THE
LANGUAGE THEORY
OF

AUTOMATH

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR

IN DE TECHNISCHE WETENSCHAPPEN

AAN DE TECHNISCHE HOGESCHOOL EINDHOVEN,

OP GEZAG VAN DE RECTOR MAGNIFICUS, PROF, IR. J, ERKELENS,

VOOR EEN COMMISSIE AANGEWEZEN DOOR HET COLLEGE VAN DEKANEN
IN HET OPENBAAR TE VERDEDIGEN

OP VRIJDAG 15 FEBRUARI 1980 TE 16.00 UUR

DOOR

DIEDERIK TON VAN DAALEN

GEBOREN TE BERGEYK

DRUK WIBRQ HELMOND

Dit proefschrift is goedgekeurd
door de promotoren

Prof.dr. N.G. de Bruijn

en

Prof.dr. W. Peremans

ACKNOWLEDGEMENTS

To all my former colleagues in the Automath project, for the
fine cooperation. Especially to Bert Jutting, Rob Nederpelt and
Roel de Vrijer, for their help during the last stage of the pre-
paration of the manuscript.

To Marléne Beunis, for her hospitality.

To Lieke Janson, Janna Blotwijk and Adele Hendriks, for the
typing, and to Franka van Neerven, for her kind assistance.

To Prof.Ir. W. Baarda, who so generously offered the facilities
to finish the thesis.

To the Netherlands Organization for the Advancement of Pure
Science (Z.W.0.), for financial support during my work in the

Automath project.

CONTENTS

Chapter I Introduction and summary 1
I.1 Preliminary remarks 1

I.2 A survey of the Automath project 8

I.3 Something on bound variables 16

I.4 The Automath languages 18

I.5 Mathematics in Automath 32

I.6 The contents of this thesis 47
Chapter II Miscellanea 53
I1.0 Preliminaries 53
I1.1 Expressions 56
I1.2 Syntactic identity, a-equality and substitution 59
I1I.3 Elementary and one-step reduction 62
I1.4 Reduction and definitional equality 67
II.5 Some important properties 69
11.6 CR continued 73
II.7 Combined reductions 76
II.8 An informal analysis of CR1 ‘ 82
II1I.9 An informal analysis of postponement 87
IT.10 Multiple substitution 91
II.1! Reduction under substitution; Barendregt's lemma 92
Chapter III The theory of abbreviations; LSP 96
III.1 Introduction 96
II11.2 The definition of LSP 97
II11.3 Some properties 98
IT1I.4 Normalization 99
II1.5 Strong normalization 100
IIT.6 Decidability 106

Chapter IV Strong normalization for first order pure
typed A-calculus with application to AUT-QE 109
Iv.l Introduction 109
IV.2 Normalization and strong normalization
for normable expressions 114
IV.3 The strictly normable expressions 123
IV.4 The normability of AUT-QE 129

Chapter V The E-definition and the closure property

for pure regular Automath Languages 136
V.1 Introduction 136
V.2 On the E-definition 142
V.3 The actual closure proof 156
Vv.3.1 Heuristics 156
Vv.3.2 Closure for gn-AUT-QE 159
V.3.3 Extension to Bné-AUT-QE+ 165
V.3.4 Some easier closure proofs 174

V.4 The equivalence of the E-definition with

the algorithmic definition 178
V.4.1 Introduction 178
V.4.2 The algorithmic definition 182
V.4.3 The equivalence proof 188
V.4.4 The actual verification 194

Chapter VI The Bn~Church-Rosser problem for

generalized typed A-calculus 203
VI.l Introduction 203
VI.2 A first result concerning Bn-CR for regular languages 204

VI.3 A proof of CR for full Bn-reduction

from closure and strong normalization 208

Chapter VII The algorithmic definition and the

theory of Nederpelt's A: the big tree

theorem, closure and Church-Rosser 218

VII.1 Introduction and summary 218
VITI.2 The definition of A and An 220
VII.3 The closure proof for A 225
VII.4 The big tree theorem 230
VII.5 Closure and Church-Rosser for An 242
VII.6 Various equivalence results 248
Chapter VIII Some results on AUT-Pi 263
VIII.1 Introduction and summary 263
VIII.2 A short definition of AUT-Pi 267
VIII.3 A short proof of closure for AUT-Pi 274

VIII.4 A first SN-result for an extended system 277

VIII.5 Three proofs of Bm+~SN, with
application to AUT-Pi

VIII.6 Some additional remarks on AUT-Pi

References

Samenvatting

Curriculum vitae

288
300

303

308

309

I INTRODUCTION AND SUMMARY

This thesis gives an account of the author's language theoretical
studies on the Automath languages, during his work in the project
Mathematical Language AUTOMATH (under supervision of Prof. De Bruijn)
at the Eindhoven University of Technology. These studies can be con-
sidered as a continuation and completion to previously published work
of Nederpelt [51] and De Vrijer [701.*)

Actually, an introduction to the remaining chapters of the thesis
is hardly necessary because they are formally self-contained and pro-
vided with lengthy introductions themselves. However, we like to make
some general remarks on the Automath project, hoping to clarify some
points which have sometimes given rise to misunderstanding. Most views
expressed are common in the Automath project, but some are personal
views, not necessarily shared by other workers in the project.

We start with preliminary remarks, followed by a survey of the
2utomath project. We discuss the language theory and its role in the
project. We give an informal introduction to the various Automath
languages and explain how mathematical reasoning can be represented.
Finally we swmmarize the contents of this thesis. Occasionally we make
a comparison with related logical systems and related enterprises else-
where. For more information on the subjects of this chapter we refer to

De Bruijn [13,20], Jutting [37], Zucker [77] and van Daalen [27].

[.1 Preliminary remarks

1.1 “ Reliability and formal rigour

The Automath project originally arose (around 1966) from the idea
that it was desirable to increase the dependability of pieces of mathe-
matics by having them checked by a computer. To this end the mathematics
involved was to be formalized in a mathematical language allowing
computer verification.

First something about this part of the motivation. One might wonder
whether greater dependability is desirable at all - and if so, in what

parts of mathematics -, and whether formal rigour (as imposed by the

*)

Numbers in brackets refer to items on the list of references.

computer) contributes at all to dependability. Critics sometimes argue
that correctness of a mathematical text, or of a proof, after all depends
on human insight in the situation and understanding of the concepts in-
volved. And, consequently, they sometimes suggest that formal rigour

can be opposed to reliability, because the presence of too many formal
details may spoil the understanding.

There is, generally, some point in this criticism, but all the same,
many mathematicians sometimes produce faulty proofs and, even, false
theorems. This just means that they have been cheated by their intuition.
Such mistakes cannot be said to be caused by lack of rigour but, rather,
would have been prevented by being more rigorous. E.g. by formalizing
the subject matter in a well-chosen formalism. In general, the possibil-
ity of computer verification plays a minor role here and, as De Bruijn
puts it, the computer is just there to set the standards. Serious errors
won't survive the process of formalization and will never be fed into
the machine. However, after having taken the trouble to produce a
"fully formal” proof with possibly lots of technical details it is nice
to have a patient computer actually waiting to read it and relish the
details. In particular, because on rereading, the details indeed may
spoil one's own understanding.

Besides (this is our second point against the criticism), we think
that the latter situation can be avoided by using a good formalism,
which allows a formalization faithful to the informal ideas one had in
mind (see also 1.4). *)

It has, of course, never been intended that computer verification
might replace human understanding, and that formalization might cover
all of mathematics. We just note that formalization sometimes can

support our understanding and guide our intuition.

1.2 The "data bank" aspect

According to the above criticism one never can rely on results one
does not fully understand. Such an orthodox point of view we think un-
satisfactory; one sometimes wants to use what might be called "more or
less black boxes"”, e.g. one sometimes wants to believe a thecrem without
knowing, or without quite understanding, its proof (e.g. one does not
understand the proof any more).

*) Numbers not in brackets refer to sections in the present volume; if

not starting with a Roman numeral they indicate sections inside the
current chapter.

Here we touch a certain "data bank" aspect (as opposed to the
checking aspect) of such a formalization project: the codification and

storing of a large amount of dependable and unambigous mathematics.

1.3 The experimental character of the project

Thus far about the original motivation. The present author likes
to consider the Automath project as an experiment in order to answer
the question: can we develop formalisms (mathematical languages), in
which mathematical texts actually can be formulated in such a way that
mechanical verification (by a computer) is actually possible. Apart
from the emphasis on computer verification there is another difference
as compared with earlier formalization projects: it is required that
both writing (i.e. translating mathematics into Automath) and checking
are practically feasible (and it would be nice if it were readable
too), and that the formalism is kind of universal, i.e. suitable for

large parts of mathematics.

1.4 The correspondence with ordinary reasoning

In Automath it is attempted to achieve the feasibility of the
writing stage by keeping as close as possible to ordinary informal
mathematical reasoning, and to existing good mathematical habits. This
then was to result in the possibility of a fully formal proof not
blurring the understanding - compare a well-structured computer pro-
gram -.

Keeping close to ordinary reasoning also serves the feasibility
of the checking process: in principle we do not expect more from the
machine than we would expect from a human checker - though of course
we expect the machine to be much faster and more accurate than a
human -. The feasibility of the checking reqguires that all of the rea-
soning is formalized in the language, whereas usual logical systems
generally formalize only part of it and leave the rest to informal meta-
language. In particular we mention the handling of proofs, the handling
of variables and the handling of abbreviations (i.e. the introduction

of new defined constants, see 4.3).

1.5 The didactical aspect

A side effect of the analysis of mathematical reasoning needed for
the development of a formalism meeting the above gpecifications might
be a better insight into ways of presenting and teaching mathematics.
This, didactical, aspect of Automath (beside the aforementioned check-
Zng and storing aspects) proves indeed to be important: Nederpelt and
De Bruijn have used Automath-like systems to explain first-year mathe-
matical students and mathematics teachers-to-be some principles of
mathematical discipline..Research in this direction now falls under the
WOT project ("wiskundige Omgangs Taal", this is Dutch for: mathematical
vernacular), which is going on in Eindhoven. One tries to codify ele-
ments of natural mathematical reasoning into a rather precise language

which is inépired by Automath but does not particularly aim at computer

verification.

1.6 The possible foundational contribution

From the modest statement of the aims of Automath, above, it will
be clear that Automath has 710 strong foundational claim - in the usual
logical sense - or philosophical position to defend like some of its
forerunners. But if one wants to hear such a claim it might be the
following one: that it is possible to present large parts of ordinary
mathematics in Automath in a natural way. In particular that large
parts of even classical reasoning fit quite well in the "minimal logic"
of Automath (see 5.10) and that large parts of classical mathematics
can be founded on the typed A-calculus frame work of Automath (see 5.3)
rather than on axiomatic set theory. (In fact this claim is a sine gua
non to the Automath project.)

Besides, the original, simple wish to increase the reliability of
mathematics can,. from a practical point of view, also be considered as

a foundational contribution.

1.7 The nature of Automath

A more ambitious, less carefull phrasing of the aim of Automath,

viz. the development of a language in which all mathematics can be

expressed so meticulously that syntactical correctness would entail
mathematical correctness, has sometimes given rise to confusion.
Logicians then argued that such an enterprise was doomed to failure,
firstly, because it would contradict the incompleteness theorems and,
secondly, because it would contradict the wundecidability: the computer
certainly would not be able to check for correctness (to decide, as one
says) any substantial part of mathematics.

We will explain that such criticism is hardly to the point. The
baste system of Automath just covers a tiny part of mathematics, so to
say mintmal predicate logic. The Automath user himself has to add to
this basic system all the axioms and constants necessary for his specific
area of interest, and he has to supply more axioms and constants when-
ever he wants to increase the expressive power of his language or the
strength of his theory. Further, the computer is certainly not supposed
to decide the truth of the axioms, it is even not supposed to decide
derivability from the axioms, but just verifies derivations (i.e.

proofs) .

1.8 Some proof checking systems

In the Automath project the computer is not expected to check (e.g.
to prove) theorems but, rather, is expected to check whether something
is a proof and whether it proves a certain theorem. Thus, the project
can be compared with two other major proof-checking projects: the FOL
(First Order Logic) project of Weyhrauch c¢.s. in Stanford [21, 73], and
the LCF (Logic Of Computable Functions) of Milner c.s. in Edinburgh
[32].

FOL is based on classical first order logic, in natural deduction
style, and is intended to be universal like Automath. However, according
to Bulnes [21], the system ({(still) has some difficulties in asping
with sorts (or types) which seems to make the system less appropriate
for parts of mathematics not based on classical set theory.

The kernel of LCF is a system called PPA (polymorphic predicate
A—caleulus) a system of typed A-calculus plus fixed point induction
plus logic, also in natural deduction style, based on Scott's work in
the theory of computations. It is especially intended for problems con-

cerning algorithms and programming languages.

In principle, these two systems are not more interactive than
Automath, since in Automath as well line after line can be fed into the
machine, thus incrementally constructing pieces of correct mathematics.
However, recently both systems have been enriched by a strong heuristic
mechanism allowing socalled top-down proof (i.e. working from the results
backwards to the assumptions). In fact, by these mechanics, called
GOAL (for FOL) and ML (for LCF) respectively, a kind of clever mixture
between a proof-checker and a theorem-prover has been created (in fact
the "top-down tacticals" are just a part of ML, which also contains
some other useful mechanisms).

The basic elements of Automath just include what may be called
"constructive reasoning”, as borrowed from ordinary, informal, sound
mathematical practice. Of these we mention the "linear" natural deduct-
ion system (see 4.5,p.23)used in the construction of both proofs and
objects, the facility to abbreviate expressions by a new name (with para-
meters) at any desired moment (see 4.3, and the introduction to
Ch. III), and the suppression mechanism for "fixed" parameters (see,
e.g., [27, sec. 2.15]). A consequence of the logical weakness of the
basic system is the required universality: the Automath user is even

free in the use of his logilecal axioms.

1.9 Proof checking vs. theorem proving

When constructing a proof-checking or theorem-proving system one
has to decide how to devide the total amount of work between the human
writer and the machine. In general it is assumed that easier writing
makes more difficult checking and vice-versa. A distinctive principle
of Automath languages always has been that the computer actually must
be able to cope with its task. So, at least, the system the machine is
" supposed to decide must be formally decidable. In fact we want feasible
decidability (cf. 2.10). On the other hand it is required that the
writer's burden is as light as possible.

A nice point is that, in contrast with the above stated general
view, easier writing sometimes makes checking easier too. Viz. if the
system allows the writer to omit parts of the argumentation these parts,
of course, do not need to be checked! But, on the other hand, a certain
redundancy will help the machine to detect the, almost inevitable, minor

errors at an early stage.

In view of feasible decidability general theorem proving is out of
the question. But it 28 in the spirit of the Automath project to success-
ively extend an existing, working, verification system with new tools
that handle additional, feasible tasks. In such a way one might turn
one's proof-checking system into a partial truth-checking (i.e. theorem
proving) system, notably in well-defined restricted domains. Put differ-
ently, the machine might be allowed sometimes to calculate facts, rather
than proving them. Although, if one would allow the user of the system
to program such attached mechanisms himself, it would be preferable,
if also a proof would be generated and checked (cf. 2.3).

In fact, the Automath proof-checking system has always contained
such a partial truth-checker, viz. a decision procedure for the formulae
(definitional equations and typing formulae) of the underlying typed

A-calculus (see 4.1).

1.10 Some characteristic features of Automath

We just mention here (but will come back to it) that the parallel
natural deduction treatment of objects and proofs, which we think quite
natural, and characteristic for Automath, gives rise to a generalized
typed A-calculus. By "generalized" we mean that the types are not given
beforehand, but are rather constructed along with the terms and can
have complicated form (cf. 4.1). In IV.l there is given a further
classification of such systems, into pure, extended and arithmetical
systems. The pure systems have the ordinary A-calculus operations only,
the extended ones have additional logical operations, and the arith-
metical systems have arithmetic built in in the form of a recursion
operation. The pure and extended systems are the subject of this thesis.

The Automath languages AUT-68 and AUT-QE (4.5-4.7) belong to the
pure, the language AUT-Pi (in Ch. VIII) belongs to the extended systems
and there are no arithmetical Automath languages. This is a fundamental
choice: the addition of a built-in recursor might give rise to definit-
ional equations which are not feasibly decidable and, besides, we don't
think that the presence of a recursion would make the representation
of ordinary mathematical reasoning any easier. Consequently, the natural
number structure is not built in, but has to be introduced axiomatically,

just like any other mathematical structure. Needless to say that the

Church (or, any other) representation of numbers in A-calculus does not

come in.

1.11 Propositions as types

The parallelism between objects and proofs, types and propositions,
definitional equality and proof theoretic conversion, for short: the
propositions-as—types notion of construction, was first hinted at by
Curry and Feys [25]. Later on it was developed further by Howard [34]
and employed by him and other logicians (Scott[62]), Prawitz [60), Martin-
Lof [45), Girard [31]) in founding a theory of constructions, in proof
theory, and in constructing an intuitionistic theory of types. In the
meantime, it was independently discovered by De Bruijn (he also inspired

Scott [62]) and used in the Automath project.

1.2 A survey of the Automath project

2.1 The AUT-QE stage

The experimental, practical character of the project clearly re-
quired: (i) the development of appropriate languages, (ii) the construct-
ion of programs for verifying these languages, (iii) the actual writing
and checking of large pieces of mathematics.

There exists not just one Automath language, but a whole family of
Automath languages. The first language (around 1968) which had the
characteristic typed A-calculus structure was AUT-68. Before 1968 there
were just some sub-languages: LSP (see Ch. III) which codified the
abbreviation device, PAL which already had type structure but still
lacked A-calculus (see [11]). Experience with AUT-68 led almost imme-
diately to the construction of AUT-QE, which proved to be quite suitable
for the then adopted propositions-as-types style of writing mathematics.

So the first language around which the project was centered was
AUT-QE. De Bruijn's sketch of a verifying program was elaborated and
implemented by Zandleven [75]. Jutting translated Landau's "Grundlagen
der Analysis", and his translation was completely checked by the veri-
fying program. This enterprise has been extensively documented in [37].

The Chapters V, VI of this thesis are mainly devoted to AUT-QE.

2.2 The AUT-Pi stage

It was always foreseen that, on the basis of the experience with
AUT-QE, higher-level, easier-to-write, so called super-languages were
to be developed, possibly for "special purposes", i.e. specific areas
of mathematics. The second language playing a central role in the project
was AUT-Pi, developed by Zucker.

This is indeed a kind of super-language extending AUT-QE in two
respects., Firstly, the mathematical basis of AUT-Pi is somewhat stronger
(it is an extended system, i.e. there is slightly more logic built in).
This answered, e.g., in combination with the principle of irrelevance
of proofs (see 5.2, and [20]) Jutting's need for easier embedding
and "exbedding" facilities (see [37]). Secondly it contains some handy
"syntactical features" which make life for the Automath user somewhat
more comfortable, We mention the Synt-facility for syntactical operat-
ions on expressions (which, i.a., allows to omit redundant parameters
(but see 1.3)), and the presence of strings and telescopes. More about
this can be found in [37, 77].

However, the use of these syntactical mechanisms is not restricted
to AUT-Pi, they can as well be added to AUT-68 and AUT-QE. This seems
to be particularly worthwile, because the strings-and-telescopes in

some sense duplicate the pairs-and-products of AUT-Pi (see VIII.1.5).

Zucker (assisted by A. Kornaat) employed the new language for a
modern, thoroughly classical (in the sense of '"classical logic')
treatise on the principles of real analysis, thus contributing to the
foundational claim mentioned above. A survey of the AUT-Pi part of the
project is to be found in [77].

A new verifying program was designed by Zandleven, developed by
him and Kornaat, and is now being finished by Jutting. Apart from the
fact that this new verifying program accepts AUT-Pi as well as the older
languages, it also contains improved facilities for handling bound
variables (see 3.4) and for storage manipulation. The latter proved
necessary because with the first verificator, which left the handling
of the extensive storage requirements to the computer system, working
in interactive mode turned out to be cumbersome.

Apart from the two major Automath texts produced by Jutting, Zucker

and Kornaat there have been formalized many smaller pieces of mathematics

10

into Automath by a variety of authors, mostly students. In Bulnes

it has been suggested that the size and scope of the proof checking
projects performed in FOL were comparable with size and seope of e.g.
Jutting’'s opus. The present author disagrees: The amount of material
handled in FOL is in no way comparable to what has been done in Auto-

math.

2.3 The multi-level approach

The words "higher-level languages” suggest a separation between an
object language, and a formal super-language which provides easier
writing. Texts in the latter language may then be mechanically trans-
lated into object-language, which in turn is to be verified by the
machine. In AUT-Pi, contrarily, there is, in principle, no such separat-
ion of levels: all the additional features are incorporated into the
language. We write "in principle", because the Synt-facility is indeed
somewhat related to this multi-level approach.

There have also been certain proposals actually directed towards this
multi-level framework. E.g. Wieringa (now working on the application of
Automath to programming language theory), has once constructed a system
that answers simple arithmetical questions (n * m = ?) and provides the
resulting equation with a proof in AUT-QE, This AUT-QE proof turns out
to be correct, of course! Similarly, there has been constructed a mecha-
nism that decides propositional formulas and provides the true ones
with an AUT-QE proof [53,74]. Compare also the discussion in 1.8 about
partial theorem-proving mechanisms.

In FOL and LCF partial theoremprovers and multi-level approach are
present too. We mention the FOL procedure MONADIC, which decides formulas
of monadic predicate calculus, and the ATTACH facility, allowing the
machine to establish combinatorial facts by actual calculation. As for
LCF, the meta-language ML is presented as a kind of programming language

for manipulating the objects of the PP) system.

2.4 The theoretical aspects

Of course the development task in the project, viz. of developing

languages and verifying programs, and of writing mathematics in Automath,

11

also gave rise to theoretical studies. Here we distinguish:

(1) language theoretical studies,

(2) studies concerning the way mathematics is formalized in Auto-

math.

This thesis deals with the language theory (1), which we define as
the theory of the underlying typed A-calculus of the Automath languages.
Object of study is the syntactical structure consisting of the Automath
expressions, provided with the relations reduction, definttional equality
and the typing relation (or typitng function). See

As regards (2), we mention some typical logical questions: what do
we gain and loose by such formalizations, and: what is the relation
between the Automath formalization and, say, some standard formulation
of a piece of mathematics. Such questions are interesting, mostly be-
cause of the unconventional way in which mathematics is formulated in
Automath. In particular, the fact that the proofs explicitly enter the
Automath formalization is important. E.g. it allows detailed analysis
of proofs, and of reasoning, and it gives rise to, as we say, generalized
logZie (see 5.10,[20] or[77]).

Then the studies (2) can, i.a., indicate what Automath language is
suitable for what kind of mathematics. Roughly speaking, we might say
that (2) concerns semantical questions, in contrast with the basically

syntactic questions of the language theory, treated below.

2.5 What is language theory?

The results of the language theory are important for the construct-
ion of the verifying program and for proving its correctness. Further
they serve as a foundation for the study of mathematics in Automath,
i.e. the studies (2) mentioned above. E.g. the consistency of the under-
lying typed A-calculus (as provided by Church-Rosser theorems and the
like, see below) is clearly a prerequisite for the consistency of mathe-
matics formalized in Automath.

Nevertheless, the language theory concerns the expressions and
formulas as mere syntactical constructs, thus abstracting from possible
mathematical content. Hence, the language theory also abstracts from
particular sets of constants and axioms (socalled books) belonging to

a particular piece of mathematics.

12

We take the point of view that the languages of the Automath family
are characterized by their set of correct (i.e. well-formed according
to the rules and restrictions of the various languages) books, formulas
and expressions, rather than by a certain specific definition, i.e. a
specific set of rules. Two definitions are said to be equivalent if they
define the same language. One language is said to be an extension of
another language if its set of correct expressions, books etc. contains

the set of correct expressions, books etc. of the other one,

2.6 The aims of the language theory

Now we mention some typical theoretical aims. On the one hand, the
design and comparison of language definitions, in particular the compa-
rison of socalled E-definttions, which generate the language in question
by a set of production rules, with the algorithmic definitions which
describe the language by giving its verifying program.

On the other hand there is the comparison of the distinct languages,
leading to conservativity and unessential— oxr definitional extension
results (see V.3.3 for the terminology).

Last but not least we mention the decidability of the Automath
languages, which is, in principle, essential for the aim of the project,
mechanical proof-checking. The latter goal (to prove the decidability)
consists of: (l) indicating a decision procedure, (2) proving its equi-
valence with a given language definition (these parts can be skipped if
the language in question is given by a definition of the algorithmic

type), (3) proving the termination of the indicated procedure.

2.7 Three desirable properties

The main tool of the language theory is the detailed study of the
socalled reduction relations involved. Roughly speaking, reduction of
expressions amounts to step by step evaluating, step by step transforming
the expression (cf. 4.3), until possibly an irreducitble (or: normal)
expression is reached. Definttional equality is the equivalence relation
generated by reduction (the precise definitions are in II.3-4).

Now three important desirable properties of the systems, in con-

nection with reduction and definitional equality, are: (1) normalization

13

and strong normalization, (2) the closure property, (3) the Church-
Rosser property.

Hormaltzation states that all the correct expressions indeed reduce
into a normal expression, i.e. there is a reduction sequence, a sequence
of expressions produced by successive evaluation steps (reduction
steps), ending in an irreducible expression. Strong normalization says
that all the reduction sequences of correct expressions terminate. The
closure property (this term is due to Nederpelt) says that correct ex-
pressions remain correct under reduction. Finally the Church-Rosser
theorem (a corollary of the Church—Rosser property) states that two de-
finitionally equal expressions have a common reduct, i.e. an expression

to which they both reduce. For precise definitions see II.5.

2.8 Formal vs. feasible decidability

A typical application of Church-Rosser theorem and normalization
is the deetdability of the definitional equality on the set of correct
expressions. First, by the Church-Rosser theorem we have socalled
uniqueness of normal forms: An expression has at most one normal reduct.
So by combining this with normalization we can define the normal form
of an expression. Then, thanks to these properties, two expressions are
definitionally equal iff they have the same normal form. These can be
effectively computed, thus yielding decidability (of definitional
equality, from which the decidability of the typing relation follows).

