires extension of the context. 

The big tree of an expression A  is its reduction tree w.r.t. :, 
* 

i.e. the branches of the tree are the proper +-reduction sequences of A .  



We define: 

* 
BT(A): @A has no infinite proper +-reduction sequences 

The big tree is infinitary so: 

BT (A) @ the big tree of A is finite 

In this section ~11.4 we prove the big tree theorem BT: 

(BT) A normable * BT (A) . 
So BT states that on the normable expressions 5 is well-founded, 

* 
i.e. that +-SN holds. 

* 
De Vrijer C701 introduced +- and big trees, and proved BT for a 

system of normable expressions containing his language AX. 

Below we give two different proofs of BT. The first (sec. 4.5) 
is modelled after the second proof of 6-SN (IV. 2.5 ) , the second one 
(sec. 4.6 ) uses an idea from de Vrijer's proof (the "bookkeeping pairs") 

but further follows the first 8-SN proof (IV.2.4.4). Actually both 

proofs deal with a modification 2 of : which is somewhat easier to BT 
handle and gives rise to even bigger trees (sec. 4.4.2). 

For simplicity we start with a system without constants, and take 

just B-reduction for the ordinary reduction 2 involved in + and z .  Later 
(5.2, 6.2, 6.3) BT will be extended to cover the remaining cases. 

4.2 Heuristics 1 

* 
After de Vrijer we also call + and -t rt-reduction and rst-reduction 

respectively, with r for ordinary reduction, s for subexpression, t for 

type. Similarly we speak about r-reduction (i.e. ordinary 2), s-reduct- 

ion (A s-reduces to its subexpression), t-reduction ( A  t-reduces to 

typ(A) etc.) and their combinations. The meaning of rs-SN, st-SN etc. 

and 9 - the length of rs-reduction tree of an rs-SN expression - etc. 
r s 

will be clear. 

We want BT, i.e. rst-SN for the normable expressions. Let us 

summarize what SN-results we know already: 

(1) r-SN. This is ordinary 6-SN as proved in IV.2.4 for the 

normable expressions. 

(2) s-SN and t-SN. s-reduction decreases length of expressions, 

t-reduction decreases degree of (pre-typed) expressions. 



rt-SN. This was proved for correct expressions in V . 4 . 4 .  The 

same induction (1) on degree, ( 2 )  on 0 applies to all 
r ' 

degree-norm correct expressions: taking t y p  decreases the 

degree, r-reduction preserves degree. 

rs-SN. Provable for the normable expressions by induction on 

(1) er, (2) length of expression. I n  fact the induction used 

in the proof of the square brackets lemma SQBR ( I V  .2.4.3) , 
and in several B-SN proofs as a subordinate induction ( IV .2 .4 .4 ,  

IV.2 .5 .3)  is just induction on the rs-reduction tree. 

st-SN. Can be proved by induction on the definition of pre- 

typed expressions ( I V  .3.2) . 
Clearly these inductions fail for full rst-SN: s-reduction can in- 

crease the degree, r-reduction generally increases length of expression, 

and taking t y p  can increase both length of expression and length of r- 

reduction tree. Besides, on the normable expressions r-reduction does 

not preserve the degree. 

4.3.1 Norm properties 

From IV.2.1 we recall some properties of the norm p and of the 

normable expressions. We write A < B for: 1.1 ( A )  is shorter than p ( B )  . 
lJ 

( 1 )  { A ) B  normable* { A ) B  < B andA < B 
1.I 1.I 

( 2 )  A normable * p ( t ~ p ( A )  ) E 1.1 ( A )  

( 3 )  p(x) : p ( A ) ,  B normable * p ( B l [ x / A J )  p ( B )  

( 4 )  A 2 B ,  A normable * p ( B )  E p ( A )  

( 5 )  B c A ,  A normable * B normable 

Properties ( 2 ) ,  ( 4 ) ,  ( 5 )  make that the normable expressions are 
* 

closed under -+ and that + preserves the norm. 

Similarly to the SN-conditions in IV.2.4.1 we can formulate 

necessary and sufficient BT-conditions: 



Proof: We j u s t  g ive  t h e  *-par t  of ( 3 ) .  Le t  BT(B1) , BT(B2) and 

B2 -+ [y:B]C - BT(CIBIJJ). B2 i s  rst-SN s o  rt-SN s o  we can use 

(B ) .  B i s  rst-SN s o  r-SN s o  we can use  0 (B ) .  Using induct ion 
'rt 2 1 r 1 
on Br(B1) + Brt(B2) we prove t h a t  a l l  one-step r s t - r educ t s  of 

{B1)B2 a r e  BT. Dis t inguish:  

(i) D sub {B1)B2, so  D c B o r  D c B s o  B T ( D ) .  
1 2' 

(ii) B > D o r  D r typ(B2) .  we have BT(B1) , BT(D) and 
2 116 

D -+ Cy: Blc I. BT(c[Bll ) . Apply the  ind.  hyp. t o  {B1)D, t h i s  

g i v e s  BT ( {  B1 ID) . 
(iii) B > D. Apply the  ind.  hyp. t o  {D)B2. 

1 116 

4 .3 .3  H e u r i s t i c s  2 

I f  BT (B2) , B2 -+ Cy : BIC then c l e a r l y  BT(C) . SO BT-condition ( 3 )  

above suggests  a s  a main s t e p  i n  proving BT t h e  s u b s t i t u t i o n  theorem 

f o r  BT: B T ( A ) ,  p(x) r p(A),  BT(B) + BT(B[x/A]). 

Indeed, i f  we knew t h i s  theorem, we could simply proceed by in-  

duct ion on pretyped expressions and g e t  BT. The s i m i l a r i t y  with t h e  

s i t u a t i o n  around B-SN suggests u s  t o  use SQBR (1v .2 .4 .3 )~  f o r  -+ 

ins tead  of 2 :  I f  B* -+ [y:  f3lc then e i t h e r  (1 )  B -+ [y: 6 I C  with B;) 2 8 ,  0 0 
C: -+ c, o r  ( 2 )  B -+ {F}x, ({FIX)* -+ [y:B]C, where * s tands  f o r  [ x / A ~ .  

However t h e  following counter example shows t h a t  t h i s  lemma i s  

wrong: Take B 5 {B1)[z:y1[y:B]{z)x, A 5 [u :$ l**u .*u .  Then 

B* + [ ~ : B * [ B ; D I - - B ; - - ~ * ,  bu t  B + C y : B ~ B 1 ~ I { B 1 h r  and ( { B ~ I X ) *  + **B?*Bi 

4.4.1 One p o i n t  which makes SQBR break down f o r  -+ i s  t h a t  ne t :  



Example: B X, C ~ Y P ( X )  and t h e  only  connection between x and A 

concerns t h e i r  norms ( n o t  t h e i r  t y p ' s ) .  

The o t h e r  s u b s t i t u t i o n  proper ty :  A + A '  * B[A] + BIA1] does n o t  

hold e i t h e r ,  due t o  the  lack of monotonicity c lauses  i n  t h e  d e f i n i t i o n  

of +. Example: A -t typ(A) b u t  no t  * * - A * * *  + * - * t y p ( A )  * * *  . 

4.4.2 Now we in t roduce  BT-reduction by adding t h e s e  monotonicity r u l e s  

t o  t h e  d e f i n i t i o n  of +. What we g e t  i s  a reduct ion i n  t h e  usua l  sense,  

t h a t  a one s t e p  reduc t ion  c o n s i s t s  of r ep lac ing  a subexpression (redex) 

by another express ion (contracturn). The r e d i c e s  a r e  he re  of two kinds:  

(1 )  B-redices which c o n t r a c t  as usua l  

( 2 )  r - redices :  v a r i a b l e s x w h i c h  c o n t r a c t  according t o  x x: >typ(x). 
T 

We use  t h e  same terminology a s  before  (11.7.1.2 ) :  2 , > , > e t c . ,  
T 1 , r  B T  

T-SN, Br-SN, 8 e t c .  
B T 

Now 2 s a t i s f i e s  t h e  second s u b s t i t u t i o n  p roper ty  (above) indeed 
B T  

b u t  the  f i r s t  one i s  s t i l l  n o t  v a l i d  (same counter example). 
* 

J u s t  l i k e  + and +, 2 is  only def ined f o r  pretyped express ions .  
B T 

Formally, we ought t o  speak about " 2 w . r . t .  con tex t  5", and t h e  
BT 

monotonicity f o r  a b s t r .  express ions  then would read:  

I f  B > C w . r . t .  5 and B > C w . r . t .  ( 5 ,  y E B1) 
1 B T  1 2 8~ 2 

then Cy:B11B2 >Br Cy:C11C2 w . r . t .  5 

4.4.3 We a r e  going t o  prove BT-SN and then conclude BT from t h e  

Theorem: BT-SN ( A )  * BT ( A )  

Proof: L e t  BT-SN(A) . Using induct ion on (1 )  8 ( A ) ,  ( 2 )  l eng th  of A w e  
6 r 

show t h a t  a l l  one-step r s t - r e d u c t s  of A a r e  BT. So A i t s e l d  i s  BT. 

4.4.4 BT-SN cond i t ions  

These a r e  q u i t e  s i m i l a r  t o  t h e  BT-conditions. The only  non- t r iv ia l  

modif ica t ion concerns t h e  appl .  case.  

Proof:  A s  i n  4.2.3 b u t  now we use induc t ion  on 0 (B1) + BgT(B2). B T 



4.4.5 Something on 2 
'I 

Just like st-SN (see 4.2(5)) we can prove T-SN. Further we verify 
T-CR: Let C contain subexpressions A Z ~x:a]**x**, r [y:B]**y** . 
Then A >T A' 5 [x:a]**a** , r > r' Z ~.J:B]"B.~ and we want a common 

T 
~-r~duct of ...~l..r... and ...~..rl... . AS in 11.8.2 we consider 

all the possible cases. Generally the reductions simply commute: 

...~l..r... > ...A'..~I... < ...~..rl... . In case the specific x 
T T 

occurs in B or the specific y occurs in a then two  steps are needed, 

e.9. [y:..x..]..y.. > [y:..a..]..y.. > [y:..a..]..(..a..).. < < 
T T T T 

[zj:.*x*-]**(--x--)-* . Anyhow the weak diamond property holds for > 
T I  

so by T-SN we get T-CR, and uniqueness of T-normal form. 

4.4.6 This gives an easy way of reaching a BT-normal form: first T- 

normalize then @-normalize. Notice: the norm properties guarantee that 

ZQT preserves the norm of normable expressions. 

> 8 
and 2 do not commute, but we still can get BT-CR for the 

T 
normable expressions, as follows. For norms v we define a BT-normal 

expression v*: (1) T* 5 T, ( 2 )  ( C V  ]V ) * - [x:vXJv* . Now ,we can prove 
1 2  1 2  

by ind. on the definition of p. This gives Br-CR and uniqueness of BT- 
normal form. The procedure above assures the existence, so for normable 

.4 we can speak of 8-c-nf (A). 

In fact V* is Nederpelt's original representation of the norm v. 

4.5 First proof of BT-SN; a correction to IV.2.5.3 

4.5.1 In view of 4.4.4 it seems reasonable to concentrate on the sub- 

s t i t u t i o n  theorem for BT-SN: A BT-SN, B BT-SN, v (XI = p (A) * BUAI BT-SN. 
Just like with +, SQBR fails for 2 so we rather let us inspire by BT' 
the second proof' of 6-SN (IV. 2.5.3) . 

In fact we also take the occasion to indicate (and repair) a flaw 

in that proof, concerning the distinction between replacement and sub- 

s t i t u t i o n .  



4.5.2 Replacement v s . s u b s t i t u t i o n  

When d e f i n i n g  s u b s t i t u t i o n  1 1 2 . 4  we have assumed t h e  concept 

o f l i t e r a r y r e p l a c e m e n t  t o  be understood. S u b s t i t u t i o n  amounts t o  r e -  

placement With p recau t ions ,  v i z .  t h a t  no c l a s h  of v a r i a b l e s  t a k e s  p lace ,  

and s u b s t i t u t i o n  can a l s o  be considered a s p e c i a l  case  of replacement. 

Now l e t  u s  s e e  what went wrong i n  IV.2.5.3 (and a l s o  i n  (IV.2.6.2).  

E s s e n t i a l l y  we wanted t o  r ep lace  a s p e c i f i c  subexpression A i n  C by an- 

o t h e r  express ion A ' ,  t hus  producing C ' .  We had t h e  idea  t h a t  t h i s  replace-  

ment of A with A '  could be performed v i a  s u b s t i t u t i o n  f o r  a new " f resh"  

v a r i a b l e  y ,  such t h a t  C = - * y * * ,  Z ; CO[y/A1, C '  5 C [ Y / A ' ~ .  However 
0 - 0 

t h i s  i s  wrong: p o s s i b l e  bound v a r i a b l e s  of C, which become f r e e  i n  A ,  

can never g e t  t h e  appropr ia te  bindings i n  C U ~ / A ] .  
0 

What we. need here  i s  l i t e r a r y  replacement (LR) of y wi th  A and A '  

r e sp .  We in t roduce a new no ta t ion :  B[x/AILR i s  t h e  r e s u l t  of l i t e r a r y  

rep lac ing  a l l  f r e e  occurrences of x i n  B by A .  

4.5.3 Below we fol low t h e  genera l  idea  of IV.2.5.3, bu t  i n s t e a d  of 

using a s u b s t i t u t i o n  theorem f o r  SN, we use the  - s t ronger!  - replace-  

ment theorem - a s  we ought t o  have done t h e r e  (and i n  IV.2.6.2) too.  

The e a s i e s t  way i s  t o  use replacement wi th  a set  of e x p ~ e s s i o n s .  

Notation:  6%x/a3LR, where a i s  a s e t  of express ions ,  i s  t h e  s e t  of ex- 

p ress ions  which r e s u l t  from B by ( l i t e r a r y )  r ep lac ing  a l l  f r e e  x i n  B 

by an express ion A E a ,  bu t  poss ib ly  d i f f e r e n t  A ' s  f o r  d i f f e r e n t  

occurrences of x (compare mul t ip le  s u b s t i t u t i o n ,  i n  11 .10) .  

4.5.4 The monotonicity of 2 makes t h e  replacement proper ty  work: 
B T 

provided A has been p u t  i n  t h e  appropr ia te  extended context .  

We make t h i s  s l i g h t l y  more e x p l i c i t .  Le t  A be an occurrence of a sub- 

express ion i n  C. The con tex t  of A i n  C can be def ined by induct ion on 

t h e  l eng th  of C.  I n t u i t i v e l y  speaking,  it c o n s i s t s  of a l l  t h e  assumpt- 

i o n s  x E a ,  which one encounters ( i n  t h e  form of a b s t r a c t o r s  Cx:a]) 

when scanning C from " l e f t  t o  r i g h t "  u n t i l  one a r r i v e s  a t  A .  The c r u c i a l  

c l a u s e  i n  t h e  d e f i n i t i o n  i s  of course:  i f  5 i s  t h e  context  of A i n  C 2 
then (x E C , c )  i s  t h e  context  of A i n  [x:C ]C 

1 1 2 -  



Now t h e  con tex t  of A i n  t h e  replacement p roper ty  must provide a l l  f r e e  

v a r i a b l e s  of A with t h e  same typing a s  they g e t  when A i s  i n s e r t e d  i n  

B. E.g. we can t ake  ( E r n  ) where 5 i s  t h e  context  of B and TI i s  the  
0 0 

i n t e r s e c t i o n  ( i n  the  sense of con tex t  inc lus ion  sub, cf .  V.2.6) of a l l  

the  q ' s  which a r e  t h e  context  of a f r e e  occurrence of x i n  B. 

We d e f i n e  p ( A )  t o  be t h e  s e t  of B v r e d u c t s  of A .  Then, again i f  A 

has  been p u t  i n  t h e  r i g h t  context ,  

4.5.5 The o t h e r  replacement p roper ty  B 2  C * B* 26, C*, where * 
B T  

s t ands  f o r  [x/A] is  s t i l l  not  genera l ly  v a l i d ,  b u t  we have a r e s t r i c t e d  
LR 

vers ion .  Lemma: I f  A tBT t ~ p ( x )  and B C then B* 26, C*. 

Corol lary:  B* 6~-SN, A 2BT typ(x)  * B BT-SN. 
* 

Proof: Use ind.  on (1) e B T ( ~ * )  (2)  l eng th  of B . E.g. i n s p e c t  the  

3~-SN cond i t ions .  

4.5.6 Now we a r e  ready f o r  t h e  BT-SN proof .  

Replacement theorem f o r  BT-SN: Le t  * denote ; C X / P ( A ) ) ~ ~  

Let  B normable, p ( x )  E p ( A ) ,  A ,  B  BT-SN. Then 

provided A has  the  r i g h t  context .  

Proof:  By induct ion on ( I )  p ( A )  , (11) B B T  (B) , (111) the  "capac<ty" of 

the  t r a n s i t i o n  from B t o  C, i . e .  t h e  sum of t h e  0 ' s  of t h e  reducts  of 
B T  

A i n s e r t e d  i n  B. Now consider a  s i n g l e  reduct ion s t e p  C > D. We 
1 1 6 ~  

d i s t i n g u i s h :  ( 1 )  t h i s  reduct ion s t e p  concerns an o l d  redex, i . e .  a  redex 

a l ready  p r e s e n t  i n  B, (2 )  t h i s  s t e p  concerns a new redex. The l a t t e r  

a r e  of  two kinds:  (2a) mul t ip l i ed  r e d i c e s ,  i . e .  r e d i c e s  i n s i d e  an i n -  

s e r t e d  reduc t  of A ,  (2b) newly composed red ices .  A l l  T-redices f a l l  

under case  ( 1 )  o r  (2a) and the  6-redices a r e  c l a s s i f i e d  a s  before ,  so  

t h e  only p o s s i b i l i t y  of case (2b) i s  a s  fo l lows:  B Z * * * x W * *  {B1Ix.**,  

i : . - - A  - - -{C,) [y:y]E-**,  D - . * * A  - . * E [ C , l - - * ,  where C1 E 8;. 
1  1  

A 2 A A 2  [y:ylE. 
3.r 1 '  B-r 



In case (1) and (2a) the replacement and the reduction commute, 

i.e. B > Do, D E D:. To be precise, let {C1}[y:ylC2 be an "old" redex, 

i.e. {B11Cy:B1B2 c BI Cl E B;, C2 E 8;. Then D Z -**C [C I = - *  E 
2 1 

(a*-B [B ]*-*)~X/~(A[B~D)~~~, and not simply D E D*. Then we get 
2 1 0 

BT-SN(D) by ind. hyp. I1 (case (1)) or I11 (case (2a)). 

NOW we tackle case (2b): create a new variable z and form B by 
0 

replacing the intended {B }X by z. So B Z B [z/{B1)x] For simplicity 1 o LR' 
we put ~ Y P ( Z )  BT-nf ({B }x), so p(z) E p({B1lx) and ,6r-SN(B0) -by 4.5.5. 1 
Then we form B' E B: by replacing the remaining free x's of B 

0 0 
with the appropriate reducts of A, i.e. the same as used in the formation 

of C, and finally replace the z of B' by E[C 1. This gives us 
0 1 

D B;[z/EUC~IB~~ back. Informally: B - *-*x**-z**- , B' ...A .. .z.. . 
0 0 1 

D : * * . A  ***E[c~]*** . Either by ind. hyp. I1 or I11 we get eT-SN(C ) .  
1 1 

Further BT-SN (A) so BT-SN (Cy : y IE) so BT-SN (E) . By normability B 1 <lJ " - 

so C1 < p  X. Substitution is a special case of replacement, and replace- 

ment [[ ILR is a special case of % % so by the first ind. hyp. 
LR 

BT-SN(~C~]). Bb is fir-SN by ind. hyp. I1 or 111, aC1l <lJ SO by ind. 

hyp. I again BT-SN(D) q.e.d. 

4.5.7 Corollary 1: B normable, p(x) : p(A), A, B BT-SN * ~A]BT-SN 
(substitution theorem for BT-SN) 

Corollary 2: B normable * B BT-SN (see 4.4.4) 

corollary 3: B normable * BT(B) (as in 4.4.3) 

4.6 Second proof of BT-SN 

4.6.1 Bookkeeping pairs, ?expansion and n-reduction 

4.6.1.1 Assume that A 2, B , i.e. B results from A by successively 

replacing variables x by their type typ(x). Alternatively we can work 

backwards from T-nf(A), by successively replacing newly created sub- 

expressions by the original variable. 

In general it is of course not possible to retrace which subex- 

pressions are newly created, and from which variable they stem, unless 

we store this information somewhere inside the expression! 

Following de Vrijer 170 I we use a new pairing operation ' - * ,  -' 
for this kind of bookkeeping. 



Definitions: (1)  I f  A ,  B a r e  expressions then r ~ , ~ l  is  

( 2 )  I f  A ,  B a r e  <-expressions then 'A,B' i s  a <-expression 

239 

an expression. 