However, computing normal forms is not a very practical way of de-
ciding definitional equality, because normal forms can be very long and
complicated expressions, and the reduction sequences leading to them
often require many reduction steps. A more practical decision procedure
rather relies on strong normalization. Namely, when confronted with two
expressions A and B we can try to successively apply well-chosen re-
duction steps on either A or B until we possibly arrive in a common reduct
(thus establishing definitional equality) or we arrive in reducts
A' (of A) and B' (of B) which can be recognized not to be definitionally
equal. Strong normalization warrants that this process anyhow terminates,
no matter what reduction strategy has been chosen. Although, in the
worst case it might end in normal forms A' and B', in particular this

might happen if 4 and B are not definitionally equal.

14

Since reducing to normal forms is simply not acceptable in feasible
verification procedures, the importance of the formal decidability result
and of the completeness of the indicated more practical decision proce-
dure must not be overemphasized (as observed by De Vrijer in {79]) -
though these facts are, of course, important for a good understanding
of the procedure -, In practice, in the Automath project, the action of
the verifier can be explicitly bounded by giving a suitable upper limit
to the amount of work (e.g. number of steps) it is allowed to perform
when trying to establish a definitional equation. If, within this bounad
no common reduct is reached the equality of the two expressions is pro-
visionally refused and the verifier will ask for further information.
This, we think, is in full accoxrdance with the fact that, in principle,
the verifier is not expected to do more than a human checker. For more
comment on actual verification see I1II.6, V.4.4 and VIII.6.

Strong normalization has, apart from this, more or less practical
application, some theoretically useful consequences. E.g. it simplifies
the Church-Rosser proof in any case, and it seems indispensable for the
case where surjective pairing is present. Besides, certain proofs of
closure (for Nederpelt's A) depend on strong normalization (in fact on
an even stronger termination property, the big tree theorem).

cf. vIii,1.2, VII.3, VII.S,

2.9 The consequences of closure

As an application of closure it is sometimes mentioned that it
saves time for the verifier. Namely that the verifier does not need to
check for correctness again and again when reducing an expression.

More specific, the combination of closure and Church-Rosser is
important in the verification procedure. First, the Church-Rosser
theorem says that definitional equality (via any sequence of correct
expressions) can be replaced by definitional equality established via
a common reduct. Secondly the closure property states that the latter
equality passes through correct expressions only.

Besides, closure is connected with many other interesting properties,
which are in fact characteristic for the Automath languages, like pre-
servation of types (under reduction; this property is elsewhere some-

times called closure of the types under reduction), untqueness of types

15

(this means that proper inclusion of types is impossible), uniqueness

of domains, and soundness of (definitional) equality with respect to

expression formation and typing relation. See 4.1, 5.4 and V.1.3.
Further, closure is necessary in the fn-Church-Rosser proofs

(see VI), for showing the eguivalence of various language definitions,

and for showing the connections between the various languages,

2.10 The "unstability" of the difficulties of language theory

When proving the nice properties connected with closure one often
uses induction on the definition of correctness (for terminology about
induction see 1I1.0). This means that the choice of definition, i.e. the
order in which the expressions are generated, can be important.

In fact, the present author thinks it surprising Aow important the
choice of definition can be in this respect. Example: A proof of closure
directly from the algorithmic definition turns out to be rather involved
(see VII.3.3), whereas De Vrijer [70] formulated his system AA-%
(essentially AUT-QE+, see 4.9) in such a way that closure was straight-
forward. (On the other hand, De Vrijer had to prove his big tree theorem
in order to get decidability, whereas decidability for the algorithmic
system just follows from normalization).

Similarly, there is much difference between closely related
languages, as regards the difficulties they pose in proving their nice
properties: Seemingly harmless modifications of the languages - hardly
increasing their expressive power - can make some parts of their
language theory considerably more difficult. We mention the transition
from AUT-68 to AUT-QE, from AUT-QE to AUT-QE+, or the extension from
AUT-QE+ (even without type-inclusion) to Nederpelt's system A. See sec.
4 for the characteristics of these languages. And there is the addition
of the "extensional" reductions n, o and ¢ (II.3) which essentially
complicate the Church-Rosser proof (e even spoils the property) without
contributing much to the expressive power (see e.g.[37, p. 42]). By the
way, the phenomenon that hardly impressive modifications can give rise
to considerable extra difficulties is itself the raison d'étre of a
large part of the Automath language theory: Some properties (closure,
Rn-Church-Rosser) are interesting properties in Automath, but in ordinary
typed A-calculus just trivialities, though the Automath languages can

be considered as mere generalizations of the latter system!

16

Returning to the Automath languages: generally, we have chosen the
strategy of first proving the nice properties for a - in this respect -
simple system, and then trying to extend these results to more compli-

cated languages. See V.3, VII.6.

1.3 Something on bound variables

3.1 In this thesis we consider expressions modulo a—conversion (re-
naming of bound variables), i.e. our relation of syntactical identity =
actually stands for a-convertibility (II.2.2). So, in the sequel, we
leave the complications concerning'the handling of bound variables out
of the discussion. This can be accounted for, e.g., by referring to
Curry's clagsical exposition on substitution [25], to Nederpelt's notion
of distinctly bound expressions [51], or via the correspondence with

one of the proposals to eliminate the names of bound variables alto-

gether (De Bruijn [10]), Staples [66]).

3.2 Both these proposals for nameless dummies reflect the idea that a
bound variable occurrence is just an open position in an expression,
which has to be uniquely linkable to its binding A. De Bruijn performs
this unique linking by replacing such an open position with a positive
number, the reference depth, viz. the distance to its binding A. I.e.
the number of A's one encounters scanning the expression from within
until one arives at the binding A (the latter included). E.g. the bound
occurrence & in AXy+y(yx) has depth 2, the two bound y's have depth 1.
Of course the binding variables going with a A can be skipped in this
notation., Staples, on the other hand, replaces all such open positions
with one and the same standard symbol (one might as well leave them
open) and provides the linking information by attaching a list of posit-
ions to every A. These positions are coded in the form of binary strings,
with O standing for left part and 1 for right part of the expression.
E.g. the position @ in Ay-y(yx) is coded 111, and the y's in y(yx) have
codes 0,10 respectively.

In other words, in De Bruijn's notation one counts backwards from
a bound position to its binding), in Staples' notation one counts for-

wards from a binding A to the positions it binds. Example: the name-

17

carrying expression Axy°y(yx) becomes A(A(1(12))) and A(111) (A (0,10) (x(xx)))

respectively, where we have taken X for Staples' standard symbol.

3.3 De Bruijn admits that his system is not particularly suitable for
(1) easy reading and writing, but claims it to be good for both (ii)
metalingual discussion and (iii) mechanical manipulation - what is was
invented for, in the context of the Automath project -. In fact, De
Bruijn's system is just the symbolic representation of the most straight-
forward computer implementation of A-expressions.

Staples thinks his system is better than De Bruijn's for purposes
(i) and (ii) and does not know about (iii). The present author thinks
there is not much difference between the two systems as regards (i)
and (ii) (probably De Bruijn's is somewhat bettexr for (i)), but thinks
that De Bruijn's is definitely superior for (iii). He t‘hinks further
that both systems, when compared to ordinary name-carrying A-calculus,
are better for (ii) - unless, of course, one wants to study o-conversion -
but so much inferior for (i) - at least to people accustomed to ordinary
notation but probably to others as well ~ that he has preferred the

ordinary approach in this thesis.

3.4 Zandleven has actually used De Bruijn's system in the implementation
of Automath, extending it to a system of socalled postponed substitution:
substitution instructions are incorporated into the syntax of the sys-
tem, and so, they can be postponed until needed (e.g. for establishing
definitional equality). Since the substitution instructions are also
coded by means of reference depths, we call the system a system of
tterated references (documented in [38]). Closely related are De Bruijn's
system of reference transforming mappings [16] and Wadworth's system of
graph reduction [72]. Wadsworth's system is not namefree, but he surely
hints at namefree implementation. De Bruijn and Wieringa[19,80] have also

studied even more general namefree A-calculuses.

3.5 In a review [63] of De Bruijn's article [10], Seldin suggested that
combinatory logic is as good as any other system for nameless represent-
ation of bound variables. Since most A-calculus theories can only parti-
ally be represented in combinatory 1logic (see, e.g., Hindley [33)), and

since the usual translations are rather clumsy (though perhaps Turner's

18

recent proposal [78] might be satisfactory) we think that Seldin's
remark is not quite correct. (Lately (Swansea, 1979, oral communication)

Seldin seemed to agree with this view himself,)

1.4 The Automath languages

4.1 General language rules

We give a tutorial survey of the characteristics of the several
Automath languages. Other introductory references on AUT-68 and AUT-QE
are [27,11]), for AUT-SL see VII.1 or [51], for AUT-Pi see VIII.1 or [77].
See also the'discussion in IV.1.

We have already announced the generalized type-structure of Auto-
math: the types can be complicated expressions themselves (e.g. they
can depend on variables), they are constructed along with the terms and
hence, the typestructure cannot be given beforehand ~ as is usual in
ordinary typed A-calculus -.

So the type-assignment is itself part of the system and does not

belong to metalanguage. Consequently the system has besides formulas
A4 Q8B

expressing the definitional equality of the expressions 4 and B, also

formulas

AEB

standing for A has type B. An alternative notation for Q is 2 or just =
(e.g. in[11, 37,70]1), for 4 E B one sometimes writes 4 : B (in [20,77])).
In fact, in accordance with the implicit character of definitional
equality (see below), the (Q-formulas are not written down, when actually
ustng the Automath system, but are just introduced in the language
theory for formal purposes.

All Automath languages have the right hand equality rule (or rule

of type conversion)

AEB BQC=AEC

19
Most languages also have the left hand equality rule L(Q
AEC, AQB=>BEC

as a derived rule (contrarily to the right hand rule, which is part of

the language definition). Further, most languages satisfy uniqueness

of types
AEB,AEC=>BQC

i.e. the "converse" of type conversion. In such languages thexe can be

defined an operation typ, such that, for all correct 4,

A E typy, and

A E B=BQ typ(d)

(this explains why the decidability of Q entails the decidability of E).
The expressions are formed from variables X, ¥ etc. and constant-
expressions c(A1,~~-,Ak) by the operations of A-abstractton and applicat-—
ton (in the socalled pure languages AUT-68, AUT-QE, AUT-SL) and possibly
other operations (in the extended system AUT-Pi). Expressions formed
according to the rules and the restrictions (in particular the type
restrictions) of the various languages are said to be the correct express-
ions of those languages, in contrast with the (general) expressions just

resulting from unrestricted use of the formation operations.

4.2 Abstraction and application

The operation A-abstraction leads to abstraction—expressions
[x:A1B. Generally such an expression can be interpreted as the function
xx:A'B' with domain 4 and producing values B[D] when applied to argu-
ments D E A. Here the postfix [D] belongs to the metalanguage; it is
short for [«/D], i.e. substitution of D for the variable z.

The application operation constructs the application expression
{A}B. This expression must be interpreted as the result of applying the
funetion B to the argument A, i.e. the object usually denoted B(4) or
BA. The choice of putting the argument in front, between brackets,

combines nicely with the notational habit of putting the binding variable

x:A in front too, between a different kind of brackets, and is generally

20

preferred in the Automath project. Of course, people grown up with the
usual A-calculus conventions find it difficult to get used to such a

new notation. (Admittedly, it would have been consistent with our notat-
ion for application to put the substitution operator in front too. How-
ever we‘do not find this too important because substitution just belongs

to metalanguage.)

4.3 Reduction and definitional equality

The definitional equality is a restricted form of eguality, just
covering certain identifications which in ordinary mathematics are
understood without any explicit justification., It is defined in a com-
binatorial, syntactical way, viz. as the equivalence relation generated
by socalled reduction steps. Each reduction step replaces a part of an
expression, a redex, by another expression, a socalled contractum. This
is the usual terminology in A-calculus, where definitional equality is
often called convertibility. In order that the so-defined relation is
acceptable as definitional equality, it must clearly be reguired that
redex and contractum are intuitively equal. Our notation for reduction
is 2, The reductions associated with abstraction and application are

B- and n-reduction:

B-reduction: {4} x:B1C = CLA]

2

2

n-reduction: [x:81{x}C = ¢ if ¢ does not depend on x.

There is also associated a reduction (called §-reduction) to the
expressions d(Al,'*-,Ak) where d is a defined constant. For such defined

constants defining axioms (abbreviations, with parameters)
d(xlr"'lxk) = Dﬂxl'.”'mk‘ﬂ

are given. Here the postfix ﬂxl,---,xk] is to indicate that D may depend
on the variables shown.

The S§-reduction reads
d(All"'lAk) 2 DﬂAl’.'.’Ak]]

where ﬂAl,-~-,AkH stands for ﬂxl,---,xk/Ai,---,Ak], the simultaneous

21

1,---,xk. Our 6-reduction is distinct from

other &-reductions in the literature (cf. II.3.2.4).

substitution of AI"..'Ak for x

The equality generated by B, n and ¢ indeed corresponds to the in-
tuitive interpretation of abstraction and application, and to the idea
of abbreviation. However, certain restrictions have to be fulfilled. In
particular, n-equality is only acceptable if the ((in the n-redex,
above) is also a function, with domain B. Since in the general, unre-
stricted expressions such provisions are not necessarily satisfied, we
define Q between correct expressions 4 and B only, and also require
that the expressions "in between" A and B (i.e. via which the conversion
from A to B can be established) are correct as well., For precise defi-
nitions of reduction and equality see I1I1.3-4, for (see V.2. For the

additional operations (with associated reductions) of AUT-Pi see VIII.1.

4.4 Type assignment

Type assignment takes place together with expression formation.
The variables get a type by assumption (of the form x E A). Formulas
are derived and expressions are constructed in natural deduction style,
i.e. relative to a set (in our case: a string) of assumptions, called
the context of the formula, resp. the expression. Such a context has the

form

x, E Bl,xz E Bzﬂxlﬂ,---,xk E Bkﬂxl,---,xk_lﬂ

where all the xi are distinct. (This notion of context is only vaguely
related to the notion of context nowadays used in A-calculus theory.)

If £ is a context we sometimes write
g4, gF4 E B, g4 Q B

to indicate that an expression or formula is correct, resp. derivable,
with respect to §. Here £ contains so to say the type declarations of
the variables on which 4 (resp. 4 E B, 4 Q B) depends.

The constant expressions obtain a type by instantiating of (i.e.
substitution in) a scheme. A scheme consists of an axiomatic type

assignment with parameters

c(xl,...,xk) E Cﬂxl,...,xkﬂ

22

relative to a context

X EB,.’L‘2E82II.'171]], e, xkEBkllxil"'lx]]-

1 1 k~1

Only such instantiations c(Al,---,Ak) are admitted, where the 4, meet
i
the type requirements of the context, i.e.

AL BB, A EBRAL, »ery A EBIA 0004 1.

Then the type assignment to the constant expression becomes
c(-‘ll,---,Ak) E c[[Al,---,Ak]].

A list of constant schemes is called a book and the constants ¢
are called book constants (to distinguish them from the language con-
stants). There are two kinds of constants, viz. primitive constants,
having a type-assignment only, and defined constants, having a defining
axiom (as mentioned in 4.3) and a corresponding type-assignment (see
below). All constants in the book are distinct so each book constant
has a unique type-assignment (resp. unique defining axiom). If d has

defining axiom d(x --,xk) := D and typing d(x1,~--,xk) E ¢ then, for

1"
the sake of the intuitive interpretation, it must be required that

D E C w.r.t. the context of the scheme. This is the compatibility con-
ditton of def and typ. For more precise definitions see IV.3.2,IV.3.3,

vV.2.1.

4.5 The rules of AUT-68

~As for the application and abstraction rules, we first describe
the simplest language, now named AUT-68. This language has three kinds
of expressions: terms (also called expressions of degree 3, or: 3-ex-
pressions), types (with degree 2, or: 2-expressions) and a single un-
typed constant type (also denoted 1, and called a supertype or l-ex-
pression, of degree 1l). Languages with expressions of degree 1, 2 and
3 only are said to be regular.

The l-expressions generally serve as types for the 2-expressions,
but do not have a type themselves. Notice that the word "type" is used
ambiguously here, viz. to name the 2-expressions and in the sense of:
"being the type of”. Typically, the types are the types of the terms
and (in AUT-68) type is the type of the types.

23

So, in AUT-68 there are two cases 4 E B: either 4 is a term and
B is a type, or 4 is a type and B = type (= means syntactical identity).
In terms of degrees: if A E B, B has degree i then A has degree i+1.
This property holds generally, also in the irregular languages, like
AUT-SL, where expressions of all positive degrees are admitted,

Now we give the term formation rules for AUT-68, First notice that
all variables have a type, so must be a type variable (of degree 2) or
a term variable (of degree 3). The abstraction rule reads: if from an
assumption x E A, and possibly other assumptions not depending on x, it
can be derived that B E C, where x is a term variable and B is a term,
then one can conclude that [x:4]B E [x:4A1C and discharge the assumption

x E A. In natural deduction notation

[z E 4]

term abstraction rule degree (x) = degree(B) = 3

BEC

[x:41B E [x:A1C

Actually, in Automath only the last assumption in the context is allowed
to be discharged. The remaining assumptions clearly satisfy the above
mentioned restriction (of not depending on x)., We refer to the fact that
the context is a string rather a set (and consequently, that the assumpt-
ions can be removed according to the last-in first-out principle) by
speaking of the linear natural deduction character of Automath. In the

notation of this thesis the rule becomes:
F24, (x E ARF3B E C) = [2:41B E [x:4]C

with F standing for correctness, resp. derivability, with the super-

scripts indicating the degrees (for the precise conventions see V.2.1.1).
In order to guarantee that the type of correct expressions are

correct too, there must be an abstraction rule for types as well. This

one reads

24

% [z E 4]

type abstraction . degree(x) = 3

rule AUT-68 ¢ E type

(x:A1C E type

In our notation
F24, (z E AFC E type) = [x:A41C E type
Then there is the application rule for AUT-68:

application DEA B E [x:4]C
rule AUT-68 .

{(p}B E C[D]

4.6 Interpretation

Now something about interpretation. With the 3-expressions [x:4]B
and {D}B constructed above there is no problem: [2:4]B is the function
Ax:A.B' {D}B is the result of applying function B to argument D. But
consider the 2-expression [2:4]C occurring in the rules above. Under
the most convenient interpretation, maintaining that a type is a kind
of set oxr c¢lass, and that the E-relation is a kind of element relation,

[x:4]1C must stand for the object usually denoted T C or W(Ax A-C).
x:A :
I.e. the cartesian product of all the C[P2], foxr D E A. In case C does

not depend on x, this product reduces to the function space A =+ (which
in type theory would be denoted (A(C) or the like. In other words, [x:4]7
is the "set" (class, aggregate) consisting of all the functions B with
domain A which, when applied to arguments D in A, produce values be-
longing to C[D}. This is precisely what the gppl rule says. So in this
interpretation the abstractor [x:4] has two different meanings: when
used with a term it gives a function, when used with a type it gives a
kind of set. Or, we can say that [x:4] has just one meaning, viz. Ax:4,
but that the 1T has been omitted, for brevity, in a situation where no
confusion is reasonably possible. This is the standard interpretation
corresponding with the notation in related typed A-calculus systems and

in AUT-Pi (see VIII.1).

25

However there is a second, alternative, interpretation, too. It is
not necessary to stick to the idea that types are sets and that E is a
kind of element relation. Namely, we can very well interpret [x:4]1C as

the function A +C, if only we accept that a function can act a type.

x:A
Then, the term gbstr rule says (i.a.) that the type of a function is
again a function, with the same domain, and, conversely, the appl rule
says (i.a.) that the functions of degree 3 are characterized by having
a function for their type, from which their domain can be read off. In
this interpretation the conclusion of the term abstraction rule

([x:A1B E [x:A]C) just mean (BID] E CID}), i.e. the rule abstracts

Yo £ a
the formula B E C rather than the expressions involved. In algebraic
terms: the rule can be considered as a distribution rule of the ab-
stractor [x:4] w.r.t. the E-relation.

This, second, interpretation has given rise to several extensions

of the language, viz. to AUT-QE, to socalled +-languages (AUT-68+ and

AUT-QE+), and even to AUT-SL (i.e. Nederpelt's A).

4.7 AUT-QE

First the extension to AUT-QE. Since we interpret the 2-expression
[x:4]C as a (type valued) function, and since we want a uniform method of
type assignment for both term valued and type valued functions, we
drop the restriction to B of degree 3 in the term abstraction rule of

AUT-68, thus getting the
general abstraction rule: FZA, (x E AFB(E c)) =»F[x:A]B(E [x:A1C)

So the degree restriction for the variable & is maintained. In the new
rule there is included (skip the two E-parts between parentheses) the
abstraction rule for l-expressions, to guarantee that the types of

correct expressions are correct again:
FZA, (x E AFlB) = Fl[x:A]B

So in AUT-QE there are other supertypes than just type, of the
form

[xl:A1]°'~[xk:Ak]type.

26

These expressions have originally been named quasi-expressions, whence
the name of the language AUT-QE.

The application rule of AUT-68 is maintained in AUT-QE:
application rule I D E 4, BE [x:4]C = {D}B E C[D]

but is more general here, because it can be used with B of degree 3 and
2 now (in AUT-68 only with B of degree 3). Besides, AUT-QE has, in

accordance with the proposed interpretation, another appl rule:
application rule 1T E E A4, BE C E [x:A1D » {E}B L {E}C

Namely, [x:A]1D is a function with domain A, so € is a function with
domain A4, so B is a function with domain A and can be applied to the
argument £ E 4. (In fact, this rule can be derived from appl rule I by
n-equality, which confirms the agreement with the interpretation.)

Just like a degree 2 abstr expression of AUT-68 allows different
interpretations,viz. as a set or as a function, a degree 1 abstr ex-
pression of AUT-QE has such different interpretations too. Under the
first interpretation the expression [xlel]---[xk:Ak]type stands for
the object

noo{n (e(n type)-r))

xl :Al x2:A2 xk:Ak

This corresponds with the notation of AUT-Pi, see VIII.l. Under the

second interpretation it stands for the object

Ap 24 Ap 4 .°°**dg -4 .type
xl’Al xz.Az xk.Ak yp

4.8 Type inclusion

Now let x E AFC E type. Two rules of type assignment are applicable,
viz. the type abstr rule of AUT-68 and the general abstr rule, giving

rise to

[x:4]C E type, resp. [x:A)C E [x:A1type

Generally a 2-expression [xl:A1]°"[xk:Ak]C of AUT-QE has as its

possible types

27
type, [xl:Al]type, [xl:Alj[xz:AZJtype etc.
up to, at least [xlelj---[xk:Ak]type .

This ambiguity of types, which is typical for AUT-QE, is usually imple-

mented by adding a rule of type itnclusion
B E [xl:Alj-'-[xk:Ak][y:C]type = BE [xlelj---[xk:Ak]type

and dropping the type abstraction rule of AUT-68, which now becomes a
derived rule. In fact, the type inclusion rule is somewhat stronger
than the type abstraction rule of AUT-68 (or, similarly, the product
rule of AUT-Pi). See VIII.1.5 and VIII.6.1.

Clearly the property of uniqueness of types
AEB, AEC=BQC

is, for 2-expressions 4, not valid any more in AUT-QE. This is, however,
the only case of proper type-inclusion in Automath languages. We intro-

duce L to denote type-inclusion, i.e.
BLC C & YA(A EB=A4AEC).

For the precise definition see V.2.13 or V.3.2. The possible types of

a 2-expression appear to be linearly ordered under C, so
AEB, AEC=>=BCC or CLB

and it is still possible to define a canonical type which is minimal,
w.r.t. C, among the possible types (and hence gives maximal information),

i.e. such that

AEB=AE typ@) C B.

4.9 +-languages

Now the extension to +-languages. Recall that in AUT-68 there were
abstr expressions of degree 3 and 2, but appl expressions of degree 3
only. We say the value degrees are 2 and 3, and the function degree
is 3. Here we use the terminology of V.2.7: B is called the value part

of [x:A]B and the function part of {4}B. Similarly AUT-QE has value

28

degrees 1, 2 and 3 and function degrees 2 and 3. Such languages, where
the minimal value degree is not a function degree are named non-+-
larnguages.

However, if the abstraction expressions of minimal value degree

are functions, it is reasonable to have an appl rule for them too:

appl rule
+-languages

DE A, BQI[x:41C = |HD}B

In particular, if DEA, F[x:A1C then F{D}[x:A]C. Indeed, by adding the
above rule for B of degree 2 to AUT-68 we arive at the +-language
AUT-68+. And by adding it to AUT-QE for B of degree 1 we arive at
AUT-QE+ (which is essentially AA-%, the legitimate fragment of De
Vrijer's A\ [70]). In principle, the new rule is a derived rule for F
not having minimal value degree. The words "in principle" here refer to
certain problems with type inclusion and defined constants, explained
at length in v.1.7, V.3.3 and V.4.2.

It will be shown (V.3.3 , V.3.4) that a +-language is an un-—
essential (and even, definitional) extension of the corresponding

non-+~language (see V.,3.3):
}-+A = BA,([-A' & 4Q, 4"

i.e. to each 4 in the +-system there corresponds a definitionally equal
A' correct in the smaller system.

In all the languages now defined, the rule

general application

B EC, FHAY = {A}B E {4}C
rule

is a derived rule. Alternatively, this rule can be adopted in the
language definition, either with the application rule I (in the non-
+-languages), or with the application rule for +-languages, to generate
all the appl expressions of the various languages. The nice point about
the general application rule is that it (similar to the general ab-
straction rule) can be considered as a kind of distribution rule, viz.
of the applicator {4} w.r.t. the E-relation.