3 I f  A ,  B a r e  normable, p ( A )  Z p ( B )  then ~ ( ' A , B ' )  E p ( A ) .  

For the  r e s t  the def in i t ions  of pretyped and normable expressions a r e  

unaltered. The notions of subexpression and subs t i tu t ion  a re  extended 

i n  a straightforward way. A s  a new monotonicity r u l e ,  fo r  each kind of 

reduction, we can have, e.g. A > A ' ,  B > B' * 'A,B' > 'A',B". 

4.6.1.2 Now the a l t e rna t ive  way of producing B from A (above) can be 

described a s  follows: (1) f i r s t  provide a l l  var iables  x successively 

with a copy of t h e i r  type, i . e .  replace x by ' x , ~ Y P ( x ~  and so on, 

( 2 )  then f o r  some of these p a i r s  simple res tore  the lefthand pa r t ,  and 

for  the r e s t  pick the righthand pa r t .  
I 

In the process (1)  the T-eqansion of A ,  T - ~ x P  (A)  , i s  constructed, 
r i . e .  each x of A i s  replaced by X ,  T-exp (typ (x) ) '. The process ( 2 )  we 

describe i n  terms of a project ion reduction (T-reduction rT) .  

Definitions: (1) The T - e X p  of pretyped expressions is  defined 

inductively: 

(ii) T-exp ({A)B) E { T-exp ( A )  IT-exp (B) 

(iii) T-exp(Cx:alB) E C X : T - ~ X ~  ( a )  IT-exp (B) 

( i v )  T-exp ( r ~ ,  B- ) z T-exp ( A )  , T-exp (B) 

( 2 )  (i) one-step T-reduction > i s  generated from T-contraction: 
l 1 T  

'A,,B' > A ,  'A,B' > B by the monotonicity ru les  
11T lrT 

(ii) T-reduction 2 i s  the t r ans i t i ve  and ref lexive closure of 
T 

> I ,  IT. 

4.6.1.3 Remark: Formally we should have defined the T-expansion of 

expressions w . r . t .  t h e i r  context,  notation c-T-eXp(B).  The abs t r .  case 

of the de f in i t i on  then becomes: 



4.6.1.4 The poin t  of t h i s  a l t e rna t ive  approach of ZT1 making use of 

A t B *  ~ - e x p ( A )  t B (see 6.2.2) 
T 71 

i s  t h a t  2 i s  d e f i n i t e l y  ea s i e r  t o  handle than 2 roughly because 2 
71 'I' T 

does not depend on the context,  and t h a t  2 -reductions of an expression 
B T  

c a n  be simulated by t -reductions of i t s  T-expansion. 
Bn 

Our proof below cons is t s  of two pa r t s :  f i r s t  we show t h a t  Bn-SN 

implies BT-SN, then we prove the SQBR lemma fo r  2 and fin-SN. 
Bn 

4.6.2 Bn-SN implies BT-SN 

4.6.2.1 Lemma: 
A >1,T 

B * T-eXp(A)  r T-exp(B) ( i n  f a c t  > ) 
T l , n  

Proof : Ind. on > : 
l1 . r  

(i) T-contraction, A E x ,  B 5 ~ Y P ( x ) .  Then T - ~ X P ( A )  E 

rxlr-exp ( typ(x)  ) ' > l  T-exp ( typ (XI  = T-exp (B) 

(ii) Monotonicity, e.g. A [x:A IX, B : [x:B ]x, A > 1 1 1 1,T 
By ind.hyp. T - ~ x P ( A ~ )  > 71 T - ~ X P  (B1) ,  SO T-exp(A) 5 

CX:T-exp ( A l  lrx,r-exp (dl ' z IT Cx:r-exp (B 1 ) l r x .~ -exp  ( B ~ )  ' E 

4.6.2.2 Corollary 1: A 2 B * ~ - e x p ( A )  2n T-exp(B) 
T 

Corollary 2: A 2 B * ~ - e x p ( A )  2 B (because ~ - e x p ( B )  >71 F )  
T IT 

4.6.2.3 Lemma: Let A be a 5-expression, l e t  B be a ( 5 , ~  E cx,q)-express- 
I 

ion. Let and 'I stand f o r  [[x/A] and [[x/T-exp(A)n resp. Then 

I I 
with T-eXp(B ) taken w . r . t .  5 ,  n . 
proof: ind. on .the de f in i t i on  of 'r-eXp(B) : 

-111 = r 
(i) r-exp(x) 'I E 'I, T-exp(a) - T-exp(A) .T-exp(u)  ' > T  

I T-exp ( A )  2 T-exp(x . 



4.6.2.4 Corol lary:  Le t  A be a c-expression,  B i s  a ( s , x E  a ) -express ion.  

Then T-exp (B) [x/T-exp(A)D ra T-exp (B[x/Al) 

4.6.2.5 Corol lary:  A 7 B * T - e X p ( A )  3 2 T-exp(B) 
1rB 1rB a 

(ii) monotonicity, e .g .  A - 'A A ', B 'B ,B ', A 7 1' 2 1 2 1 l , B  B1' 

A 2 1,B B 2' BY ind .  hyp. T-exp(A) I ' r - e x p ( ~ ~ )  ,T-exp(A2)'  
- 
> z 'T-exp ( B ~ )  .T-exp ( B ~ )  ' = r-exp (B) . 

116 'II 

4.6.2.6 Theorem: T-exp(A) BT-SN * A BT-SN 

Proof: Let  -c-exp ( A )  be BT-SN, use i n d .  on 9 (T-exp ( A )  ) . I f  A > B 
671 1 ,  B 

then r-exp(A) ; 1 , B  >71 
T-eXp(B) (by 4.6.2.5),  so  by ind.  hyp. 

8t-SN (B) . 
Simi la r ly ,  i f  A > B then BT-SN (B) . So A i s  BT-SN. 

1 , ~  

4.6.3 The proof of 671-SN 

4.6.3.1 The normable express ions  a r e  c losed (and norms a r e  preserved) 

under 2 . Further  2 , s a t i s f i e s  both s u b s t i t u t i o n  p r o p e r t i e s  (see4.4 .1) .  
B .n 71 

Notice t h a t  2 does n o t  s a t i s f y  CR b u t  t h a t  6 and a commute (use  nes ted  
71 

one s t e p  reduct ion see  11.3.4) and t h a t  weak 718-postponement holds:  
1 171 

A ?  B * A 2  C s  B 
B T .rr > B  a  

4.6.3.2 Bn-SN condi t ions  

These a r e  again q u i t e  s i m i l a r  t o  the  B-SN condi t ions .  The i n t e r e s t -  

ing c lauses  a r e :  

(1 )  A BT-SN, B 671-SN * Cx:AlB and r ~ , ~ '  671-SN 



So, again, we want the substitution theorem for BT-SN. 

* 
4.6.3.3 Square brackets lemma for 2 Let B be $n-SN. Let stand for 

Bn - 
[ x / A ] .  Let B* 2 Cy:6lC. Then either (1) B 2 [y:f301C0 with 

Bn 8 
8' 2 8, C: 2Bn C, or (2) B 2 {Bk)***{Bllz, ({BIZ)* P Cy:61C. 
0 Bn f3a 

Proof : As in IV.2.4.3, by induction on (I) 8 (B) , (11) the length of 
BIT 

B. The new case is r~ B ', B* E r ~ * , ~ * l  
1' 2 1 2  

. Then either 
B* 2 Cy:BIC or B; ZBn Cy:B]C, and we can apply ind. hyp. I to B1 
1 BIT 

or B 
2 ' 

Remark: An alternative proof is provided by Barendregt's lemma, which 

is still valid for 2 (see I1 -11.3.5) . 
Bn 

4.6.3.4 Substitution for Bn-SN: Let B be normable, p (x) - p (A) , A and 
B are ~n-SN. Let * stand for [x/AD. Then B* f3a-SN. 

and 

4.6.3.5 

4.6.3.6 

Proof: As in IV.2.4.4, by ind. on (I) u ( A ) ,  (11) eBn(B), (111) length 

of B. The new case concerns B I 'B B , B* I B , .  Both B; 1 2  
B; are f3n-SN by ind. hyp. 11 so B* is Bn-SN. 

Corollary: B normable * B f3n-SN 

Notice that the T-expansion of normable A is again normable, 

so A normable * T - ~ X P  (A) normable. 

Corollary: A normable * A BT-SN (by 6.2.6) 

Corollary: BT 

VII.5 Closure and Church-Rosser for An 

5.1 Introduction 

5.1.1 Here we consider the constant-less part of Aq, defined as in sec. 

2.12, but with 2 standing for en-reduction. It is easy to derive a 

strengthening rule (sec. V.1.6) for such an algorithmic system, so q-CL 

does not cause major difficulties. The problems with closure for hq, as 

compared to A, are rather due to the fact that CL and CR appear to be 



heav i ly  interwoven. Namely, a proof of CL ( s e e ,  e . g . ,  VII.3)  seems t o  

make q u i t e  e s s e n t i a l  use of C R ,  while i n  t u r n  we seem t o  need C L  i n  the  

course of t h e  CR-proof - because Bn-CR holds  f o r  c o r r e c t  express ions  

only.  

The s o l u t i o n  is of course t o p r o v e  C R  and CL (and a number of o t h e r  

p r o p e r t i e s )  simultaneously,  by induct ion on b i g  t r e e s .  I n  sec .  5.2, 

below w e  prove indeed t h a t  BT extends t o  t h e  p r e s e n t  s i t u a t i o n .  

5.1.2 We in t roduce  some no ta t ion  t h a t  enables  u s  t o  make t h e  s t r u c t u r e  
* 

of t h e  proof more e x p l i c i t .  Here +- is  a s  i n  VII.3.4. 

Def in i t ion :  I f  P i s  a proper ty  of express ions  then P* and P; a r e  

given by 

(1) P*(A):  - A  B + P ( B )  _ 
* 

(2 )  P ~ ( A ) :  - (A proper ly  +-reduces t o  B )  * P(B) 

Using t h i s  n o t a t i o n ,  we can express our induct ion s t e p  by 

f o r  which, of course ,  it i s  s u f f i c i e n t  t o  prove 

The p r o p e r t i e s  SA, PD, PT and P*T from 3.1 p l a y  again a r o l e  

i n  the  p roof ,  and f u r t h e r  p roper ty  SC, s u b s t i t u t i v i t y  of co r rec tness ,  

here def ined by SC(B) : w 

(x E  at^, \A, typ(A) + t y p ( x ) ,  typ*(A) + ~ Y P * ( x )  + ~ B U A I ) .  

5.1.3 Now t h e  proof below i s  organized a s  follows.  F i r s t  we p r e s e n t  

some pre l iminary  f a c t s ,  among which 6q-BT ( s e c .  5 .2 ) ,  s t rengthening and 

5-PT (sec .  5 .3) .  

Sect ion 5 .4  conta ins  t h e  a c t u a l  c losure  proof .  F i r s t  we assume IA , 
C R t ( A ) ,  CL:(A) , and prove SA(A) and P D ( A )  ( i n  sec .  5.4. I ) ,  PT1 ( A ) ,  SC(A) 

and C R 1 ( A )  ( i n  sec .  5.4.2-5.4.4) r e spec t ive ly  by a separa te  induct ion 

on b i g  t r e e s ,  and by simple induct ion on length .  Then we complete the  

proof by proving PT ( A )  , P*T(A) and CL (A)  s imultaneously,  by induct ion 1 
on the  b i g  t r e e  of A again.  



5.2 Extension of BT to the Bn-case 

5.2.1 A postponement result 

Let r and 2 be the straightforward extensions of 2 and 2 
T 11 B T ~  T BT' 

as defined in 4.4.2. Mere verification shows that 

- 
Apretyped,A> > B * A >  > B 

1,n 1,T 1,T 1,n 

whence - as in II.7.3.2- ~n-postponement: 

5.2.2 B~T-SN and ~n-BT 

In 4.6.3 we proved BT-SN, which - as in 11.7.3.5 - together with 
(B~)-n-pp and n-SN gives us B~T-SN, for normable expressions. Then 

BII-BT follows, as in 4.4.3. 

5.3 Some simple facts 

5.3.1 Strengthening 

I£ B is a ( 6  ,x E a,i E g) -expression, but x $ FV(B) and x $ FV ( B )  , 
then B is a (<,y E E)-expression as well, and the typ (if degree(B) $ 1) 
and typ* of B w.r .t. both contexts are syntactically equal ( 2 )  . 

So,by induction on the definition of correctness, we get 

strengthening: if x E a, E &(B) , x $ FV(B) (and X $ FV (B) then 
i E &(B) - read this twice, with and without the parts concerning B - . 

As a corollary we have: X E  at^, X $ FV(A) * IA 
whence n-outside-CL - 1 X:a {x)A, X $ FV (A) * F A .  1 - 

5.3.2 n-PT and n-P*T 

For pretyped A there holds 



Proof: Induction on the  length of A .  

So, induction on 2 gives 
rl 

5.3.3 From 3.2.1 we r e c a l l  the property of correctness of types 

CA * t t y p ( 4  

and the subs t i tu t ion  propert ies  from 3.2.2 

5.3.4 Property: Let degree(A) = 1,  p ( A )  : [ v l ] * * * [ v k ] ~ .  Then 

A 2 [x : a l ] - -* [x  - a  ]C. 
1  k' k 

Proof: Induction on the length of A .  E.g. l e t  A 5 {A )A then 
1 2' 

p ( A 2 )  : [ u ( A 1 )  I C V ~ I ~ - C V ~ ~ E ,  SO by ind. hyp. 

A 2 [X :B] [X  :a I - ** [x  :a IC and A 2 [xl:ai]-**[xk:a;]C', q.e.d. 
2  1 1  k k  

Corollary: ~ e g r e e ( A )  = 1,  p ( A )  E [ v  ]v + A  L [x:a]C. 
1 2  

Corollary: t l ~ ,  A : [x:a]C, A 2 F * F 2 [x:f3]D 

Proof: I f  A cor rec t ,  then A normable, so F normable, with 

11 (F) 5 v ( A )  - Cu (a )  l u  (C) . 
Corollary: I ~ A ,  A : [x:alC, A t F * F 2 [x:f3]D. 

5.4 The ac tua l  closure proof 

Proof: By induction on the big t r e e  of A .  

( P D )  . Let A : [x:A IA A 2 [x:B ]B If A1 r B 
1 2' 1  2 '  

> B then 
1 t A 2 -  2 

ce r t a in ly  A 
1  

t B1. Otherwise A 2 {x)[z:B1]B2. The l a t t e r  expression i s  
2 

cor rec t ,  s a t i s f i e s  CR* and CL*, so we can use SA and g e t A 1  t B1, q.e.d. 

(SA).  Le tA  5 {A }[x:A ]A Then C A ~ ,  typ(A1) L +, ~ [ x : A ~ ] A ~ ,  1  2 3 '  



typ* t ix:A21A3) C ~ : A ~ l t y p *  (A3)  2 Cx:(IC. By cor rec tness  of types  

~ c x : A ~ I ~ ~ ~ * ( A ~ ) ,  which a l s o  s a t i s f i e s  CR* and CL* s o  we can apply PD 

and g e t  A t 6 ,  whence typ(A1) t A 2 ,  q.e.d. 2 

Proof: Induction on length(A1. n-PT1 we know al ready (sec .  5 .3 .2 ) .  For 

B-outside-PT l e t  A 5 {A1)[x:A ]A By 5.4.1 typ(A1) f A 2  and by t h e  1 2 3 '  
s u b s t i t u t i o n  p roper ty  5.3.3. ( 1)  typ ( A )  5 {A1}Cx:A2]t~p (A3) > 

typ (A ) [ A  1) t typ (A [ A  1) ) , q.e .d. The o ther  cases  a r e  immediate. 
3 1 3 1 

5.4.3 Lemma: Let x E a ,  Y E Q ~ B ,  C R ~ ( B ) ,  CL:(B), t ~ ,  t y p ( ~ )  t a ,  
* 

typ*(A) 4 typx(cr). we wr i t e  f o r  Ux/AIJ. Then (SC(B)) E B * ~ B * .  

Proof:  Induction on length(B) .  The c r u c i a l  case  is: B E {B }B 
1 2' 

tYP(Bl) 2 4 ,  typ*(B2) 2 Cu:(l$. By ind.  hyp. F B ~ ,  tB2.  We do n o t  know 

CR o r  CL f o r  t h e  s u b s t i t u t i o n  r e s u l t s ,  s o  we use a t r i c k .  Dis t inguish:  

(1)  B1 does no t  end i n  X,  then typ(B1) : typ(B1) * 2 (*. 

(2)  Otherwise, l e t  B E * * * x - - * X  and form C from B by j u s t  re-  
1 1 1 

Anyhow, i n  both cases  t y p ( ~ ; )  2 ( I * .  with ( '  i 4. 

Further  d i s t i n g u i s h :  

(1) B does n o t  end i n  X,  then typ*(B2) 5 ~ Y P * ( B ~ ) *  2 CU:+*]$J*. 
2 

(2)  Otherwise form C2 from B by rep lac ing  i ts f i n a l  x, 
2 

B 5 . . .x...x, C 5 . . .x... 
2 2 typ* (A) + typ* (B2 . Then, by 
- 

C R ( ~ Y P * ( B ~ ) ) ,  C2 4 [u:(]$ and, by 5.3.4 C2 2 Cu:("I$" with,  

by PD, 4 4 $*I. NOW typ*(B;) t C; ;1 CU:("*I$J'~*. 

SO i n  both  cases  typ*(B;) 2 CU:("*I$"*, with ( + ( I r .  

Now use C R ( ( ) ,  t h i s  g ives  + '  G (", whence ( I *  C ("* and 

typ(B;) t ( ' I*.  So ~{B;}B;. q.e.d. 

5.4.4. Lemma: Let  IA, C R $ ( A ) ,  C L t ( A ) .  Then CR1(A) 

Proof: Again by induct ion on length .  The c r u c i a l  case  i s  t h e  c r i t i c a l  

Bn-case: A : Cx:A ] { X } C X : A ~ ~ ~ ,  x 4 w(A2). By 5.4.1 SA({x)Cx:A2M3) 
1 

s o  A1 G A 2 ,  Cx:A1M3 G Cx:AZIA3, q.e.d. 



5.4.5 Lemma: Le t  IA , C R g  ( A )  , C L ~  ( A )  . Then C L l  ( A )  , PT ( A )  and P*T ( A )  . 
Proof: Induction on t h e  b i g  t r e e  of A.  

( C L  ) . Let A  > B ,  we must prove F B .  The q-outside case  we know a l -  
l 

ready. Consider, e .g. : A  5 { A 1  1Cx:A ]A B  - A3[A1]1 . By 5.4.1 
2  3' 

t y p ( A l )  + A 2 .  BY P*T - ind.  hypothesis - we g e t  t y p *  ( A 1 )  + typ* ( x )  

a s  we l l ,  so  by 5.4.3 we a r e  done. This  i s  8-outside C L 1 .  

O r  consider :  A  Z { A  )A A1 > B 1 ,  A2 > B 2 ,  B Z { B  )B t y p ( A 1 )  5. $, 1  2' 1  2' 
t y p * ( n 2 )  2 C u : $ l $ .  By (e.g.1 t h e  ind.  hyp. we g e t  I B ~ ,  /-B2, 

t y p ( A l )  + t y p ( B 1 )  and typ* ( A ~ )  + typ* ( B ~ )  . Now use C R ,  t h i s  g ives  

t y p ( B 1 )  + $ and t y p * ( B 2 )  + [ u : $ l $ .  

s o ,  by 5.3 .4 ,  t y p * ( B 2 )  1 [ u : $ ' ] $ '  and by 5.4.1 $I + $ I r .  F i n a l l y  

c R ( $ I )  y i e l d s  t y p ( B 1 )  + $ I ,  so  ~ { B ~ ) B ~ ,  g.e.d. The remaining case 

of C L  i s  t r i v i a l .  
1  

( P T )  . PT1 we know al ready.  Now l e t  A  > B  2 C .  By C L 1  F B  and by 1  
ind.  hyp. P T ( B ) ,  so  by C R ( t y p ( B ) ) ,  t y p ( A )  + t y p ( C ) ,  q.e.d. 

( P * T )  . Let  degree(A) = 1 .  Then by PT, i f  A  1 B ,  

t y p ( A )  r F 5 t y p ( B ) .  BY C L 1 ( A )  ( t h i s  impl ies  C L ( A ) )  I B ,  so  by 

cor rec tness  of types ,  t t y p  ( A )  and t t y p  ( B )  . Now apply t h e  ind.  hyp. : 

typ* ( A )  + t y p *  ( F )  + typ* ( B )  and use C R :  ~ Y P *  ( A )  + typ* ( B )  , q.e .d. 

5.4.6 Theorem: I f  IA then C R ( A ) ,  C L ( A )  

Proof: By induct ion on t h e  b ig  t r e e  of A .  The ind.  hyp. reads  C R g ( A ) ,  

C L g ( A ) ,  and t h e  preceding lemmas produce C R  ( A )  and C L  ( A ) .  A s  we 1  1  
not iced before ,  t h i s  y i e l d s  CR(A)  and C L  ( A )  . 

5.4.7 Corol lary:  I f  /-A then S A ( A )  , PD(A) , PT ( A )  , P*T ( A )  and SC ( A )  . 

5.4.8 Note: The separa te  induct ions  on b i g  t r e e s  i n  5.4 .1 ,  5.4.5 and 

5.4.6 can of course be compressed i n t o  a s i n g l e  induction on big  t r e e s .  
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VI I .6 Various equivalence resul t s  

6.1 Introduction 

In VII.2 we introduced A(n) with and without (definitional) con- 

stants. The results in VII.3-5 are derived for the constant-less system. 

In this section we extend these results in an indirect way to the re- 

maining systems, by showing that, in a certain sense, they can be em- 

bedded in the constant-less version. 

Sec. 6.2 is devoted to primitive constants only. First we give a 

translation which eliminates the constant-expression. Then we explain 

the relations between (a) the system with constants, (b) its image under 

the translation, and (c) the constant-less system. Afterwards we easily 

extend our nice properties (CL, CR, BT) to the system with constants. 

Sec. 6.3 covers the additional extension with definitional con- 

stants. In 6.4 we prove another equivalence: between Nederpelt's single 

line presentation with abstractorstrings Q and our presentation, with 

contexts 5. In this case too, the correspondence is close enough to 

show that ~ederpelt'soriginal system satisfies the required properties. 

6.2 Eliminating primitive constants 

6.2.1 The translation ' 

For the system with constants (for short: C-system) we use the 

notations A(n) and kc. Now we define a translation of the C-system into 
C 

the system without constants. The translation (notation I)  is characte- 

rized by: 

( 1 ) it transf orms constants p into variables p ' , 

(2) it converts constant-expressions p ( A  *-*,A ) into appl. express- 1 ' k 
ions {A;)*-*{Ai)p', 

(3) it eliminates schemes 2 E Ti * p(y) E y one by one from the book by 

including an additional asswnption p' E [y: i' ly ' in the context, 
(4) it commutes with the other formation rules (for expressions, strings 

and contexts) . 



Thus a statement 8; t c ~  is translated into B', E'CA' where 8' is. 

understood to be a context consisting of the additional assumptions for 

the new variables p' . 

6 . 2 . 2  Why the indirect approach? 

Below we use the properties of the constant-less system in our 

proof of the desired correspondence. Afterwards we can extend these 

properties to the C-system. 

The point is that the constant-less system is definitely easier to 

handle. In particular: the fact that the typ of a constant-expression 

is constructed by substitution is a complicating factor, because cor- 

rectness of types is not immediate any more. 

E.g. by using this indirect approach we would have been able to 

introduce constants without using degree-norms. 

6 . 2 . 3  The nature of the correspondence 

For terminology about extensions we refer to V.3.3.2.  However, 

because we study an algorithmic system now, we replace A E B by 

typ(A) + B and A Q B by A + B. 
Clearly the C-system is an extension of the system without con- 

stants. Because t yp  and 2 remain the same, it is a C O ~ S ~ P V U ~ ~ V ~  extens- 

ion too. Of course it is not an unessentiaz one: primitive constant- 

expressions do not main reduce at all, so they can never be definition- 

ally equivalent to an expression without constants. 

Contrarily, the translation ' maps expression (and contexts), 
correct w.r.t. B in the C-system, proper~y into the expressions (and < 
contexts), correct w.r.t. 8': expressions @ ) p '  that do not have enough 

arguments in front, i.e. where 12 1 is smaller than the arity of p have 

no counterpart in the C-system. 

For the image of the C-system (w.r.t. a fixed book 8) under ' , we 
introduce the notation . I .e. - 

Then below it will appear that the expressions (and contexts) correct 

w.r.t. 8' in the constant-less system, form a conservative extension of 



t h e  system - . I n  the  presence of rl-ireduction, it w i l l  be d e f i n i t i o n a l  

(SO u n e s s e n t i a l )  t o o .  See sec .  6.2.9. 

6 .2 .4  Fac t s  about ' 

Notice t h a t  ' i s  a pure ly  " s y n t a c t i c a l "  ma t te r ,  which has  nothing 

t o  do wi th  cor rec tness :  pretyped-ness i s  s u f f i c i e n t .  

A s  a  map from s ta tements  8; S ~ A  t o  s ta tements  B', S ' ~ A '  t h e  t r a n s -  

l a t i o n  i n  n o t  one-one, bu t  a s  a map from 8-expressions and - con tex t s  

i n t o  B'-expressions and - con tex t s  it is  one-one indeed. For t h e  ( p a r t -  

i a l )  inverse  we use  t h e  n o t a t i o n  ,,: 
( A ' ) , ,  :- A 

Clearly.,  A [ B ]  ' = A ' U B ~ D  s o  A 2 B * A '  z B' ,  s o  A J. B - A '  + B'. 
i 

Fur the r  typ  (A ' ) 2 typ(A) ' - t h e r e  a r e  only  head-@ c o n t r a c t i o n s  involved,  
i 

where degree(A) = i + l  ( f o r  t h e  d e f i n i t i o n  of head- and of - reduct ion 

see  V.3.3.3 and V.4.3.3.5). And typ(A8)  2 @ '  f o r  some 4. 

I f  t h e r e  i s  no n-reduction then we have 

(1)  A '  > B - A  > Bo, Bi, r B 

6 .2 .5  ' and q-reduction 

With q-reduction,  ( 1 )  above does n o t  hold any more: 

( [ x : a 1 p ( A b l ~ * ~ , A  , x ) ) '  P [x:a'I{x}{A'}pl may reduce t o  {A' lp ' .  
1 

Lemma: A '  2 B' =+ A 2 B 
rl rl 

Proof: Ind. on the  l eng th  of A .  E.g. l e t  A [x:a]C, s o  A '  Z [x:a ']C' .  

C '  > 
n 

and A 

E [ x : B ' ] D '  with a '  t B ' ,  C' 1 D '  use t h e  ind.  hyp. Otherwise 
rl rl 

{x)B' .  The l a t t e r  express ion i s  ({x)B) '  s o  by ind.  hyp. C t { X ~ B  
11 

2 B, q .e .d .  0 
rl 

Now l e t  A '  r B' then by Bn-pp: A '  tB C 2 B ' .  This  C CAI s o  C,, >n B 
rl 

by the  lemma, and A > B. This  i s  proper ty  ( 2 )  above. Proper ty  (3 )  can 

be proved i n  t h e  same fash ion .  



6.2.6 Something about typ* 

Proof: The translation ' preserves the degree, of course. We use induct- 
ion on degree(B8). The degree 1 case is immediate. Otherwise 

typ* (B' ) a typ* (typ (B' ) ) and typ* (B) ' Z typ* (typ ( B )  ) ' . By correct- 
ness of types ttyp(B1), reducing to typ(B) ' and by P*T 
typ* (B' ) + typ* (typ (B) ' ) . By CL ttyp (B) ' so by ind. hyp. ttyp* (B) ' , 
q.e .d., and typ* (B) ' + typ* (~YP(B) ' )  . By correctness of types 
ttyp*(typ(B)') so by CR ~YP*(B)' + typ*(B1), q.e.d. 0 

Now that we know CL, CR, PD and SA for A(n) we can extend property 
1 1 

5.3.4 to: A, t [x:a]C, A + [x:alC * A 2 [x:f3]D, a + 6. So, as alter- B 
native application condition, equivalent to the one used originally: 

we can as well use, e.g. 

6.2.7 The proof of the correspondence 

Proof: a. By induction on correctness. The formation of the context 8' 

is allowed, due to the liberal degree conventions of A(n). Consider, 

e.g. the appl.rule: let 12, tCB, typ(A) 2 a. typ*(~) a [x:a]C. By 

ind. hyp. IA ' , k~', further typ ( A  ' ) 2 typ (A) ' 2 a ' and by the 
lemma in 6.2.6 ktyp*(B) ', typ*(B') + typ (B) ' r 1x:a' IC' . By CR, 
typ*(B') + [x:a']C'. By CL, ~cx:~'Ic' so, by the alternative appl. 

rule ~{A')B'. Or consider the instantiation rule: ~ C ~ l ~ w * o l ~ c ~ k l  

y E i*p(y) E Y is a scheme in 8, l y l  = k and typ(Bi) + Bi[3 for 
i=l , . . . , k . The translated scheme reads p ' E [(y: ')]y ' . By ind. hyp . 
I-B;,.*.,~BL. NOW typ(Bi) 2 typ(B1)' + B i r  typ*(~') CY :B'l**o~l 1 1  
so t{Bi}p'. Further typ(B;) 2 typ(B2)' + B ~ U B ~ D '  5 B;UBilI and 

typ*c{a;~pv a {~;)typ*(p') [y2:~;UBill-**~, SO ti~jl{~;)p~. 



* Also by induction on correctness. E.g. consider an appl. express- 

ion. Either it is ( { A I B )  ' or it is p ( B )  '. First case: if ~ { A ' } B '  

6 . 2 . 8  The required properties 

Theorem: The strictly normable constant-expressions (see IV.3.4) 

satisfy BT 

Proof: Strictly normable C-expressions transform into strictly normable 
* 

expressiolswithout constants under the translation ' .  And all -+ 

* 
sequences of C-expressions A  transform into subsequences of +- 

sequences of A ' :  (1) t y p ( A 8 )  a t y p ( A ) ' ,  ( 2 )  A  > I  B * A '  > B ' ,  1 
( 3 )  A  c B  A' c B ' .  SO by BT for the constant-less version we 

are done. 0 

Theorem: ( q )  satisfies CR 

Proof: Let kg, A  2 B ,  A  2 C .  By the *-part of the correspondence I A '  

and by CR for A ( q )  B' + C ' ,  so B  f C, q.e.d. 0 

Theorem: A ( q )  satisfies CL 

Proof: Let k c ~ ,  A  > B. Then t ~ ' ,  A ' ,  B' so by CL 18' .  SO t c ~ .  
Theorem: A ( q I C  satisfies S A ,  PD, PT, P*T, SC etc. 

Proof: Either from CL and C R ,  or using the correspondence 

6.2.9 An unessential extension result 

Now we explain the connection between the 1--system and the 

ordinary 1-system of A  ( q )  without constants. Recall 



The f i r s t  ha l f  of t h e  correspondence r e s u l t  shows 1- /-, i .e . a 
- 

simple extension r e s u l t .  Now we def ine  a t r a n s l a t i o n  from t h e  l a r g e r  
- - 

i n t o  t h e  smal ler  system, a s  follows: i f  x E a * p ( z )  E y i s  a scheme 

i n  B, = k ,  i < k then 

r{ai1---{n,}pp')-  := ~ x ~ + ~ : a  i+ 1 UA-I I--*CX~:OI;UA-IIIX~}-~~{X~+~}{A;}~~ 
{ A ; I ~ '  , i . e .  we i1-expand u n t i l  p '  g e t s  enough arguments i n  f r o n t .  For 

- 
t h e  r e s t  a c t s  a s  i d e n t i t y .  

C lea r ly  A-  1 A ,  A-  : (A-&' . Viz. ( { A ~ } * * * { A ~ } ~ ' ) - ~  
i1 

x i l  i+ 1 ~ ~ ~ I - - - C X ~ : ~ ~ I A ~ I ~ ~ ~ X ~ + ~ , ~ - ~ , X ~ ) .  

The t r a n s l a t i o n  i s  a b i t  i n t r i c a t e ,  because ({A)B)- i s  n o t  necessa r i ly  

{A-18-. I n  general  {A-IB- > ({AIB)- and ~-1A-j  26 (Bull )-. Further  
-6 

t y p ( ~ - )  zq typ(A)-,  and a l s o  t y p ( ~ - )  G 6  t y p ( ~ ) - .  Without proof we - 
s t a t e  t h a t  A 2 B * A- 2 B , and t h a t  typ*(A-) G typ*(A)-. From these  

f a c t s ,  it can be proved t h a t :  /-A I-A-, s o  by t h e  second p a r t  of t h e  

correspondence IA * F-A-. 
I n  case  of Bq-reduction, t h i s  i s  a t y p i c a l  unessen t ia l  extension 

r e s u l t .  

6 .3 The case of d e f i n i t i o n a l  constants  

6 .3 .1  We have t h r e e  main p o s s i b i l i t i e s  t o  incorporate  d e f i n i t i o n a l  

cons tan t s  i n  our theory.  The f i r s t  one s t u d i e s  t h e  new system (we c a l l  

it A ( q )  d l  with correctness  p red ica te  Id, and a l s o  speak about t h e  

d-system e t c . )  independently, a s  a separa te  sub jec t ,  the  second one 

considers  it a s  an extension of h ( r ~ ) ~ ,  and t h e  t h i r d  one embeds it i n t o  

A ( q ) ,  by extending t h e  t r a n s l a t i o n  ' from t h e  previous sec t ions  i n  

order  t o  cover d e f i n i t i o n a l  constants .  

Here we a c t u a l l y  use t h e  second method, and j u s t  mention some 

p o i n t s  on t h e  t h i r d  one. 

But we s t a r t  by proving t h e  b i g  t r e e  theorem f o r  A ( ~ I ) ~ ,  f o r  

reasons of completeness and a s  an indispensable p r e r e q u i s i t e  f o r  t h e  

separa te  s tudy of t h e  system (method one above). 



6.3.2 The big tree theorem for A ( n )  d 

In 6.2.8 we proved BT for A(qIC by means of the embedding ' into 
A(n). It is indeed possible to extend ' to the case of definitional 
constants, but (see 6.3.3) the translation does not reflect the type- 

structure sufficiently, which makes this method fail here. 

So instead we revise the BT-proof of 5.2 (for A(r))) and adapt in to 

the A(q)d-case, which is relatively easy. First we mention the BT-con- 

dition (see 4.3.2) : 

(5) BT(p(A)) - BT(A1) , * * *  , BT(A,). BT(~YP(P)U&I 

(6) BT(~(A)) 9 BT(A~) , - =  , BT(Ak). BT(typ(d)Un'l), BT(def(d)UAl). 

The 86~-SN conditions are quite analogous, and, as in 4.4.3, we have: 

Theorem: B~T-SN (A) BT (A) 

This suggests that, in this case as well, the substitution property 

of B~T-SN is crucial. We choose to adapt the first BT-proof (sec. 4.5) 

so need the replacement theorem (see 4.5.6) instead: Let * denote 
% x / P ( A ) ~ ~ ~ ,  let B be normable, p(x) - p(A), A, B 86~-SN. Then: 
Proof: As in 4.5.6. We consider a single reduction step C > D. For 

1 B ~ T  
all f3-steps and all T-steps concerning variables (not constants), 

BGT-SN(D) can be proved as in 4.5.6. The remaining steps, i.e. 

6-steps and T-steps of constants, can only fall into the categories 

(1) and (2a) so we get f36~-sN(D) by ind. hyp. I1 or ind. hyp. 111. 

So we have a list of corollaries: 

(1) B normable, p(x) v(A), A, B B~T-SN~BUA] 86.r-SN 

(2) B normable, p (xi) 5 p (Ai) , 
A. (i=l, -**,k) and B BGT-SN * BUZD 86~-SN 
1 

Proof: The simultaneous substitution can be simulated by iterated single 

substitution. 

(3) B normable B f36~-SN 

proof: Induction on pretyped expressions. For the new cases use the m e -  

vious corollary. 

(4) B normable e B f3q6~-SN 



proof: ~ q - p p  extends to the present case (see 5.2.1), 8q-PP we knew 

already (see 11.7.4) . This gives (BGT) -q-PP and, by q-SNr 

6176-r-SN. 

( 5 )  B normable * B ~ ~ - B T  (B) 

6.3.3 The translation into h(q) 

Here we show how the translation ' can be extended to the d-case. 
Viz. an expression d ( A )  transforms into { A  ' {A; I[;: u ' I D 1  , where k 

E & * d(z) :- D * d(z) E y is the scheme of d. 

This translation behaves nicely w.r.t. to reduction: A > B *A' 2 B'. 

But of course it is possible that an expression A' B-reduces to an 

expression which is not some B'. This is in contrast with the situation 

with primitive constants where this could only occur by q-reduction. 

The bestwe canget is: A' > B * B 2  C, A > B 1186 
C. So, e.g. by ind. 

118 
on Bg(A'), we get A' B * B 2 C', A t C. For the rest the translation 

B 
seems to be not too useful, because properties like A' J- B' * A J- B (at 

least where q-reduction is allowed) and ~ Y P  (A ' ) J- typ (A) ' are only valid 

in the correct fragment. Note that tyP(A') 2 typ(A)' is simply wrong 

here. 

6.3.4 Some properties of h(qIC 

Translation of A(q)d into A(q)= just requires the elimination of 

abbreviations, which can be done by 8-normalization. In the next 

sections we show that this actually constitutes a translation, i.e. 

that it preserves correctness. Here we first give some properties of 

h ( ~ ) ~  which we need in the - rather complicated - proof below. 
The single substitution result (of A (q) , and of A (q) too) 

can, by induction on 121 , be extended to a simultaneous substitution 
result 

2 , t A + 2 for i = 1 , , ] A  1 , (G E ~IB) * tan'] . 

The properties of sec. 3.2.2 concerning the typ of substitution 

results can be generalized to (1) the simultaneous substitution case, 



(2 )  success ive  a p p l i c a t i o n s  of typ,  r e s u l t i n g  i n :  

typJ (A,) t typJ(xi ) [ i ] ,  f o r  i= I , - * . .  IAl a typJ(~)[I] + t y p ~ ( ~ [ A ] ) ,  f o r  
J a l l  r e l e v a n t  j, where typ s t ands  f o r  j success ive  appl ica t i 'ons  of typ.  

Th i s  holds  f o r  h(n)  bu t  a l s o  f o r  h ( n I C  and h ( n ) d .  Notice,  t h a t  i n  case  B 

does n o t  end i n  one of t h e  I .  we even have 
1 

t Y p J ( B [ ~ ] )  = typJ(B)[A] 

6 . 3 . 5  The t r a n s l a t i o n  i n t o  h (n) 

- - 
Our n o t a t i o n  f o r  the  t r a n s l a t i o n  i s  . For expres'sions amounts 

- 
j u s t  t o  t ak ing  &-normal form. I t  is c l e a r  how a c t s  on s t r i n g s  and 

con tex t s .  I t  is intended t h a t  t h e  book 8- is  formed from B by &-normal- 

i z i n g  and by skipping the  abbrev ia t iona l  schemes. The t r a n s l a t i o n  i s  

of course n o t  1-1. 
- -- 

We r e c a l l  t h a t  BIB] - 5 B [A 3 , t h a t  d (2)  - - def (d) -[8-3, and t h a t  

&-reduction commutes with f3n-reduction. The l a t t e r  impl ies  

6.3.6 The t r a n s l a t i o n  p rese rves  cor rec tness  
- 

Theorem: 8; 5 t d A  B - ;  c-tCtYPi ( A ) - ,  typi ( A ) -  i typi (A-) f o r  i = O ,  , 
degree ( A )  -1 ( t h i s  concludes t C ~ -  i t s e l f )  . 
Proof: By induc t ion  on Id . Cruc ia l  cases  a r e :  (1 )  t h e  a p p l i c a t i o n  case:  

See 6.2.6 f o r  t h e  a l t e r n a t i v e  appl .  condi t ion.  The proper ty  

typi ({A }A ) -  + typi ( ({A }A ) ) i s  t r i v i a l .  ( 2 )  t h e  d e f i n i t i o n a l  
1 2  1 2  

c o n s t a n t  case:  A E d @ ) ,  t d ~  typ(B.1 i f3.m f o r  J = l , - - - , l y l ,  
j  ' J J 

where y E B * d(y) := D * d(y) E y is  t h e  scheme of d. By ind.  



- -- 
So, by the simultaneous subst.  property,  I D I[ B I ( -  A-) , 

C 

t y p  (A-) I typ ( A )  -. Now there  i s  l e f t  t o  prove: 

(1)  t , t y p i ( A ) - ( E  t y p i - ' ( y [ ~ ) - ) ,  and (2) t y p i ( A ) -  I typi(il-), i . e .  

typi-' (y[ B] ) - + typi (D-[ B-] ) , f o r  i=2, ,degree ( A )  -1. The ind. 

i-1 - 
hyp. gives  us t c typi-'(y)-, k c t y ~ i ( ~ ) - l  t yp  (y) i- typi-'(y-) , 

typi ( D l -  I typi (D-) f o r  these i. and kc t ypk (B j ) - ( t  tYPk(B;) ) , fo r  

k=O,--- ,degree(B.)-1,  f o r  j = l , * * * ,  I ; ] .  Now ( 2 )  i s  simple: 
3 

typi-I c y ~  ED ) + typi-l ( y )  n EI so typi-l (y[ BI ) - + typi-l ( y )  -a E-1 i 

i -- i - -- 
typi-I (y-)[B-n I typ (D )@-I I typ (D [B ]I). Here we use PT and the  

subs t i tu t ion  property of types. By CR we ge t  ( 2 ) .  Property (1)  we 

formulate i n  the  form of a  lemma. 