Though in AUT-QE+ we have achieved a fairly uniform treatment of
expressions of all degrees, we still have maintained the restriction

that only abstractors [x:4] with degree(x) = 3, degree(4) = 2 are

29

formed. In other words, only term variables are quantified. So there

is no quantification over type variables and we say that our systems are
first-order (this term refers to the fact that in the propositions-as-
types interpretation gquantification over types gives rise to higher-
order logiec). Consequently only applicators (A} with degree(4) = 3

are admitted. We say that the only domain degree is 2, and the only
argument degree is 3 (A is said to be the domain part of [x:4]B and the
argument part of {A}B). Apparently there is a certain duplication in
having both instantiation and application in the system. However,
because of the aforementioned application restriction instantiation
cannot be missed: substitution of 2-expressions (for type-variables)
cannot be performed by means of application so has to take place by

means of instantiation. (See also 5.6)

4.10 AUT-SL

Now we explain how AUT-SL (i.e. Nederpelt's A) can also be con-
sidered a result of our extended interpretation of the E-symbol. Namely,
now that we have accepted that functions can be inhabitable, i.e. can
be the type of other expressions, there seems to be no principal ob-
jection against allowing each expression to be inhabitable. This is
indeed the most striking characteristic of A: there are expressions of
all positive degrees admitted, so A is Zrregular (sec. 4.5). (Here is
an analogy with the Zanguage of set theory where a priori no term is
excluded from being inhabitable, i.e. from being a set).

Further, in A all degrees are domain degrees, so all degrees but
1 are argument degrees, so instantiation can be missed and, indeed,
has been dropped. Still, we shall not call A a higher—order language
(Iv.1.5.3, VII.l1) because any form of type inclusion has been omitted.
So, AUT-68 and AUT-QE which are based on type-inclusion, are not in-
cluded in A, and uniqueness of types holds in A. For more information
about the background of A see VII.1.

The definition of A either must contain the general application

rule, above, or for B of degree k, k 2 2,

DEA, B=C_E --- EC = [x:4]F = {D}BE {D}C,_

k 1

30

In fact, Nederpelt gives an algorithmic definition of A, in terms
of a type function typ, and in terms of unrestricted reduction 2, in-
stead of a socalled E-definttion in terms of E- and Q-formulas, such
as the definitions given above. For a discussion of algorithmic definit-
ion vs. E-definition see V.1.2 and for the equivalence of both definit-
ions see V.4.

Because of the simple form of the general abstraction and applicat-
ion rule, the function typ has a very simple definition too, in partic-

ular

typ ({4}B) {AYtyp(B), typ([x:A1B) := [z:Altyp(B)

Nederpelt gives a socalled application condition which in our

notation, for B of degree k would read
k~1
DEA, typo “(B) Q [x:AJE = |-H{D)B

(where t‘ypk_1 stands for k-1 successive applications of the function
typ), completely in accordance with our application rule for B of degree
k, above. By the way, we write, like Nederpelt, typ* for the typk_l of
expressions of degree k.

The language A was invented for theoretical purposes. It is in-
teresting because it has a very simple and elegant definition and exhi-
bits some typical Automath features. However, because it is in some
sense weaker (no type inclusion) than AUT-68 and AUT-QE, results valid
for A cannot directly be transferred to these, from a practical point
of view, more important languages. In particular, the "striet” norma-—
bility of A (proved by Nederpelt) is easier to prove than the "weak"
normability of AUT-QE (see IV. 3-4) because of the weak second order
aspect AUT-68 and AUT-QE. See IV.1.5 See also VIII.4.2.2 for an in-
teresting interpretation of these normability results (inspired by
Ben-Yelles [6]).

Conversely, the facts that A is a +-language, is irregular, and
has no abstraction restrictions, pose certain difficulties which in
the theory of AUT-68 and AUT-QE can be avoided.

The present author has mainly devoted his language theoretical
attention directly towards the languages actually being in use:

AUT-68, AUT-QE and AUT-Pi. In this theses we Aqve indeed at some places

introduced new languages (for technical or expository reasons), but we

31

have tried to exhibit the precise connections with existing languages.
Also, we have devoted a chapter (VII) to A, which deserves some interest

of its own.

4.11 AUT-Pi

For an informal introduction to AUT-Pi see VIII.l1. In AUT-Pi the
standard mathematical distinction between types (being inhabitable) and
functions (not being so) is made by putting in fI's at the proper places
(whence the name AUT-Pi). In VIII.6 the difference has been indicated
between the rule for inserting TM's (the product rule) and the rule of

type-inclusion of AUT-QE.

4.12 Two higher-order languages

For completeness reasons we mention two proposals for higher order
languages. First, De Bruijn once proposed a language AUT-4 [14], where
the proofs come in as degree 4 expressions (whence AUT-4), instead of,
as usual (5.9, 5.2), as degree 3 expressions. AUT-4 would have provided
an application of the higher degrees of irregular languages, but has
never been used or implemented. Secondly, the author has introduced a
language (let us name it AUT-2) which has expressions of degree 1 and
2 only, with unrestricted type-inclusion rule (sec. 4.8) and without
abstraction restrictions. This language proved to be essentially
identical to a system of type-assignment to A-calculus terms invented
by Dezani and Coppo [22,23] for quite different purposes. These two
languages are not discussed in this thesis. It seems that (strong)
normalization for AUT-4 can only be proved by Girard-like methods [30,
31}, whereas for AUT-2 we have a strong normalization proof in the style

of this thesis.

32

1.5 Mathematics in Automath

5.1 Survey of this section

Because of the presence of a type (type) of types, the presence
of type~variables and the generalized type-structure, people often tend
to overestimate the expressive power of (i.e. what can be said in) the
Automath languages., Here we refer to the expressive power of the
languages as such, i.e. to what can be said directly in the basic
system, without any constants added. (Because, with additional constants,
as we shall see, almost anything can be expressed, just like in the
language of first order predicate logic.)

Below we sketch what has become the standard development of mathe-
matics in Adtomath. The emphasis will be on the inherent limitations
of Automath. Occasionally we make a comparison with closely related
systems: Seldin's system of generalized functionality [64], Scott's
system of constructive validity [62] and Martin-L&f's systems of in—
tuitionistic type theoryl[45,46), and Girard's systems for analysis [31].

Throughout we comment on the typical Automath features.

5.2 The t-part and the p-part of Automath

Let us, for the sake of the exposition, divide mathematics in two
parts: one part, let us say the object part, dealing with the construct-
Zon of mathematical objects (resp. types), and one part, the logrleal
part, for reasoning about these objects. Our framework of Automath
languages, above, is formulated in terms of objects and types, rather
than in logical terms: there are, indeed, (Q~ and E-formulas expressing
facts about the objects, but they just play an auxiliary role, viz. to
control the construction of the correct (sec. 2.6) objects.

Following [37,77] we name the fragment of Automath that deals with
the object part the t¢-fragment (for terms, types and type-valued funct-
ions), and the fragment of Automath representing the logical part the
p—fragment (for proofs, propositions, predicates). Degree i (sec. 4.5)
expressions of the t-fragment and the p-fragment are said to ke i-t-

expressions and i-p-expressions respectively.

33

So, whereas the preceding sections suggest how the t-fragment can
be developed (3t-expressions for objects, 2t-expressions for types), it
is a priori not clear how the p-fragment will express the logical part.
Essential is that the E-formula 4 E B, of the p-fragment, with 4 a 3p-
expression and B a 2p-expression, is interpreted as expressing the truth
of the proposition B (i.e. as expressing B itself). So, a proposition
is true {(asserted) if "we have something in it", i.e. if we have a (3p-)
expression having the proposition for its type.

There are several ways of interpreting the realizer A (we borrow
this term from Pottinger [58] who borrowed it from Helman), i.e. the
expression we have in the proposition B: as an abstract proof construct-
ion proving B, as a symbolic translation of a natural deduction proof
figure (with B as its end formula), or as just some indication (some
reference to the fact) that B holds. If we are interested in constructive
foundations the first interpretation is appropriate. If we want to study
proof figures (e.g. in view of normalization properties) the second
interpretation is the best one. If we just want classical logic the
third point of view seems to be right, and it also seems justified to
identify (in the sense of definitional equality) all the realizers of
one and the same proposition. This identification principle is called
irrelevance of proofs(77,37,20].

We will explain that the propositions—as—types way, as sketched
above, of fitting the logical part of mathematics into a typed A-calculus
framework arises quite naturally from the idea of mechanical proof-
checking (and, on the other hand, that it is the only way of expressing

actual reasoning in terms of the E- and Q-formulas).

5.3 The t-fragment

Generally speaking, the systems introduced in.sec. 4 are as yet
still empty because we have not introduced any constants. Here we adopt
the common point of view that the meaningful objects (resp. types) of
a theory correspond to its closed expressions (i.e. those not depending
on variables). One way to construct closed terms is from constants,
ancther way is by binding the variables in an expression, i.e. by A-
abstraction. Since in most Automath languages abstraction over type-

variables is forbidden we need at least one primitive type-constant

34

before we can start generating closed expressions. (Here A is an ex-
ception: In A the basic constant T (this is just an alternative notation
for type) can be used as a ground type and we can directly start con-
structing functions of type t > T etc.,)

In the Automath project it has sometimes been stated, that there
is no essential difference between a constant without parameters - i.e.
introduced in an empty context ~ and a variable. This is formally right:
a constant can be conceived as a variable one does not want to get rid
of, and for which no substitution is possible. Conceptually however,
it seems better to maintain the distinction.

We just sketch very briefly how the typed i-calculus framework of
Automath can be used to construct the objects (numbers, functions,
functionals) forming the universe of discourse of ordinary mathematics
(say, analysis). One first introduces some primitive type constants
(2t-expressions) for the ground types, the natural and the real numbers,
say, by stating as an axZom (i.e. an axiom scheme in an empty context):
nt E type, r1 £ type. (Of course, if one knows a bit more one can also
define the reals in terms of the natural numbers, but that does not
concern us here.) Secondly, one introduces some primitive term constants
(3t-expressions) for generating the objects of these types. E.g. in
order to construct the natural numbers one states axioms one E nt,
sucfun E nt » nt (the successor function, which can alternatively be
introduced by a scheme, see below). From these constants we get the
natural numbers, which we can give a new name by introducing defining
constants: two := {onelsucfun, three := {two}sucfun(Q{{onel}sucfun}sucfun)
etc. If one likes, one can also introduce primitive constants
plusfun E nt - (nt > nt) ana timesfun E nt +» (nt > nt) for plus and
times on the naturals. Additional (equality) axioms will be needed to
fix the properties of the thus constructed objects, but these rather
belong to the logical part. Similarly, constants can be introduced
(with the additional axioms) to generate the objects of type rl.

By A-abstraction closed expressions of higher type are constructed.
These higher types themselves (we already used some of them) are also
constructed by A-abstraction (in AUT-QE etc.) or by A-abstraction and
product formation (in AUT-Pi). E.g. we get nt - rl, the type of real
number sequences, (rl -+ rl) » rl the type of real functionals etc.

We see that up to now there seems to be no possibility to introduce

35

non—-trivial type-valued functions: the higher types shown are just
(products of) the constant type-valued functions
[x:ntInt, [x:ntl(nt > nt) etc.

In fact, the type-valued functions do not become essential before
we arrive at the p-part. However, we give an example of a typical type-
valued function in the t-part (see [37]): In the context x E nt we can
introduce the primitive 2t-constant 1t0(x) intended to contain the

natural numbers up to &, as follows
xz E ntf1to(x) E type

(This cannot become an actual subtype of nt (cf. 5.4), injection funct-
ions and equality axioms will be needed.) From this scheme we can con-
struct the non-trivial type-valued function [x:nt]1t0o(xz) (a 2t-express-
ion). It depends of course on the additional axioms what objects will
belong to this type.

It is an interesting question what higher type objects (functions
and functionals) can actually be defined by mere A-abstraction (either
from object constants, or just from variables): of course we have
constant functions and selectors Axl---xn.x-, and we can define composit-

ion of functions, but what else? For an answer see Plotkin [54].

5.4 Some comment on the t-part

From the examples, above, several characteristic features and limit-
ations of Automath become clear. First, that the whole development is
based on typed A-calculus rather than on set theory. More about this
in the next section. Then a point on defined constants: from our present
point of view (What objects are actually constructed?) they are irrele-
vant, because they just serve as new names for objects already present.
From a practical point of view, however, they form an indispensable
feature of Automath.

Another characteristic facility of most Automath languages is that
a function can be introduced in two ways, viz. either as a single higher
type constant or, by a scheme, as a constant depending on parameters
(in this case the constant rather stands for the function value). Above,
sucfun, plusfun and timesfun were introduced by the first method. Alter-

natively, one might introduce suc, plus and times by an axZomatic typing

36
scheme, i.e. depending on variables of type nt:

x E nthsuc(x) E nt

« E nt, y E nthplus(z,y) E nt etc.

That these mechanisms really form a duplication is shown by the fact

that they can be defined in terms of each other, e.g.

sucfun := [x:ntlsuc(x), resp.

x E nthsuc(x) := {z}sucfun etc.

More about schemes can be found in section 5.6.

Now we arrive at some mutually related characteristic limitat-~
ions of the Automath languages (further elaborated in 5.7). First that
hardly any @athematical structure is given beforehand: even the natural
numbers have to be introduced by a series of constants and axioms (this
point we have mentioned before).

Secondly that a type must be present before it can be postulated
to be inhabited, i.e. a type must be introduced before the objects of
that type. This contrasts with the common ideas about the set theoretic
hierarchy where sets cannot be constructed unless their elements are
given (and grasped, as one says). In fact, this distriction between
types and sets suggests that, after all, the ground types must be
understood as syntactic linguistic categories rather than as actual
mathematical objects themselves (compare [46]), Then, the higher types
can be understood in terms of the ground types.

A third limitation of Automath (related to the second one, though)
is the uniqueness of types. In the above development one might think
it handy if the number One of type nt would be of type rl as well and,
more general, if Nt would be an actual subtype of r1 (in the sense of
L, see 4.8). Such proper inclusion of types is not expressible in
Automath, and non-trivial intersections of types are not present either.
(Whether the identification of the natural numbexr ONne with the corres-
ponding real number would be justifiZed is another question. See De

Bruijn[12].)

37

5.5 The typed A-calculus framework

This section tries to support the cheoice of basing Automath on the
concept of fumnction rather thah on the concept of set. The first point
is, that in almost any intereéting part of mathematics some form of
abstraction is needed, either as A-abstraction, or as a comprehension
axiom. (The alternative to abstraction is a development in the style of
combinatory logic, as in von Neumann-Bernays-G&del set theory.) As
stipulated by De Bruijn [10], * can be considered as the, neutral binding
operator, not to be explained in more primitive terms. E.g.the comprehens-
ion set {xlA} can be defined in terms of X by, say, setof (Ax.4).

The second point is, that the primitive concept of function is
bastce in ordinary mathematics (analysis, say). It is, of course, well-
known that the graph of a function can be coded (implemented, say) as
a set - and we don't deny that the graph concept itself can be clari-
fying -, but in ordinary mathematics there is usually no point in this
implementation. In fact it just shows the well-definedness of the
function concept (i.e. of a function on a given domain) in terms of the
commonly accepted formal development of axiomatic set theory - which for
a practical mathematician is hardly doubtful and probably uninteresting-.
Compare [12] . Similarly the possibility of implementing other familiar
concepts (the natural numbers, the reals, the complex numbers) in axio-
matic set theory, or in any other form, is usually of no practical im-
portance.

By basing one's function concept on Rn—A-calculus one gets the
possibility of making explieit definitions of functions (by A-abstract-
ion), and of making those identifications (by definitional equality)
that follow from these explicit definitions. Clearly, the graph concept
of functions gives more, viz. extensionality, whereas fn-equality just
pins down the function intenstonally, i.e. as a rule. Additional equal-
ity axioms (not for definitional, but for book equality) are needed
for extensionality. We stress that n just gives a very weak form of
extensionality. According to Scott, the n-equality Ax.fx = f (in ordinary
A-calculus notation) must not be understood as extensionality but rather
as stating that f is a function. So, in a typed setting n seems to be
anyhow justified: the mere correctness of [x:a]{z}f (in Automath no-
tation) warrants that f is a function. However, n-equality presupposes

uniqueness of types!

38

Above we have taken for granted that the appropriate practical
function concept is a typed one. Indeed, free, untyped A-calculus is a
farreaching,a priori just formal, extension of this concept (compare,
e.g., the notations for limits and formal series, in analysis). It is
an extension useful for studying computations but which does not seem
very well applicable to "ordinary" mathematics. Compare LCF, being in-
tended for the former purpose and actually based on the polymorphic
typed A-calculus PPA, where the type conventions are not quite as strict
as in ordinary typed A-calculus.

We note that these two restrictions of the definitional equality
(that it just covers intensional equality, between ordinary typed A-
calculus objects) are essential for its being decidable (in contrast

with, e.g., the convertibility in PPA).

5.6 BAxioms vs. schemes, abstraction vs. abbreviation

In 5.4 we saw that there are two possibilities to introduce primi-
tive constants for the construction of functions, either at low type
level (example: SUC) in a scheme, or in a higher type by an axiom
(example: sucfun). The difference between the two approaches is that
from a scheme objects are constructed by instantiation (example:
suc(one)), and from the corresponding higher type axiom by application
(example: {one}sucfun). In most logical formalisms the distinction
between instantiation and application cannot be stated in such an ex-
plicit form, since their instantiation mechanisms belong to meta-
language.

Similarly there are in Automath (usually) two possibilities for
making explicit definitions of functions: by A-abstraction and by a
definitional axiom scheme.These definitions are respectively eliminated
by application plus B-reduction and instantiation plus §-reduction
(this duplication is eliminated in Nederpelt's A).

Apart from the fact that writing schemes allows a form of (sub-
stitutional) quantifrcation of variables not quantifiable by A (viz.
type variables), it also allows quantification of more variables at a
time. However, as one knows, this simultaneous quantification can be
simulated by successively gquantifying one variable at a time.

So, roughly speaking, what can be done by schemes can also be done

39

by A-abstraction. In some sense schemes are simpler than abstraction:
higher type objects are avoided. Indeed, in the Automath project a
schematic introduction of constants (i.e. SUC instead of sucfun etc.)
would generally be preferred. And, rather than asking how instantiation
can be dismissed in favour of application, one should ask what abstract-
ion, application and higher type objects actually contribute. We think
that A-calculus only comes in when one wants to express nested quanti-
fications (either substitutional or by i-abstraction) such as, e.g.,
needed when quantifying over functions or defining functionals. Example:
the proposition cont(f) expressing the continuity of f depends on the
nigher type variable f. If one wants to use this proposition (by in-
stantiation), higher type objects (like [x:r1]F) must be substituted.
De Bruijn has, accordingly, conjectured that up to 18th century mathe-
matics is expressible without A-calculus and, hence, that the primitive

Automath language PAL would do for that subject.

5.7 More on the language restrictions (as mentioned in 5.4)

The fact that no arithmetic is built in, distinguishes Automath
from systems meant to give a foundation for constructive mathematics.
In particular, we want to make a comparison with the system of Scott
[62] and Martin-L&f [45] because these two systems have the same gene-
ralized type-structure as Automath, and the same way to represent
reasoning, viz. a propositions-as-types way.

Scott sketches a general recursive construction mechanism that
allows the definition of the natural numbers from a finite set of given
ground objects. Martin-Lof's introduction of the natural numbers is
more like ours: he introduces zero and successor but additionally he
has recursion over the natural numbers built-in in his language.

The main difference between built-in arithmetic and arithmetic
introduced axiomatically (as in Automath) is that in the case of built-
in arithmetic one gets the equations following from the recursive
definition of a function for free, i.e. as definitional equality. In
Automath one can also introduce a constant intended for primitive recurs-
ion but the point is that the additional equality axioms, needed to give
such a constant its meaning, concern book equality, not definitional

equality. This limitation also distinguishes Automath from LCF, where

40

recursive definitions of functions is indeed possible.

Now we come back to the second and the third limitation: that a
type must be present before its inhabitants and, that in Automath unique-
ness of types holds. These limitations prevent any inductive construction
of a type, in a general sense: both the recursive definition of a type,
and, even, the construction of a new type consisting of, e.g., a finite
numbexr of previously given objects, are impossible, Such previously
given objects have a type already and it is simply not possible to state
as an axiom (neither as an assumption) that such an object also belongs
to a different type. In AUT-Pi (and in Scott's and Martin-L&f's system
as well) there 7S the possibility to construct binary disjoint unions
of previously given types but, even there, the objects of the old types
cannot be identified with the object of the new types: injection funct-

Zons are needed.

5.8 A comparison with generalized functicnality

Uniqueness of types seems a good starting point for a comparison
with Seldin's system of generalized functionality [(64]. This is a gene-
ralization of Curry's systems of basie functionality [25, 26]). Basic
functionality has the usual function types a -+ 8 (there denoted FaB),
but generalized functionality has the generalized type—structure of
Automath and the other two systems, above. Actually we took the word
"generalized" from Seldin. The product types denoted above as [x:a]8

or T([x:a]R) or T B are in Seldin's system written as Go(ix.B). This
e e
is, including the introduction and elimination rules for G (i.e. our

abstraction rules) all quite similar to the product types of Automath.
However, an important difference is that in Seldin's system the
variables do not get a fixed type and consequently, the system rather
must be viewed upon as a system of type assignment to (certain) terms
of the type free A-calculus. E.g. the identity I belongs to every type
a + a {where o is a type), whereas in Automath we have different Ia's,
denoted [x:alr, at every type o&. Consequently, a term can indeed belong
to different types.
In functionality theory the statement A has a type B is denoted
BA (the predicate B applies at the subject A, as one says) and is it-

self an object (0b) of the system. In principle, interference of B and

41

A (by reduction, where B acts as a function, with argument 4) is not ex-
cluded. However, in the separated systems, where the equality rules
operate on subject and predicate separately, the interference is for-
bidden and BA is just an alternative notation of our 4 E B. (Notice that
this kind of interference in the case of Automath, where (except in
AUT-Pi) [x:41B can be both a function and a type, would be disastrous.)
A point of difference between Seldin's system [64] and our systems is
that the type formation rather belongs to his meta-language (and is less
restricted then ours: he just respects the arity (i.e. number of argu-
ments) of the type valued functions). Seldin proves for his‘system the
subject reduction theorem (our closure theorem) and the normal form
theorem (our normalization theorem).

The systems of functionality are said to be systems of illative
(combinatory) logic. The word "illative" now refers to the presence of
other basic constants (viz. F and G) than just the combinators (ox,
alternatively, than just A-abstraction). Originally, Curry rather meant
the word "illative" to stand for inferential, i.e. also dealing with
the logical part (cf. 5.2) of mathematics. In view of the facts, that
the Automath languages are quite similar to functionality systems, and
that Automath is indeed intended to represent both the object part and
the logical part of mathematics, it seems justified to call Automath

a system of tllative combinatory logic (or rather tllative A—calculus).

5.9 The p-fragment

Recall that the logical part of mathematics (the reasoning) is
represented in Automath by a propositions—as-types method. The standard
way of developing propositions-as-types in the p-fragment of Automath
is as follows. The propositions enter as special types (2p-expressions
of type Prop, where Prop is another basic constant, a lp-expression,
that behaves just like type).

We saw that a proposition is true if we have a realizer, a 3p-
expression in it. A proposition B is assumed by introducing a variable
realizing (i.e. of type) B, and a proposition B is stated as an axiom
(resp. axtom scheme) by introducing a primitive constant (resp. primitive
constant depending on parameters) realizing B. The implication B = C

is represented by the function type B - ¢ (in AUT-68- and AUT-QE-notation

42

{x:B]C) . Introduction- and elimination rules for = correspond with the
abstraction and application rules of Automath.

The standard development of (classical) logic in Automath starts
with the introduction of a primitive 2p-constant con E prop, to repre-
sent the contradictory proposition, i.e. falswn. Clearly COn is intended
to remain empty. So, the negation of a proposition a (i.e. o = falsum)
can be represented by [x:a]cOn, which we abbreviate by hon(a). Hence
the double negation of a becomes non(non(wa)) (Q [z:[y:alconlcon). Then,
for classical logic, a primitive realizer, called dnl, for the double

negation law is introduced by a scheme
a E prop, a E non(non(a))fdnl(a,z) E o

We also promised some book equality axioms for giving the express-
ions of the t-part their meaning. To this end a primitive proposition
eq, for book equality between objects of the same type, is introduced

by a scheme
a E type, Q £ o, b E oteq(a,a,b) E prop

together with, e.g., primitive realizers for reflexivity (i.e. in
eq(a,a,a)), symmetry (i.e. to infer €q(a,b,a) from e€q(wa,a,b)) etc.

Predicates are special type-valued, viz. proposition—valued funct-
tong, formed from propositions by A-abstraction. In constant with the
type-valued functions of the t-fragment (cf. 5.3), predicates are
usually non—trivial type-valued functions. E.g. the property "being
equal to one" on type nt is expressed by the predicate
{x:ntleq(nt,one,x). The (minimal) type (cf. 2.10) of this predicate is
nt - prop, in AUT-QE written [x:nt]lprop and in AUT-Pi written
M(Lx:ntlprop).

These typical lp-expressions of AUT-QE and AUT-Pi allow the intro-
duction of predicate variables and, hence, the formulation of schemes
depending on predicate parameters. An important scheme containing a
predicate parameter is the axiom scheme fortnduction over the natural
numbers.

If P is a predicate on type a (having type o - prop) then the

product T P{x) (in AUT-Pi this is written TI(P), in AUT-QE it is just
x:o
P itself) stands for the proposition Vi.aP(x). Introduction and elimin-

43

ation rules for V correspond with the abstraction and application rules

of Automath.

5.10 Some comment on the p-part

The above examples illustrate why the formulation of schemes with
type-variables (and prop- and predicate-variables) are useful. Other-
wise we would have needed e.g. separate dnl's for every proposition,
separate book-equalities at every type, and a separate induction axiom
for each predicate on type Nt. And it also becomes evident why abstract-
ion over degree 2 variables is called higher order quantification:
proposition and predicate variables are 2-variables and abstraction
corresponds to universal quantification. See further sec. 5.12.

By using Automath in this propositions-as-types fashion we get an
almost ordinary many sorted first-order predicate logic, viz. over a
pure (or extended) typed A-calculus. It depends mainly on the axioms
concerning falsum what kind of logic we get: minimal logic (without
axioms), Tntuttionistic logic (with absurdity rule), or classical logie
(as above, with the double negation law, or the like). Additional
constants and axioms can be added for the introduction of further mathe-
matical structures (see, e.g. Jutting [37]).