Lema: Let 2 E Btdy, tdBj, f o r  j = l , * * - , l y ' ]  with y and 5 as  above. 

i 
Proof: I f  y  does not end i n  some of the y then typ (y[En)- 

j  

typi (y) -l[ g-]l which i s  cor rec t  by the simultaneous subst.  property. 

This a l s o  covers the case i = O  (which we knew already) .  For the  

r e s t  we use induction on the length of y .  The case y E y i s  t rue  
j 

by assumption. Further consider the application case: y  S {y1)yZI 



The a b s t r .  case  i s  s t ra ightforward.  This f i n i s h e s  t h e  proof of 

t h e  lemma. This  f i n i s h e s  t h e  d e f i n i t i o n a l  constant  case  of t h e  

theorem. Now t h e  remaining cases  of t h e  theorem a r e  s t r a i g h t -  

forward. Th is  f i n i s h e s  the  proof of t h e  theorem. 0 

Corol lary:  B; 5td A * B'; c-~ ,A- ,  B-; c-tC typ (A)  -. B-; (-kc typ* ( A ) -  

and t y p ( ~ - )  + ~ Y P ( A ) - ,  typ* (A-)  + typ* ( A ) - .  

6.3.7 Is A ( r l ) d  a  d e f i n i t i o n a l  extension of A ( n )  ? 
C 

The above c o r o l l a r y  amounts t o  t h e  unessen t ia l  extension p r o p e r t i e s  
- 

U E 2 a n d U E 3 ( s e e ~ . 3 . 3 . 2 ) .  O f c o u r s e w e a l s o h a v e  A * A E A  a n d i t  tc 
i s  t empt ing . to  conclude t h e  o ther  ha l f  of UE1: 

from t h e  c o r o l l a r y .  This  i s  however no t  immediate a s  ye t :  we can conclude 

but  we hardly  know anything about 

Ins tead ,  we f i r s t  prove t h e  s u b s t i t u t i o n  theorem f o r  I I ( ~ ) ~ ;  t h i s  

g ives  cor rec tness  of types ,  a s  we l l  a s  6-CL. The l a t t e r  impl ies  UE1, 

which completes our d e f i n i t i o n a l  extension r e s u l t .  

6.3.8 Some n ice  p r o p e r t i e s  of A ( n )  d 

The c o r o l l a r y  i n  6.3.6 g ives  us  a l ready some n ice  r e s u l t s .  

Theorem: A (dd s a t i s f i e s  (1)  C R ,  (2)  SA and (3)  PD 

Proof: (1 )  Let t d A ,  B 2 A 2 C. Then 1 A-.  B- 6 A' 2 C-. By CR B' i C-, 
C 

s o  B + C .  

( 2 ) Let  Id {A) [ x  :B]C. Then kc {A-}[x : B-]c- so  typ (A-) + B- . 
Fur ther  t Y p  ( A ) -  + typ (A-1 and by CR. typ(A) + B. 



Remark: We also prove some form of PT and P*T. 

6.3.9 The substitution theorem for A(n)d 

Lemma: Let tdB, i.1,-**,k. Let i E * c(i) E y be the scheme of c, 

with 1 i 1 = k. Let kc c ( E - )  . Then Id c (B) . 

Proof : typ (Bi) a typ (Bi) ' i typ (BI) i B ~ U ~ - I  r 8,uBn . BY CR. 
typmi) t B~UBII. SO tdcG). o 

Theorem: Let 2 E atd B. Let * stand for [2/z] . Let A and d i 

typ(Ai) i a2 for i=l,-**,121. Then tdB*. 

Proof: We use induction on Id B. So, by ind. hyp. td af for i=l,- /;I. 
NOW typ (A1) t al. SO typ (A;) i typ(A1)- + a; and by CR 

- - -- 
typ(~;) t a;. similarly typ(d;) i a; I aZIA I. Etc.. and for all 

- -- 
i typ (Ai) t ai[A 1 . Now consider, e .g., the application case: 

E &d{~l}~2. By 6.3.6, 2 E u-tC{B;}B; and by the subst. theorem 

so by the first lemma, 1 { B* )B* Similarly use the second lemma for d 1 2' 
the constant-expression case. The other cases are immediate. 0 



6.3.10 The remaining nice properties for A(q) d 

Corollaries of the preceding theorem are (1) correctness of types, 

(2) 6-outside-CL (3) B-outside-CL (use SA) . 
1 ' 1 

Lemma: A (n)d satisfies CL 
1 

Proof: The q-outside case is mere strengthening. We use the lemmas in 

6 -3.9 for the inside cases. Let ~ d { ~ 1 } ~ 2 ,  B > C1 , B2 > C2. By ind. 
1 

hyp. tdcl1 tdC2. By 6.3.6 tC{B;}B;, and 8- 1 > c;, B; > c;, so 
t,{C;}C; so td{cl }C2. Similarly fox const. expressions. 0 

Theorem: h (0) satisfies CL 

Proof: As usual, by ind. on 2. 

Further we get the remaining UE-result: 

6.4 Nederpelt's original formulation 

6.4.1 Nederpelt's original definition of A [ 5 1  1 used single-line 

presentation. 1.e. instead of defining correctness of expression rela- 

tive to a context, he defined correctness of expressions having an ab- 

stractor string [;:GI (notation Q) in front. 

For definiteness we give his rules. We write 1 for correctness 
N 

in his system. But for certain provisions making sure that no confusion 

of variables occurs, the rules read: 

6.4.2 Apart from the use of abstractor strings instead of contexts, 

there are two other points that make the two approaches not completely 

parallel. The first point concerns abstraction; our abstraction rule 

has no counterpart in Nederpelt's system. Nederpelt rather follows a 



combinatory ( i n  t h e  sense of combinatory l o g i c )  way of bu i ld ing  ex- 

p ress ions .  I n  t h e  language of combinatory l o g i c ,  r u l e  ( 2 )  above i s  the  

r u l e  f o r  I t h e  i d e n t i t y  i n  a ,  and r u l e  ( 3 )  i s  t h e  r u l e  f o r  Kay, t h e  
a 

cons tan t  func t ion  on a wi th  outcome y. A l t e r n a t i v e l y ,  r u l e  ( 3 )  might 

be c a l l e d  a r u l e  of weakening ( s e e  V.2.9.3) . 

6.4.3 The second p o i n t  t h a t  r e q u i r e s  a t t e n t i o n  i s  t h a t  an a b s t r a c t o r  

s t r i n g  can g e t  involved i n  a r educ t ion  (notably an 0 - s t ep) ,  whereas 

con tex t s  a r e  of course immume t o  reduct ion.  F i r s t  some no ta t ion .  We 

w r i t e  / & I  f o r  t h e  number of a b s t r a c t o r s  i n  &. We w r i t e  & 2 & '  i f  

Q E  [z:;], Q '  Z [z:u1] and a 2 ;' i n  the  obvious sense.  

Now we have t h e  fo l lowing lemma: &A 2 & ' A t ,  I & ]  = / & ' I  * A  2 A ' .  

Proof: I f  the re  a r e  no 0-steps involving the  border l i n e  between Q and 

A ,  then c l e a r l y  Q 2 Q ' ,  A 2 A ' .  Otherwise & & [x:a], a 2 a ' ,  
1 

use ind.  on 8 (&A) and conclude t h a t  B 2 [x: B ] A ' .  But then A 2 A ' ,  

q.e.d. 

6 .4 .4  The equivalence proof 

Now we a r e  ready f o r  t h e  equivalence proof.  

Theorem: Le t  
- - 

Q E C G : a l ,  5 E x E a .  

Then 

Proof: The + - p a r t  is immediate. We use induct ion on 1. E .g. consider 

our v a r i a b l e  r u l e :  from G E at we conclude E otxi. I f  x ,  i s  the  
- = -  

most " recen t"  v a r i a b l e  then we must use r u l e  ( 2 ) .  Viz. x E a t  i s  

i t s e l f  a r e s u l t  from x E a l r . - * l ~ i - l  E ai-l/-ai. By ind.  hyp. we 
1 

g e t  tN[xl : a1 1 [xi-1 : ai-l ]ai. Otherwise we must i n s e r t  t h e  

a b s t r a c t o r s  i n b e t w e e n k .  : a , ]  and t h e  end of & by success ive  
1 1  

a p p l i c a t i o n s  of r u l e  ( 3 ) .  Now consider the  * -pa r t .  The c r u c i a l  

case  is  t h e  a p p l i c a t i o n  c lause .  So l e t  IN@,  t N ~ ~ r  

typ(Q4) 2 Qa, typ* (QB) z QCx:alC. By ind.  hyp S ~ A ,  SIB. Now 

typ(Q.4) Q typ(A) 2 &a s o  by the  lemma typ(A) 2 a .  S imi la r ly  

t y p * ( ~ )  2 [x:a]C. So we conclude ~ ~ { A ) B ,  q.e.d. 



6.4.5 The nice properties for Nederpelt's system 

One of the consequences of the theorem is: 

so the N-system can be considered a part of our system. This gives us 

CR and CL immediately. From this one can get the other properties SA, 

PD, PT etc. as usual. 

6.4.6 Alternative way of embedding Ad into A 
N 

Resuming the results of the preceding sections: we have constructed 

an embedding of A ( Q ) ~  (via A ( Q ) ~  and A) into AN. 

Here we introduce an alternative way (due to Nederpelt C491) of 

embedding A(n)d directly into A Our notation for the translation is, 
N' 

again, ' . Let a statement 8 ;  <t A be given. Primitive schemes d 
2 E a * p(z) E y are, as is to be expected, turned into abstractors 

[p' E Cz:a1Iy']. The context 5 is of course transformed into an ab- 
stractorstring 5 '  E &. Essential is the translation of definitional 

constant schemes. A scheme 2 E a * d(z) := D * d(z) E y is translated 
into an expression "segment" {[;:a' ID' )[do : [;:a' Iy' I .  All constant 

expressions c(2) are now translated into {A1)***{Ai]c'. So B ;  5 t d ~  is 
k 

translated into a single expression B'<'A1, where 8' is a string of 

abstractors and applicators, and 5' consists solely of abstractors. 

For expressions the translation is quite similar to the translation 

' in 6.2.1. In particular we have (as in 6.2.4) typ(A1) 2 typ(A) ' . B 
However, w.r.t. to &-reduction the correspondence is not too close: it 

is not possible to eliminate occurrences of d'  one at a time. So in 

order to establish A $ B .+A' $ B' we need a partial 6-normal form 

again. 

Anyhow, it is indeed possible to prove 8 ; f h ~  Q IN8 ' E 'A ' . 



VIII SOME RESULTS ON AUT-Pi 

VIII.l Introduction and summary 

1.1 There a r e  two languages of t h e  Automath family t h a t  have been 

developed f o r  p r a c t i c a l  ( i n  c o n t r a s t  wi th ,  say ,  language t h e o r e t i c a l )  

purposes and have a c t u a l l y  been appl ied  i n  ex tens ive  formal iza t ion pro- 

j e c t s .  On the  one hand t h e r e  i s  AUT-QE, used by L.S. J u t t i n g  i n  h i s  

Landau t r a n s l a t i o n  [37] .  The l a t t e r  r e fe rence  a l s o  conta ins  an informal 

in t roduc t ion  t o  t h e  language [27] .  The theory of AUT-QE i s  t o  be found 

i n  Chs. I V  t o  V I  of t h i s  t h e s i s .  On t h e  o t h e r  hand t h e r e  i s  AUT-Pi, 

invented by J. Zucker, and employed by Zucker and A.  Kornaat f o r  the  

fo rmal iza t ion  of c l a s s i c a l  a n a l y s i s  and some r e l a t e d  top ics .  In [ 7 7 ]  

one f i n d s  a s h o r t  account of both the  language and t h e  formal iza t ion 

p r o j e c t .  This  chapter  i s  devoted t o  t h e  theory  of AUT-Pi, which i s  not  

q u i t e  a s  complete a s  t h e  theory of AUT-QE. Some work remains t o  be 

done, notably  on the  extensional  ve r s ion  of t h e  language ( see  sec .  6 ) .  

1 . 2  What AUT-QE and AUT-Pi have i n  common 

In  IV. 1 we descr ibed AUT-QE a s  a f i r s t - o r d e r  pure, regular ,  gene- 

r a l i z e d  typed A-calculus system. Using t h e  same terminology, AUT-Pi i s  

a f i r s t - o r d e r  extended, r egu la r ,  genera l ized typed A-calculus system. 

So both languages have much i n  common and, i n  some sense,  AUT-QE can 

be considered a sublanguage of AUT-Pi. 

We resume: both languages a r e  r e g u l a r ,  i . e .  they have j u s t  ex- 

p ress ions  of degree 1 (supertypes) , 2 ( types  and typevalued funct ions)  

and 3 ( t e r m s ) .  They a r e  f i r s t - o r d e r ,  i . e . t h e r e  i s  only q u a n t i f i c a t i o n  

and 1 -abs t rac t ion  over term v a r i a b l e s ,  n o t  over type-variables.  Fur ther ,  

they have genera l ized type s t r u c t u r e ,  i . e .  t h e  types  a r e  constructed 

along wi th  t h e  terms. Besides, AUT-Pi and AUT-QE have the  book-and- 

c m t e x t  s t r u c t u r e  i n  common. Books t o  in t roduce p r imi t ive  and defined 

= a n s t a n t s ,  depending on v a r i a b l e s ,  f o r  which s u b s t i t u t i o n  ( i n s t a n t i -  

a t i o n )  i s  permit ted .  Contexts f o r  t h e  in t roduc t ion  of va r i ab les .  

Here we want t o  emphasize t h a t ,  j u s t  l i k e  AUT-QE, AUT-Pi  i s  a non- 

a r i t h m e t i c a l  system, i . e .  i t  has no recurs ion  constant  with the  cor- 

responding reduct ion.  



1.3  The a d d i t i o n a l  opera t ions  of AUT-Pi 

But, where AUT-QE belongs t o  pure  typed A-calculus ( a b s t r a c t i o n ,  

a p p l i c a t i o n  and i n s t a n t i a t i o n  a s  t h e  only  term-forming o p e r a t i o n s ) ,  

A U T - P i  i s  a t y p i c a l  extended system, wi th  t h e  a d d i t i o n a l  k inds  of terms: 

pa i r s  <P,A ,B>, p r o j e c t i o n s  A and A 
(1)  ( 2 )  

i n j e c t i o n s  il ( A ,  B )  and 

i ( B r a )  and @-functions ( o r :  Q-terms) A e B. Here t h e  P of t h e  p a i r ,  
2 

and t h e  Q and a of t h e  i n j e c t i o n s  a r e  mere type-label's t o  guarantee  

uniqueness of types .  

Corresponding wi th  these  new terms t h e r e  a r e  new type-constructs:  

f i r s t  t h e  swn-type D? conta ining t h e  p a i r s  &,A,B> a s  elements,  where 

P i s  a type-valued func t ion  wi th  domain a ,  A belongs t o  a and B is  of 

. type {Alp. I n  case  P ( a s  a type-valued func t ion)  i s  cons tan t ,  i . e .  {A}P 

does n o t  depend on A ,  t h e  p a i r  and t h e  sum type can be considered t o  

degenerate t o  <JIB> and a @ 8 r e s p e c t i v e l y ,  where @ i s  the  ordinary  

c a r t e s i a n  product and B i s  t h e  type of B. Secondly, t h e r e  i s  the  dis- 

j o i n t  union o r  e-type u e B ,  conta ining t h e  i n j e c t i o n s  i ( A ,  B )  and 1 
i ( B r a ) ,  where A and B a r e  of types  a and B r e spec t ive ly .  

2 
The p a i r s  g e t  t h e i r  meaning by t h e  presence of t h e  p r o j e c t i o n s  and 

t h e  assoc ia ted  reduc t ions :  i f  A i s  a p a i r ,  i . e .  element of a sum-type, 

say ZP, then A i s  an element of t h e  domain of P and A i s  element 
( 1  ( 2 )  

of {A )P. NOW cP,A,B, T-reduces t o  A and <P,A,B> n-reduces t o  E. 
( 1 )  (1 (2 )  

I n  the  ex tens iona l  ve r s ion  of AUT-Pi, C P , A ( ~ )  ,A(2)> U-reduces t o  A ,  

provided A belongs t o  (otherwise the  type would vary  under r e d u c t i o c ) .  

S imi la r ly ,  t h e  i n j e c t i o n s  g e t  t h e i r  meaning by t h e  e-terms and t h e  

assoc ia ted  reduct ion.  Le t  u s  f i r s t  expla in  what a e-term is. Roughly 

speaking,  when f i s  a func t ion  on cr and g i s  a func t ion  on 6, then - 
under c e r t a i n  cond i t ions  - f e g i s  a func t ion  def ined on a @ €3, a c t i n g  

on ( i n j e c t i o n s  of terms of type)  a a s  f and on ( i n j e c t i o n s  of terms of 

type)  B l i k e  g .  So t h e  reduct ions  a r e  a s  fo l lows:  { i l  ( A , B )  1 (f @ g)  

+-reduces t o  {A)f and { i  ( B r a )  1 (f @ g )  +-reduces t o  {B)g. The cor res -  
2 

ponding ex tens iona l  reduct ion i s  €-reduction:  [x :cr l{ i l (z) ) f  @ 

E X :  Bl{i2 (x) )f €-reduces t o  f ,  provided f does n o t  conta in  x a s  a f r e e  

v a r i a b l e  ( i . e .  does no t  depend on x ) .  

Please  note  t h e  use of parentheses :  Q i s  supposed t o  bind more 

loose ly  than t h e  o t h e r  term forming opera t ions .  

A more p r e c i s e  d e f i n i t i o n  of AUT-Pi fo l lows i n  sec .  2 .  



1.4 The connection with natural deduction systems 

By the well-known formulae-as-types, derivations-as-terms inter- 

pretation, systems of typed A-calculus can be brought into close corres- 

pondence with certain natural deduction systems for intuitionistic 

logic (including the usual proof theoretic reduction relations). Thus, 

pure systems correspond to logical systems with -+ and V only, and ex- 

tended systems correspond to systems with more connectives. In particu- 

lar, the 1, the pairs and the projections of AUT-Pi may provide the 

interpretation of "strong" existential quantification with its intro- 

duction and elimination rules (though this has not been exploited in 

Zucker's book, see [77]). And @, the degenerate form of 1, corresponds 

precisely to conjunction. 

As for the interpretation of V (disjunction) by @-types, the in- 

troduction rules of V do correspond to injection, but the elimination 

rule of v differs slightly from its counterpart in AUT-Pi. The usual 

elimination rule of v (see, e.g., Prawitz 1591 ) operates on three argu- 

ments: from (1) a derivation of a v B, (2) a derivation of y under the 

assumption a, (3) a derivation from y under the assumption 8, one can 

£om4 a derivation with conclusion y .  The assumptions a and B of the 

derivations (2) and (3) are discharged. 

The AUT-Pi operation representing this rule must be constructed 

in several steps: first (2) and (3) are transformed into derivations 

of a + y and f3 -t y respectively. These two derivations are combined into 

a derivation of (a V f3) -+ y (by using 8 ) .  Then the conclusion y follows 

from modus ponens (by (1 ) . 
Here we stick to the AUT-Pi variant of the rule. For a discussion 

of the alternatives see Pottinger [56, 571. 

Because AUT-Pi is still non-arithmetical, it cannot represent 

natural-deduction systems for arithmetic (in the sense intended above). 

1.5 Product formation versus type inclusion 

Now we discuss a specific difference between AUT-QE and AUT-Pi, 

that prevents AUT-QE from being an actual sublanguage of AUT-Pi. In 

AUT-QE there is no difference in notation between type-valued functions 

and function types. 1.e. the expression Cx:a18, with f3 an expression 

of degree 2, stands for the function that to arguments A in a assigns 



types  p [ A ] ,  b u t  a l s o  f o r  t h e  type of t h e  func t ions  which, when appl ied  

t o  A i n  a ,  produce a  value  i n  BIAD . And, t o  make th ings  even more com- 

p l i c a t e d ,  i t  i s  p o s s i b l e  t h a t  B a l lows such mul t ip le  i n t e r p r e t a t i o n s  

a s  we l l .  

I n  AUT-Pi t h e r e  i s  reserved a  s p e c i a l  symbol f o r  r e f e r r i n g  t o  t h e  

func t ion  type,  v i z .  n ( f o r  c a r t e s i a n  product  format ion) :  by p r e f i x i n g  

wi th  l l  t he  type-valued func t ion  [x:aIB i s  turned i n t o  t h e  corresponding 

func t ion  type JJ[x:alB. More genera l ,  if P is  a  type-valued func t ion ,  

then llP i s  the  corresponding product type,  conta ining those  func t ions  

a s  elements which, when appl ied  t o  arguments A of t h e  r i g h t  type,  

produce va lues  i n  {Alp. 

The language AUT-Pi i s  named a f t e r  t h e  of product formation. 

I n  AUT-QE t h e  expression [ x : a ] ~  can g e t  ( a t  l e a s t )  two p o s s i b l e  

types ,  v i z .  C X : ~ ] T  and T ,  according t o  which i n t e r p r e t a t i o n  i s  intended.  

This i s  implemented by the  r u l e  of type inc lus ion .  A s  a  consequence, 

uniqueness of types is v a l i d  f o r  terms only .  Some problems a r i s e  from 

t h i s  i n  connection with def ined cons tan t s  ( see  V.1.9 and V.3.3.10). In 

A U T - P i  uniqueness of types  is v a l i d  f o r  types  a s  wel l :  e .g.  i f  B is  a  - 
type ,  then [x:a]B has type Tl[x:aI~ and ll[x:alB has  type T .  

Not% here  t h e  use of ll again  which makes t h e  (cons tan t )  "super-type 

valued funct ion"  [ x : a l ~  i n t o  a  super-type n [ ~ : a ] r .  

A t  f i r s t  s i g h t  it seems t h a t  t h e  here- indicated d i f f e r e n c e  i s  a  

t r i f l e ,  and t h a t  AUT-QE can be made i n t o  a  subsystem of AUT-Pi by simply 

i n s e r t i n g  n ' s  a t  t h e  r i g h t  p laces .  However, a s  noted by the  Brui jn ,  t h e  

correspondence i s  not  t h a t  c lose :  the  r u l e  of type- inclus ion (of AUT-QE) 

i s  somewhat s t ronger  than the  product  formation r u l e  (of AUT-Pi). See 

sec .  6.1. 1151 and [17].  

1.6 Some f e a t u r e s  of AUT-Pi not  d iscussed he re  

For completeness we mention two important ,  more o r  l e s s  syntac- 

t i c a l ,  f e a t u r e s  t h a t  e n r i c h  t h e  language used by Zucker and Kornaat i n  

t h e i r  AUT-Pi book. F i r s t ,  t h e r e  i s  t h e  use  of AUT-Synt, a k i n d o f  Auto- 

math shorthand,  a s  documented i n  J u t t i n g  [37]. Secondly, t h e r e  i s  t h e  use  

of strings-and-teZescopes ( see  [ 77 I . 
However, t h e s e  f e a t u r e s  do n o t  belong s p e c i f i c a l l y  t o  AUT-Pi; they 

r a t h e r  can be a t t ached  t o  any Automath language, b u t  were n o t  y e t  a v a i l -  

ab le  when J u t t i n g  s t a r t e d  h i s  Landau t r a n s l a t i o n .  On t h e  con t ra ry ,  the  



strings-and telescopes generalize (and, hence, duplicate) in some sense 

the pairs-and-sums of AUT-Pi. These two features are not discussed in 

this thesis. 

In [ 7 7 ]  Zucker describes how the whole language is divided into a 

t-part (for terms and types) and a p-part (for proofs and propositions). 

This division originates with the distinction between the two degree 1 

basic constants, T (or type) and r (or prop). Connected with this is 

the principle of equality of proofs (two proofs of the same proposition 

are considered to be definitionally equal; only consistent with classical 

logic). Here we just use T as our basic constant. As a consequence we 

do not discuss equality of proofs. 

1.7 Section 2 below contains a more precise definition of AUT-Pi. In 

section 3 we prove the closure property; Correctness is preserved under 

reduction. In section 4 we first define two systems of normable ex- 

pressions, AUT-Pi and AUT-Pi which have the same "connectives" and 
0 1 ' 

reductions as AUT-Pi but a simplified type structure. We study SN for 

these two systems. First we show that the methods of proving B-SN 

directly apply to the situation with Bv-reduction. In sec. 5 we give 

some different proof methods for SN in presence of +-reduction. Then 

we extend the AUT-Pi results to AUT-Pi. Section 6 just contains some 1 
remarks on the connection between AUT-Pi and AUT-QE (type-inclusion vs. 

product formation), and on the particular problems posed by the 

addition of E-reduction. 

V I I I . 2  A short definition o f  AUT-Pi 

2.1.1 We give an E-definition of AUT-Pi, along the lines of the AUT-QE 

definition in V.2. For the formation of books and contexts we refer to 

IV.3, and for their correctness to the requirements in V.2.1.3. However, 

the inhabitable degree condition, to the effect that correct expressions 

can be of degree 1, 2 and 3 only, has to be restricted further, to an 

inhabitabi Zity condition: Expressions acting as the typ of a variable 

or a constant have to be inhabitable.  Where we define a to be inhabitable 

when degree (a) = 1, or: degree (a) = 2 and a E T (or a E T) . 



2.1.2 But f i r s t  we must d e f i n e  t h e  degree (and, i m p l i c i t l y ,  t h e  notion 

of degree c o r r e c t n e s s )  of t h e  t y p i c a l  AUT-Pi express ions:  

degree ( A )  = 1 o r  2  =+ degree ( l l ( A )  ) = degree ( A )  

degree(A) = 2 * d e g r e e ( t ( A ) )  = 2 

degree ( A )  = 3 * degree (A ) = 3, degree (A 
(1  1 ( 2 ) )  = 

degree ( A )  = degree (B) = 2 o r  3 * degree ( A  @ B) = degree ( A )  

degree(A) = 3, degree(B) = 2 =+ degree(;  (A,B)) = 
1 

degree (i ( A ,  B) ) = 3 
2  

degree ( A )  = 2, degree (B) = degree(C) = 3 * degree (4 ,B,C>) = 3 

2.1.3 Correctness  of express ions ,  E-formulas ( f o r  typing)  and Q-formulas 

( f o r  e q u a l i t y )  i s  def ined simultaneously.  For t h e  n o t a t i o n a l  conventions 

and abbrev ia t ions  we r e f e r  t o  V.2.1 and V.2.2. E.g., we d i s p l a y  degrees 

a s  s u p e r s c r i p t s  t o  t h e  cor rec tness  symbol 1, we f r e e l y  omit books and 

con tex t s  ( o r  p a r t s  of con tex t s )  n o t  r e l e v a n t  t o  t h e  r u l e  under con- 

s i d e r a t i o n ,  and we sometimes omit a s  we l l  ( v i z .  i n  f r o n t  of a  formula 

when con tex t  and degree a r e  no t  shown). 

2.2 The genera l  r u l e s  

2.2.1 We s t a r t  with t h e  r u l e s ,  which AUT-Pi has  i n  common wi th  AUT-QE. 

We assume a  c o r r e c t  book 8 and a  c o r r e c t  context  5 .  F i r s t  t h e  genera l  

r u l e s  f o r  co r rec tness  of express ions  and E-formulas. 

(iii) i n s t a n t i a t i o n :  i f  c  i s  introduced i n  8, with  con tex t  E z, 
then B E EuB] =+ c(E) ( E  t y p ( c ) u B ~ )  

For our language t h e o r e t i c a l  purposes we need n o t  d i s t i n g u i s h  between 

T and r .  So i n  the  seque l  we j u s t  use  T ,  in tending t o  cover a a s  wel l .  

2.2.2 Then the  remaining genera l  r u l e s :  f o r  Q, f o r  type-modification 

and s t rengthening.  



Q-propagation: A Q B, Ic, (B > C or C > B) * A Q C 

type-conversion : A E B Q C * A E C 

strengthening: if (X E a,n)tB (E/Q C) , x does not occur free 
in iq ( ,C) and B then +B (E/Q C) 

The Q-propagation rule still depends on an assumed reduction relation, 

e.g. either with or without the extensional reductions n, E ,  a .  The rule 

of strengthening is only included for technical reasons associated with q 

and E ,  SO can be omitted in the non-extensional case. 

Notice that the rule of type-inclusion of AUT-QE has been left out 

here. Its role, viz. of transforming (type-valued) functions into types, 

is to be played here by the product rule for 2-expressions of the next 

section. 

2.3 The specific rules I 

Now we come to the rules specific for AUT-Pi. They are divided 

into three groups. Each consists of one (or more) introduction rule(s) 

one (or more) elimination rule(s) and a type formation rule to provide 

the introduction expression(s) with a type. With each group an IE-re- 

duction rule (i.e. introduction-elimination reduction rule) and its 

extensional counter part can be associated. 

I Abstraction, application and products 

The associated reduction relations are f3 and iq: 



I t  i s  i n  the above group of r u l e s  ehat  the difference between AUT-QE 

and AUT-Pi  becomes exp l i c i t .  For a discussion of the r u l e  of n see 1.5, 

and 6.1. 

Notation: In case x $ FV (B) we abbreviate ll([x:alB) by a + B. 

Using t h i s  convention, product ru l e  2 and appl ru l e  2 become 

B E a -+ T * l l ( B )  E T 

and 

A E a ,  B E l l ( C ) ,  C E a +  T*{A)B E {AIC 

2.4 A possible  extension concerning 1-expressions 

Notice . that  a l l  compound cor rec t  1-expressions have a n i n  f ront ,  

or  possibly (when 1-abbreviation constants a r e  present)  6-reduce t o  an 

expression s t a r t i n g  with n. In  f a c t ,  each cor rec t  1-expression &-reduces 

t o  an expression l i k e  n([x - a  ln([x .a l l l ( * * - - * * l l ( [ x  :a I T ) - * - ) ) ) .  
1' 1 2 '  2 n n 

A s  a consequence a l l  1-expressions a r e  inhabi table  (see 2.1) ,  j u s t  

l i k e  i n  AUT-QE, but they generally contain p a r t s  which a r e  not correct, 

e.g. the p a r t  [x:al'r i n  l l ( [ ~ : a ] r ) .  I f  we do not l i k e  t h i s  we can eas i ly  

extend the  language by 

(1) r e s t r i c t i n g  the notion of inhabi table  1-expressions: 1-expressions 

a r e  s a id  t o  be inhabitable according to :  (i) T inhabi table ,  (ii) 

(ii) i f  B inhabi table  then ll([x:a]B) inhabi table ,  (iii) i f  B in- 

habi table ,  B Q C then C inhabi table .  

( 2 )  r e s t r i c t i n g  product ru l e  1: 

1 
x E a t  B, B inhabitable * b n ( C x : a l ~ )  

( 3 )  dropping the r e s t r i c t i o n  t o  degree i +  1 i n  the abs t r  ru le .  Then, 

we can fur ther  extend AUT-Pi t o  a +-language ( i . e .  a l l  value 

degrees a r e  a l so  function degrees, see V . 2 . 7 )  by 

( 4 )  adding a new appl ru le :  

These changes a re  r e l a t i ve ly  unimportant, of course. 



2.5 The specific rules I1 

2.5.1 The rules of group I can be considered as just rephrasing the 

corresponding rules of AUT-QE. Now, however, we come to rules which 

have no counterpart in AUT-QE. 

I1 Pairs, projections, sums 

Let 4 E a -+ T. Then 

The reduction rules associated with group I1 are K and o: 

2.5.2 Notice that here, for the first time, reduction ceases to be a 

purely syntactical matter. The condition A E I(+) is inserted here 

because we want to maintain preservation of t y p e s  

atherwise, we come in trouble with 4 E a -+ T, A E a, + [x:al{A}4, 

B E (A14, where C <$,A,* E I(() and <$lC(l),C(2)> E I($) and not 

$ Q $. 

As a consequence we must modify one of the monotonicity rules into: 

if x E ct *A > B then [x:a]A > [x:alB. 

2 . 5 . 3  Notation: in case x ( FV(B) we abbreviate I([x:a]B) by a @ B .  

For pairs <$,A,& in such a degenerate sum we can omit the type label 

4 and just write <A,& (because it is intended that $ can be constructed 

from A and B in this case) . 
The degenerate versions of pair rule and projection rules are: 



For degenerate  p a i r s  t h e  typing cond i t ion  f o r  a-reduction can be omit ted .  

Notice t h a t ,  i n  c o n t r a s t  with products ,  only degree 2  sums a r e  

formed, and consequently only  degree 3 p a i r s .  Bes ides f the  two components 

of a  p a i r  a r e  3-expressions too.  

2 .6  The s p e c i f i c  r u l e s  I11 

See t h e  d i scuss ion  i n  1.4. The r u l e s  concern 

I11 Binary unions,  i n j e c t i o n s  and plus-terms 

Let  a  E T ,  B E T .  Then 

1 .  Binary union : t a  @ 6 ( E  T )  

2. I n j e c t i o n  1: A E a * ti, ( A , B )  ( E  a  @ 8 )  
L 

3.  I n j e c t i o n  2: B E B * t i 2 ( ~ , a )  

4. p l u s  r u l e :  y E - r ,  B E a - + y  

The a s s o c i a t e  r educ t ions  a r e  + and E :  

Notation:  Q i s  supposed t o  bind more loose ly  than t h e  o t h e r  connectives.  

This  i s  why t h e  func t ion  p a r t s  of t h e  +-redices  are,  and t h e  Left-  and 

r i g h t  p a r t  of t h e  €-redex a r e  not p u t  i n s i d e  parentheses .  

We mention a l s o  the  a l t e r n a t i v e  form of +, +' (which i s  i n  f a c t  + 
followed by 6) : 

and an a l t e r n a t i v e  form of E ,  s a l t :  

We c l e a r l y  have >+, a > > ( s e e  11.7.1.2 f o r  t h e  n o t a t i o n ) .  Fur the r  
+ B 

e t c .  i . e .  > * < > So, a s  f a r  a s  e q u a l i t y  Q i s  concerned, we have + + I '  

( i n  t h e  sense  of 11.0.4.3) ( @ , +  +. + ' )  and ( q r + '  +). Since w e  always 

include B, and i s  o p t i o n a l ,  we p r e f e r  t h e  r u l e  + i n  our d e f i n i t i o n .  



Simi la r ly  we have > * > > and > * > > < s o  ( w . r . t .  Q )  
E ~ a l t  r) ~ a l t  B B E 

(71, ~ a l t  * E )  and ( B , E  * ~ a l t )  . Thus we p r e f e r  r u l e  E .  

Binary unions always have degree 2, i n j e c t i o n s  always have degree 

3 .  Only +-functions of degree 3 a r e  formed. 

2.7 A p o s s i b l e  extension concerning @-functions 

We can, however, d e f i n e  an extension of t h e  language by a l s o  ad- 

m i t t i n g  degree 2  @-functions,  i . e .  g lueing type-valued func t ions  together 

i n t o  a  s i n g l e  type-valued funct ion.  To t h i s  end we pu t :  Le t  a E T ,  

0 E T .  Le t  @ E a + T, $ E B -+ T .  Then 

5. P lus  r u l e  2: B E ?7($ 

The o l d  p l u s  can be considered 

o r  ~ a l t :  

, a s  a  s p e c i a l  case  of r u l e  5 ,  by using E 

We do not discuss t h i s  extension he re ,  because i t  r e a l l y  complicates 

the  normabi l i ty  problem ( see  4.6) . 

2.8 Elementary p r o p e r t i e s  

A s  i n  V.2.7 - V.2.9 we can i n f e r  some n ice  p r o p e r t i e s .  F i r s t ,  con- 

cerning t h e  degrees:  

IA - A degree c o r r e c t  

A Q B * degree ( A )  = degree(B) 

A E B * degree ( A )  = degree (B) + 1 

Then, concerning con tex t s ,  renaming (see  V. 2.9.2) and weakening 

(V.2.9.3). Fur the r ,  the  simuZtaneous a n d t h e s i n g l e  sslbstitution theorem 

(V.2.9.4-5), and correctness of categories (V.2.10): A E B * IB .  
Analogously t o  the  a b s t r  and appl  p r o p e r t i e s  i n  V.2.10 and V.2.1 

(which m.m. hold a s  well  i n  AUT-Pi) we have p r o p e r t i e s  l i k e  

~<$,A,B> * (A E a, $ E a + T, B E (A)$) e t c .  



i.e. the "inversion of the correctness rules". 

An important additional property (to be proved in the next section) 

is uniqueness of types : 

which in AUT-QE did not hold for A of degree 2, because of type in- 

clusion. 

VII . 3  A short proof of closure for AUT-Pi 

3.1 Proving closure for AUT-Pi is not very different from proving it for 

AUT-QE. So we just sketch how to modify the proof in V.3.2. 

We start with a version without the extensions mentioned in 2.4 

and 2.7, but we include all reductions (also 6'-reduction) . 

3.2 For the terminology see V.3.1. Let > denote disjoint more step 

reduction. By the properties in 11.7.4.3 we have 

A > B * 6-nf (A) > 6-nf (B) 

By the substitution theorem we have 6-CLPT. The 6-nf's of 1-expressions 

are of the form n([z:alA) or T. Reductions of these expressions can only 

be internal, so by induction on Q we get (including what might be called 
1 UD here) : 

2 2 2 
3.3 From this follows SA (whence B-outside-CL1) and 6-outside-PTl. - 
Viz. let A E a, tL[x:~]C E ll(Cx:alD) , with conclusion ~{A)[x:BIc. Then, 
for some E, x E B ~ C  E E and tll([x:~]~) Q ll([x:a]D). So a Q B and 
x E &E Q D whence A E B (i.e. S A ~ )  and x E B ~ C  E D. So 

2 
The proofs of UT and the inside cases of P T ~  are by ind. on t. 1 



3.4 The strengthening rule gives q-outside-CL Here follows a proof 
2 

1 -  
of q-outside-PT different from the proof in V.3.2.5. Viz. let 

1 
t2[x:a~{x)~ E y, x f FV(A). Then, for some C, [x:aI{xlA E 

n(Cx:alCl[y/xD) Q y, where x E atA E n(Cy:a'lC), a' Q a. SO, as well, 
x E ~ I A  E ll([y:alC). By weakening x E a, y E atA E ll(Cy:alC) and 

x E a, y E at(y)~ E C so x E ut~y:al{~)A E ll([y:alC). Again by 
2 

weakening x E at[x:al{xl~ E y, so by UT x E aty Q ll([y:alC). Hence 

x E &A E y and by strengthening A E y, q.e.d. 

2 2 2 
3.5 This completes the proof of PT1. Then PT and LQ follow by ind. 

on 2 and Q respectively. Now we come to PTCL~. For properties like SA 3 

2 
3.6 To this end we study B~-reduction and, in particular, B -head- 

2 
reduction, for short Bh (for the definitions see V.3.3.3 and V.4.4.5). 

2 2 
We know already -outside-CLPT1 (this is 6-outside-CLPT1). From this 

2 
follows p -CLPTI by ind. on 1, and B~-CLPT by ind. on 2. Now we use the 

2 
fact that 3 is the only argument degree and that, hence, B -reduction 

2 
does not create new 6 -redices. Compare V.3.3.4, VI.2.4. 

Z 
As a consequence, B -SN is quite easily provable (for degree 

2 
correct expressions) even without using norms: namely, if A B -SN, B 
2 2 2 
8 -SN then A[B] B -SN, by ind. on (1) BB(B) , (2) length (B) . So, as 

2 
usual, f3 -SN by ind. on length (see I". 2 -4 .1)  . A fortiori, 6-SN. 

2 
Besides B2 satisfies CR, so we can speak about 6 -nf Is. E.g., 

h h 

2 
degree(B) = 2, 6 -nf(B) [x:alC 

h 
2-nf (IAIB) 1 C[AJ 

=$ Bh 

2 2 
Clearly 82 and 6 commute, so B 6-CR and f3 6-nf Is are defined too. 

h h 

Sketch of proof: Ind. on Q. For the induction step we 
2 

property: t2A, Bh6-nf (A) I I(() , A > C or C > A, -. 
2 4 Q $. If C > A it is eacy, (6 ) -i-pp holds here for h 

need the following 
2 
~ ~ 6 - n f  (0 I X($) , 
all kinds of 



2 
reduction i (see I I . 7 .3 ) ,  so Bh6-nf(C) r E ( J , ) ,  J, > 4. Otherwise, A > C. 

m .-, 
L 

Now B 6 commutes with a l l  other kinds of reduction, except n; (see 
h 

11.7.2) .  And it even commutes with the l a t t e r ,  except fo r  "outside" 

domains. Where we define the l a t t e r  t o  be the a B j I  e t c .  i n  

{ , Z ) [ ~ : ~ I { E ) [ ~ : B I * * - ,  with { A )  possibly empty. But there a r e  no "outside" 

domains l e f t  i n  E(4) . So, i n  any case, B:6-nf (c) T($) , > ly. In f a c t ,  

i f A  > 2  C t h e n 4  = J,. 
2 By Bh6-CL we know t h a t  both I ( $ )  and I ( $ )  a r e  correct  so from 

( 4  > J ,  or  JI >I$) we can conclude 4 Q J I .  This proves the wanted property. 0 

3.8 ~ o t h  the theorem and the corol lary can be proved i n  precisely the 

same manner.for ll and @, yielding the propert ies  i n  3.5. 