We wrote that Automath is an almost ordinary predicate logic,
"almostﬁ because there is one unconventional feature: Expressions for
proofs (i.e. realizers) can occur inside the expressions for mathematical
objects and for propositions, i.e. mathematical objects and propositions
can become dependent on the truth of (other) propositions. Example: Let
P be a predicate on type a, let 3lxz.P(x) (how this is defined does not
matter here). Then the axiom of individuals [37], which is usual in the
standard development, introduces a constant (a iota-symbol) ind(a,P,t)
together with the appropriate axioms, for the unique object satisfying
P; here t realizes 3'x.P(x). Of course, ind(a,P,ti) and ind(a,P,tz)
are book-equal. However, irrelevance of proofs is needed to make these
expressions definitionally equal (cf. 5.2).

In this way implications a = B (generalized implications, as we
say) are formed where B cannot be stated unless ¢ holds, and similarly
we can get generalized conjunctions. Such propositions are said to

belong to generalized logic (seel20,37,77]).

44

The propositions-as-types development of sec. 5.9 is not the only
one possible, Alternatively, the propositions can be introduced as
ordinary types (of type type), or as 3-expressions of a new type bool.
Since in the first alternative no distinction is made between proposit-
ions and ordinary types (in fact there is no p-fragment, only a t-~
fragment) the realizers enter the discussion as ordinary objects (con-
structions) too. This seems to be the proper choice if we want to study
constructive foundations. Of course, irrelevance of proofs is out of
the question here. The second implementation, where the propositions
enter as degree 3 expressions, gives rise to higher order logic. In
this case the truth of a proposition B is expressed by a formula
t E B', where B' is an ordinary type (the "proof-type" of B) associated
with the proposition B. This "proof-type" of B (usually denoted TRUE (B),
or F(B) oxr prQOf(B)) has to be introduced because B itself is not in-
habitable (unless we use AUT-4, see 4.12). In Jutting [37] there is also

a development in the bool-style.

5.11 On propositions-as-types

In fact, Automath is not just a predicate logic but rather the
proof system of a predicate logic, because a formula 4 of the logic is
not expressed directly but via a statement of the underlying typed A-
calculus, of the form ¢ E A. So it is reasonable to ask for the decida-
bility of the system: proof systems Aave to be decidable. One might
wonder, though, why we took such a peculiar proof system, this formulae-
as-types kind of formalization.,

Our main point is that the formulae-as-types way of implementing
a proof system is a straightforward one. The classical notion of formal
proof is: a finite sequence of formulae, each of which is either an
axiom or follows from the preceding ones by application of an inference
rule. This meagre notion of proof is already decidable but useless for
our purposes because the decidability is not feasible. For other pur-
poses as well (proof theory) this notion of proof is considered too
uninformative.

The first improvement coming to mind is to provide each formula
(let us say: [Zme) in the sequence with additional information: (1)

a lagbel (e.g. a mere line number, or a more expressive identification),

45

for later reference, (2) some reason, some justification for that line.
The information (2) has to indicate: (a) what inference rule is used
for establishing that line, (b) on which previous formulas (indicated
by their labels) that inference rule has to operate. The axioms in the
sequence do not get a Jjustification but just a flag AXIOM, say. Notice
that the justification part of a line can also be conceived as an in-
struction to operate with the indicated inference rule on the indicated
preceding lines. If the proof is correct, the formula part of the line
will be the result of this operation.

Another, independent, improvement is to allow proofs from assumpt—
Zonms, in natural deduction style. In this case additional informatibn
must be given with each line to indicate the context in which it is
valid (i.e. the assumptions on which it depends).

The proof system we have now arrived at seems to be a natural one
for mechanical proof-checking: each line consists of four parts, a con-—
text part, an tdentifier part, a justification part and a formula part.
Just a slight generalization leads us to Automath. First, we allow the
justification part to be a compound expression coding Zterated use of
inference rules. This will save a lot of lines in the proof. Secondly
we allow each theorem from assumptions and depending on propositional
or predicate variables to be used in subsequent lines as a new derived,
inference rule. This gives the system on the flexibility and generality
of ordinary mathematical reasoning.

Still one step has to be made: to recognize that what happens in
our proof system is completely parallel with what happens in our typed
A-calculus framework. That making assumptions amounts to introducing
variables, that stating axioms amounts to introducing primitive con-
stants, and that deriving theorems can be conceived as introducing de-
fined constants. Finally, the abstraction and application rules of the
typed A-calculus amount to the introduction and elimination rules for

implication and universal quantification. Then the abbreviation line
abAd, yEB+xd:=DEC

(this is the proper book-and-line format, we would rather write
x EA, y E BFd(x,y) := D E C or the like) can be understood as "from
the assumptions 4, B the formula ¢ can be derived by using the compound

instruction D; this theorem can be referred to as line d".

46

So, we can explain formulae-as-types as just a practical way of
implementing a proof-checking system; Fitting the proof system into
typed A-calculus gives rise to an unusual interpretation of the E-symbol
but there is no harm in that (compare 4.6). The third interpretation
of realizers (cf. 5.2) seems appropriate to the above explanation: a
realizer is a mere indication that its formula holds.

A completely different question is: would there be any more direct
way of representing reasoning via the E- and (Q~formulas of the under-
lying typed A-calculus of Automath? The answer to this question (no)
sheds some light on the particular limitations (see 5.7) of Automath.
The first point is that the F- and Q-formulas themselves do not allow
any reasoning. The only E-assumptions we can make are the typing assumpt-
ions for variables, and the only E-axZoms we can make are the typing
axioms for the primitive constants. The (Q-formulas are even more im-
plicit: Q-assumptions are not allowed at all, and the only (Q-axioms are
the abbreviations. (Scott [62] indicates that allowing Q-formulas for
assumptions would spoil the decidability). For the rest, E- and Q-formu-
las just hold or not: if they do not hold they cannot even be stated as
an axiom or as an assumption. Conseqguently they cannot be negated
or used in a reasoning ad absurdum. Then, we might look for another trick
(different from propositions-as-types) to represent reasoning. One idea
might be to introduce a type of truth-values and to see to it that
each proposition (or some object associated to it) would be definition-
ally equal to a truth value. Another idea might be to introduce a type
for the true propositions (or objects associated to them) and a type
for the false ones (or objects associated to them). Apart from the fact
that these proposals simply are not feasible (just try) they would
imply that all propositions would become decidable (because E and Q are

so) and that is not what we want.

5.12 A comparison with higher order systems

We have mentioned before that abstraction over type-variables is
not allowed in Automath. In this respect Automath is distinct from
both Martin-L&f's system and Girard's systems. Martin-LO&f distinguishes
small types and large types. An example of a small type is the type of
the natural numbers, examples of large types are: the type V of small

types (like our type) and the types which represent propositions (in

47

the propositions-as-types sense). Now variables ranging over small types
can be quantified, but quantification over, e.g., propositional variables
is still not permitted, so Martin-L&f's system does not have higher order
logic.

However, Martin-L&f's system 18 higher-order in our technical sense
(see IV.1.5) because, by his built-in recursion mechanism, a type-valued
function, T say, can be defined such that e.g. 7(0) = nt, I'(n+l) =
T(n) - nt (where nt is the type of natural numbers). Then the product
M(7) consists of functions with values (numbers, functions, functionals)
of arbitrary high complexity (Seldin would say rank). Note that in
Automath such functions of umbounded functional complexity cannot be
defined: crucial in the recursive definition of T is the presence of
the function Ay:V.(y - nt) (with y a type-variable!) which takes T (»)
to T'(n+l).

Girard's systems actually contain higher-order logic, because
quantification over all type-variables is admitted. E.g. (we use Auto-
math notation) the object [a:typellx:alr of type [a:typellx:ala can be
constructed. In fact Girard would write that DTa.Axa.xa is of type

Aa. (o >~ a).

1.6 The contents of this thesis

6.1 This thesis has become a comprehensive volume on results and
methods in the language theory of Automath: most of the language theo-
retical questions, as they are stated above, are treated for most of
the current Automath languages.

Since many results are quite technical we often, for better access-
ibility, give a double exposition. First an informal, heuristic one, to
explain the ideas, followed by a more rigorous one with some (sometimes
many) technical details. If one likes, one can skip the latter.

Most chapters are almost independent and self-contained: they have
their own introductions, definitions are repeated etc. For many results
some different proofs are given, and some known theorems from [51] and
[70] get new proofs.

The discussion is mainly directed towards the Automath languages
“and the Automath project. However we think that some results may be of
more general interest: to A-calculus and, by the propositions-as-types

isomorphism, to proof-theory.

48

6.2 This thesis (apart from the introduction) can be divided into three
parts: (1) a general, preparatory part in a type—free setting (Chs. II
and III)}, (2) a part on pure (see 1.10) typed systems, with application
to AUT-68, AUT-QE and AUT-SL (Chs. IV-VII), (3) a part on the extended
(1.10) language AUT-Pi (Ch. VIII).

Ch. II deals with the preliminary definitions: expressions, sub—
stitution, reductions, definitional equality. The expressions are al-
ready internally decorated with type labels, but a typing relation is
not yet defined and, hence, the types do not restrict the expression
formation. Various properties are introduced and discussed in a gene-
ral setting: normalization and strowng normalization, closure, Church-
Kosser and postponement. The possible interference of the various kinds
of reduction is analyzed, in connection with the latter two properties.
Finally the important reduction-under—-substitution lemma of type-free
A-calculus is proved.

It is advised not to miss 11.0.4.2: we introduce some handy but
slightly unusual notational conventions (in particular on tacit exist~
ential quantification).

Ch. III deals with the isolated study of one specific kind of re-
duction, viz. 8-reduction (see 4.3). A Church-Rosser proof is given,
and various ways of proving strong normalization are indicated. Partic-
ularly interesting is De Bruijn's strong normalization proof for S-re-
duction, which simply calculates the maximuwm length of a reduction

sequence.

6.3 Each of the chapters IV, V, VI is devoted to one specific aspect
of the pure typed systems: (strong) normalization, closure and Church-
Rosser (cf. 2.7) respectively. Ch. IV starts with an introduction on
typed A-calculus systems in general. Like Nederpelt in [51] we use the
following strategy to prove (strong) normalization for our languages:
first we introduce a general system of normable expressions (for short:
a normable system), then we prove (strong) normalization for this system;
finally we prove that both AUT-SL (i.e. A) and a liberal, comprehensive
version of AUT-QE (including all the current versions of AUT-QE and
AUT-68) are normable.

There are given three new proofs of stromg B-normalization for
normable systems. Because the usual pure first-order (see p. 29) typed

systems are clearly normable, these proofs are quite generally applicable.

49

Like Nederpelt's proof of strong normalization in [51], these proofs
are not based on a notion of computability.

Ch. IV also contains the precise definitions of book, context and
degree, and there 78 defined a typing relation (or rather: a typing
funetion). However, in the normable expressions the typing restrictions
on the expression formation are not fully respected, but only a weak

form of them.

6.4 Ch. V gives a framework (the E-definition) for generating the
correct expressions and formulas of the various Automath languages. It
mainly concentrates on the regular languages (see 4.5) AUT-QE, AUT-68
and their variants.

Then the closure proofs are given: first of AUT-QE with Bn-reduct-—
ion (so without §) then of some more liberal versions AUT-QE+, AUT-QEx*
with full reduction. Several unessential—-extension results are presented.
Since the closure proofs of Bn(8)-AUT-QE are technically somewhat com-
plicated, we also indicate how, e.g., B-AUT-QE and Bné-AUT-68 allow a
stmpler closure proof.

In the last section of Ch. V we prove - anticipating the Church-
Rosser result of Ch. VI - the equivalence of the E-definition with the
algorithmic definition (see 2.6). Quite some attention is paid to the
choice of a typing function and a domain function for the various
languages. Finally we make a few remarks on practical verification of

Automath languages.

6.5 In Ch. VI we prove the Church—-Rosser property for the pure Automath
languages. In particular we solve the Rn—-Church—-Rosser problem caused
by the presence of the type—labels (which are themselves expressions)
inside the abstraction expressions in Automath. Nederpelt [51] first
indicated this fAn-problem and correctly conjectured that Bn—-Church-
Rosser holds in the correct expressions. Except for the fn-case, the
Church-Rosser property for pure systems can be proved in the general,
unrestricted expressions (as indicated in Ch. II.6).

In fact, we first prove Bn-Church-Rosser for a weak form of n-re-
duction, just sufficient to cover the n-reductions needed in the veri-
fication of Jutting's Landau-translation. Afterwards we tackle full

n-reduction.

50

Resuming, Chs. IV-VI show that the pure Automath languages satisfy
the three destrable properties (cf. 2.7).

6.6 Ch. VII deals exclusively with the language theory of Nederpelt's

A (oxr: AUT-SL). Here our point of departure (in contrast with Ch. V) is
the algorithmic definition.We introduce the socalled degree-norm correct
expressions. We show that closure and Church-Rosser can directly be
proved from the algorithmic definition, with the help of the big tree
theorem. We give two new proofs of this theorem, the first one being a
mere extension of the second strong normalization proof of Ch. IV, the
second one rather based on the first strong normalization proof in IV
and making use of the book-keeping pairs from de Vrijer's proof of the
big tree theorem for his system AX [70].

Finally.we compare various versions of A: with and without constants
{resp. defined constants), the single~line version and the book-and-
context version etc.

As regards the three celebrated desirable properties for A, Ch. VII
just duplicates the Chs. IV-VI.

6.7 Chapter VIII discusses extended systems, in particular AUT-Pi. In
the first section the additional type forming operations: binary union
(®), disjoint sum (X), cartesian product (T), the additional term
forming operations: injection (il and iz), plus (@) and patrs (<-,->),
and the additional reductions: +, e, ©, o are introduced informally,
and the connection with full intuistionistic predicate logic is ex-
hibited.

We generate AUT-Pi by an E-definition and prove the closure properii.
We tackle strong normaglization as in IV (and VII): we extend the notion
of form and define two systems AUT-Pi; and AUT-Pi; which are extended
normable. For these systems we prove a variety of strong normalization
results. First we show that the methods of IV immediately cover the
Bmno-case, but that the presence of +-reduction requires additional
" attention (the socalled dead end set becomes unmanageable).

Three new proofs for strong Bm+no-normalization are presented, two
of them making use of some additional technical reductions (permutative
and improper reductions), the third one using computability. Then these

strong normalization results are transferred to AUT-Pi.

51

However, for full (i.e. Bm+noe-) AUT-Pi the language theory is not
yet fintshed, full Church-Rosser is simply false, and full strong normal-
Zzation we have not been able to settle (though we strongly believe in

it).

6.8 The results of this thesis, even when pertaining to type-free A-
calculus, are derived by syntactie, combinatorial methods (in contrast
with the model theoretic and recursion theoretic reasoning often used
in A-calculus nowadays).

Another point about methods is, that we have been able to avoid
the notion of residual (and we don't employ the underlining method of
Barendregt [2] either). Cf. the reduction-under-substitution lemma in
IT.11. '

Finally we mention that (except in VIII, the last proof) we have
not used any notion of computability or the like in our strong normal-
ization proofs, but have restricted ourselves to a priori elementary

methods (cf. IV.1.6.3).

6.9 Now we list some language theoretical subjects which we think to
require further attention.

In view of 6.7 a further analysis of the definitional equality in
AUT-Pi is needed. In particular a decision procedure is wanted (though
not absolutely necessary, see 2.8) that does not rely on Church-Rosser
(a suggestion is made in VIII.6.2). Or, alternatively, a new reduction
relation may be indicated that generates c-equality and does satisfy
Church-Rosser,

Secondly, some more work on the comparison of languages would be
welcome. E.g. the precise connections between AUT-68 and AUT-QE have
never been made explicit. Here we do not mean the connections between
their rules, but rather between what can be sazZd in these languages.
To be specific, we think that AUT-QE books can be translated into
AUT-68 books, and that AUT-Synt might play a role in this respect as
well.

Another point deserving interest is the role of the "extensional"
reductions n, ¢ and €. Notably, we think that these reductions can be
avoided by first translating (performing n-expanston etc.) and aftexr-

wards performing the corresponding tntroduction—elimination reductions

52

B, m and + (compare [37, sec. 4.1.1]). Actually we have tried the n-

case but got stuck in technical difficulties with the type-labels.

In ¥III.2.7 we describe
theless causes our treatment
This is an interesting point

Finally we mention some
scope of this thesis but are
ion: (1) zterated references
and-telescopes. Work in this
Bruijn, Jutting and Wieringa

is required.

a natural extension of AUT-Pi, which never-~
of strong normalization to fail hopelessly.
of study too.

subjects that fall somewhat outside the
very important for the actual implementat-
etc. (see 3.4), (2) aur-synt, (3) strings-
direction has been done by Zandleven, De

(see 3.4) but we think that further study

53

CHAPTER II. MISCELLANEA

Section O of this chapter gives some comment on methods (inductive
definition and inductive proof) and introduces some notational conventions.

The sections 1-4 form a brief introduction to the various A-cal-
culus systems considered in this thesis. The sections 5-7 contain some
general considerations on the closure property, the Church-Rosser prop-
erty, (strong) normalization and postponement (for a combination of
reductions). Also some results of this kind are stated, and a proof of
the An-Church-Rosser property for untyped A-calculus is included.

In the sections 8 and 9 the Church-Rosser property and postponement
are discussed for the specific reduction relations considered.

Section 10 defines the concept of multiple substitution, and
section 11 proves a lemma (the reduction-under-substitution lemma)

which has interesting applications in untyped A-~calculus.
[I. 0. Preliminaries
0.1, Inductive definitions

Throughout this thesis many notions (predicates and relations) are
given by so-called ordinary inductive definitions. BAn ordinary inductive
definition of, e.g., the predicate P consists of a finite set of induc-

t1tve clauses or rules of the form:

"if P(al) and P(a .. and P(ak) then P(¢(a1,...,ak))" ,

2).
. *)

1,...,ak are variables.

In such an inductive definition it is, without further notice,

where k 2 0, ¢ is a k-ary operation and a

intended that P(a) holds, only if this follows from iterated applica-
tion of the rules. We may assume that there is at least one clause
with k = 0 and ¢ a constant - a starting clause -. We say that P is
inductively generated from the starting clauses by closure under the
other clauses.

It will be clear how inductive definitions of binary relations,
or of several notions simultaneously have to be interpreted. With in-
ductive definitions of (partial) functions, we have to be more care-

ful, of course.

* . .
) In fact, the definition of computability in VIII.5.3 is of a more

general nature.

54
0.2. Inductive proofs

Let < be a partial order and let < be well-~founded, i.e. there are

no infinite (strictly) descending sequences g, > @. > Call b a

1 2
descendant of a if a > b; b is a direct descendant of q if ¢ > b and

there is no ¢ in between. If we can show, for all p,
(Va<bP(a)) = P(b)

then we can conclude V P(a). This is called proof by induction on <,

If there are no infinite (strictly) increasing, bounded above,
sequences al < @2 < ... < b either, then for all b, b is either an
endpoint - i.e., minimal with respect to < -~ or b has a direct descendant.

So, in this case, if for all b, c,

b endpoint = P(D) ,
and
(P(b) A b direct descendant of ¢) = P(e)
then Va P(a). This principle of proof is also induction on <.

Call < finitary, if each a has only a finite number (possibly zerc)
of direct descendants., If < is finitary and well-founded and has no in-
finite increasing, bounded above, sequences, then by the lemma of
Brouwer-Kdnig, for each a there is a maximum to the length of descending
sequences starting in a. Call this maximum 6(a). Then the various in-
ductive proofs of P(a) can simply be reduced to mathematical inductiocn,

viz. to induction on 6(q).
0.3. Induction on definitions

Let P be given by an ordinary inductive definition. If, for each

clause in the definition of P, as above,

(Qla,) A Qlas) A e A QM) = Q(d(ag,«veray))

then, clearly, P(a) = Q{(a) for arbitrary a.

This kind of inductive procfs can be considered as proofs by in-
duction on the finitary, well-founded partial order generated by the
definition of P (in fact, this order pertains to the objects a labelled
with a derivation of P(a). The ai (with labels) are the direct descen-
dants of ¢(a1,...,an) (with its label)).

Wwe shall speak about proofs by induction on P, or over P or on the

length of proof of P(a).

55

0.4. Notational conventions
0.4.1. Syntactic variables

Syntactic variables are the variables of our meta-language, denoting
syntactical objects such as, e.g., the expressions of an Automath language.
Often we reserve some specific syntactic variables (possibly indexed
or primed) to denote exclusively objects of a specific syntactic cate-
gory. E.g. I, T denote expressions, ¥, y denote variables, B denotes

books etc.
0.4.2. Logical symbolism

We freely include logical symbols in our meta-language, to shorten
and to clarify the discussion. As an example of our notational conventions
concerning the logical symbolism consider:

Az2B, Az2(C=Bz=z2D, C=z22D
the so-called Church-Rosser property. Written out in full, it would

read

VA VB VC((A 2B AA4A2z2C0C) = BD(BEED AC=2D))

So, the conventions are:

{i) = binds loosely, the comma denotes A

(ii) free variables are tacitly quantified: by an existential quanti-
fier if their first occurrence shows up after the main =-symbol,

otherwise by a universal quantifier.
0.4.3. Reasoning about inductive definitions

Let P be a predicate given by an ordinary inductive definition. Let

:,,...,@m and Wl,...,Wn be additional inductive clauses for P. Let P’
i

be generated by adjoining ¢ "¢m to the definition of P (so clearly

R
¥ _ (P{a) = P'(a))). We say that ¢

o4

l""'¢m are deritved rules of P if

v_ (Pla) » P'(a)).

-“

Let P" be generated by adjoining Y ..,Wn to the definition of P.

17
Then, the rules Wl""’wn are derived rules of P' if and only if

Y _ (P"(a) = P'(a)). As an easy shorthand notation for this situation we

write (sic)

cees R
1’ ¢m = Wl' n

{i.e, by adjoining ¢1,...,¢m, the rules Wl,...,Wn become derived rules)

56
II.1, Expressions

1.1, Here we define our universe of discourse, the expressions of ge-
neralized typed A-calculus. The expressions are formed from variables
and constants using various operations such as abstraction, application
etc, We take (as in de Bruijn [10]) X as our only variable binding
operation and denote the other operations by so-called basic constants,

such as abstr, appl etc.

1.2. Variables and constants

The constants are distinguished in basic or language constants
and the book constants. The latter fall apart in primitive and defined
constants. All constants have a certain arity, the number of arguments
going with them. The arity of a constant f is denoted lfl.

There is only a small number of basic constants, as listed below

arity 0 : type, prop

arity 1 : prod, sum, projl, proj2
arity 2 : appl, abstr, plus, injl, inj2
arity 3 : pair

In contrast with this, any alphanumeric string can serve as a
variable or a book constant. The syntactic categories: variables,
primitive constants, defined constants, and basic constants, are
assumed to be mutually disjoint,

We use x,y,3,u,V as syntactic variables for variables, f for con-
stants, ¢ for book constants, p, g for primitive constants, d for de-
fined constants and Z,T,A,..,4,B8,C,..,%,8,Y,... as syntactic variables

for expressions.

1.3, The expressions are inductively defined:

(1) variables: X is an expression

(ii) A-expressions: Ax-IZ is an expression

(iii) constant expressions: 1.]f{ 0 = f is an expression

2. |f]

n

k = f(Zl,...,Zk) is an expression

1.4. Various systems of expressions can be defined inside this frame-

work by specifying the set of (basic) constants. Thus we have free,

57

i.e. untyped A-calculus with appl as its only constant, the abbreviatior
2aleulus LSP (Ch, 11I) with book constants only and, of course, the
Automath languages.

In the latter languages, the A-expressions are not present as such,
but only inside abstraction expressions: abstr (Z,,h2+Z,). And only
such abstraction expressions abstr (21,22) are allowedwherez2 is a
h—expression.

The Automath languages AUT-68, AUT-QE and A have type (and
possibly prop), abstr and appl as their only basic constants, and are
called the pure Automath languages. Besides these basic constants, AUT-Pi
has all the additional operations mentioned, such as prod, sum, plus,
injl etc.

[}

{.5. We use the ordinary Automath notations:
1t for type, m for prop, T for prod and I for sum
{4}B for appl (B,A) , [x:A1B for abstr(4,xx-5),

A for projl(4y, 4

(1) for proj2(4), <4,B,C> for pair(4,B,0)

(2)
il(A,B) for injl4,B, 'é2(A,B) for ini2(4,B)
and 4 @ B for plus(4,B)

In free A-calculus simple juxtaposition is used to denote application:

zA for {4}B.

1.6. In {A}B we call A the argument part and B the function part,
In [x:A]3 we call A4 the domain part and B the value part,

The domain part A of [2:A]B and further: the A of <4,B,(>, the
B of il(A,B) and the'B of iz(A,B) are just type-~labels, present in
order to fix the type of the expression. For an explanation we refer
to I.4.2 and VIII.1.3. In case we are not interested in the:type of the
expression, we simply leave out the type-labels, writing [x]B, <B,C>
il(A), iz(A) respectively.

The symbol & is assumed to have less binding power than the
other symbols for expression formation. Additional parentheses are in-

serted whenever useful to avoid ambiguity.

58
1.7. Strings

Expression strings Zl,...,Z are denoted by f, variable strings

k
xl,...,xk by Z. The empty string is not a priori excluded. The multi-
plicity of a string Zyse+-sI, is k ana is denoted by |T]. so we can

rephrase clause 1.3.(iii)2 by

lf‘ = IE] = f(I) is an expression

Further, if lﬁl = k, lEl = k then
{4}B is shorthand for {Ak}"'{Ai}B' BA for (...(BAl)...Ak) and
[x:4]B for [xlelj...[xk:Ak]B. }
Sometimes, by abuse of notation, we treat variable strings as sets,

writing, e.g. y € Z instead of : Yy is among xl,...,x etc.

kl
1.8. Length, subexpressions

In agreement with 0.3, induction on the definition 1.3 is called
induction onexpressions or, also, on the structure of expressions.
Counting variables and constants as single atomic symbols, the lengitn
2(Z) of an expression I can be defined by:

_ k
g(x) = 1, R(AxeT) = (D) + 1, L(F(D) =1+) () .
i=1

Similarly, T is said to be a subexpression of I, for short

' ¢ £, according to the following inductive definition:

(i) T c3Z
(ii) F cI=TcAc-L

(iii) T c Zi =T c f(zl,...,Zi,...,Z) (i =1,.4.,k) .

k
Clearly, < is a partial order. We say that I is a direct subexpression
of Mx+Z and that Zi is a direct subexpression of f(Zl,...,Zk).