Remark: The theorem above i s  a kind of minimal r e s u l t  for  the desired 
2 

propert ies .  E.g., we can, a l te rna t ive ly ,  prove a kind of weak C R  - 

r e s u l t  a s  i n  VI.2.4, or  prove a s imilar  but stronger theorem i n  the 

s p i r i t  of V.3.3, V.3.4. 

3 
3.9 Now we a re  able  t o  prove the outside cases of CLPT1. E.g. fo r  +- 

reduction. Let { i l  ( A , B )  } ( F  @ G) E y. Then il ( A , B )  E 6 ,  F @ G E n ( + )  , 
4 E 6 + T ,  {il(A,B) )+ Q y .  And A E a ,  a @ B Q 6 ,  F E a '  -t y ' ,  

[x:a '  e B'ly'  E 6 -+ T .  SO ( a '  @ 8 ' )  Q 6 Q ( a  @ B ) ,  whence a Q a ' ,  

B Q B ' .  so  IA)F E y ' .  Further y '  Q lil(A,B))Cx:a' @ ~ ' l y '  Q I i l ( A , ~ ) 3 @  

Q y ,  whence {A)F E y too. Similarly fo r  the other var ian t  of +. 

3.10 Then follows f u l l  CLPTl by ind. on and CLPT by ind. on 2. 

Besides, we have of course UT and LQ. And we can f ree ly  make the 

language de f in i t i on  somewhat more l i b e r a l ,  a s  follows. 

F i r s t  we can change the Q-propagation ru l e  i n t o  

A Q B ,  B +  C,  ~ c * A Q C  

Secondly we can add the appl ru l e ,  with i 2 1 

A E o r  t i + l ~  Q C X : ~ I C  =+. ~ { A I B  

and drop the degree r e s t r i c t i o n  i n  the appl r u l e  1 ( i . e .  r u l e  1 .4 ) .  



3.11 Now we shall say something about proving CL for AUT-Pi with the 
extension of sec. 2.4. Just adding abstr expressions of degree 1 does 

not matter at all, we still can get UD' without any difficulty. 

Making the language into a +-language (i.e. adding appl-l-express- 

ions too) causes some trouble with the domains in case reduction is 

present. Which can however be circumvented as in V.3.3: First leave Tl 
1 

1 
out, then prove B -CL and add q1 again. 

3.12 Finally the extension of sec. 2.7, i.e. where @-2-expressions are 
2 

present. If there is also E -reduction the situation is essentially more 

complicated, because f3 and E interfere nastily. But without c2 the 

proofs of 3.3-3.8 just need some modification: (B+) 2 - ~ ~  can be proved 
2 2 

as easy as -SN, + -CLPT is not difficult either. Then theorem 3.7 can 
be proved for ( B+) 2-6-head-nf Is instead. 

3.13 Requirements for the pp-results in 11.9 were: 

(1) The result of outside-&-reduction is never a B-, an inj- or on 

abstr-expression 

(2) The result of outside T) or E is never an inj-expression or a pair. 

Now we can easily verify them for AUT-Pi using the results of this 

section. First let <$,A ,A(2)> > A. l.e. degree (A) = 3, A E E(4) . If 
6 

A were an abstr-term then A E n($)  for some $. UT states that 
ll(+) Q E(4). Theorem 3.7 states that n($) 2 Z ( X )  for some X. This is 

impossible. Similarly for inj-or@-expressions. Or let [~:al(x)A > A. n 
BY PT A E ll($) for some $I. I£ A were an inj-expression then degree (A) = 3, 

A E (B @ y) for some B, y. By UT n ( $ )  Q (B @ y) . Use the suitable variant 
of theorem 3.7 again (sec. 3.8), this gives a contradiction. 

V I I I . 4  A first SN-result for an extended system 

4.1 Introduction 

The word "extended" in the title of this section refers to the 

presence of other formation rules than just abstr and appl (and possibly 

instantiation) and other reduction rules than just B and q (and possibly 



6). In the case of AUT-Pi we are concerned with the additional presence 

of: 

(1) pairs and projections, with reductions II and u 

(2) injections and @-terms, with reductions + and E 

In IV.2.4 we gave some versions of a "simple" (as compared to a proof 

using computability) proof of 8-SN. Then we extended it to f 3 ~  using 

Bq-pp. Afterwards we included 6 as well. 

Here we stick to the separation of 6 from the other reduction 

rules. Below we first show (4.6) that addition (1) mentioned above does 

not cause any trouble: the first version of the "simple" proof of 6-SN 

immediately covers the Bn-case. And afterwards, we can include 6 and n 
by a postponement result again. 

However the second addition essentially complicates matters. The 

presence of + makes the first 6-SN proof fail here, because the impor- 
tant induction on functional complexity (norm) goes wrong.(see sec. 

5.1.2) . We add new, socalled permutative reductions (sec. 4.3.1, 111) 

in order to save the idea of the proof (5.1.3). These permutative re- 

ductions, in turn, complicate the SN-condition, and a way to keep them 

manageable consists of adding (in 5.1.5) still another kind of reduct- 

ion, viz. improper reductions (sec. 4.3.1, IV). 

Our second B-SN proof of Ch. IV can fairly easy be adapted for the 
present situation however. We just have to add improper reductions to 

make the proofmrk (see sec. 5.2). For completeness we also include a 

proof based on the computability method (sec. 5.3). 

However, these three proofs just cover the situation with B +  n- 

reduction and can, by ext-pp be extended to B + n b q .  Alas, we have not 

been able t o  handZe E too. We cannot use pp anymore, so we have to in- 

clude E from the start of the proof on. And none of our methods can 

cope with this situation. 

The problems with e (or v) are well-known from proof theory. E.g. 

Prawitz in 1591 first proves normalization for classical propositional 

logic, where he avoids the problem with v, by defining v in terms of 

"negative" connectives. Then, when studying intuitionistic propositional 

logic, he also needs permutative reductions for proving normalization. 

By the way, our improper reductions turn out to be identical with the 

semi-proper reduction used in the SN proof for arithmetic by Leivant in 

1401. 



4.2 The system AUT-PiO 

4.2.1 For b r e v i t y  and c l a r i t y  we study a system of terms with t h e  same 

"connectives" and reduct ions  a s  AUT-Pi ( s o  t h e  e s s e n t i a l  problems with 

SN become c l e a r )  bu t  with a s impl i f i ed  type-s t ructure .  I t  can be com- 

pared with t h e  normabZe expressions of Ch. IV. Later  ( sec .  5.4) we ex- 

tend our r e s u l t s  t o  AUT-Pi. 

4.2.2 Reduced type s t r u c t u r e  

The reduced types o r  norms ( s y n t a c t i c a l  v a r i a b l e s  a ,  f3 ,  y, v )  a r e  

induc t ive ly  given by: 

(1 )  ? i s  a n o r m  

(2) i f  a and f3 a r e  norms then a l s o  a @ f3, a -+ B and a @ f3 

Note: I f  we w r i t e  Calf3 ins tead  of a + f3 i t  is  c l e a r  t h a t  the  norms of 

Ch. I V  form a subse t  of t h e  p resen t  norm system. We w r i t e  a -+ i3 with 

t h e  purpose t o  show t h a t  our norms form a simple type s t r u c t u r e  over a 

s i n g l e  f i x e d  type,  T. This is  a l s o  t r u e  of t h e  norms i n  Ch. I V .  Hence 

normabili ty r e s u l t s  ( a s  i n  Ch. I V ,  o r  a s  given e a r l i e r  by J u t t i n g  and 

~ e d e r p e l t [ 3 6 , 5 1 ]  f o r  c e r t a i n  Automath v a r i a n t s )  can a l t e r n a t i v e l y  be 

proved a s  follows: t h e  general ized systems under considerat ion a r e  no t  

e s s e n t i a l l y  r i c h e r  than simple, non-generalized type theory,  i n  t h e  

sense t h a t  they do provide t h e  same s e t  of terms of f r e e  A-calculus 

with a type a s  does a simple, non-generalized system. Compare Ben- 

Yel les  [6 ] .  

4.2.3 Terms of AUT-PiO 

A l l  tem7.S ( s y n t a c t i c a l  va r iab les  A ,  B ,  C,-**) have a norm. The 

norm of A i s  denoted p ( A )  . We a l s o  wr i t e  A E a f o r  l~ ( A )  - a .  Terms a r e  

const ructed according t o :  

(i) v a r i a b l e s  x, y, z , * * *  of any norm 

(iii) C E a -+ 8, A E a ,  B E B * <CrA,B> E a @ f3 



These terms can be compared with the 3-expressions of AUT-Pi. However 

there are no constants, no instantiation (and no 61,  it has simpler 

type structure and it has only e-terms of the form [x:A]C e [y:B]D. 

Below we also consider a variant AUT-Pil which has general 63-terms. In- 

stead of rule (vii') it has rule 

Below, we often omit type-labels in [x:A]B, i (A,B) , i (A,B) and 
1 2 

<C,A,B>, just writing CxIB, il(A), i2(A) and <A,&. 

4.3 The reduction rules 

4.3.1 We consider four groups of reduction rules 

I The introduction-elimination rules (IE-reductions) 6, T and + '  
(see 2.6) . 

Rule + '  is particularly appropriate for AUT-PiO, i.e. in connection 

with rule (vii'). For AUT-Pil we rather use rule +. 

11 The ext-reductions n, o and E 

Here we use the simple unrestricted version of 0: <CIA ,A (2 > > A .  

111 Permutative reductions (p-reduc tions) 

The general pattern of these rules looks like 

where 0 is an operation on expressions, given in one of the following 



The norms of these B's are respectively a: + 6, a: @ 6 and a s 6. That is 

why the rules are coded (+), (@)  and ((3). 

In case the argument of (I allows outside (i.e. @-reduction), the 

p-step does not produce a new equality: O({il(A)lCxlB @ [ y ] C )  > I)(B[[A]J) E 

O(B)I[AD < {il (A) } ([xlO(B) @ [ylO(C)). Below (6 .2) ,  it turns out that, 

generally, p-equality is generated by B~+E-reduction. 

The above mentioned rules are the standard ones from proof theory. 

There it is formulated like this: if the conclusion of an v-elimination 

rule forms the major premise of an elimination rule, then the latter 

rule can be pushed upward through the v-elimination rule. E.g. our +- 

rule can be compared with the following proof theoretic reduction: 

Cal C 61 Cal C Bl 

Both here and in proof theory the p-reductions are primarily intro- 

duced for technical reasons. However, as Pottinger [56 ]  points out there 

is some intuitive justification for them too. Part of it, that in some 

cases they do not extend the equality relation is stated above. 

It has been suggested to allow other permutative reductions as 

well (Pottinger [56 ] ,  Leivant [ 40 ]  ) . However, Zucker 1761 has shown 

that this spoils SN. 

IV Improper reductions (im-reductions) 

Notice that the set of free variables of the expression can be enlarged 

by performing an im-reduction. If an inside im-reduction takes place 

inside the scope of some bound variable, the latter variables have to 

be renamed in order to avoid any confusion. 

These reductions can be compared with Leivant's [40 ]  semi-proper 



reductions. They degenerate to what Prawitz calls inmediate simplifi- 

cations, when x $ FV(C) , resp. $ FV ( E )  . 

4.3.2 One step and many-step reduction 

One-step reduction > is, as well, generated from the main or out- 
1 

side reductions given above, by the monotonicity rules. Then follows 

many-step reduction 2 from reflexivity and transitivit$. 

4.3.3 The usual substitution properties are valid, e.g., 

A A' * B[A] 2 B[[A'] etc. 

4.4 Closure for AUT-PiO 

4.4.1 First notice that AUT-PiO is certainly not closed under n, 

because of the restrictive rule (vii'). So the proof below is intended 

for the n-less case. 

4.4.2 Due to the simple type structure it is quite easy to show that 

norms are preserved under substitution and reduction and hence that 

AUT-PiO is closed under reduction. 

4.4.3 Substitution lemma for the norms: X E a, A E a, B E 6 * B([x/A] E E 

(and B[ x/A] a term) . 
Proof: Ind. on length of B. 0 

4.4.4 Reduction lemma for norms: A E a, A > A' * A' E a (this includes 

Proof: Ind. on the definition of >. For and +' use the substitution 

(al Q a ) -+ a, so [x1A2 E a1 + a# x E all A2 E a. So A2[A1] E a ,  
2 

q.e.d. Or a permutative reduction: A ((Al)([xu2 @ [yy 1)  
3 (1)' 



4.4.5 Theorem: (c losure )  A E a ,  A 2 A '  (without 17) =* A '  E a 

Proof: Ind. on 2. 

4.5 The system AUT-Pil 

4.5.1 Ins tead  of r u l e  ( v i i ' )  it has the  r u l e  

and it has  + ins tead  of + ' .  
Of course ( v i i ' )  * ( v i i ) ,  so  indeed AUT-Pi1 con ta ins  AUT-Pie. We 

can d e f i n e  a t r a n s l a t i o n  $ from AUT-Pi0 t o  AUT-Pil such t h a t  $(A) 2 A 
17 

and which shows t h a t  AUT-Pi1 i s  no t  a very  e s s e n t i a l  extension of 

AUT-Pi  0 .  

The t r a n s l a t i o n  i s  given by ind.  on length .  The only  n o n t r i v i a l  

c l ause  i s  $(C1 @ C2) [x:Ma]{x}$(C1) @ CX:M ]{XI$ (C2) ,  where 
6 

C1 @ C2 E ( a  d 6) + y and Ma, M a r e  s u i t a b l e  f ixed  express ions  of 
B 

norms a ,  f3 and x ,  y a r e  chosen of norm a ,  6 such t h a t  x 4 Fv(Cl ) ,  

y $ FV(C2), r e s p e c t i v e l y ,  A .  On var iab les ,  $ a c t s  l i k e  i d e n t i t y .  For 

t h e  r e s t ,  $ j u s t  commutes wi th  the  formation r u l e s .  C lea r ly ,  $ leaves  

t h e  norm i n v a r i a n t  and i s  indeed a t r a n s l a t i o n  i n t o  AUT-PiO. 

4.5.2 We have the  following p r o p e r t i e s  

( 1 )  $(BUx/AD) = $(B) (Ux/$(A)D), if u(x) u ( A )  

( 2 )  For IE-reduction: A B * $(A) $(B) 

( 3 )  For (IE-ext) -reduction:  A > B * $ (A) proper ly  reduces t o  @ (B) . 1 

Proofs:  By induct ion on length .  The 6-case of ( 2 )  uses  (1 )  : 

$({A11CyIA2) z {$(A1) ICyl$(A2) $(A2)1[$(A1)H 5 $(A2UA1D) , q.e.d.  

The +-case of (2 )  : $ ( t i l  ( A l )  ) (A2 e A 3 )  ) S 



Cx:MalIil (XI I @  (B) @ (Cx:M61{i2 (XI 14 (B) > E  4 (8) . we particularly 
investigate the case of q which is not allowed in AUT-PiO: 

4.5.3 In the sequel we prove SN for some versions (i.e. with and 

without p-red. etc.) of AUT-Pio. By the above properties we can easily 

extend the p- and im-less case to AUT-Pil: 

AUT-PiO SN (with +'  ) * AUT-Pil SN (with +) . 
Proof : Let A be an AUT-Pil term. Use ind. on 8 ( 4  ( A )  ) . 0 

But, from SN with + follows SN with + and +',  because each +'-step can 

be simulated by a + a 8-step, so 8 decreases under +'-reduction. And, 
-4- 

because AUT-Pil contains AUT-PiO we also get SN for AUT-PiO with + 
and + ' . 

4.5.4 The postponement requirements 

For AUT-Pio- and AUT-Pil-expressions it is quite straightforward 

to show the requirements (I), (2) of 3.13. E.g. let <A(1) ,A (2)>A. 

Then A E a @ 8. So A is not an inj-term, a O-term, or an abstr-term. 

Etc. 

4.6 The first-order character of the systems 

4.6.1 In IV.1.5 we emphasized the importance of the property 

i.e. the functional complexity of {A)B does not depend on the argument 

A. Alternatively stated: if is of course possible that the different 

values of Bhave different types, but apparently there is a strong uni- 

formity in thesetypes, for the functional complexity of all the values 



is  t h e  same. I n  f a c t ,  we defined a system t o  be first-order i f  t h i s  

p roper ty  was p resen t .  

4.6.2 Generally,  t h e  in t roduc t ion  of $-types and @-terms might s p o i l  

t h i s  uniformity:  we might be a b l e  t o  d e f i n e  func t ions  completely 

d i f f e r e n t  on both p a r t s  of t h e i r  domain. So, by "general" $-functions 

t h e  f i r s t - o r d e r  p roper ty  above g e t s  l o s t .  However, i n  AUT-Pie, AUT-Pil 

and i n  AUT-Pi t h e  domain of @-functions i s  e x p l i c i t l y  r e s t r i c t e d  i n  

such a way, t h a t  t h e  f i r s t - o r d e r  proper ty  can be maintained, v i z .  by 

r e q u i r i n g  

(1 )  i n  AUT-Pi0 t h a t  p (B) E u (C) when forming (x) B @ (y)C 

( 2 )  i n  AUT-Pi1 t h a t  B E cr + y, C E f3 -+ y when forming B @ C 

( 3 )  i n  AUT-Pi t h a t  B E or + y,  C E f3 -+ y when forming B @ C 

A s  a consequence we s t i l l  have u({A }B) 2 p ({A IB) and i n  p a r t i c u l a r  
1 2 

P ( { A }  (CxIB @ CylC) ) : p (B) = u ( C )  . 

4.6.3 Now it w i l l  be c l e a r  t h a t  the  genera l ized @-rules of 2 .7  would 

s p o i l  t h e  f i r s t - o r d e r  cha rac te r .  Example: l e t  A E T ,  B E T ,  C E T ,  

D E T then Cx:AIC E A -+ T ,  Cx:BlD E B -+ T .  So Cx:AlC e, Cx:BlD E 

(A B) + T .  SO, i f  E E A -+ C, F E B + D then (E @ F) E ll([cc:A]C @ 

Cx:BID). C lea r ly  t h e  func t iona l  complexity of { i l ( G ) } ( E  e F) f o r  G E A 

and {i (H) (E @ F) f o r  h' E B can be completely d i f f e r e n t ,  v i z .  t h a t  of 
2 

C and D r espec t ive ly .  

4.6.4 I t  is  p o s s i b l e  t h a t  a not ion of norm ( i . e .  s impl i f i ed  type) can 

be def ined which is  manageable and measures f u n c t i o n a l  complexity of 

t h e s e  genera l  @-terms, bu t  t h e  p r e s e n t  norm (and the  corresponding SN 
proof)  i s  c e r t a i n l y  no t  s u i t a b l e  f o r  t h i s  s i t u a t i o n .  

4.6.5 Remark: S t r i c t l y  speaking, t h e  suggested cor rec t ion  between the  

typing r e l a t i o n  i n  AUT-Pi and t h e  norms i n  AUT-PiO has no t  y e t  been 

accounted f o r .  The preceding statements have t o  be understood on an 

i n t u i t i v e ,  h e u r i s t i c  l e v e l .  



4.7 A proof of ~ n ~ o - S N  

4.7.1 Here we show that the first 6-SN proof of Ch.IV straightforwardly 

carries over to the case of ~rqo-SN. As our domain of expressions we 

take, e .g . , the terms of AUT-Pi 1. 

4.7.2 SN-conditions for Ba 

For non-main-reducing expressions (also called hmme ~OYVIS or IF'S) 

it is sufficient for SN if all their proper subexpressions are SN. Inci- 
dentally this is also true for projection expressions (because main x- 

reduction amounts to picking a certain subexpression). So we have: 

A SN@A(l) SN. andthe funnyproperty: A 
(1) 

SN. 
We recall the SN condition for appl expressions in this case: 

4.7.3 Heuristics: the dead end set for 6 

So, the substitution theorem for SN is again sufficient for proving 
SN (see IV.2.4). The crucial case of the substitution theorem for ,8-SN 

was where A  is SN, B : { B  )B is SN, B ( A ]  2 CylC, but B2 $ CylCo. 1.e. 
1 2  2 

the reduction to square brackets form depends essentially on the sub- 

stitutions. Then we used the square brackets lemma: B2 5 {PIX, 
( I F ) x ) ~ A B  r CylC. 

We define the set Ex of these expression (FIX symbolically by a 
recursion equation Ex = x + {U}Ex, 
where U stands for the set of all expressions and it is of course under- 

stood that all expressions in Ex are in AUT-Pil again. 
The expressions {FIX can be considered as dead ends when one tries 

to copy in B the contractions leading from B [ A ]  to [y]C, i.e. when 
2 2 

one tries to come "as close as possible" to an abstr expression. We do 

not bother to make the concept of dead end more precise, or more general, 

but just give this informal explanation for naming Ex the dead end set 

w.r.t. X ,  6-reduction, and abstr expressions. 