We want that the Automath expressions are closed under taking subk-

expressions. So, when discussing these, instead of (ii) we include (ii'")
(ii") T cAor L cB=1%c [x:4]B

and we restrict clause (iii) to constants f different from abstr. In

this case 4 and B are the direct subexpressions of [x:A]B.

1.9. Occurrences, suggestive dots

If £ < TI', then I can have several occurrences inside T'. Such oc-
currences can be distinguished by their positions inside T, e.g. like
in Nederpelt ({51, p.18l.We shall treat occurrences in an informal way.
Two occurrences are digjoimt if they have no occurrences of symbols in
common.

Often, to denote an arbitrary expression with one or possibly

more specific occurrences of a subexpression I we write:
seelose 7 YESPe weeleeeluns

The meaning of these suggestive dots will be clear from the context.
We formulate the fundamental property of subexpresstons in terms
of suggestive dots: if ,..LZ...l... is an expression then one of the

following alternatives holds
(1) £ and T disjoint, or (ii) £ < T, or (iii) T < L.

Notice that these cases do not exclude each other.

I1.2. Syntactic identity, a-equality and substitution
2.1. Free and bound variables

The free variables and the binding variables of an expression can

pe defined informally, as follows:

(1) the first occurrence of & in Ax+I is called a binding occurrence;
L is called the scope of the binding x.

(ii) an occurrence of x, not being a binding occurrence, is called
free if it does not fall inside the scope of a binding x.

(iii) a free occurrence of & in I is calledbound in Ax+I (by the bind-
ihng x)

(iv) x is a free variable of I (resp. a binding variable of I) if there
is a free (resp. binding) occurrence of & in I.

The set of free variables of I is called EV(L). If we write
eesZeeeu.. , we intend an expression with some free occurrences of x.

For a string T, FV(T) = U FV(Zi).

60
2.2. Syntactic identity and a—equaiity

By = we denote syntactic identity, i.e. symbol-for-symbol-equality,
of expressions, modulo a-equality, i.e. renaming of boundvariables,
So a name-carrying expression is considered to represent a certain
rame free skeleton - or, alternatively, an equivalence class of
a-equal name-carrying expressions -, Our point of view,*) viz. of simply
identifying ... (AX*. ... Xoou)eee and Loo(AY* e Y e eaa) .. Can be
justified by referring to Curry [25], Nederpelt [51] or de Bruijn
{10). The latter reference gives a treatment of a formalism of
nameless dummies (see I.3), which is actually used in the current-
ly implemented verifier for Automatﬁ languages.

The notation = extends to strings: T = T, if lil = lfl and, for

i=1,...,027], I,

Fi. Further, L % ' means: not (£ = T), and similar-

ly for strings.

2.3, Now that we have introduced = we return to the notion of subex-
pression. We say that I is a proper subexpression of T, for short
L sub, if £ ¢ T and £ # I, Clearly, Sub is the transitive relation,
inductively generated by the relation ... is direct subexpression of
... . We have such properties as:
Z ¢l , T' avariable or constant == L = T

And we can make the fundamental property of subexpressions mcre
precise: if ¥ ¢ A, T € A then precisely one of the following alterna-
tives holds: (i) LI and T disjoint, (ii) ¥ and T are the same occurrence

(so £ = T), (iii) £ sub I, or (iv) I sub I.

2.4, Substitution

By Ifx/A] we denote the result of substituting the expression A
for all free occurrences of ¥ in I. Similarly by the operator [z/%]
we denote simultaneous substitution of Ai for the free occurrences of
x ;o for i = ,...,k (where k = |x] = |4] and all %, are mutually dis-
tinct). The notation extends to strings in a straightforward way. One
has to take care that no free variables of the substituted expressions
come under the "wrong influence" and become bound after substitution.

For definiteness we give the definition of simultaneous substi-
tution. Let £ locally abbreviate 2[z/A}. Then by induction on I, we

T

Actually in Chs. IV, VII and VIII there are used certain methods
which are not completely compatible with this approach.

61

*
define L , as follows:

(1) a. ys=sx, =y :=4

b, yET=y :=y

(ii) y £ x, vi=1r---115|(xi € FV(Z) =y ¢ FV(Ai)) =

(Ay-Z)* 1= Ay-Z* - otherwise rename y in Ay<I -~
(iii)a. f :=Ff
b. FfO" = £EH .

Single substitution [x/A] amounts to the case lE[= 1 above.
Sometimes, if the Z are not relevant or clear from the context,

then we write

$[4] instead of Zlxz/A] .

2.5, Two fundamental substitution properties

Substitution property I: If all free variables of I are among y

then
tly/Blz/4) = zly/B lx/Al]
Substitution property II: If no free variables of A are among Yy

and & and g have no variables in common, then
tly/BUz/4) = 1 [z/Ally/Blx/A]]

Both proofs are by induction on I. To illustrate I (in the
case of single substitution), let Z = ...Y... . Then
Sy/Bl = vuBies = veelseeleos)ess and there are no free variable occur-
rences outside B. So Ily/Bllx/Al = «..(...4ved) ... = Zly/Blz/A]] q.e.d.
And to illustrate II, (in the 'case of single substitution the conditions
read: y € FV(4) and y $), let L = ,..Y...%... » Then
Zly/B) = o Bie e = toafees®iva) eeluans,
Sly/Bllx/ADl = veo{evideii)enddons Further tlxz/A) = .. .y.. A, and
le/AMy/Blxe/All = oo (00 dee) oAl gaeld.

2.6. Substitution and subexpressions

Let, again,Z* a Z[E/ZB. Then of course, if £ = ...I,,. then

* *
Z = ... v.. . And about the "converse" question: where do occurrences

62

: : * . *
cf subexpressions in I arise from? Let I = ...I'... . Then precisely

one of the following alternatives holds:

(1) ¢

r . F* = T, for some FO c %, or

(ii) T = ...@ye.e, I = R S eeeleeelied)ees, T sUb Ai for some i.

(I.e. T occurs as a proper subexpression inside one of the substituted

occurences Ai)-

i1f, e.g., T = f(Z) then (i) specializes to:

3]
n

(i)a. A R B A¥ =3, or

0
(1) b.

o1
|

eee L.eeay, T =4,
1 1

11.3. Elementary and one-step reductions

3.1. The relations of definitional equality of expressions will be
defined inductively. We start with elemenrtary reductions, then define
ove-step reductions, proceed to more-step reductionsand finally to
definitional equality. Since we only discuss purely syntactical as-
pects here, all these relations are defined on the full universe of

expressions.

3.2. Elementary reductions
3.2.1, B~ and n-reductions
These are the usual A-calculus reductions, associated with the
basic constants abstr and appl.
B: {A}[x:BIC elementary reduces to C[A]
n: [x:BH{x}C elementary reduces to (, if x ¢ FV({)

In free A-calculus, with the alternative notations, these elementary

reductions read
B: (Axe(H4 elementary reduces to C[4]

n: Ax+Cx elementary reduces to C(C if x ¢ FV ()

63

3.2.2. m- and o-reductions

These reductions are associated with pair and projl, »rnj2.
Here 7 is intended to suggest "projection" and ¢ stands for "surject-

ivity of pairing", after Barendregt [3].

T <A,B>(1) el, red. to 4

<A,B>(2) el, red. to B

ot <A(1),A(2)> (or, with type-label, <B,A(1),A(2)>)

el., red. to 4 (However, see VIII.2.5.1.)
3.2.3, +- and e-reductions
These reductions are associated with plus and inj.
+: {il(A)}(B ® () el, red. to {41B
{iz(A)}(B ® () el. red. to {A}C

£: ([x:A]{il(m,D)}B) @ ([x:C]{iz(x,E)}B) el. red. to B,
if x £ FV(B).

As an alternative version of +, suitable for the case where all
plus-expressions are of the form [x:41B @ [y:C]D, we have (this is +

combined with R)
+'; {il(E,F)}(Ex:A]B ® [x:C31D) el., red. to BlE], etc..

Ir. the chapter on AUT-Pi, some further reductions connected with @

will be introduced, the permutative reductions.

3.2.4. 3-reduction

Here § is intended to suggest 'definitZonal”. This reduction is
of course associated with defined constants, for which a defining
axiom is given.
§: d(I) el. red. to Alz/Z] ,
if d is a defined constant with defining axiom d(X)=A- where FV(A)c x —.
This kind of §- or definitional reductions must not be confused

with Curry's S-reduction [25] , Church's § (in Barendregt et al.[5]), or

tne &-reduction proposed in Staples [65].

64

3.3, In all the definitions of elementary reductions above, the left
hand side is called redex and the right hand side is called the con-
cractwt of the reduction, Elementary reductions are also called
contractions.

We use some terminology like in Prawitz' theory of natural de-
duction systems [59]:abstr and pair are the negative, and injl, inj2
are the positive introduction operations. Further appl, projl and proj2
are the elimination operationsT)Correspondingly, 8-, m- and +-reduct-
ions are called the introduction-elimination (I.E.) reductions. The

reductions n, ¢ and € are called the extensional (ext) reductions.

3.4. One-step reductions

We consider three kinds of one-step reductions >, generated in-
ductively from the elementary reductions by certain monotonicity rules.
A subscript or a combination of subscripts indicates which of the

elementary reductions are included. E.g. > is a one-step reduction

8
generated from elementary f-, n- and é—redigtion. The three kinds of
one-step reductions differ by the monotonicity rules used in their
definitions,

For >, and theother relations between expressions, defined here,

> T

-3

the notation extends in a straightforward way to strings. E.qg.
if |T] = |T| and, for i = 1,...,|Z], £, > Iy,
We define L > I' by induction on the structure of I, First, or-

dinary one-step reduction has the following clauses

(1) if ¥ elementary reduces to L' then I > I'
(ii) 4if % > I' then Ax+IL > lx+IL'

peer By) > Fl, I T .

(11i) if I, > T then f(Z i

(1 =1,...,k).

1

Secondly, the disjoint one-step reduction has an additional clause
(0) L >z,
and instead of (iii)

(1ii')if T > I' then f(I) > f(I")

Finally, the 7n2sted one-step reduction has the clause (0) - re-~
flexivity -, the monotonicity rules (ii) and (iii') - just like the
disjoint one-step reduction -, but instead of (i) it has (i'), with

inductively given elementary reductions:

The operation plus falls somewhat out of this classification.

65

(1) B: 4 > 4", C>C' = {A}x:B1C > C'{4']
n: C>C', & £ FV(C) = [z:Bl{x}C > C"'
- and similarly in free X-calculus -

m: A > A', B> B' =><A,B>(1) > A, <A,B>(2) > B'

0: 4 > A" =<4 > 4

W’ Ay
+: A > A', B>B', C> (" =

{il(A)}(B ® (C) > {A"}B', {iz(A)}(B ® () >{4')C
€: B> B',x £ FV(B) = ([x:A]{il(m)}Bea[x:C']{iz(:r:) 1By > B!

§: if d is a defined constant with defining axiom d(X):=A

(FV(4) ¢ x) then I > I' = d(I) > alz/T']

3.5. If I > T and actually some contractions take place in the reduc-
tion step (e.g. when it is an ordinary one-step reduction) then T is

a Iirect reauct of L. By induction on I it appears that: (1) the set

of direct reducts of ¥ is finite (provided there are only finitely

many defining axioms for each defined constant) and effectively con-
structible, so certainly (2) I > T is decidable.

j.&. The disjoint and the nested one-step reductions are so-called
eorpound (after Curry) or special (Nederpelt [51]) one-step reductions.
Troelstra [69] speaks about "clever counting of contractions”,.

Tre terminology can be explained as follows: whereas ordinary one-
szep reduction contracts precisely one redex, both special reducticns
allow to contract several (possibly: none) redices at a time. In the
"2isjoint case" these simultaneously contracted redices have to be
disjoint, but in the "nested case" they may also occur inside each
other, i.e. nested.

1.7, Let, if p is a reduction relation, 5 denote the "disjoint version"

Z ¢, i.e. the closure of p under (0), (ii) and (iii') and let S denote

(8]

“he nested version of p, generated by (0), (i'), (ii) and (iii'").

Let us write >1 for ordinary one-step reduction. Then disjoint one-

1 Clearly,

step reduction is >, and nested one-step reduction is >

1°

(@), (1") = (1)

66

i.e. if an inductive definition contains the rules (0) and (i'}, then

(i) is a derived rule. And, under the same interpretation
(0), (iii') = (iii)

So, we have:

And, since closing once more under a rule has no effect

§ o> N N
1 1 and 1 <->>1 @ 1 e >1

\&4

VI

3.8. Substitution and one-step reduction

The point of the special reductions lies in their behaviour under

substitution. For each of the one-step reductions, we have property 1:

I: B > B' = B[A] > B'[A]

Proof: By induction on B > B', using the substitution properties I and

II in the case of &- and B-contractions respectively.
And, property II:
II: 4> A" = B[A] > BIA')

Proof: By induction on B. Notice that possibly several substituted

occurrences of Ai (which are disjoint) have to be contracted.

III: A > A' = B[A] ;1 BlA']

Combining the reductions in 5 and Z, there is property

Iv: 4>4', B> B = B[A] > B'[A']

Proof: By induction on B > B'. In the case of clause (0), use property

II and 3.7. K

So, by 3.7 again, we have

v i ?1 i, B 21 B' = B[A] 31 B'[A']

67
I1.4. Reductions and definitional equality
4.1. Reduction sequences

Let > be a one-step reduction. Then a (possibly infinite) sequence

of expressions I, > I, > ... > L > ... is called a reduction sequence

of Zl with respect to >. Reduction sequences with respect to >, are

1

ordirary reduction sequences. If each I in the sequence is a direct

k+1

reduct of Zk then the reduction sequence is a strict or proper re-

duction sequence. So, e.g., ordinary reduction sequences are strict.

4.2. Reduction trees

The strict reduction sequences of an expression I can be arranged
in a (possibly infinite) finitary labelled tree, the reduction tree of
I . We think of reduction trees as growing downward: label the root

with L, at the first level below come all the direct reducts etc.

4.3. More-step reduction (or just: reductton), denoted Z, is defined as

the transitive and reflexive closure of >1, i.e.:
(i) T >1 I'=2 L 21",

(ii) =21z,

(iii) r=z2z', ' 2Ii"=>% =2z¢",

Again, subscripts going with 2 indicate which elementary reductions
are included.

If £ 2T, T is a reduct of I. Clearly T is a reduct of I iff either
£ = T or there is anordinary reduction sequence from I to T. In the

latter case I is a proper reduct of I.

*
4.4, Let, if p is a relation, p be its reflexive and transitive closure.
*
30, by definition 2 is just >1. Of course, z satisfies all the mono-
tonicity clauses:
2T =.,..,.. 2 ...T...

and

v
g
Wi
)
[\
g
v

68

As in 3.8, 2 =2 4', Bz B' = B[4) > B'[A]

Further,

; >* ad : >*

=

177 8n 177
whence

> —-% ';'*

2 & > < > (=]

1 1 1

4,.5. We write I' < ¥ for £ > T, £ # T for not (I > I'). Similarly for 2

We define: Z + T : « % 2 A £ T for some A.

So, L + T iff ¥ and T have a common reduct.

4.6. As usual, the relation = (possibly with subscripts =B ’ =8n etc.)
of definitional equality (or just: equality) is the equivalence relaticr
inductively generated from =2 (resp. ZB, ZBn etc.).
Again, = satisfies all the monotonicity rules:
L=T= ,,.Z... =
and
_ ~ *
=& (=) @ (=) &=
So, for equality too,
A =2A4', B=B'= B[A] = B'[A']
Clearly, = is just +*. I.e. £ =T if for some k 2 0 and some Z,
I = AO + Al...+ Ak =T
4.7. In some cases we rather consider a restricted form of =. Let A re

a set of expressions. Then, we define, for ¥ ¢ A, T € A ,

< A,

T~ T :e&Z ¥ A, +...¥y A, ¥ T for some A, ¢ A,...,Lk <

A 1 k 1

So, if >A and +A are the restrictions of > and ¥ to A, respectively,

then

69

4.8, The relations =, + and 2 (and, if A is recursively enumerable, ~
and &A) are, in view of the recursivity of >, by their definitions
recursively enumerable, and, in contrast with >, not a priori de-
cidable.

Indeed, in free X-calculus equality and reduction are not re-
cursive (Scott, in Barendregt [4]). Below we shall introduce some

properties which imply the decidability of the various notions.

4.2. An ordinary reduction sequence I = AO > Al >0 Ak =T is a

maln reduction sequence if at least one of the steps A, > 4., isan
elementary reduction. We say that £ main reduces to T, for short

o= MRF' If for j < k, the reduction sequence from L to Aj is not main,
then [is called a first main reduct of L.

It is just the main reductions that affect the "outside form" of
expressions: if fi and f2 are distinct constants and fl(f) z fé(f)
when S (D) 2 fo(D).

Expressions (and their "leading" constants, such as fl in fl(Z))
are said to be Zmmune if they do not main reduce. E.g., the primitive
constants, injl and inj2 are immune for all, and the defined constants
and introduction constants (sec. 3.3.) are immune for I.E. reductions.

v

{[.5. Some important properties

5.1. Below we introduce some important properties, such as closure (CL),
strong normalization (SN) and the Church-Rosser property (CR). all
these properties (and some connected concepts, such as normal form,
length of reduction tree (6)) are defined relative to a reduction re-
lation = (and possibly a one-step reduction >)., Now, prefixes or sub-

scripts going with the introduced notions indicate what elementary

(3]
b

dzcticns we included in the intended reduction relation. So we speak

v

oout f-closure, BS8-SN, Bn-CL, 6 etc.
Bné

3t
[

. The closure property

Z.2.1.Aset Acfexpressions is closed w.r.t. 2 (or just: closed), if

it satisfies CL, the closure property (after Nederpelt):

CL: Z ea, z2T=T¢n

70

(do not confuse CL with "combinatory logic")

We also define CLl’ one-step closure, for a one-step reduction >:

CLI: Len, L>T=T=¢€en

- ~

For each of cur one-step reductions ST and >, we have CL1 = (L.
The crucial point in a proof of CL1 is often to prove closure

urnder substitution:

Te A I €Ay I ¢ A= T[Z] ¢ A

(in most of the cases additional restrictions on the Z ,L, have to

preserdy

be imposed).

5.2.2. Clearly, if A is closed, then ~a is precisely the equivalence re-
lation generated by >A (see 4.7). Proofs by inductionon {(thedefiniticn cf)
> (or onreduction trees, if these are well-founded) require that the
system under consideration is closed.

If 2z and 2' are two reduction relations, 2 = 2', and A is closed

w.r.t. 2' then A is closed w.r.t. 2.

5.2.3. Let F be a string of constants. Call I an flexpression if the
constants of I are among f. The f—expressions are closed under sub-
stitution, so they satisfy CL1 (provided that the defining axioms do
not contain constants outside f), so they satisfy CL., Similarly, the
full universe of expressions is closed under substitution (as we al-
ready tacitly assumed) so it is CL. Free A-calculus, and the various
systems of Automath expressions are CL too (sec. 1.4).
Clearly, the set of reducts of an expression is closed. In chapter

1y , we prove that the so-called normable expressions form a closed
set. In chapter V andVIII we prove that various systems of so callec

correct Automath expressions are closed.

5.3. Normalization and strong normalization

5.3.1. We define (relative to a reduction relation)

(i) L is in normal form (or just: normal) if not I > T

(ii) £ has a nmormal form if I = I' for some normal T

{(iii) L normalizes (or just: N(I)) if & 2 T for some normal T

(iv) I strongly normalizes (or: SN(I)) if all proper reduction se-

71

quences of I terminate.

(v) A set A of expressions is said to be N (resp.SN) if

£ ¢ A= N(I) (resp. SN(D))

5.3.2. Clearly, I is normal iff I does not reduce properly iff ¢ does
not contain redices. So the property of being normal is decidable.

Of course, I normal = SN(I) = N(I) = I has normal form.

1f SN(I) then the reduction tree of I is well-founded, so (by the
Brouwer-Kénig lemma) it is finite. Hence, if SN(I) then we can define
3(I) as the length of the reduction tree of I, i.e. the maximum length
of proper reduction sequences starting in L. And, if SN(I), then the

relation £ 2 I is decidable.

5.3.3. Call a reduction sequence EO > Zl > ... Secured if for some k,
L is SN. Then SN(Z) iff all the reduction sequences of I are se-
cured iff all the direct reducts of I are SN.

By monotonicity, we have: SN(Z), I © & = SN(TI).
Cenversely, if (1) T sub I = SN(I') and (2) all first main reducts of

z are SN, then SN(I) - because all its reduction sequences are secured -.

5.3.4. Let A and A' be sets of expressions, A ¢ A'., Let 2 and 2' be
reduction relations, with = = 2', Let A' be SN with respect to ='. Then
A is SN with respect to 2 (compare 5.2.2). So, in order to conclude SN
fcr a variety of sets A and reduction relations 2 it is sufficient to
orove SN for the “union" of these systems.

As for property N, the implications rather work in the other di-
rection: let ' and 2" be reduction relations, 2 is the "union" of 2'
ard 2", If A is closed w.r.t. 2', N both w.r.t. 2' and 2", and we have:

. normal w.r.t. 2', L 2" T) = (T normal w.r.t. 2') then A is N w.r.t. 2.

53.3.5. It is well~known that free A-calculus does not B-normalize (e.qg.
consider B :Z 44 with A := Ax-xx) and that not necessarily N(ZI) = SN(I)
.e.g. consider (Ay-<4)B).

However, the correct expressions of all the Automath languages do
strecngly normalize under all the associated reductions: chapter IIX
oroves 8-SN, chapter IV deals mainly with B-SN and chapter VIII proves

the strong normalization of AUT-Pi w.r.t. all the reductions considered

72

(and the permutative reductions) except €.

5.4. Church-~Rosser property and Church~Rosser theorem

5.4.1. We define (relative to a reduction relation):

(i) (Church-Rogser property):CR(Z) if A< L 2T = A+ T

(i1) (Weak Church-Rosser property):CRl(Z) if A< I> IT=A4T

(iii) Church-Rosser theorem (C-R-thm) for A: if %L € A, € A then
Z=I=L+T

(iv) Weak Church—Rosser theorem for A: if L € A, T € A then
Z'~AF = ¢ T

(v) A is CR(resp. CRI) if T e A = CR(Z) (resp. CRl(Z)).

5.4.2. Clearly, CR = CR1 (for the converse implication see 6.1.5.), and
(C-rR-thm for A) = (weak C-R-thm for A). And,if A is closed then
(A satisfies the weak C-R-thm) « (A is CR).

Since = is ¢* and ~A is (&A)* (sec. 4.7), the C-R-thm (resp. the
weak C-R-thm) asserts the transitivity of + (resp. +A) .

If A satisfies the C-R-thm, L € A, L has normal form T € A then
£ 2 TI', so N(Z) . Hence, if L € A, I has normal forms T ¢ A and A ¢ A
then T = A. Conversely, if A is N and, for normal I,I' € A we have

L =T=1¥ =T, then A satisfies the C-R-thm.

5.4.3. Anyhow, if CR(Z), £ 2T, I 2 A, both T and A are normal then

—
1

= A (untqueness of normal forms). Hence, if CR(I) and N(I) then we
can define the normal form, nf (L), of L. Conversely, if A is closed

and N and all % ¢ A have just one normal form then A is CR.

5.4.4. If A is N and CR then, for all § ¢ A, nf () can be effectively
computed, so the relation *A is decidable. So, if A is N and A satis-
fies the C~R-~thm (resp. the weak C-R-thm) then the definitional equa-

lity = (resp. ~A) is decidable on A.

5.4.5. Finally, let A and A' be sets, A ¢ A'. If A' is CR (resp. CRI'

etc.) then A is so too (compare 5.2.2 and 5.3.4).

73

i1 6. CR continued
6.1. How to prove CR

6.1.1. Here follow some elementary considerations on two possible
methods of proving CR, viz. with and without making use of SN, The
first method, i.e. with use of SN, reduces the CR-problem to CRI' The
point of this is that CR1 is usually easily verified. A case analysis
of CR1 w.r.t. our list of elementary reductions follows in sec. II.S8.
The second method, without use of SN, employs our "nested" one-step
reductions.

For more complete comment on CR-proofs, we refer to, e.g. [2].

6.1.2. For good comparison of the methods we introduce a slightly more
general situation. Let = be some binary relation (think of a reduct-
ion relation). Let'i (resp. 3) be the transitive and reflexive (resp.
the reflexive) closure of -, Let B « A stand for A ~ B etc. Let I be
an expression. We define, for - and I: (with quantification conventions

as in sec. 11.0.4.3)

40

‘1) diamond property F«f+>A=T 335 <
(i1} plank property r<r>asriszg 24
{1ii) weak plank property r<i3>a=sriz <2
fiv) weak diamond property: [< £ - A =T T fa

wnere the terminology refers to the geometry of the illustrating dia-
grams intended.

We say that the property holds in A, if all I € A satisfy that
property - but it is not reguired that the I', A and I' mentioned are

themselves in A too - .

€.1.3. Let us abbreviate the diamond property for 3 by (i)*. Then it
is clear from the definition that (i) = (iv), that (ii) = (iii) = (iv)
and that (i)* = (iii). Further, if A is closed under -, then by in-
duction on (the definition of) > : ((i) holds in A = (ii) holds in A),

*
ard: ((1ii) holds in A = (i) holds in A). So in a closed (under) set A:

*
(diamond property for) = (diamond property for -) .

74

6.1.4. But if A is closed under -, and additionally 3 is well-founded,
then we can say more: (iv) holds in A = (i)* holds in A. Proof: assume
that (iv) holds in A. By induction on the well~founded relation o we
prove that the diamond property for 3 , i.e. (i)*, holds in A. So, let
Len, I'S£23a Wwewantas withT 31" £ A, If £ 2 T(or £ = A) then
simply take L' = A (resp. I' = I'). Otherwise (it is advised to draw a

diagram), for some Fl £ I, Al £z, 7T b Fl “«1>h 3 A, By (iv) for

1

1r By the induction hypothesis applied to Fl and A
*

we £ind Ty, Al with I 3 ! ¥ z! z A; © 4. Finally, by the induction

hypothesis applied to Zi we find the desired I' with

* * * -
> L' o« Ai + A, g.e.d. So, in this case:

oy, T *Z’-:A
-
some I, 1 1 1

(weak diamond property for) = (diamond property for :).

6.1.5. Now we come back to the original situation: if - is one-step
reduction then the diamond property for 3 s just property CR, And if
we take ordinary one-step reduction for - then the weak diamond proper-
ty is precisely CRl'

So 6.1.4. provides the first method of proving CR: If A is closed,
SN and CR1 then A is CR.

And 6.1.3. provides the second method, as follows: call a com-
pound one-step reduction > suttable if (1) 5 ez (i.e. >y = S
and (2) > satisfies the diamond property. Once such a one-step reduc-
tion has been indicated, one can apply 6.3 and prove CR. Indeed, the

common (R-proofs (for free A-calculus, where SN does not hold) work

in this way - i.e. they can be rephrased along these lines -

6.2. A survey of results

6.2.1. The analysis in sec. II.8 of CRiyields at least -i.e. as long as we
do not use SN - some negative results concerning CR. These negative
results are of two kinds: first there are the problems with the type-
labels which were first mentioned by Nederpelt[Sl,p.71] in connection with
Bn-reductions. As aresult Bn-CR simply doesnot hold in the full universs
of expressionsbut only for the correct Automath expressions (chapter V,
chapter VI). Analogous problems arise from wé~reductions and +eg-re-
ductions (chapter VIII),.

The second kind of negative result is more serious: it appears

that for any reduction relation including Be-reductions, CR is false,

even if the type labels are ignored. More about this in chapter VIII

too (VIII.6).

6.2.2. Now we mention some facts which show the relevance of our com-

pound reductions ;1 and :1. First, ;1 s
1
duction) is suitable (in the sense of 6.1.5) for §-reduction (chapter

(i.e. disjoint one-step S§-re-

III, sec. 3.3). Secondly, by the way, the disjoint one-step reduction
generated by weak reductions is suitable for weak combinatory logic
(Rosser, in Troelstra [69]). Further, ;118 is suitable for B-reduct-
ion in free A-calculus (Tait, Martin-L3f, in Barendregt [2]) and in the

~

generalized typed A~calculus (Nederpelt [51]). In fact, >y is suitable
for the combination of all the elementary reductions, except o and ¢,
provided we leave out the type-labels. This was proved for fnm-reduc-
tion by Mann [43] ; he also indicated the problem with o as explained
in sec II 8.4. Below we prove the suitability of ;l,Bn for free A-cal-
culus, simplifying the proof of Mann.

6.3. A proof of Bn-CR in free X-calculus

6.3.1. This proofvia the suitability of ;1,Sn for free A-calculus

(which fact was claimed by Barendregt [2]) is just slightly more in-
veclved than in the B-case, in contrast with Mann's proof which is un-
necessarily complicated. As explained in sec. 6.1.5, the suitability

is sufficient to prove CR.

5.3.2. The expressions are: variables x, A-expressions Ax+*4, application
expressions BA. By writing A', B' we implicitly intend that A > A°',

B > B', etc. The elementary reductions are, as in sec. II1.3.4: 8) (Ax-D)4>5'[4'],
(ny x £ EV(A) = \x-Ax > A'. From sec. 3.8 we recall the substitution

property V: B[A] > B'[A4*].

6.3.3. If 2x*A > B then either (1) B = lx+4', or (2)A = Cx , x ¢ Fv((),
2 > B. So, if Mx+Cx > B then either (la) B = Xx-C'® , or (1b) C = Ay-D,
3 = xx+D'ly/x] , or (2) x ¢ BN (), C > B.

6.3.4. If BA > C then either (1) C = B'A', oxr (2) B = xx+*D, C = D'[4"'].
So, if (Az<D)A > C then either (la) C = (Ax+*D")A', or (1b) D = Ex,

76

C = E'A', or (2) C = D'[4'].

6.3.5. Now we just have to prove the diamond property:

Al < 4> A2 =~A1 > A3 < A2. We use induction on A. If A = x then there
is nothing to prove. If 4 is a A-expression or an application expression
then we must confront the various possibilities ((1), resp. (la) and
(1b), and (2) of 6.3.3, resp. 6.3.4) of reducing 4 to Al and A2 with
each other. In both cases (4 is A-expression or not) the combination
(L)v.(l) (i.e. A > Al, A > A2 both by "internal" reduction), (2)v.(2)
(i.e. A > Al’ A > A2 both by an "outside" reduction) and (la) v.(2)

are just standard.

6.3.6. So, let ((1b)v.(2)) 4 = z+{A\y*D)x, = ¢ FV(D), A, = rxeD'ly/z],
A, = E, Ay*D > E . Applying the ind. hyp. to Ay*D we find A3 with

2

Ay-D' > A3 < E. Since x ¢ FV(D'), Ay-D' = Xx-D'ly/xz], so A3 does the

work.

6.3.7. and, let ((ib)v.(2)) A =(Ax-Ex)D, x ¢ FV(E), Al = E'D',

A2 = FlD"), Ex > F, D > D". mpplying the ind. hyp. to Fx and to D we
find # and D" with F > H < E'x, D' > D™ < D", By the substitution
property FID"] > HID™] < (E'x)[D') = E'D' (because & ¢ FV(E')). So

this H[D™] can serve as A3, q.e.d.

11.7. Combined reductions

7.1.1. In some cases desirable properties, such as N, SN anda CR, for a
combination of reduction relations 2 and 2' can appropriately be
proved by first considering 2 and 2' separately and then use certain
connections between 2, 2' and their "union". An example of this can
be found In sec. 5.3.4 (second half).

Interesting questions on the connections of 2, 2' and their "union"
are whether 2 and 2' commute (cf. sec. 7.2 below) and whether 2'-post-

ponement holds (cf. sec. 7.3 Dbelow).

7.1.2. Let i and j stand for (combinations of) elementary reductions,

and let ij refer to their "union"., E.g. if i denotes Bn and j denotes

~

§ then ij stand for Bnd . We write >i, etc. for the corres-

> 4
1,i" i
ponding (one-step) reductions. We use Si etc. in the usual sense.

77

We say that Z > >, T', resp. £ >,2. I', if for some A, £ >, A > T
i 3 i3 i 3
resp., £ >, A 2, T'. Similarly 2.>. and 2.2,
1 J ij i’j
The notation X Si<j I''is used for T >,2i I etc.

7.2.1. Church-Rosser for combined reductions

In Staples [65] *) we find some ingenious constructions for proving
that a combined system is CR. Here we restrict ourselves to some simple
properties.

We assume that A, a set of expressions, is ij-closed (i.e. closed
under Zij)' and that*all expressions considered are elements of A.

Clearly, (ZiZj) is just Zij' so if Zizj satisfies the diamond
property then we have ij-CR - because Zizj is a suitable one-step re-
duction for Zij' in the sense of sec. 6.1.5.

We say that Zi and Zj commute if, for all I (quantification as
in 0.4.2),

r< L2 A=T=z2 3$'< A
i j 3 i

Thus, if i-CR, 3-CR and 2, and Zj commute then ij-CR.

7.2.2. When do Zi and Zj commute?
We give an analysis analogous to sec. II.6.l.Define, for one-step

reductions >i and >j,

(i) diamond property : T < L> A=T> I <j A
(11) trapezium property : T <j L> A=Tz2 L' <j A
{iii) plark property : T < Lz, A=T 2, 1 < A
(iv) weak plank property : T < Lz, A=T2 1 sj A
) veak diamond property: T <j)y >0 A=T 2 T Sj A

As in sec.6.1.3 , (i) = (ii) ¢ (iii) = (iv) & (Zi and Zj commute) = (v).
And if ij-SN, >y and >j satisfy (v) then also 2, and Zj commute

(as in sec. 6.1.4).

7.2.3. So, just as in the case of ordinary CR, there are two possible
ways of proving that 2, and Zj commute (viz, with and without SN).

with SN, it is sufficient to prove the weak diamond property for >y
’

and >1 .. But without SN, we rather look for a compound reduction >i
’

See also de Bruijn [19]

78

such that >i and, say, >1 5 satisfy at least the trapezium property.
’

7.2.4. The analysis of sec. 8 provides us with the weak diamond pro-
perty for all combination of n-, 7-, 8~, - and +-reduction (but for the

type-labels, of course). Let >: i stand for the reflexive closure of
14

>1 i (i.e. contract one or zero i-redices at a time). Then sec. 8.8
14

also shows that all combination of >0 ,>° and >, satisfy the
1,n" 1, o Li* i
diamond property, and that all combinations of >1 8 (resp. >1 s
! 4
> ;> and > satisfy the trapezium property (modulo the type
1,n 1, 1,+
labels). In the Bn-case this gives an easy alternative proof of Bn-CR

) with

(compare sec. 6.3) for the free A-calculus, viz. from B8-CR (e.g. by
the Tait-Martin-LSf method) and n-CR (which is trivial from e.g. n-SN).
A simple variant of the CR-proof in sec. 6.3 (or rather of the

CR-proof in chapter III, sec. 3.3) shows that > and > satisfy

1,8 1,6

the trapezium property: T < z A =T 25 ! < 8 A. Alternatively,
I

>
N 1,8 1,8
one can prove that >1 8 and >1 s together satisfy the diamond property.
1 r’
Resuming, n-, m—, B-, 6- and +-reductions commute with each other

(but for the type-labels).

7.2.5. Further, sec. 8.8 yields some negative results about the com-
muting of reductions, even if we ignore the type-labels. First there
is the Be-problem.

Secondly, there are the problems with ¢ and €: neither o nor e

commutes with any other reduction.

7.3.1. Postponement

For some cases of i,j no "new" i-redices are created by j-reduc-
tions, and the i-contractions in an ij-reduction can be carried out
first. This property is called ij-postponement, for short ij-PP. we

say that I satisfies ij-PP if

rz2, , I'ssz=z22 T
ij ij

and we say that ij-PP holds in a set A if all I ¢ A satisfy ij-PP.
“«
Clearly we have ii-PP. Use the index i for the "converse" i-re-

duction:

-+
52T e 1 <, T. similarly >, etc.

79

Then 1ij-PP is strongly connected with ij+—CR. In fact, in a closed
(under zij) set A, 1j-PP is equivalent with the property
rez2 TI'=2L 22T
]2 1]
i.e. 2% and Zi commute in the sense of 7.2.1.

J

7.3.2. When does postponement hold?

Let us confine the discussion to a closed (under Zij) set A. Since
the gquestion of ij-PP just amounts to the question whether Zi and 2+
J
ccmmute, we can simply follow the development in sec. 7.2. Define, for

one-step reductions >i and >j,

i t i I :IZ>> I'>sZ 2z > T
(1) rapezium property 374 i3

(ii) trapezium property II: L >j>i I' =& >i2j T

Since both trapezium properties imply ij-PP, it is sufficient
for ij-PP to indicate a suitable one-step reduction >j (resp. >i)
satisfying trapezium property I (resp. II).

But, if we have i~SN, we can do with a weaker form of (ii),

(11 2
(111) Eogry s T8 7535y

for, using induction on Zj’ we find

i) > > r > >
BV E27y, D=2y 5%,

So, assuming i-SN, we can use induction on the well-founded re-
latzion = and prove ij-PP, as follows: let L zjzi r. If z Zj [there
i

i3 rnothing to prove. Otherwise, & 2 r Zi ', for some T',, By

71,1 1 1
J 1,1
1,1 Zl Zij Fl. By the induction hypothesis applied to L
fird that &, 2. 2. T g.e.d.

1 13

rivy, © > we

1

T.2.3. Some results

The fact that Bn-PP holds belongs to the tradition of the free
X -calculus. Nederpelt's proof {in [51]) shows the trapezium property I
for the combination of > and N . As Nederpelt points out, Curry's

1,8 1,n
crocof in [25) which instead aims at the trapezium property II for a

ccmpound one-step B-reduction (with > } is defective (though >

1,n 1,8

80

would have worked).

From sec. 9.2.4 it is clear that the following combinations of
reductions satisfy property (iii) of sec. 7.3.2: of >1 8 with >1 n
’ ’

> i > > i > i -
1, with 16" and of 1,8+ with 1 Assuming some weak type re

strictions (clearly satisfied by correct Automath expressions) we alsc

, of

get property (iii) for >1,B with >1,0, and for >1’ﬂ with >1’n . This,
together with the appropriate SN-assumptions, yields that the com-
bination of the I.E. reductions (sec. 3.3) BT+ with the ext-reduc-
tions ¢ and n allows postponement of these ext-reductions,

Alternatively, we can extend Nederpelt's construction to these
cases, with the nested version :1,no<(and get PP without resorting to
SN) .

Anyhow, e-reduction is an exception: its postponement is not pos-

sible, viz. in combination with B+-reduction.

7.3.4. As an application of PP in general, we give the following theorem:
if i-SN, 3-SN and i3j-PP then ij-SN

Proof: Let I be an expression. By induction on the i-reduction tree

of £ we show that all ij-reduction sequences of I are secured. Let

b > Fl >y F2 > +e. - By PP, for all k, Z Zizj Tk. The j-reduction

tree of % is finite, so, if for all k, L Zj Fk’ the reduction sequence

is finite (whence secured). Otherwise, for some proper i-reduct L' and
some I' in the reduction sequence, &' zij I'. By induction hypothesis,

' is SN, so I is SN so the reduction sequence is secured g.e.d.

7.3.5. In fact it is more straightforward to prove the theorem from

property (iii), section 7.3.2. (which holds in all our PP-cases),

directly:

i — - i3 i > > = > > :
1f i-SN, 3-SN and property (iii) holds (i.e. %11 1,4 ij) then
i3-SN.

Proof: Let § be an expression, let Z > T > T_ > Again, we

111 2 1
use induction on the i-reduction tree. If the reduction sequence just

contains j-reductions, then it isfinite, by j-~SN. Otherwise, for scme k,
iii ', L > Lt 2z r .

z Zj Fk >1,i Fk+1' By (iii), for some p 1,1 i ket

By the ind. hyp. L' (so Fk+1) is 1j-SN, and the reduction sequence is

secured g.e.d.

As a corollary of this, we have B-SN = gn-SN.

81
7.4.1, wWeak postponement

For some cases of 1i,j, indeed no essentially new i-redices are
created by the j-reductions, but if one starts with carrying out the
i-contractions, possibly too many i-redices are contracted. We say
that weax ij~postponement (weak 1ij-PP) holds, if for all I,

rz I'=»>%L=z22 T'"< T
i3 i

1]
In particular, as sec. 9.3.1 shows, we have only weak §8-PP.

There are two relevant ways of proving weak ij-PP, viz. with and

without use of i-SN. First, without i-SN. We introduce some properties:

i) z >y I =1L >i2, r Si r (a kind of weak trapezium
property I)

ii) Lz> T =1L> Zj rr< rT (a kind of plank property)

ssume that i- and j-reduction commute. Clearly, (iii) implies weak
ij-PP, and (by induction on Zj) (1) implies (ii). Further, if >i sa-
~isfies the plank property for CR (<iZi = 2i<i), then (ii) implies (iii).
1) >, satisfies the plank property for CR,
t2) 1 and j commute,
(%) property (i) hclds, then we have weak ij-PP
{nence without using SN).

Then, with SN. We introduce a weak form of property (iii) sec. 7.3.2.
Tiv) z >j>1,ir = I >1,izij r’ Si r
Assume that i-reduction and ij-reduction commute. Then (iv) gives, by

induction on Zj,

) r 2> . I'=s>f> = _T'< T
jl,1 1,143 i

By induction on i-reduction trees, we get:
if (1) i-SN, (2) i-CR, (3) i and j commute (so, with i-CR, i and ij

commute), (4) property (iv) holds then weak ij-PP.

T.4.2. As a corollary of (1) i-CR, (2) i and j commute, (3) weak ij-PP,
4) i-N (i.e. i-normalization) we get: L Zj I = i-nf(%) Zj i-nf(m.
An alternative way of getting the latter property (which, in turn, im-

plies weak ij-PP) avoiding the question whether i and j commute, is

82

from: (1) i-CR, (2) i-N , (3) weak ij-PP and (4): for all I,

r<. 2, A=T2, L'<S . I.
3 i i ij

7.4.3. Section 9.3.4 learns us that 63j-PP holds for all reductions j
except B8~reduction. This can be proved either from §-SN (Chapter III)
and property (iii) section 7.3.2 or without 8-SN, by showing trapezium
property II (sec. 7.3.2) for > and >, .
1,8 1,3
Further § commutes with all reductions but ¢ and &, For the latter

two reductions, however, we can prove (with ¢ and € in the role of j):

< > > ' <
T <5 z s A=T Zs L 59 A

So, assuming 8-CR and §-N, for all reductions j but B we have already:

Tz, = §-nf(r) 2z, §-nf(N
J J

Finally, we have weak &B8-PP, with use of §~SN and property (iv)
above, or alternatively from property (i) above (quite simple, with
> s and > 8). So, in this case too, if 6-N and &§-CR then

’ r

£z, I'=3&-nf(z) 2, &-nf(r)
B B
7.4.4, For the rest, weak postponement is just what we get in the
following situation: let D, and D, be disjoint sets of definitional

1 2

constants, let 25D , resp. ZSD denote the reduction relation genera-
1 2
ted by contracting constants from D1 (resp. D2) exclusively. If the

defining axioms of the constants in D, do not contain constants in D.

1 z
then we have weak &§_ § -PP.
Py Py

11.8. An informal analysis of CR1

8.1. In presence of SN, the weak CR-property CR1 is sufficient for CR
{see sec. 6.1.5), Anyhow, for the heuristics of a CR-proof an analysis
of CRl is indispensable.Let i and j indicate kinds of elementary re-
duction, such as B, n etc. Let I be an expression, with an i-recex

2 < ¢ and a j-redex S ¢ L. By contracting R to R' (resp. S to &') we

[}

>, i [(resp. L >1 3 A). We want to find out whether I and ¢
1, ,

have a common reduct L' and if so, by what kind of and by how many

get

Al

contractions, L' can be reached from I' and A. In the informal discussicn

83

below all possible cases are systematically treated, according to the

relative positions of the redices R and S.

8.2. The first point is of course, that either (a) A and S5 are dis-
joint, (b) R =5, (¢) Rsub Sor (d) S sub & . In case (a), the con-

<ractions Jjust commute:

T = IRl N T = pog) -~

@ = s evilesaileas >1'il S seedl s sdeas >1,j

D' = LRGS0 A S LLWRLLLSY L <, LT
1.1 1,3

As for case (b), if we assume that
(x) for each definitional constant only one defining axiom is given,

~hen all elementary reductions are mutually exclusive. I.e, if Ri-con-
tracts to R' and R j-contracts to S' then i and j refer to the same
kind of reduction and R' = S'. So, under assumption (%), which is in-
cdeed fulfilled in the Automath system of abbreviations, in case (b)
for a common reduct we can take I' B T (= 4).

Case (c) is discussed in sec. 8.4 and further. Case (d) can of
course be reduced to case (c) by interchanging i and j, R and S.

3.3. About expression variables in schemes for reduction

The elementary reductions are formulated in schematic form, i.e.
with meta-variables for expressions in them. For instance, in the
scheme of B-reduction "{4}[x:B1C elementary reduces to C[A]" (in

2c.3.21), the meta-variables 4,B,C are the expression variables of

]

—ne scheme.

For each of the schemes, all of its expression variables occur
{(of course!) at least once in the left-hand side (redex). Let X be an
expression variable of a scheme for reductions. We distinguish three

cases:

(1) X disappears in the contractum (such as B above)
{ii) X occurs just once in the contractum, possibly there is sub-
stituted in X (such as (above).

(iii) X is possibly multiplied by substitution (such as 4 above),

For all kinds of reductions, except o and €, the expression var-
iables occur precisely once in the redex. To these two excepticnal

cases we refer as the twin reductions (because of the twin occurrences

84

of the meta-variable, e.g. of X in<X >).

X
(1) "7 (2)
8.4. Case (c). Let R sub S, § j~contracts to S'. Distinguish the fol-

lowing cases:

(cl) R < X for some instance X of a meta-variable of the j-redex
(c2) not (cl), so R forms an essenttal part of S (such as [z:B1C
in {4}{x:B1C)Y.

Now, unless j refers to a twin reduction and R ¢ X for some in-
stance X of a twin occurrence, in case (cl) the j-redex is not spoilt
by the i-contraction. For common reduct L' we take the result of simply
contracting the modified (by the internal i-contraction) j-redex in T,
From A we can reach L' by i-contracting nothing (if X disappears, i.e.
case (i), sec. 8.3), i-contracting one possibly modified (by sub-
stitution) occurrence of R (if X occurs once, i.e. case (ii), sec. 8.3)

or i-contracting possibly more disjoint occurrences of R (if X multi-

i iii . . . > T> ve . <
plies, Sase (iii), sec. 8.3)., So L 1, i 1,3 z 1,1 A 1,3 z
(where >1 i is disjoint one-step i-reduction).

1
Examples:

(1) 3 is B, X "occurs once", use substitution property I, sec. 3.8:

£z 5= {A}x:BJr >, . Tz {AYx:BIR >
1,1 1/8

' = R'[A] <1,i A = 5" = R{A] <1,B z

"

(2) 3 is B, X "multiplies",

|3l
ni
W
n

{R}Mz:Bl...x...xvve >, T = (R'}x:Blo. oz 2000

1,1 1,8

In contrast with this, if j refers to a twin case and R < X for
some "twin variable" X, then the j-redex is spoilt by the i-contraction
indeed - but can be restored by i-contracting the other twin as well.

So, since twin variables occur just once in the contractum (case (ii),

. 8. r-, ' > T > T' > L', . A<, | L.
sec. 8.3), for some ’ ;) L 1,i 1,1 1,3 1,i 1,5
Hence, in this case i and j do not commute. An example (where j refers

- i H = < =< '
to o-reduction): L S R, , . K >1,i T R (1),R (2)>

(1) (2)

>
vz <y ! > ! R <, . R = A< Z.
1,1 T Ty iy v,k 1,i 1,0

85
8.5. Case (c2): R is an essential part of S. Notice that there are
two possibilities:

(1) 3 is an I.E.-reduction, i is the corresponding ext-reduction.

{2) 1 is an I.,E.-reduction, j is an ext-reduction.

Case (c2l). Here are three cases, nv. B, o v. m and € v. +. In

tne first two cases there is no problem, even if type-labelsare pre-

sent: [= A, so we can take L' = T too.
(mz) {A}C <1 n{A}[x:B]{x}C >1 B{A}C ’ (x ¢ FV (())
(37) <Q/A,E>(P) <1:0 <PI<QIAIB>(1)I<QIAIB>(2)>(p) >1,7‘_ <QIAIB>(p)

(p=1o0orp=2).

Tne case of € v. + 1is more complicated. First, there is an additional

2-reduction needed. Secondly, there are problems with the type-labels.

c

™m

L3

—~t = . A 1 . . '
A = ([x.Blj{ml(x,Dl)JC) ® ([Jc.Bz]{q,z(x,Dz)}C), r

(€3]

= {¢ (4, D) }R, S* = {A}[x:B 1{Z (x,D) }C,
p 3 p" P P

(p=1orp=2, 2 ¢ FV(),

{tP(A,DB)}C <1’€ S >1’+ S >1,8{lp(A,DpﬁAﬂ)}C

Sc, in this case, T A ''with T = A' but jor the

< r > > A
1,¢ 1,+ 1,8
ype Labels., Hence, without type-labels, L' = I' = A' can serve as a

b

<

common reduct. But with type-labels type-restrictions have to be im-
posed in order to guarantee that DPHAB and D, are definitionally

equal (and may have a common reduct).

Z.<, Case (c22) covers Bv. n, ™ v.0, +v. € and B v. €, In the first
t~O Cases CRl holds but for the type-labels. In the third case addi-
tional n-contractions are needed (compare with 8.5, € v. +), but in the

focurth case CR1 (so CR) simply does not hold at all.

i) [x:4]C <1 g (x:A1{zx}[x:B]C) . [x:B]C x ¢ FV(B)

3c nere, I = A but for the type-labels., Regarding m v. o, the situation

compares with the twincase in 8.4:an additional m-reduction is needed.

) <P,A,b> <l,n <P,A,<Q,A,B>(2)>

< Sz <P,<QA,B>

[>
o (1) ¢ @AE> > > S' = <,4,B> .

(2) 1,0

137

In the third place, we mention de Vrijer's definition method of
AA in [70] . He starts with the simultaneous introduction of the correct
E- and Q-formulas, and after that defines correctness of expressions in

terms of E, Q and typ.

1.2. Some general points on the language theory

A priori it is not clear that the various definition methods gener-
ate the same structure (of correct expressions, with typing and equality).
So one might think that the language theory has two aims, viz. (1)
proving the equivalence of the various formulations, and (2) proving
that the generated structures satisfy some specific desirable properties
(sec. 1.3).

However these aims can hardly be separated: properties are first
croved for one formulation, then the eguivalence is established and
finally the properties are transferred to the other formulation, via
the equivalence.

A simple example of this situation: for the system given by the
algorithmic definition, decidability is just a matter of termination
sf the algorithm, i.e. normalization (as Nederpelt points out [51]).

So, by the results in Chapter IV, if a system can be proved to be
equivalent to the "algorithmic one", it is decidable.

As a second illustration, we sketch roughly how the development
below is organized. For the terminology see II.4.7 and for the kind of
reasoning see 1II1.5.4, where for A we take F now.