4.7.4 The dead end set for BT 

When one tries to copy a Bn-reduction sequence of BBAJ in B one 

need not end up with an expression in E but, e.g., can also end in 
2' 

x 
(1) 

The following theorem states that F defined by 

F = x + F  + F  + { U ) F  
(1) (2) 

is the dead end set w.r.t. XI B-ir and immune forms (IF'S). Let 2 stand 
* 

for 2 and let stand for [x/AD. 
BT, 

Theorem: If B SN, B* 2 C, C E IF then B 2 Cot Ci 1 C with either (i) 

C; non-main reduces to C, or (ii) Co E F. 

Proof: ~ u s t  like the square brackets lemma (second proof, IV.2.4.3), by 

ind. on (1) 9 (B) , (2) R (B) . Let B* main-reduce to C (otherwise take 
B C ) .  Then B X, (and take COEB, C EF), B ! D 

0 0 
, B E D or 

( 2 )  
B E {D )D ~ . g .  let B : D 

1 2' (1) ' 
Then D* 2 d) ,D >, D 2 C. Apply 

1 2  1 
ind. hyp. (2) to D. In case (i) , D 1 a .E >. E* 2 Dl, E; 2 D2, so 1 2  1 
B 2 El , E* 1 C. Then apply ind. hyp. (1) to El. In case (ii) , 

1 
D L E E E F, E* Z cD D > and B Z EO(ll 

0' 0 0 1) 2 
2 C, 

so case (ii) holds for B too. El 

Remark: (1) Similarly we can prove a more general outer-shape lemma 

(see 11.11.5.4) for Bn, where the condition "C E IF" simply has been 

dropped. 

(2) It is probable that such "standardization-like" theorems can 

also be proved without using SN (as in 11.11). 

4.7.5 Heuristics: the norms of dead ends 

The point of the 6-SN proof is: 

- where R is the length of the norm -. So, if B[AD 2 [ylC then 

R(p(y)) < R(p(x)), and we can use ind. on norms in the crucial case of 

the substitution theorem. 

We are lucky that the same method works for Bn-reduction too. 

Namely 



4.7 .6  The s u b s t i t u t i o n  theorem f o r  Bn-SN 

Theorem: A Ba-SN, B BPSN * B[x/AD B A N  

proof :  Ind. on ( 1 )  p (A) ,  ( 2 )  eBa(B), (3)  L(B). L e t  2 be 2 . I f  B E x 
6 a 

thenB[Al  = A  s o % .  I f  B E  I F o r  B =  C o r  B E  u s e i n d .  
(1 )  ( 2 )  

hyp. ( 3 ) .  I f  B E { B  )B proceed a s  f o r  8-SN, us ing t h e  norm 
1 2  

p r o p e r t i e s  of the  dead end s e t  F. 0 

4.7.7 6n-SN and Bmo-SN 

An immediate c o r o l l a r y  of t h e  s u b s t i t u t i o n  theorem f o r  6n-SN i s  

Ba-SN i t s e l f .  Now we can extend t h i s  t o  BRQU-SN ( a s  i n  11.7.2.5) us ing 

( B T )  - ( Q U )  -pp,  a  case  of ext-PP ( see  I1 -9.2) . The requirement f o r  pp i s  

indeed f u l f i l l e d  ( see  4.5.4). 

VI I I .5  Three proofs of Bat-SN, w i t h  a p p l i c a t i o n  t o  AUT-Pi 

5.1 A proof of ~a+-SN using p- and im-reductions 

5.1.1 Here we show how the  preceding SN-proof (based on t h e  f i r s t  

ve r s ion  of the  simple 6-SN proof i n  Ch. IV) has  t o  be modified i n  order  

t o  cope wi th  + ( o r  + I ) .  F i r s t  we s h a l l  see  how t h e  norm cons ide ra t ions  

of t h a t  proof do n o t  go through. 

5.1.2 The dead end s e t  f o r  Ba+ 

Let  2 be 2 The following theorem s t a t e s  t h a t  t h e  s e t  G def ined BIT+' 
by 

G = x + G  
( 1 )  + G ( 2 )  

+ {U)G + {GI ( U  e U )  

i s  t h e  dead end s e t  w . r . t .  X ,  Ba+ and IF 'S .  L e t  * s tand f o r  [x/A]. 

Theorem: Le t  B be SN, B* 2 C ,  C E I F  then B 2 Co with  e i t h e r  (1)  C* 
0 

non-main reduces t o  C ,  o r  ( 2 )  C: 2 C, Co E G 



Proof:  A s  i n  4.7.4, by ind.  ond (i) 8 ( B ) ,  (ii) R(B) 

S i m i l a r l y ,  we can prove t h e  corresponding o u t e r  shape lemma. 

The problem i s  now t h a t  t h e  norm of  the  express ions  i n  G i s  no t  

r e l a t e d  t o  t h e  norm of X. E.g. consider t h e  t y p i c a l  +-dead end 

{XI (B e C) . 

5.1.3 Improving t h e  dead end s e t  by p-reduction 

W e  r e s t r i c t  our domain of considera t ion t o  AUT-Pio. Ins tead of r u l e  

+ we choose r u l e  + I .  Besides we add permutative reduct ions .  Then a g r e a t  

d e a l  of t h e  "bad guys" among t h e  dead ends, i . e .  whose norm i s  no t  r e -  

l a t e d  t o  t h a t  of  X,  can be main reduced by a p-reduction. This  w i l l  ( i n  

the next  s e c t i o n )  r e s u l t  i n  an improved dead end s e t  H defined by 

H = F + {FI(U e U )  with F a s  i n  4.7.4. 

5.1.4 Le t  2 be f3+'~p-reduction.  The d i r e c t  r educ t s  of a p-main s t e p  a r e  

of t h e  form {A)([x]O(B) e [y]O(C)) ( see  4.3.1 f o r  t h e  d e f i n i t i o n  of O),  

s o  never a r e  i n  one of t h e  immume forms ( a b s t r ,  i n j ,  p a i r ,  p l u s ) .  

Lemma: p-main reduct ion s t e p s  i n  a r educ t ion  t o  IF can be circumvented 

proof:  The l a s t  p-main s t e p  i n  a reduct ion t o  IF  must be followed by a 

+'-main s t e p .  However t h i s  combination can be replaced by a s i n g l e  

i n t e r n a l  + ' - s t ep .  0 

C o r o l l a r i e s :  

( 2 )  {B)C r D l  D E IF  * E i t h e r  (i) C > [y]E, E[Dj 2 D o r  

(ii) B r i. ( A ) ,  C r (CxICl @ CxIC2) C.IlA1 2 D l  j= l  o r  j=2 .  
3 3 

( 3 )  B 

Proof:  Each 

p-main 

P a r t  of t h e  

of these  reduct ions  t o  IF can be replaced by one without 

s t e p s .  0 

two c o r o l l a r i e s  can be summarized (with 0 a s  i n  4.3.1) by: 

i f  O(B) > D l  D E  IF then B Z C ,  C E  IF,  O(C) > D. 

This  g i v e s  another lemma. 



This  proof amounts t o :  i f  an express ion al lows both  p-main and IE-main 

reduc t ion  then we can i n s e r t  p-main followed by +'-main before  perform- 

ing t h e  IE-main s t e p .  Now we prove t h e  theorem about t h e  improved dead 

end s e t  H. Let  * s tand f o r  [x/A]. 

* 
Theorem: If  B SN, B* 2 C, C E I F  then B L Co, C 5 C with  e i t h e r  ( 1 )  C* 

0 0 
non-main reduces t o  C ,  o r  ( 2 )  Co E H 

Proof:  A s  in. 4.7.4, by ind.  on (i) 8 (B) ,  (ii) ! L ( B ~ .  Here €I r e f e r s  t o  the  

c u r r e n t  reduct ion Bn+'p. L e t  B* main reduce t o  C, B X. I f  t h e  

f i r s t  main s t e p  can be mimicked i n  B use ind.  hyp. ( i) .  Otherwise, 

by ind .  hyp. (ii) B 2 O ( D ) ,  D E H ,  O(D)* 2 C. I f  D E F then 

(1 ( D )  E H and we a r e  done. Otherwise D 5 { D ~  3 ([y]D1 @ [ z j  ID ) , 
2 

D E F. Then B p roper ly  reduces t o  E E {D3} ( [ ~ ] ( 1  (Dl ) $ [y]0 (D2) ) , 
3 

E E H ,  and by the  previous  lemma E* 2 C, q .e  .d. 0 

5.1.5 Improving t h e  SN-conditions by im-reduction 

The c r u c i a l  SN-conditions for$n + '  ( i n  AUT-PiO) is  

Now t h e  p-reductions have improved our dead end s e t ,  b u t  t h e  problem i s  

t h a t  they make t h e  SN-conditions q u i t e  complicated. E.g. i n  order  t o  

prove t h a t  {A}{B} ([x]C1 $ [x]C2) i s  SN we need t h a t  {A}C1 i s  SN, i n  

p a r t i c u l a r  i f  C > [y]E we need t h a t  EI[AD i s  SN e t c .  1.e. t h e  SN-con- 
1 - 

d i t i o n  of {A)B ceases  t o  be e a s i l y  express ib le  i n  terms of d i r e c t  sub- 

express ions  of r e d u c t s  of A and B. 

I n  o rde r  t o  so lve  t h i s  problem we add im-reduction. But a t  f i r s t  

we show t h a t  t h e  dead end s e t  i s  n o t  changed by t h i s  add i t ion .  



5.1.6 The dead end s e t  of Ba+ 'prim 

Luckily t h e  dead end s e t  remains H. Let  2 s tand f o r  2 . The 
Ba+'p,im 

f i r s t  lemma of 5.1.4 can be maintained. For l e t  a p-main s t e p  be 

follwed by an im-main s t e p .  Then we can s k i p  t h e  main p-step and j u s t  

apply t h e  im-step i n t e r n a l l y .  

The next c o r o l l a r i e s  need an obvious modif icat ion,  i n  p a r t i c u l a r :  

I f  {B}(Cxlc, @ [xIC2) r D l  D IF then e i t h e r  (1)  B 2 i . ( A ) ,  
3 

And t h e  proper ty  t h e r e a f t e r  becomes: 

If O(B) 2 D ,  D E IF then e i t h e r  (1) B 2 C, C E  IF,  O(C)  r D,  o r  

(2) o(B) {B} ([x]C1 e [x1C2), C ,  2 D ( f o r  j= l  o r  2) 
3 

But the  second lemma of 5.1.4 remains unchanged. Namely, i f  an express- 

ion allows p-main reduct ion but  a l s o  im-main reduct ion,  then we can 

i n s e r t  p-main followed by im-main before performing t h e  im-main s tep .  

E . g .  EIB1) (CxlC1 @ CxIC2) 1 (CyID1 e CyID2) > 
P 

C B ~ I ( C X I I C J ( ~ ~ I D ~  @ CYID,) e . * * )  > i m  {C1)(CylD1 @ [ Y I D ~ )  >im D ~ .  

SO, the  theorem of 5.1.4, t h a t  the  dead end s e t  i s  s t i l l  H ,  c a r r i e s  

over too. 

5.1.7 The new SN-conditions 

The p o i n t  of t h e  im-reduction i s  t h a t  t h e  SN-conditions f o r  

a ~ + ' p , i m  a r e  i d e n t i c a l  with those f o r  BIT+' (see  5.1.5).  F i r s t  we give  

the  SN-conditions of {B) ([x]C1 @ [x]C ) . These a r e  (1 )  B SN, C1 SN and 
2 

C2 SN, and ( 2 )  B > ; . ( A )  * C.[A]I  SN ( f o r  j = l  and 2 ) .  
3 3 

Proof: Let  the  above condi t ion be f u l f i l l e d .  Use ind.  on (1 )  0(B) ,  

( 2 )  R(B), The i n t e r e s t i n g  case i s  when t h e  f i r s t  main s t e p  i n  a 

reduct ion i s  a p-step. So l e t  B 2 {B3) ( [ylB1 @ [yIB2 t o  prove 

t h a t  {B3)([y]{B1}C @ [y]{B2}C) i s  SN, with C 3 [x]C 1 e [x]C2. By 

ind.  hyp. (1)  o r  ( 2 )  we j u s t  need t h a t  B i s  SN ( t r i v i a l )  t h a t  
3 

{B.)C SN f o r  j=1,2 and t h a t  {B.[DD}C is SN, where B3 > i . ( D ) .  
3 3 3 

Since B proper ly  reduces t o  both B and B.[D] ( i n  case B3 2 i . ( D ) )  
j J I 

we can use ind.  hyp. (1)  and g e t  what we want. 0 



Theorem: The SN-conditions f o r  Br+'p,im a r e  i d e n t i c a l  wi th  those  of 

p n + '  ( see  5 . 1 . 5 ) .  

proof :  Let  {A)B f u l f i l l  t h e  SN-conditions ( I ) ,  ( 2 ) ,  ( 3 )  of 5.1.5. We 

use  ind.  on 9 ( B ! .  The i n t e r e s t i n g  case  is  when t h e  f i r s t  main s t e p  

i s  p.  The c a s e  t h a t  B 2 [x]B fB [x]B has  been done before ,  s o  l e t  
1 2 

B {B31 (CxlB1 @ CxlB2) , t o  prove t h a t  {B31 (lxl{AIB1 @ CxIIAIB 
2 

i s  SN. 1 .e .  t h a t  B3 SN, t h a t  {A)Bl and {A)BZ SN and t h a t  IAIB~UDD, 
{A)B211DII a r e  SN whenever B 2 i .  (Dl  ( j = l  o r  2 ) .  Now B proper ly  

3 3 
reduces  t o  both  B , and B . [ D j  (if B,  2 i . (D)  ) s o  we use t h e  ind.  

I 7 4 3 
hyp. and g e t  what we want. 0 

I n  o t h e r  words: we j u s t  need t h a t  t h e  d i r e c t  subexpressions and t h e  

IE-main r e d u c t s  ( n o t  a l l  t h e  main reduc t s )  a r e  SN f o r  proving t h a t  an 

express ion i s  SN. 

5.1.8 The s u b s t i t u t i o n  theorem f o r  SN 

Notation:  We j u s t  w r i t e  p ( A )  </ I  p (B) t o  abbrev ia te  R(p ( A ) )  < / s  R(p (B))  

Theorem: B SN, A SN, p ( x )  : p ( A )  * B[x/A]SN 

Proof:  Ind. on ( I )  p(A) (11) 

when B : {B }B and B[An 
1 2  

can be mimicked i n  B use 

wi th  {Bi)C o r  {CIB' wi th  
2 

9 (B) , (111) R (B) . The c r u c i a l  case  is 

IE-main reduces.  I f  t h i s  f i r s t  main s t e p  

t h e  second ind.  hyp. Otherwise we end up 

C E H a n d B  t B i o r B  2 B 1 =  
1 2 2 -  

[y]Dl @ [ylD2, r e s p e c t i v e l y .  I f  C E G then p (Bi )  < p(C) I p ( x )  s o  

a f i r s t  main reduct ion of ({Bi)C) t A 1  involves  a s u b s t i t u t i o n  [z/ED 

with  ~ ( z )  2 p ( B i )  < p ( x )  . And a f i r s t  main-IE reduc t ion  s t e p  of 

({C)Bi)@AD must be a + ' - s t ep ,  s o  involves  a s u b s t i t u t i o n  [z/En 

wi th  CQAD 2 i_ ( E )  . So i n  t h a t  case  t o o  p ( z )  E p (E) < p (C) I p (x) . 
J 

Anyhow i f  C E G ,  we can use ind.  hyp. ( I ) .  Otherwise 

C {C3) ([y]C1 @ [yIC2) , with  C E G .  Then a p-s tep  i s  poss ib le  
3 

and can be i n s e r t e d  before  doing t h e  main IE-step. This p-step can 

be mimicked i n  the  reduct ion of B, s o  we can use  ind.  hyp. (11). 0 

5.1.9 SN f o r  AUT-PiO and AUT-Pi1 

Like be fo re ,  an immediate c o r o l l a r y  i s  f3~+ '~ , im-SN f o r  AUT-PiO, so 

~n+'-SN f o r  AUT-PiO, whence $IT+-SN f o r  AUT-Pil. Then by pp we can ex- 

tend t h e  AUT-Pi1 r e s u l t  t o  B T + ~ ~ - S N .  (Not f o r  E . )  



5.1.10 An a l t e r n a t i v e  method 

Actual ly  im-reduction can be avoided i n  t h i s  proof.  Namely t h e  

e f f e c t  of p-reductions on t h e  SN-conditions can be expressed by means 

of c e r t a i n  induc t ive ly  defined s e t s .  

We d e f i n e  a  s e t  of express ions  B! by 

B! = B + {U)(Cxl(B!) e U )  + {U)(U @ CxI(B!)). 

1.e. B! con ta ins  a l l  those  express ions  t h a t  im-reduce t o  B. 

Then t h e  SN-conditions f o r  Bn+' become 

~f  (1) B SN, C  SN, (2 )  B  2 B' E A!,  C  2 C' E (CylD) ! * DUAD SN, 

and ( 3 )  B 2 B' 

then {B)C SN. 

5.2 A second proof 

E ( i . ( A ) ) : ,  C  a (CgIC1 @ CyIC,)! * C.UAD SN ( j = 1 , 2 )  
I 3 

of BIT+ '-SN, using im-reduction 

5.2.1 This proof i s  based on t h e  second ins tead  of the  f i r s t  B-SN-proof 

of Ch. I V  (sec .  IV.2.5, see  a l s o  VII.4.5).  There we d i d  not  use the  

square b racke t s  lemma, and no dead end s e t ,  s o  we can do without p- 

reduct ion.  Our language is AUT-Pio, again,  and 2 s tands  f o r  2 pn+',im. 

5.2.2 Replacement theorem f o r  SN 

A s  explained i n  VII.4.5, t h e  ke rne l  of t h i s  type of proof i s  a  

replacement theorem, r a t h e r  then a  s u b s t i t u t i o n  theorem, f o r  SN. 

Theorem: I f  B  SN, A SN, )J (x) E p ( A )  then a x/AD LR SN. 

Proof: By ind.  on ( I )  p (A) ,  (11) 9(B) , (111) R(B1. We w r i t e  * f o r  

[x/AILR. Consider a  reduct ion sequence B* > . * >  F > G ,  where 
1 1 1  

t h e  con t rac t ion  leading from F t o  G i s  t h e  f i r s t  con t rac t ion  not  

taking p lace  i n s i d e  some reduc t  of one of the  i n s e r t e d  ocurrences 

of A .  Real ize  f i r s t  t h a t  t h e  number of those  inside-A con t rac t ions  

is  f i n i t e ,  because A i s  SN. Now we prove t h a t  G i s  SN. Dis t inguish  

two p o s s i b i l i t i e s :  

( a )  The s t e p  F > G does no t  e s s e n t i a l l y  depend on the  i n s e r t e d  
1  



A's  and can be mimicked i n  B. 1 . e .  B G o ,  G t  2 G .  I n  t h i s  case  

we use ind.  hyp. (11). 

( b )  Otherwise some reduc t  of some i n s e r t e d  A p l a y s  a c r u c i a l  r o l e  

x by a f r e s h  y ,  wi th  p ( y )  Z al (where a 5 a l  x a2).  And 
(1)  

B I 60[y/x ( l )  D so  B0 i s  SN, 0 (Bo) 5 0 (B) , R (Bo) < R (B) . So by ind.  
* * 

hyp. (11) o r  ( I I I ) ,  B i s  SN and Bo 2 Go * * * A '  ...y... wi th  
0 

G GO[y/C$LR. Here G i s  SN, C i s  SN, p ( y )  E p ( C . ) ,  R ( p ( y ) )  < 
0 1 3 

R (p (x) ) s o  we can apply i n d .  hyp. ( I )  t o  g e t  t h a t  G i s  SN. If 

F > G i s  a @-step argue a s  i n  IV.2.5.3 o r  VII.4.5.6. I f  F > G is  

a + ' - s t e p ,  the  redex con t rac ted  is ,  e .g . ,  { i l (D) ) ( [y lC1  te [yIC2) ,  

reducing t o  C [ D l .  Now d i s t i n g u i s h  ( b l )  a  r educ t  of  an i n s e r t e d  A 
1 

i s  c r u c i a l  i n  i ( D l ,  (b2) a r educ t  of an i n s e r t e d  A i s  c r u c i a l  i n  
1 

(Cy1C1 @ [yIC2).  F i r s t  case  ( b l ) .  Then B - * * x - - *  (x)C;*., 

C* r CyK, te CyE2,  A r i (Dl. BY a norm argument t h e  @-term must 
0 1 

be p r e s e n t  i n  B a l ready ,  s o  C E [ylEl @ CYIE~,  E* 2 C1 , E* 2 C2. 
0 1 2 

Now form B - * * * x - * * E  - - - .  This  is  an im-reduct of B, so  SN and 
0 = 1 

by ind.  hyp. (11) B;) SN, reducing t o  Go Z * * * A ' - - - C  - - - ,  where 
1 

G ? *--A' -**C1[DD**- .  C l e a r l y  G SN, D SN and k (p (D))  < L ( p ( z ) ) .  
0 

So G % GOI[y/DDLR SN by ind.  hyp. ( I ) .  I n  case  ( b 2 ) ,  argue a s  i n  the 

8-case. F i n a l l y ,  the  redex contracted i n  F is an im-redex, i n  which 

5.2.3 An immediate c o r o l l a r y  of t h i s  replacement theorem is t h e  

o rd ina ry  s u b s t i t u t i o n  theorem. From t h i s ,  a s  before ,  fo l lows B~+'im-SN 

f o r  AUT-P iO .  So we g e t  @T+u~-SN f o r  AUT-Pil. 