We work with three systems: I and II are given by an E-definition
and III is the algorithmic definition. The three systems essentially
just differ as regards their (-rules. In system I, Q is defined to be
the equivalence relation generated by >F (but realize that Q and F
are introduced simultaneously). This is the restricted "technical"
version of the E-definition, which we present in section 2, and take
as the starting point for the development in section 3. In system II,

Q is ~F' i.e. the transitive closure of +F' This is the liberal form
of the E-definition, which we think is most suitable for practical

purposes, as a reference manual, say.

In system III, the algorithmic definition, which we give in section

4, Q is defined to be just +F.

138

We say that a system satisfies CLif its correct expressions remain
correct under reduction, and that it satisfies CR if its correct ex-
pressions are CR., Clearly, both I and III are contained in II, since
II has more liberal rules for Q. Further, if I satisfies CL then I and
II are equivalent, as is proved by induction on the definition of
correctness in system II (see sec. 2.11.2). Also by induction on
II-correctness it is proved that II and III are equivalent, if III
satisfies CR. Now, in section 3 we prove that I satisfies CL, and in
Chapter VI we prove (roughly) CL = Bn§-CR (for the Bé-case we know CR
already). This gives CR for I1I, so CR for III, so it shows that all the
three systems are equivalent, and satisfy CL and CR.

An approach, alternative to the one sketched above, is given in
Chapter VII. There the algorithmic definition serves as a starting
point and CL and CR are proved simultaneously, using induction on

socalled big trees.

1.3. Wwhat are the desirable properties?

As desirable properties for the structures of correct expressions

generated, we mention:

(1) substitutivity: correctness of expressions and formulas is pre-
served under substitution with correct expressions of the right
types.

(ii) closure (CL) and preservation of types (PT): correctness of
expressions and formulas is preserved under reduction.

(iii) the Church-Rosser property CR, and the weak Church-Rosser theorem
(see Chapter II,sec.5.4): 4 Q B=A4 4 B

(iv) (strong)normalization (S)N and decidability

(v) properties for Q, which show that Q behaves as an equality,
such as:

- the lefthand-equality rule LQ: AEB, AQC=CEDB
(the righthand-equality rule is included in the definition)
- monotonicity rules: A Q B, C Q D= {4}C Q {B}D, etc.

(vi) uniqueness properties
- uniqueness of types: AE B, AEC=BQC
- uniqueness of domains UD: [x:4A1B Q [x:C1D = A Q C (and B Q D)
- extended uniqueness of domains EUD: [x:4]B E [x:CJD = A Q C

(and B E D).

139

Of course in the presence of type-inclusion (in AUT-QE), only restricted
forms of uniqueness of types and property LQ (see sec. 1.7) are valid.

It depends on the choice of a definition method and on the
language defined, which of the above properties are basic and which
can be derived from these basic ones. Anyhow, SN, én-CR and &8-CR we
know already. The discussion below starts with substitutivity (sec. 2.9)
and ends with B8n-CR (Chapter VI) and decidability (section 4, as sketched
in 1.2). In between, (ii) and (v) and (vi), which turn out to be connected,
are considered more or less simultaneously. In fact, first PT, LQ and

UD and the property of

vii) sound applicability SA: {A} z:B1C correct = 4 E B
are proved simultaneously, by a careful induction on degree. Then follows
one-step closure CL1 by induction on correctness, and finally CL, by

2nduction on 2.

1.4. Some points on closure

Apart from the specific role which closure plays in our discussion,
it 1s of course important as a technical property, in view of II.5-6,
Zcmpare, e.g., IV.2: the point of the generalization from the correct
sxpressions to the normable expressions, lies precisely in the fact
“mat the normable system is "large enocugh" to prove closure for it in
a relatively easy fashion (in contrast with closure for the correct
expressions), and small enough to prove (strong) normalization for it,
with the help of closure.

The normalization properties and CR are nicely preserved under
certain forms of taking subsystems (II.5.2.2 and II.5.3.4). So it is
sufficient to prove these properties for sdme "large" systems: norma-
lization for the normable expressions, B8- and né-CR for all the ex-
cressions, and Ané-CR under fairly general conditions in Chapter VI.

The closure property however, in spite of II.5.2.2, poses a
separate problem for each particular language, because correctness
is defined 7n terms of reduction.

Further we must stick to a particular definition, since in the
proof of closure we often apply induction on the definition of correct-
ness. Only after closure has been proved, some important derived rules

f£silow and equivalence with the alternative definitions can be estab-

140

lisned.

Nevertheless, we try and give a uniform treatment of the various
languages here, by splitting up the closure proof in the parts, common
to all the languages (e.g. substitutivity, CL1 = CL, etc.), and the
part specific for each particular language, i.e. the proof of SA, UD,
PT and LQ. The specific part is given quite elaborately for the "worst
case”, {n-AUT-QE (and its extensions), in sec. 3.2 and 3.3, and just
sketcned for the simpler languages, such as 86-AUT-QE, 8n-AUT-68 etc.
(sec. 3.4). In fact, for the simpler languages the specific part
simply vanishes, in which case the whole closure proof boils down to

the simple closure proofs in Girard [31] and Martin-L&f [45].

1.5. Summary

Section 2 starts with a list of inductive clauses for establishing
correctness of expressions, E- and Q-formulas, relative to correct
book and context, as in the previous chapter. E~definitions for particular
languages are specified by indicating (1) a reduction relatiorn .c-re-
duction with or without §and n), (2) possible degree restrictions,
(3) a particular set of rules from the list. In order to avoid con-
fusion we restrict ourselves here to the regular languages (i.e. de-
grees only 1, 2 and 3), from B-AUT-68 to Bnd-AUT-QE+. Then we prove
some simple properties (renaming of contexts, substitutivity, correct-
ness of categories) and give a short discussion of some of the rulss,

Section 3 deals with the actual proof of closure and the connectel
properties (i.e. (ii), (v), (vi) and (vii) above) for the whc.= range
of regular languages, as far as these properties are valid (in view ci
type-inclusion). First, heuristic considerations (sec. 3.1) point
out how the connections can be, and how the proof might be organized
in the more complicated cases (such as Bn-AUT-QE). Secondly, the proof
is actually carried out for Bn-AUT-QE (sec. 3.2). After that, via
an unessential extension result, all the properties are transferred
to #né-AUT-QE+ (sec. 3.3). Finally, it is shown, that for all thre
simpler languages (fAn~AUT-68, RBSE-AUT-QE(+), etc.) easier proofs carn
be given, which use the more liberal E-definition II (see 1.2) in-
stead of I as a starting point (sec. 3.4).

We claim that the restriction to degrees 1, 2 and 3 in the closure

proof of Bn~-AUT-QE is not essential, and that this proof can be easily

141

adapted for A(+), using the results on norm-degree-correctness in
VIiI.2.2.

Section 4 contains the details of the equivalence proof sketched
in 1.2 above. First it is shown how, in principle, the verification of
correctness can be reduced to the verification of equality. Typ-functions
for the various languages are discussed. Then we present the algorith-
mic system (like system III above) and an "intermediate” system (like
system II). However, the situation is more complicated than sketched
above, because the equivalence proofs in 4.3.2 and 4.3.3 are also used
for proving the socalled strengthening rule superfluous (see below).

Finally some remarks on the actual verification are made (sec. 4.4).

1.6, Complication 1: the strengthening rule

Of course, if an expression or a formula is correct relative to
a book and a context, its constants are in the book and its free
variables are in the context. The strengthening rule is connected with
the converse question: In systems such as I, II above, which have rules
for the transitivity of (Q, it is a priori not clear that a correct
equality A Q B can be established via expressions containing only
variables and constants occurring in 4 or in B. So it might be possible
that a proof of correctness of 4, or of A E B needs correctness of
expressions containing variables and constants outside 4 (and B).

Now for the sake of proving n- one-step-closure we have included
a postulate, the strengthening rule, in our definition, which allows
to skip "redundant" variables from the context. This appears to be a
nasty rule because it might spoil the nice order on the correct ex-
pressions induced by the definition of correctness. See, e.g., sec.
2.10.3 and 2.14.1.

The proof that the rule is superfluous, runs roughly as follows:
let FI’ FII and FIII stand for the correctness predicate in system I
(as in 1.2, with strengthening rule), system II (as in 1.2, without
strengthening rule), and the algorithmic system III (without strengthe-

ning rule), respectively. As in 1.2, F (sec. 4.3.2). By CL

III = FII
for system I (sec. 3), we have FII‘= FI'

Since in the algorithmic definition strengthening is provable as
in Nederpelt [51]), by CR (for 1, so for II, so for III, in Chapter

VI) we can conclude FI = F » which closes the circle (sec. 4.3.3).

IIT

142

1.7. Complication 2: definitional 2-constants in the presence of type-

inclusion.

The rule of type-inclusion in AUT-QE allows us to infer 4 E 1
from 4 £ {x:alt. This shows how uniqueness of types gets lost in AUT-QE
(but only for 2-expressions A). For the restricted form which we can
prove instead we refer to sec. 3.2.6.1.

A peculiarity, due to the combination of definitional 2-constants
and type-inclusion, is that rule LQ is violated too in AUT-QE.
Example: if o £ 1, 4 E [x:a]t (relative to empty context, say), then

the scheme

d:=4xdE {also with empty context)

is correct in AUT-QE. Now d Q 4, 4 E [x:alt but not d E [x:alt.

So, in AUT-QE, definitional 2Z2-constants are not only used as abbrevia-
tions but also for cutting down the type of the expression abbreviated.
As a consequence of this,definitional 2-constants in AUT-QE can lead
to unessential extensions, which are not definitional extensions (sec.
3.3.2).

One might wonder why we do not take more liberal variants of
AUT-QE, which allows d E [x:alt as well. In fact, we mention such a
variant AUT-QEx* somewhere for technical reasons (sec.3.3.11), but we
do not think that this way of ignoring the typ of a definitional con-
stant is suitable for practical purposes.

Part of our motivation runs as follows:

First, we do not wént it for definitional 3-constants, where the defini-

tion part «can stand for a long proof, and the typ represents a shcr

rt

theorem (I.5.2) So, we do not like it for 2-constants, for the sake of
uniformity.

Notice, however, that the definition of u for the weakly normatle
expressions (IV.4.4.1) actually ignores the typ of the defined con-
stants and only takes the def into account (otherwise u could charge

by reduction).
V. 2. On the E-definition
2.1. The book-and-context part of the E-definition

2.1.1. The correct expressions with respect to a book and a context

143

form a system of admissible expressions, i.e, a restricted pretyped
system, in the sense of IV.,3. The correctness of books, contexts and
expressions is defined simultaneously with the correctness of
E-formulas 4 E B and Q-formulas 4 Q B.

The symbol F stands for correctness; the notation for the correct-
ress of contexts (w.r.t. B), expressions, E- and Q-formulas (w.r.t. B
and &) is respectively B;¢ b, B;&+A, B;g FA E B and B;g =4 Q B.
The symbols E and Q are assumed to bind tighter than F.

2.1.2. For brevity we sometimes write "B;f F4 E/Q B" instead of
"3;z 4 E B respectively B;g -4 Q B", and "B;&~A(E/Q B)" instead of

"B; - 4 respectively B;£ FAEB resp. B;§ FAQB". So statements containing
cnis kind of shorthand have to be read two or three times, each time

with a different interpretation.

Z.1.3, As in IV.3, if B;f-4 then 4 is a B;&—expression and hence has

a2 degree. If B;g FAEB or B;g F4 QB then B is a B;E-expression and has

a degree, too. The rules for the formation of books and contexts are

precisely as in IV.3.3.2. The two additional restrictions (see IV.3.3.3)

are as follows:

‘1) (Znrabitable degree condition) an expression a can only act as the
typ of a constant in a scheme or as the typ of a variable in a
context, if its degree is 1 or 2.

(2} (compatibility of def and typ) in a scheme & xd(x) = A * d(x) E T

it is required that B;£ FA E T', where B is the preceding book.

2.2. Some notational conventions
2.2.1. We often assume implicitly a fixed correct book B and a fixed
context £, correct w.r.t, B, I.e., if B;&,nkF then we write
n FA(E/Q B) for B;g,n FA(E/Q B)
and just
A E/Q B for B;g F 4 E/QB

(so for formulas we omit the f -symbol in this case).

2.2.2. At some places in the definition the degree of expressions is

explicitly displayed as a superscript:

144
FiA(E/Q By & F A(E/Q B) and degree (4) = i

2.2.3. Formulas like Al £ A2 Q A3 £ A4 are used as abbreviation for

A E A2 and A2 Q A3 and A3 E A4 etc.

2.3, The expression-and-formula part of the definition: expressions

The rules for the correctness of expressions and formulas fall

apart in six groups labeled I to VI. We start with group I (correct-

ness of l-expressions) and group II (correctness of non l-expressions).

I. correctness of l~-expressions
1
I.1. T-rule: ' T
: 2 .t 1
1.2, abstraction rule: F o, o E aF 4= | [x:al4

application rule: 4 E o, FlB Q [x:alC = Fl{A}B

5]
w

I.4. instantiation rule: if the scheme of d is in B, with context » E

- - - - 1. =
and d is a l-constant then 5 E Bly/Bl = + d(B)

1
Notice, that the degree of A is indeed 1, if A is derived by the

above rules.
II. correctness of non-l-expressions

II. AEB= K4

2.4. The expression-and-formula part: E-formulas

The rules of group III, below, in combination with rule II, alsc
serve as the formation rules for the non-l-expressions. Group IV con-

tains the type modification rules.

I1I. Formation of non-l-expressions

III.!. copy rule: £ = ..., x L a,... 22k a
III.2. abstraction rules: if F2a then
1I1.2.a. 2 E e FB E 1= Flx:alBE <

rr.2.8t z Ea FMB E 0o F M ialB E (xiade

1 2
So of the latter are two versions, III.2.B and III.2.B .

145

III.3. application rules: if A E a then

I1II.3.A. B E [x:0]C = {A}B E Clx/4]
II1.3.B. B E CE (x:0]D = {4}B E {A}C
III.4. instantiation rule: if the scheme of ¢ is in B, with context

g E 8, then
B E Bly/B] = c(B) E typ(e)ly/Bl
Note: Below we shall prove 4 £E B = |- B (correctness of categories),
which is not explicitly required here.
IV. Type modification rules
IV.l. type conversion: BEC, C QD= BED

IV.2. type-inclusion: B E [x:a](y:8]t = B E [x:altT

(where [x:a] stands for [mlzal]...[xk:ak])

2.5. The expression-and-formula part: Q-formulas
The rules for the correctness of Q-formulas form group V.

V. Correctness of Q-formulas
V.l. reflexivity: F4 =4 Q 4
Vv.2. Q-propagation: 4 Q B, +C, (B> Cor ¢ > By =24 Q°¢C

Note: this is indeed the most restricted version of (, see sec. 1.2.

2.6. The strengthening rule

This is a technical rule, which we use in the proof of n-CL, but
afterwards, i.e. after having proved CL and (with help of CL)CR, as in
sec. 1.6, prove superfluous, It is called strengthening rule because
it permits to remove assumptions from the context. We say that n is
a subcontext of &, for short n sub &, if the sequence of E-formulas

of n is a subsequence of the sequence of E-formulas of £. So,

nsub £ = sub (£, E o) and (n,x E a) sub (£,z £ a)

VI. The strengthening rule

if B;go , Eo sub g, 50 =2 E o and vy(y € FV(4) =y ¢ x), then

146

Vi.l. B; §rA = B;EO 4
I1f, furthermore, Vy(y € FV(B) = y « Z), then

vI.2. B; 5-4 E/Q B = B;go LA E/Q B

2.7. Degree considerations

2.7.1. Degree restrictions play a minor role in the E-definition. It
is rather intended that the degree specifications of the various languages
(see below) are satisfied automatically by a suitable choice of the
rules of the E-definitions.
We define (the notion of being a domain degree, etc.):
{xz:al3 = o has domain degree and B has value degree,.

L{4}3 = 4 has argument degree and B has function degree.

2.7.2. The degree specifications for the regular languages AUT-68,

AUT-QE and AUT-QE+ are:

(1) degrees admitted 1, 2 and 3, inhabitable degrees 1 and 2,
domain degree 2 and argument degree 3

(2) value and function degree are as in the following scheme

AUT-68 AUT-QE AUT-QE+
function degree 3 2,3 1,2,3
value degree 2,3 1,2,3 1,2,3

Languages where all value degrees are also function degrees, are said
to be +-languages: AUT-QE+ (and AUT-68+, AUT-QE*, to be defined later).

Consequently AUT-68 and AUT-QE are non—+—languages.

2.7.3. No matter what rules are chosen, by induction on ~ (i.e. on

the definition of correctness) it follows that
A E B = 4 not of degree 1

So no application expressions {CY with degree (C) = ! and no in-
stantiation expressions c¢(() where some Cj has degree 1, are formed,
and the rules III.4 and III.3.A. do not give rise to substitution

with l-expressions (in the categories). Hence, also by induction cn -~

.

(1) A Q B = (degree (4) = 1 ¢ degree (B) 1)

(2) A E B = (degree (4) = 2 ¢ degree (B) = 1)

147

2.7.4. This shows, together with the explicit degree restriction in

the rules I.2 and III.2, that the expressions formed and the substitut-
ions involved are weakly degree correct (cf., Ch. IV.4.4.2). The inhabit-
able degree restriction guarantees that only expressions of degrees 1,

2 and 3 are formed. So, the specifications of 2.7.2.(1) are fulfilled and

A E B =» degree (4)

degree (B) + 1

A Q B = degree (4)

degree (B)

and all the substitutions generated by the rules are degree correct:

If A is substituted for x then, for all i, degree (Ai) = degree (xi).

2.8. Specification of the languages
2.8.1. The rules

The difference between the definitions of the various regular
languages only concerns the rules oﬁ abstraction, application and type-
inclusion. All the other rules, and also III.2.B2 (for abstraction
expressions of degree 3) and III.3.A (application) are present in each
of the definitions.

For the rest the situation is as follows

AUT-68 AUT-QE AUT-QE+
abstraction I11.2.A III.2.B1, I.2 III.2.B1, I.2
application II1.3.B I1I1.3.B, I.3
type incl. rule no yes yes

Note: Below it will turn out that

(1) III.2.A is a derived rule of AUT-QE and AUT-QE+.
(2) III.3.B and IV.2 (type-inclusion) are derived rules of AUT-68.

So, after all, in AUT-68 all the rules except III.2.B1, I.2 and I.3

1
are valid; AUT-QE and AUT-QE+ have additionally III.2.B" and I.2

and, besides, AUT-QE+ has I.3.

2.8.2. The reduction relation

For definiteness we agree that > in the Q—rule V.2 stands for

disjoint one-step reduction > So it satisfies the monotonicity con-

1°
ditions, e.g.

A>A4', B> B" = {4}B > {4'}B'

148

with the impertant consequence that

A > A' = BJA] > BIA']

In any case the reduction relation includes BR-reduction, but we leave
open the presence of n- and §-reduction, Of course, if no definitional
constants are in the book then there is no §-reduction.

We assume that AUT-68 has no definitional l-constants (because,
modulo the elimination of abbreviations, the only l-expression in AUT-
68 is 1).

The rules of strengthening will only be present in languages with

n-reduction.

2.9, The substitution theorem

2.9.1. For the E-definition (in contrast with the algorithmic definitiocn
it is easy to show the substitutivity: correctness of expressions and
formulas is preserved under correct substitutions, i.e. substitution
with correct expressions of the right types.

For technical reasons we start with a weak form of substitution,
compare a-reduction.
2.9.2. Theorem (renaming of contexts): 1f £ = xE oand £' = Ifzx/x'I,

a
all xi are mutually distinct, then (with £' := x' E a')

£ ~A(E/Q By=¢g' FA'(E/Q B")

and the correctness proofs of both sides of the implication sign are
equally long.

Proof: induction on r~.

2.9.3. An easy corollary of this is the weakening theorem, the converse

of strengthening: if EO sub £ then
£+, EO FA(E/Q By= g FA(E/Q B)

Proof: induction on 50 4 (E/Q B). _

as a corollary of this we can prove that in a derivation of
correctness the application of strengthening can be postponed to the

end of the derivaticn.

149

2.9.4. Now we come to the simultaneous substitution theorem: if
n=zykEB, then
B E Bly/Bl, nkC(E/Q D) = Cly/Bl(E/Q Dly/Bl)

Proof: By induction on n FC(E/Q D). We treat just some of the cases,

distinguished according to the last rule applied in the derivation.
- = *

Abpreviate Efy/B] to T .

i 2 i+1
Last rule is III.Z.Bl: Assume nk C1 and n, 2 ECl Fl

02 E 02. By the
ind. hyp. and by 2.7.4, cmz. By the copy rule z E C: F 2 E C: (if
necessary, i.e. if 2 in £, rename the implicit context § to £'). Now,
by weakening, we can apply the ind. hyp. with the extended substitution
Hg,z/g,zﬂto n,z E C1 Fi+102 E D2. This gives z E CI Fi+IC; E D; and,
by III.Z.Bi, F[z:C:]C; E [z:C:]D*, g.e.d. Possibly one must first re-
name &' back to & again.

Last rule in V.2: Assume nf—C1 Q Cz, nk CB' 02 > C3. By the ind. hyp.
Lk % * . * * * *
-2 Q C, and FC3. Since 62 > 03, FCI Q C3, g.e.d.

[\

.9.5. Corollary (stngle substitution theorem):

A Ea, xEoB(E/QC) = Blz/aAl (E/Q Clx/Al)

)

.10. Some easy properties
2.10.1. On abstraction

In addition to the remark in 2.3, after rule I.4, we can say that
the last inference in a proof of FIA must be rule VI.l or one of the
rules I. In particular, if Eokl[x:a]A, this can only follow from
2,2 E a %IA for some & with EO sub £ (since Sub is transitive). So
application of VI.1 gives EO’ x EaFlA. Similarly, if Fi+1A, the last
rule in proving this is VI.l or II. So in the proof of correctness of
ri+1A we can retrace some £ FA E B, where EO sub £. Hence if
i+1A E B for

v
[}

i+
-t l[x:a]A, in its derivation we can find £, x £ o

Al

C
some 5 and £, with 50 sub ¢. By application of II and VI.l1 we get

EO’ % E al-A. Resuming we have

£ Flzx:ald =&, z Eak4

2.10.2. Correctness of categories

Inrthe rules of the definition, having 4 E B as their consequence,

150

it is not explicitly required that FB. For the copy rule this correct-

S

ness8 of categories follows from weakening, for III.2.A from the t1-rule,

for 1I1I.3.A from the single substitution thecrem (use induction on =),
for III.4 from the simultaneous substitution theorem etc. So, we have

correciness of categories

2.10.3. Abstraction again

Assume that QO, x £ a FlA, A of value degree, degree(a) = 2. If
i = 1 then from I.2 ws infer EOF[x:a]A. If i > 1 then, as above, we

- A § L
can retrace some £, X L @, §2k A E B with EO sub El and the transition

from £,, & £ a, E A to & x EarA follows from applications of strength-

1 0’
ening. By the weakening theorem; we can extend the context to
&l; o B oo, £2,x' E o, with some new ', By the substituticon theorem we
can infer 51; xz € a, 52, x'" b a Falxe/x') E Blx/x*]. In case we can
apeoly 1III.,2.B (this depends on the language under consideration) we
ge

t z B o, gzk[x:a]A E fx:a]B. Otherwise the language is AUT-68,

S
1
= 2, 8 = t and application of III.2.A gives El, xz b o, EzF[x:a]A E T .

[S8

Anyhow, rule II and iterated use of strengthening give Eok[x:a]A"

Resuming,
(degree(a) = 2, A of value degree, x £ o FA) & Flx:al4d .

Note: the results in 2.9 and 2.10 are also valid, and simpler to prove,

if n-reduction (and strengthening) is not present.

2.11. On the Q-rules

2.11.1, Clearly Q is the equivalence relation generated by >F' i.e.
the restriction of > to the correct expressions. So A Q B means pre-

cisely that

FA and B and there are correct Cl""'ck such that

A>C, > ... <C, <Ci>C. > ... < C, <C, >C

> ... <(C <B
1 i-1 i+l j-1 bl j+1 S

(where possibly, in view of strengthening, the Ci in between are correct

w.r.t. extended contexts).

151

2.11.2, An alternative rule of Q-propagation is

v.2' AQB, FC, B+ C=40QC

}_I }_)

(sec.1.2,11.4.7), i.e. the transitive closure of the restriction of +

If the language definition has this rule, (becomes ~ i.e. (¥

to the correct expressions.
So, no matter what other rules there are in the definition of

correctness,
vV.2' = V.2
and

CL, v.2 =>v.2"

2.11.3. An even stronger rule for Q, also including reflexivity is

v.2" F4a, FB, A=B=4QB

Assuming the (full) CR-theorem, i.e. CR for all, not just the
correct expressions, which is the case if n-reduction is not present,

we get:

(v.1, v.2'") =v,2"

2.12. On type-conversion
2.12.1. The Q-formulas (and the Q-rules, see below) can be avoided_
completely by reformulating IV.1, the type-conversion rule to

w.1': AEB, FC, (B>Cor C>B = AEC

And, corresponding to V.2' rather than to V.2,
w.i":t AEB, FC, BYC=>A4AEC

As in 2.11.,2, IV.1" = 1Iv.1' and CL, IV.1' = 1V.1".

Corresponding to V.2" is the alternative rule

Ww.1": A EB, B=C, FC=24EC

2.12.2. The system with Q-formulas, (Q-rules V.l and V.2, and rule IV.1
is indeed a conservative extension of the system without Q but with

the corresponding type-conversion rule instead. First we have

152

Iv,1, V.1, v.2 = IV.1',
respectively
iv.l, v.1, v.2' = Iv.1",
respectively
Iv.l, v.2" = 1v.1™,

so the Q—system is an extension of the Q-less one.

Secondly, the expressions and E-formulas, correct in a (Q-system

are also correct in the corresponding Q-less system.

2.12.3. Notice, that in the presence of n, rule IV.1™ (so rule v.,2"
too!) is inconsistent in the sense that it gives rise to anomalies

such as self-application. This fact is connected with the 8n-CR-problem,
solved in Chapter VI.

Example: if o E 1 then F[x:ala and Fly:[x:olala. Further

(x:ala = (by B) [x:allz}ly:[x:alala = (by n) [y:lx:adala.