5.3 A proof of ~n+rja-SN by computabil i ty 

5.3.1 In  t h i s  proof we do n o t  include rjo by a pp-result  af terwards ,  

b u t  consider these  ext - reduct ions  from t h e  beginning of t h e  proof on. 



We must consider AUT-Pil because AUT-PiO is not closed under n .  Our 

definition of computabiZity has been strongly inspired by de Vrijer's 

definition in [ 701 . 
De Vrijer's definition is phrased in such a manner that the im- 

portant properties: (1) computability implies SN, ( 2 )  computability is 

preserved under reduction, follow almost immediately. Then, as usual, 

we prove by ind. on length that expressions are computabZe under sub- 

stitution. 

Notice that we do not include E .  

5 . 3 . 2  The definition of computability 

We write C for the set of computable terms of norm a. The set C 
a a 

is defined by induction on the length of a, as follows: 

Let B a. Then B E C if B SN and the following requirements are 
a 

fulfilled: 

(1) a~ a + a  B 2  CylC, A E C  * C [ A B  E Ca2 
1 2 ' a1 

Notice that each clause in the definition of C only depends on 
a 

C a ' s  with I3 shorter than a. 

5.3.3  We write C for the set of all computable expressions, the union 

of all the C 's. BY definition: A E C * A  SN. Each condition in the 
a 

definition of computability of B has the form: B 2 C * P(C), with P 
some condition on C. 

So computability is preserved under reduction. 

5.3.4 Now we try to express the computability of an expression in terms 

of the computability of its subexpressions. First a lemma. 

Lemma : 

(1) CxlC 2 CxlD*C r D 

( 2 )  <C,D> 2 G , F >  4 C 2 E l  D r F 



Proof: Without main reduction it is trivial. Otherwise it is t-l or a. 

E.g. if <C,D> r <E,F> then C 2 <E,F> 2 E l  D r <El,?> 2 F 
(1 (2) 

q.e.d. By the way, property ( 4 )  even holds in presence of E .  0 

Lemma (computability conditions) : 

(0)  variables are in C 

(1) A SN, C E C, D E C * d,C,D> E C 

Proof: ( 0 )  is clear. (1) , (21, (3) by the previous lemma. (4) as follows: 
Let C E C then C SN so C SN. If C(j) 2 CylD then C t <C1,C2> 

(j) 
with C 2 [y]D. Each of the C. is in C, so [y]D satisfies the re- 

j 3 
quired condition. Similar if C 6 <Dl ,D2>, C (  j) 2 i (D) etc. 

(j) 1 
Proof of (5): Let B,C E C so B,C SN. Induction on p(B). We first 

check the SN conditions. Let C 2 [g]D then D [ B j  E C so SN. Or let 
> C1 @ C2, to prove that {D)C is SN. Well, both C.'s B r i.(D), C - 

J j J 
are in C, D E C and we can use the ind. hyp. to prove that 
{D)C, E C (SO SN) . Further, if {B)C t [y]E (or reduces to <E,F> 

3 
etc.), this is only possible after a main step, so either via some 

DUBJ with C 2 [y]D or some {D)C, where B t i.(D), C t C1 e C2. 
3 3 

Those expressions were in C so CyIE (and < E l k  etc.) satisfy the 

required conditions. 0 

5.3.5 Computability under substitution 

For expressions [y]C such simple computability conditions cannot 

be given. We define an even stronger notion than computability. 

Definition: B is said to be computabZe under substitution (cus) if 

A1 ' -**,A E C, p(z.) 5 p(A.) for i=l,***,n =+ B[;/~D E C 
n 1 1 



Some easy p r o p e r t i e s  a r e :  

(1)  B C u s * B  E C (e.g. t ake  n=O) 

and (2 )  B Cus, B t C * C E C 

Then a lemma: Le t  p(C) : a + a and l e t  F E Cal  * {FIC E Ca2. Then 
1 2  

Proof: C lea r ly  C is  SN. We use  ind.  on R ( c c l ) .  I f  C r CyID, F E Ca l  we 

must prove D[F] E Ca2.  This  holds because {F)C 2 D[FD. I f  

C r D @ E we must prove t h a t  D,E E C. For i (F) E C 
1 a l l  

{ i l  (F) )C E C s o  {FID E C. Now use t h e  ind.  hyp. Similar  f o r  E. 0 

5 . 3 . 6  Lemma: B Cus,C Cus * [y:B]C Cus 

Proof:  Let  C Cus, B Cus, 2 E C of t h e  r i g h t  norms. Abreviate [z/J] by *. 
We must prove t h a t  CY:B*IC* E C. Well, B* E C ,  C* E C s o  

[y : B*]C* E SN. If [y : B*]c* 2 Cy :DIE, F E C of t h e  r i g h t  norm then we 

need t h a t  EtF] E C.  Because C i s  Cus, c [ & ~ / & F D  E C ,  which ex- 

p ress ion  reduces t o  E[FD, q.e.d. I n  p a r t i c u l a r ,  i f  

C* a ( y ) ( E l  @ E 2 ) ,  y 4 FV(E e E 2 ) ,  we have t h a t  (F)(E1 e E2) E C ,  
1 

s o  by t h e  lemma E @ E2 E C ,  El E C ,  E2 E C ,  q.e.d. 
1 

0 

Theorem: A l l  AUT-Pi1 express ions  a r e  Cus 

Proof: Var iables  a r e  Cus by d e f i n i t i o n .  Fur ther  use induct ion on length .  

For t h e  a b s t r  case  use t h e  previous lemma. For a l l  t h e  o t h e r  cases  
* 

use the lemma i n  5.3.4. E.g. t o  prove t h a t  (B)C is  Cus. Le t  be 

a s  i n  the  previous  lemma. By ind.  hyp. B* E C ,  C* E C ,  s o  

{B*)c* E C .  

Coro l l a r i e s :  (1)  A l l  AUT-Pil  express ions  a r e  computable 

( 2 )  A l l  AUT-P i l  express ions  a r e  BT+T-,U-SN 

5 . 4  Strong normalization f o r  AUT-Pi 

5.4.1 The normabi l i ty  of AUT-Pi 

I n  order  t o  extend our r e s u l t s  from AUT-Pi t o  AUT-Pi we must f i r s t  

extend our d e f i n i t i o n  of norm ( see  4 .2 .3) ,  and i m p l i c i t l y ,  of norma- 

b i l i t y ,  a s  follows: 



A, B  of degree 2 * p ( A  e B )  = u ( A )  e w ( B )  

And we must say what the norms of the variables are 

Our definition of normability,,here, is modelled after the norma- 

bility definition of AUT-QE (weak normability), in particular as far as 

the handling of 2-variables is concerned. For details see IV.4.4-IV.4.5. 

First we define norm incZusion c: 

( I )  a a norm * a c T 

Then we say that A  f i t s  i n  B (notation A f i tl B )  if: 

Now we define the norm of constant expressions 

where 2 E is the context of the scheme, in which c (resp. d) was in- 

troduced. 

We want to show that correct expressions are normable, and of 

course that whenever A  E B ,  A fits in B. In view of the instantiation 

rule and the fact that norms can change under substitution (for 2- 

variables) we prove, as in Ch. IV .4.5 a kind of normability under sub- 

s t i t u t i o n .  

Theorem: If 2 f i fl ZiJ] , E +C E D then C U ~ D  f i n  DUAD (note that "fitting 
in" implies the normability of the expressions involved) 

Proof: Ind. on correctness. 



Corol lary:  LC E D * C f i n  D ( s o  C,  D normable) 

5.4.2 Note: By the  above defined concept of normabi l i ty  l o t s  of ex- 

p ress ions  become normable which a r e  c e r t a i n l y  no t  c o r r e c t  i n  AUT-Pi. 

E.g. I A ~ ( I ~ ( C X : B I C ) ) ~  with p(A) I p(B) ,  and (E(B))  with 

p(B) E -+ B 2 .  This is  a consequence of t h e  f a c t  t h a t  AUT-Pi i s  handled 

j u s t  l i k e  AUT-QE: n ' s  a r e  ( a s  regards  norms) ignored,  and 1 ' s  a r e  i n  

some sense  i d e n t i f i e d  with p a i r s .  

5.4.3 Extending t h e  SN-result t o  AUT-Pi 

C l e a r l y  t h e  presence of non-reducing cons tan t s  such a s  1, ll, 

( f o r  2-expressions) and T does not  harm t h e  SN-results of the  previous 

sec t ions .  W e  j u s t  have t o  add 6-reduction. The s u b s t i t u t i o n  ( resp.  re-  

pZacement theorem for SN can e a s i l y  be extended because &-contractions 

i n  B[x/A] 
(LR) 

e i t h e r  t ake  p lace  i n s i d e  A o r  can be mimicked i n  B a l -  

ready. Then we can proceed a s  i n  I V . 4 . 6  o r  d i r e c t l y  prove B normable 

B SN, by ind.  on (1) date(B)  , ( 2 )  R(B). The new case  is when B : d(c ) .  

The C . ' s  a r e  SN by ind.  hyp. ( 2 ) .  Fur ther  we want t h a t  def(d)UEl i s  SN. 
1 

Well, d e f ( d )  i s  SN by ind.  hyp. (1)  and def(d)U?l r def(d)IC,J-*-UCnil. 

So by i t e r a t e d  use of t h e  s u b s t i t u t i o n  theorem we a r e  done. Later we 

can add aq ,  by pp.  

Alte rna t ive ly  we can extend t h e  SN proof by computabiZity t o  t h e  

p resen t  case ,  v i z .  by leaving t h e  d e f i n i t i o n  of computabil i ty unmodified 

and prove computabiZity under s u b s t i t u t i o n  by ind .  on (1) da te ,  ( 2 )  

length.  I n  p a r t i c u l a r  l e t  A * * * , A  E C of t h e  r i g h t  norms, l e t  * stand 
* 1' k 

f o r  tE/z] , l e t  B, , , B* E c. Then we must prove t h a t  d (5)  * E C. The 
n 

B?s a r e  SN. BY ind.  hyp. (1) d e f ( d )  i s  cus,  so  def(d)UB*B E C ,  so SN. 
1 

Fur ther ,  i f  d ( ~ * )  2 [y]E (o r  <E,F> e t c . )  then t h i s  reduction passes 

through def (d) [ B*] (which was i n  C) . 
So, f i n a l l y  we have ~n+an6-SN f o r  AUT-Pi. 
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VII I .6  Some a d d i t i o n a l  remarks on AUT-Pi 

6.1 The connection between AUT-QE and t h e  a b s t r  p a r t  of AUT-Pi 

Here t h e  a b s t r  p a r t  of AUT-Pi is  t h e  p a r t  genera ted by t h e  genera l  

r u l e s  (2.2.1, 2.2.2) and t h e  s p e c i f i c  r u l e s  group I (2 .3 ) .  I f  it werenot 

f o r  the  r o l e  of n, and t h e  r u l e  of product  fo rmat ion , th i s  p a r t  of AUT-Pi 

would be i d e n t i c a l  t o  AUT-QE. 

I n  t h e  i n t r o d u c t i o n  t o  t h i s  chapter  w e  mentioned a l ready  t h a t  t h e  

r u l e  of type- inclus ion i s  somewhat.stronger than t h e  r u l e  of product 

formation.  Th i s  means t h a t  t h e  obvious t r a n s l a t i o n  of AUT-Pi, v i z .  j u s t  

skipping t h e  n ' s  produces c o r r e c t  AUT-QE, b u t  no t  a l l  of AUT-QE. Namely, 

without n, t h e  r u l e  of product formation becomes 

which i s  j u s t  a  s p e c i f i c  ins tance  of t h e  type- inclus ion r u l e  

Let  u s  see  whether s e n s i b l e  use of (I) can y i e l d  something l i k e  
f 

(11). So l e t  4 E[~:EICX:~]T.  Then Z/ E Et{yl$ E [x:crI~ (where $ c o n s i s t s  
C 

of t h e  9 ' s  i n  t h e  reversed o r d e r ) .  So by (I)  E &{y)i$ E T ,  and by 
i + + - -  C 

i t e r a t e d  use of t h e  a b s t r  r u l e  we g e t  E T wi th  Q, 5 [y:Bl{y}Q,. 

C l e a r l y  

+ m 2: m 

which i n d i c a t e s  t h a t  AUT-QE i s  no t  a very  e s s e n t i a l  extension of t h e  

image of AUT-Pi under t h e  t r a n s l a t i o n .  Compare De Brui jn 115, 17 I .  

6 .2 The CR problem caused by E 

I n  Ch. I1 we gave a counter example f o r  BE-CR. Namely [ZIX and 

[y ] i  ( y )  e [y] i  ( y )  a r e  d i s t i n c t  Be-equal normal forms ( j u s t  two 
1 2 

d i f f e r e n t  ways t o  w r i t e  i d e n t i t y  on a $-type).  Th i s  suggests  t o  save 

CR by adding ~ a l t  ( see  2.6) 



However, ~ a l t  and + i n t e r f e r e  i n  a nas ty  way: 

C x I ( - * * { x ) F - - * )  e [ X I ( - * * { x ) G * * - )  < [ X I ( - * * { i l ( x ) ) ( F  e G ) - - * )  e ++ 
C x l ( - - - C i 2 ( x ) ) ( F  e G ) * . * )  > [ ~ l ( ~ * * { x ) ( F  e G ) . * * ) ,  s o  t h i s  does no t  

E 

help .  

I n  p r i n c i p l e ,  CR i s  n o t  too important  f o r  our purpose, we r a t h e r  

need a good d e c i s i o n  procedure f o r  d e f i n i t i o n a l  e q u a l i t y .  J u s t  l i k e  

( i n  V . 4 )  we suggested t o  implement w e q u a l i t y  by t h e  r u l e  

we ConjectZPe here  t h a t  we could genera te  f u l l  e q u a l i t y  ( including E )  

by adding 

{i, (2) IF Q {x)G, { i 2 ( x )  IF Q {x)H * F Q G 8 H 

But i n  order  t o  quarantee  t h e  well-foundedness of such an algo- 

rithm, we need of course  some kind of s t rong normalization r e s u l t ,  

which a p p l i e s  i n  t h e  p r e s e n t  s i t u a t i o n .  

The genera l  p a t t e r n  of t h e  counterexample t o  + ~ a l t - C R  reads  

where 0 i s  a very  genera l  opera t ion  on expressions.  This  shows t h a t  

extensional  e q u a l i t y  genera tes  the  e q u a l i t y  induced by permutative r e -  

duct ions  (sec .  4 . 3 )  0 ({A) (CXIB @ [xIC) ) Q {A)[x]~({x} ([xIB @ [x IC)  ) 

Conversely, we might genera te  p a r t  of t h e  €-equal i ty  by adding 

genera2 permutative reduc t ions ,  paying due a t t e n t i o n  t o  the  thus  a r i s i n g  

SN problem. 

6 .3  The SN-problem caused by E 

We s t rong ly  be l i eve  t h a t  SN holds f o r  t h e  f u l l  AUT-Pi reduct ion 

( including E ) ,  and t h a t  t h e r e  a r e  j u s t  some techn ica l  problems which 

prevent  the  p roofs  of t h e  preceding s e c t i o n  t o  apply t o  t h a t  s i t u a t i o n .  

We b r i e f l y  sketch why each of t h e  t h r e e  proofs  f a i l s  i n  presence of E .  



A - 
not 

not 

F E  

F 2  

A E 

The problem with the first proof (5.1) is that the dead end set 

for, e.g., BE-reduction is not so easy to describe. E.g. 

Cyl{{i (y)}x)F @ [ylii2(y))F is a typical dead end for BE. Of course 
1 

f3q- or @a-dead ends are not manageable either, but an can be included 

afterwards, using pp. 

Then the second proof (5.2). An &-redex h.Jl{il(y) )F @ [yl{i2(y)}F 

can be created by substitution [x/AD in two different ways: (1) from 

X @ [yl{i2(y))F, A iyl{il(y))F (and similar with the right hand part), 

(2) from CylIil(y)lF1 @ Cyl{i2(y))F2, F1ilAD F, F !AD : F. In case (1) 
2 

we are suggested to replace x @ [y](f (y) )F by a single variable z ,  and 
1 

to introduce a new substitution [ z/F]. However, R (p ( z )  ) > R ( p  (x) ) , 
which does not fit in the proof at all. But we can remove this case by 

just considering AUT-PiO. Case (2) does not pose a problem: the sub- 

stitution reduction can be simulated by reduction plus substitution, 

starting from [y]{il (y) )FO @ [y]{i2 (y) IFO, where both F1 and F can be 
2 

constructed from F by substituting A for some of free x's. Besides, 
0 

the second proof is based on replacement. This means that the €-redex 

above can also be created from, e.g., (3) [yl{X)F @ [yl{i2(y))F, with 

il (y) , or (4) [y]{i (2) 3F @ [y]{i2 (y) IF. These two expressions do 
1 

reduce, unless we switch to a generalized form of E~~~ (which does 

solve the problem, though - see below). 
Finally the computability method (5.3) fails because the property: 

C, G E C * F @ G E C is not so easy anymore. For, let 

[xlIil (x) }CylD, G 2 Cxl{i2(x) ICylD. Then we 

C * DQil(A)J E C, DUi2(A)] E C, but we want 

general A E C. 

We have tried to adapt the second SN-proof 

by restricting to AUT-PiD, and by introducing a 

E named E ' . 
alt' 

just know that 

that DEAD E C for 

to this situation, viz. 

liberal version of 

This can be considered a kind of improper reduction in the sense that 

it identifies expressions which in the intuitive interpretation do 

correspond to different objects. A typical way of creating a new E'- y 

redex is, e .g. , from [y]x @ G by the replacement [x/il (y) LR' reducing 

to [yly. One can indeed mimick this by first reducing td [y]x, and then 

apply a new replacement, viz. [z/y]. But the norm of this new x is 

longer than that of the old one. 
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SAMENVATT I NG 

In het Automath - project zij n een aantal wiskundige taZen ontwikkeld 
die geschikt zijn om grote stukken wiskunde 26 weer te geven dat een 

computer de correctheid van de wiskundige redenering kan controleren. 

Het programma dat deze controle verzorgt wordt verificator genoemd. De 

belangrijkste Automath talen zijn AUT-68, AUT-QE en AUT-Pi. 

De Automath talen zijn gebaseerd op systemen van gegeneralizeerde 

getypeerde A-caZcuZus. De taaZtheorie houdt zich bezig met syntaktische 

kwesties, betreffende de definitiegezijkheid, de reduetie-relatie en de 

typerings-rezatie in deze systemen. Drie belangrijke eigenschappen 

waarop de taaltheorie zich richt zijn: (sterke) normaZisatie, gesloten- 

heid en Church-Rosser eigenschap. Deze eigenschappen zijn onder meer 

van belang om de correcte werking van de verificator te kunnen aantonen. 

Dit proefschrift kan worden opgevat als een voortzetting en een 

aanvulling op taaltheoretisch werk van Nederpelt en de Vrijer. Hoofdstuk 

I geeft een overzicht van het Automath project, gaat uitvoerig in op de 

rol van de taaltheorie binnen het project, en wordt besloten met een 

uitgebreide samenvatting van het proefschrift. Hoofdstuk I1 bevat de 

nodige preliminaria. Hoofdstuk I11 behandelt de theorie van afkortingen. 

In de hoofdstukken IV, V en VI worden achtereenvolgend de drie genoemde 

belangrijke eigenschappen bewezen voor AUT-68, AUT-QE en nog enige 

varianten. Hoofdstuk VII gaat in op de theorie van Nederpelt's Automath 

systeem A. De drie belangrijke eigenschappen worden bewezen (dit beves- 

tigt twee vermoedens uit Nederpelt's proefschrift), en tevens wordt de 

vrijer's grote-boom stelling van een nieuw bewijs voorzien. Hoofdstuk 

VIII bevat de theorie van AUT-Pi. Geslotenheid wordt bewezen voor het 

volledige AUT-Pi, alsmede sterke normalisatie en Church-Rosser voor een 

deelsysteem van AUT.Pi. 

Sommige resultaten uit het proefschrift zijn niet alleen van toe- 

passing op Automath maar ook van belang in de A-calculus, en, door de 

formuzae-as-types interpretatie, voor bewijstheorie. 
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