So, if f E [x:ala then {f}f E a

2.13. On type-inclusion

2.13.1. Iterated use of the rule of type-inclusion gives
AE [z:ally:8lt = 4 E [Z:alt

SO
AE [z:alt =AE T,

This shows that AUT-68 is a sublanguage of AUT-QE: all the correct
books, contexts, expressions and formulas of AUT-68 are also correct
in AUT-QE.

Proof: Rule III.2.A, not in the definition of AUT-QE, can be derived
from III.2.B1 and 1V.2. For, let x E o FB E 1. Then Flx:alB E [x:a]x
so Flx:a)B E 1, g.e.d.

2.13.2, Conversely, rule IV.2 is (vacuously) a derived rule of AUT-6§,

because all the correct AUT-68 l-expressions §-reduce to T.

153
2.14., The form of derivations

2.14.1. We called the rules III the formation rules of non-l-expressions.
This is because, in a proof of Eoki+1A, we can retrace some EF4 E B

and ElkA E ¢, such that (i) the last rule applied in proving ElkA EC

is the formation rule of 4, i.e. one of the rules III, (ii) the tran-
sition from glkA EC tofFA E B is by iterated use of VI.2 and type
conversion, (iii) the transition from&FA E B to EOFA is by using

VI.2, II, and VI.l. So, in case there is no type-inclusion applied,

e.g. if i > 1, we have (use weakening) ElkB Q C. Below we introduce

a symbol covering the relation between B and C in case type-inclusion

is involved.

2.14.2., The new relation C can be defined as follows
(2} rle:iadd, EalA D B> [x:a]AC [x:alB

(i1} AQB=ALCSB

(iii) C is transitive

'

(iv) rla-:aET 1

Clearly, C is a reflexive and transitive relation on the correct
.expressions, including Q and type~inclusion, which on the non-l-ex-
pressions coincides with ((use 2.10.3). The type modification rule

can now be contracted to one rule
IV. 4 EB, BC C=24AEC

and, for 51, B and ¢ as in 2.14.1 we have 51FC C B now.

2.14.3. So, in a proof of [x:alB E D we can retrace
x B aF3 E C with [x:0]CTC D,
Similarly, in a proof of {4}B E D we can retrace either
(1) B E [x:alC with C[AIC D, A E o , or
(ii) 5 E C E [x:alE with {A}JCC D, AR a .

And, in a proof of e(C) C D we can retrace some

e() E typte)ICIC D .

154

2.14.4. above, we used already

Flz:aJ4, x Ea b 4 QB = (x:a]J4 Q [x:alB
The other monotonicity rule

a Q8, Flz:ald = (x:0]4 Q (x:814

follows by induction on (, using the substitution theorem.

However, we do not know yet
AQB, cQD = {4}C Q {B}D
and consequently, it is a priori not clear that (uniqueness of types
for 3-expressions)
3
FAEoa, AEB=a QB .

This (and its weaker counterxpart for 2-expressions) will not be proved

before the next section (3.2.4, 3.2.6).
2.15. On the application rules

2.15.1, In AUT-68, where no l-abstraction expressions are formed, the
rule III.3.B is vacuously a derived rule, viz. there are no B with
BECE [x:alD.
Since, in AUT-QE and AUT-QE+,
F2(z:0lC = (x:aC E [z:alD
we can restrict the rule III.3.A

AE o, BE [x:0]C = {A}B E C[4])

to the case where degree (() = 1.

2.15,2, As an alternative to III.3.B {(and to III.3.A if I.3 is present)

we mention
III.3.B': F {4}C, B E ¢ = {4}B E {4}C
The following equivalences hold
(r.3, 111.3.A, I1III.3.B) @ (.3, 1I11.3.B")

(I1r.3.a, II1.3.B) «© (III.3.A, III.3.B') .

155

Proof: e.g. that III.3.A is a derived rule in presence of I.3 and
111.3.3', Let A E o, B E [x:a]C. By 1.3 (and III.3.B', if degree(() =2),
147 0xialC. By the single substitution theorem C[4]. So by III.3.B'

and type-conversion {4}B & CI[4].

2.15.3. Notice that in the presence of n-reduction rule III.3.A by it-

self is sufficient, becauce
n,I1I1.3.4 = II1.3.B .

Proof: assume 4 £ o, B E CE {x:0]D. Thenxz E a }- x E a, so by TII.3.A,
z & 2+~ {x}C £ D and by abstraction Flx:al{zl}C E [z:«¢3D. By IT and

type-conversion B E [x:ial{zlC (x ¢ FV(0)), so by III.3.a. {(4}B E {4}C,

2.16. &n E-definition for A and A+

2.i6.1. *n crder to adapt the E-definition to A and A+ we must first
drop the inhabitable degree conditicn, and the restriction to o of
degree 2 in the abstraction rules I.2 and III.2. The rule of type-
inclusion and rule IIT.Z.A must be ckipped but III,2.Bi is permitted
for all i. & suitabls combination of application rules is I.3 and

1IXI.3.8"' for A+, and IIX.3.A and III.3.B' for A. An alternative for

IIT.3.3' is an extended form of III.3.B

4% q, BE Cl E ... E Ck £ (x:alD = {4}B E {A}Cl .

2.16.2. Degree considerations for A and A+ are indeed more involved
than those in 2.7. Of course we can show weak degree coxrectness, as

in 2.7, but we must know more in orxder to establish degree correct-—
nass. See Ch, VII, sec. 2.2.

The various properties proved above, such as substitutivity, correctness

c¢? categeories, etc. etc. simply go through for the E~versions of A and

156

V.3. The actual closure proof

3.1, Heuristics

3.1.1. The first idea which comes to mind about proving c¢losure, CL
CL: F4, 4 > B »}B

is simply to prove one-step closure, CL1

CL1: FA, A > B =}B

by induction on F4 and then use induction on 2.
Among the possible ways of one-step reduction we distinguish the main

or "outside" reductions

(B) {A}x:BIC > CLA]
(n) xz £ FV(4) » [x:allx}d > 4
(8) d(&) > def(d}fAl

and the "inside" reductions which follow by the monotonicity rules

(appl) A > A", B> B" » {4}B > {A"}B'
(abstr) a>a’, 4> A" > [x:ald > [x:a’l4’ !
(const) A> 4" ma(d) >c(@).

So we assume that > stands for disjoint one-step reduction. Now
consider, e.g., the appl-case where the correctness of {4)}C follows
from A E a, B E [x:0]C. Here the induction hypothesis, CL1 applied to
A and to B, just tells us that FA’ and -B' (where 4 > A', B > B"),
which is of course not enough to conclude F{A'}B’. This suggests that

we need preservation of types, PT

PT: AEa, B, A2B =>»BEa

or at least omne-step preservation of types, PT1
PT1: AEao, FB, A>B *>»BEa

additionally. Similarly with the const-case of one-step reduction.

3.1.2. So the next idea is to combine CL and PT to

CLPT: FA(Ea), 4 2 B »|-B(E a)

157

(as the conjunction of the version with and the version without paren-

theses) and to use the same induction. I.e. first prove
CLPT1: F4 (E o), A > B 2>FB(E o

by induction on correctness and then use induction on 2,

This works fine with all the inside reductions. E.g., consider once
more the appl-case: 4 E o, B E [x:03C, 4 > 4', B > B'. Now the induc-
tion hypothesis gives us 4' E o, B’ E [x:alC and {4'}B' E C[4']. Since
> is disjoint one-step reduction, Cl4] > Cl4A'] so CIADY O ClA'] so
{37337 E ClA], g.e.d. The other cases of inside reductions are treated
similarly, using some facts from the previous sections.

Then the outside reductions: 8 and n do not cause major difficulties
either. For § use the simultaneous substitution thecrem and the
compatibility of def and typ, for n use the strengthening rule. But
there is a problgm with B-outside reduction. For, in order to conclude

=4 from F{4)[x:B1C, we seem to need soundness of applicability, SA
SA F{A}[x:B1C » A E B

which would allow us to use the single substitution theorem.

3.1.3. Let us try to find out about SA. So consider the assumptions
which can lead to the correctness of {4}[x:B]C.
E.g. A E a, [x:B1C Q [x:alD (resp. [x:B1C E [x:a2]D). Then

SA amounts to uniqueness of domains, UD

ub (z:8]1CQLx:alD »B Q o

resp. z2ctended uniqueness of domains, EUD

EUD (x:51C E lx:alD 25 Q a

or: 4 B 2, [w:BJCEDE (x:9]F (these are the assumptions of rule
ITI.3.B). As in 2.14.3, for some 7, [x:B1C E [x#:BJFC D @nd in fact
fe:3)7 Q D). So, in this case SA seems to require the left-hand
apwality rule LQ

LQ A EBEa, AQB=»BEa

which would give [x:BJF E [x:o]E and, by EUD, 4 E B.

Yowever, LQ = PT. So, it appears that we cannot do SA separately

beforehand (i.e. not if IIT.3,B is present) and then proceed with

CLPT as sketched above.

158

3.1.4. In order to simplify matters, we first forget about type-inclu-

sion. Then we may hope to be able to prove uniqueness of types, UT
UT: AEBo, AEB=> a Q8B

If we assume UT then UD = EUD and, besides, LQ and PT turn out to be
equivalent. This may suggest us to incorporate the proof of SA in the
proof of CLPT

But we do not have UT yet. If we try to prove UT by induction on the
length of A, we come again in trouble with rule III.3.B. For, let

Al Ea, 4. E B E Lx:alD, A2 E C E [z:a]E. The ind. hyp. just gives us

2
B Q C here, but we need more, viz. something like

(%) F{A}B, B Q C » {4}B Q {A}C.

(this is one half of the third monotonicity formula of sec. 2.14.4).
Since a proof of (*)requires LQ in turn, UT cannot be isolated either.
We might try to combine SA, UT and CLPT, i.e. to prove the necessary
instances of SA and UT in the course of the proof of CLPTl. A proof
along these lines is indeed possible even if type-~inclusion is present,
but it has a complicated structure and it cannot easily be extended

to languages with higher function degrees, such as A and A+.

3.1.5. Thus we prefer the alternative approach sketched below, which
essentially runs as follows: first prove PTl' UT and LQ by induction
on degree, then prove SA and UD, and afterwards prove CL as indicated

in 3.1.1. To this end we distinguish degree-i-versions of the various

properties

PT} ' A4 Ea, A>B8, FB=BEa
LQ* Y 4Ea, 4QB = BEa
utt F*AEo, AEE> a Q8
() LB QC, RalE > (4)BQ (A)C
uot R [z:ald Q [2:8)B » « Q 8
SAT Y {4}z:BIC A E B

First notice that: Pﬁ', U - Lot

and that: L(?'L > (*i)

hence: Lot - yttt!

159

We assume that the language under consideration is a non-+-language
+

(see sec.2,7). Then it is relatively easy to show UDk and UTk !

(ignoring type-inclusion), where k is the lowest value degree. Now let

i+l

. . .+11

PT?, LQ] and UT? for j €i. An instructive example is the appl-case

Fi+1{A}B,‘—i+l

us try to prove PT by induction on correctness, where we assume

of inside reduction: 4 > 4', 3> B/, {A"B’, It is no
restriction to assume that both {4}2 and {4'}B' originate from the
extended application rule of 2.16.1: 4 E a, A" E o, B E q E
E :LE le:alD, B’ E C; E...E Cé E [z:010’ with degree (D) = degree (J')=
k and & = 2'. Then by the ind. hyp. we have B' E 51, so by UTi+1

. Q U{ and by LQi C; £ 02. Then follows 02 Q Cé and Cé E 03 etc.
finally we have {z:alD Q [z:¢7D' and by UDk a Q a’ so 4" E a. Hence
TATIET R {A’}Cl < {A}Cl, so {4718’ E {A]Cl, g.e.d.

From PT;+1 and UTl+1 we get LQl+1, and UTl+2. So by induction,
we get PTl’ LQ, (*) and UT. .
3.1.6. It is clear that SAi+1 can be distilled from the proof of PT§+{
but it can alternatively be given as follows. First, we have
LQi+1, UDi - UDi+1

s> we have UD. Now let Fi+1{A}[x:B]C. Then (see sec. 2.15.2) either
2B w, [x:B1C Ef{x:alD, or [x:BIC E E, ={A}E. Further [x:53]C E [x:B]F.
so by UT we have either [x:B1F Q [x:a]D, or [x:B5]F) E. Hence, either
bv UD we have a Q B, or by (#) we have |-{A}[x:B]F. So from LQ, UD and

UT we get
SAi - SAi+1

and by induction SA.

(]
3N

Closure for En-AUT-QE

>.2.1. For definiteness we present a rather detailed version of our
closure proof here for En-AUT-QE, i.e. AUT-QE without definitiocnal
constants and without d-reduction. So the admitted degrees are 1, 2
and 3, the value degrees are 1, 2 and 3, the domain degree is 2 and
the argument degree is 3.

The function degrees are just 2 and 3, so Bn-AUT-QE is a non-—+-

language. So the reasoning of sec. 3.1.5 is valid, but for additional

problems due to the presence of type-inclusion (viz. that UT is not

160

true and that not immediately (PT1 > LQ) and (UD = EUD)). These
problLems are overcome by the introduction of a "canonical type" in
sec. 3.2.4. below.

This canonical type also plays a role in the n-case of PTI'
Later we include definitional constants and §-reduction, and applica-
tion expressions of degree 1, thus extending our result to B8nd-AUT-QE +
(in section 3.3).

A closure proof of Bn-AUT-68 can easily be imitated from the pmwof
below and is in fact somewhat easier because there is no type-inclu-

sion.

3.2.2. We specify a set of rules (in shorthand, omitting contexts) for
8n-AUT-QE, which according to the properties in 2.10-2.15 are equiva-

lent to the rules indicated previously.

(1) Ft

(ii) veer @ BEa, ooz (E o)

(iii) x Ealkd (EB) =Fx:ald (E [x:0lB)

(iv) 4 Ea, F2 B E [x:alC »H{A)B (E ClAD)

(v) AEa, BECEIz:21D > |-{4}B (E {4}0)

(vi) A Ealdl, xEa=*p(x) EPis a scheme » _

FpA) (E P EAD

(vii) AEBLDL C» AEC

(viii) k4, 4 > Bor B> A, VB » A QB (where > is disjoint
one step Bn-reduction

(ix) AQBQC=> AQC

(x) AQB=>» AC B

(xi) Fla sAC <

(xii) 2 EaFAC B = f[x:0JAC [x:0lB

(xiii) AC BC C =» AC 7

(xiv) strengthening

3.2.3. On 1- expressions and type-inclusion

3.2.3.1. Since there are no l-application expressions and no defini-

tional constants all l-expressions are of the form [Z:a]t, with z

161

possibly empty. And, if Fl[x:a]A, Fl[x:B]B, {x:a]4 > [(x:813, then

2 >R, A>Bsoa QB and x Eald QB. So, by induction on Q, we can
show UD1
Fllz:add Q [2:8]8 > o Q8 (and @ E a -4 Q B) .
Then, by induction on C, we get

F][x:a]A[:[x:B]B > o QB8 (and x Eal-4C B).

3.2.3.2. We introduced UTl, uniqueness of types for expressions of
degree i (i>1),
uT* F*4EB, AEC »BQC

For i=3 this will be proved below, but for i=2 it is simply false

in view of type-inclusion. Now we define
BOC : & BLCor CCB

Below we shall prove that the new symbol covers the relationship

between 5 and C whenever 4 £ B and 4 E C.

Clearly on the non-l-expressions Mis just Q. We have
Flr2:alA002:81B <> 2 Q 8, (xEak A0 B
Further [l satisfies a strengthening rule, and is substitutive:

AEBEa, cEa kB0 C=> B {410 ¢ [4]

3.2.3.3. We also want to show
I—IB[]IIC < for some 4, AC B and AC C

Proof:= is trivial. So let BJ AL (. Then 4 z[E:§][§:é][E:&]r,

—a
()
|

= [E:§2]T (oxr similar with B and(interchanged),

]
Y., "z EY -2 Q _61". So BCC (or CLC B).

3.2.4. The canonical type

i+1 .
3.2.4.1. It is possible, for each 4 with Fl 4 to indicate an ao such
that
(1) G is a minimal representative -~w.r.t. - of the categories

of 4, i.e.

AEao and: A Ea 2> o C a)
o o

162

(2) FV(GO) c Fv (4)

We call this a_ the cantyp of 4 (with respect to a context). The
definition of cantyp is like the definition of typ given previously
(sec. 1IV.,3.2), but slightly modified in order to stay in the correct

fragment, as follows:

(1) cantyp(x) = typ(x)

(ii) cantyp(p(4)) = typ(p) 14l

(iii) cantyp ([ax21B)= [x:alcantyp(B)- w.r.t. to extended context-
(iv) cantyp ({41}3) = {A)}cantyp(B) if degree (B)=3

(v) cantyp({4}B8) = ([4] if degree (B)=2 and cantyp(B) =

[x:a]C

3.2.4.2. Clearly, typ(4) = cantyp(4) so property (2) above is
immediate.

Now we prove a lemma corresponding to property (1).
i+1

Lemma: if LQi and |- A E a then A E cantyp(4) C «

Proof: By induction on the length of A. The more interesting
cases are

(i) 4 = [x:alel,x E o FAl E o [:L‘:ai]a2 C u, By the ind. hyp.,

x E a FAl £ cantyp(Al) C a,, so Fx:ile E [x:aljcantyp(Al) =
cantyp(4) C [x:al]az C o, g.e.d.

(1) 4 2 {434, 4 E o, |—2A2 E [x:0,1C, CIA] C a. By the ina.
hyp., A2 £ cantyp(A2) C [x:ale s cantyp(/l2) = [x;a;]C’. Hence cantyp(4>
is indeed defined, o, Q ai, x E o LC! CC, so {Al}AQ E C'HAIIEZO, g.e.&

win 4= (4, A Ea, A EBE [ea 0, (4,80 a. By the
ind. hyp. A2 E cantyp(A2) Q A. By LQl we can use property (*) of sec.

3.1.5 and get cantyp(4) Q {AI}B Q o, g.e.qd.

3.2.4.3. Corollary: (i) Fz AEB, AEC = BOC (this is, for 4 of
degree 2, the desired property of 0).
(ii)l—2 [x:a¢]A E [x:8])B > a QR, xEal4d E E (this
includes EUD2)
(i1 SA°
Proof: (i) LQ1 is vacuously fulfilled, so B J cantyp(4) C C, so
by 3.2.3.3. BO C. (ii) and (iii) are immediate.

163

3.2.5.1. Now that we have introduced cantyp we can use it in the proof

of PT. We define the property of preservation of cantyp.
PCTi: FiA, Az A", FA" > cantyp(4) Q cantyp(4”)

Similarly PCT;; PCT is the conjunction of all the PCT",

2
We first prove some lemmas for PCT™,

3.2.5.2. Lemma (substitution lemma for cantyp): let B* stand for
Zlx/4). Then x E «, g EB LZC, F3A E o = cantyp(C)* z cantyp(C*)
where the cantyp's are taken w.r.t. (x E o, 7 E) and (y E B8 resp.

Proof: Induction on (. Note that C#x, because degree(x) Some

=3.
cases are: (i) C = [Z:CIJCZ' cantyp(C)* z [z:C?]cantyp(sz (w.r.t.

(
¢ Ea, 5 EB, 5 EC) = (by ind. hyp.) [z:C:]cantyp(C;) (w.r.t.

= cantyp(C*), g.e.d.

&3

“
22
m
)
i

(ii) ¢ = {CI}CZ, cantyp(C)* = DHClﬂ* = D*[C:] where
cantyp(¢.) = [z:vy1D and, by ind. hyp., [z:y*]D*E cantyp(C;), so
cantyp(c) = D*HC:H as well, g.e.d.

3.2.5.3. Corollary: z E « FZC, F3A E o = cantyp(u)[A) = cantyp(CTAT) .

3.2.5.4. Corollary (B—PCT?):

%2{A}Ex:B]C = cantyp ({A}[x:B31C) Q cantyp(l4l).

Proof: By SA2 we have 4 E B, so even cantyp({43}[x:BJC) = cantyp(C)[4] =
cantyp(Clial) .

3.2.5.5. Lemma (n—PCTf):
}—th:a]{x}A, x ¢ Fv(4) * cantyp(lxz:al{x}4) Q cantyp(4)

Proof: Let cantyp(4) = [y:81D and let F2[x:u]{x}A be based upon
c B’ 4 Ely:alD'. By 3.2.4.2 [y:81DC [y:a'1D" and

z £ wv(ly:81D), so o Q o’ Q B and cantyp(4) = [x:8100y/x] Q
foeallfly A3 2 cantyp(la:alfa W) .

2
3.2.5.6. Theorem: PCT)
Proof: letlgA, FA’, 4>4', For a main reduction use 3.2.5.4 or
3.2.5.5. For inside reductions use induction on the length of 4.

Some cases are:

164

(i) A = [.x:Alez, Al = [x:Al’]A
cantyp([x:Al]Az) Q cantyp([x:Al]Aé)

A1 > Al" A2
[m:A13cantyp(Aé) Q [x:A{Jcantyp(AéL

é, > Aé. By ind. hyp.
by the substitution property 3.2.5.3.
s 3 - r = ! !
(ii) A = {Al}Az, Al = {AI}AZ, A

correct, Al E «

e A{, A2 > Aé. Since {Al}A2 is
Ay E cantyp(Az) = [x:BICLC [x:aljD. So a, Q 8.
Similarly A{ £ a{, Aé E cantyp(Aé) z [x:8'1C"'C [x:a{]D'. So a{ Qe'.
By the ind. hyp. [x:81C Q [z:BIC', so C[Alﬂ Q C'[Alﬂ Q C'EA{U, g.e.d.

3.2.5.7. Corollary: (i) PTf, (1i) LQ?, (iii) UD.

3.2.6.1. By L02 we can apply 3.2.4.2 to expressions of degree 3 now.
We get: (i)|—3A E o= 4E cantypd) Q «
(ii) UT3: F3A Ea, AERB > oDB (i.e. a Q B)
(this is the announced property of O for A4 of degree 3).
(idi) SA3 (e.g. as in 3.1.6)
Notice that by UT3 the properties PCT3 and PT3 are equivalent.

3.2.6.2. We introduce CLPTi:
FlACw, 4247 » F4 (E o

and similarly CLPTI.

Here follow some lemmas for CLPT?.

3.2.6.3. Lemma (B-CLPT)): F>{4}(x:B1C E D » CIA) E D

Proof: Let A E a, [x:B1C E F E [x:alG, {A}F Q D, and let x E B -C EF.
[x:BJHQ F. By SA? we have A E B and by (*2) {AMz:B1H O {A}F. By the
substitution theorem for correctness CI{A] E #{4] Q D.

3.2.6.4. Lemma (n-CLPTi): F3(z:alz}4 E B, z ¢ FVA) > A E B
proof: cantyp(lx:ol{x}4) = [x:al{x}cantyp(4) Q cantyp(4) (by n-reduc-
tion), by strengthening F4, so by 3.2.6.1 4 E B.

3.2.6.5. Now we are ready for CLPT.

Theorem: (CLPTl): FAE o), 4 > A" > FA'(E o)

Proof: If 4 > A’ is a main reduction use SA, strengthening, PT? and

the preceding two lemmas. Otherwise use induction on the length of 4.
(1) 4 = [x:alel, A’ E[x:a{]A{, a, > a{, Al > A{, x E oy FAﬁE uzx

([x:al]a2 Co). By ind. hyp. Fa{ and x E a{ FA{(E a2).

165

So F[x:a{]A{ (E [x:a{]a2 Q [x:a1]a2fia) - read this twice, one time
with and one time without the symbols in parentheses -.
;s 4 = oz ' roA > 4! A4 1! 1 g
(ii) 4 = {Al}Az, A {Al}A r Ay Al, 5 > A2, Al E oy A2 E

s ~ . , ' 1 P Ve ’ Arat
Lw.xl]t, Cl4lCa.By ind. hyp. Al E al,zi E [I.Qlju. So A" E u[Alﬂ Q

cra T,
1
(iii) As in (ii), but A2 E BE szale, {Az}B C ao. By ind. hyp.
o 1! ! ! .
= E Gy 42 E B, sod'"E {Al}B Q {Al}B

4
L

(iv) 4 2 p(B ,... B), A' = p(Bl’_,_.,.,B};), B> §,, ?1 Es., 5, E
20300, B BB 0B ..., B), PIEDC o, where y E 8 * p()E P—ls
a scheme. By ind. hyp. B{ £ 81, Bé E 82ﬂBlﬂ Q BZEB{H,..., Bé £ Sk!HU)
3k[5'u, S0 p(B',...,Bé) E pﬁB{,...,BéD Q PIB].

i.2.6.6. Corollary: (i) CLPT, (i LQ, (iii) UD.

.2.6.7. Corollary (Rule v.2', sec.2M): -4, FB, A v B =>4 Q B

[(0%)

.3. Extension to Bnd-AUT-QE+

(V]

3.3.1. Now we consider Bné-AUT-QE+, i.e. Bn-AUT-QE extended with 1-
application expressions, with definitional constants and with defini-

tional reduction. The additional rules are

I.3: A Ea, F'8Q [z:alc » F1{A)B

(vi'): 4 Eal4), x Ea » d(x):=D (*d(x) E E) is a scheme =
Fd () (E E 1AD)

{-f. sec. 3.2,2andsec. 2.3 respectively).

If we try to repeat the previously given proof, we first come in
trouble because not all the compound l-expressions are abstraction
expressions anymore. This makes the proof of UD1 from sec. 3.2.3 fail-
though the property itself remains valid. Furthermore there is the
problem with definitional 2-constants and type-inclusion (mentioned
in sec. 1.7), which makes L02 fail.,

Below we give an indirect proof instead which runs as follows:
first we show (secs. 3.3.3 - 3.3.8) that the indicated extension is a
so-called unessential extension. Then we use this fact to transfer the
desired properties from fn-AUT-QE to the new system (sec. 3.3.9).

Finally (in sec. 3.3.11) we briefly discuss an even larger system than

166
AUT-QE+, which we call AUT-QEx,
3.3.2. Some terminology

Consider two systems of correct expressions with typing and equa-
lity relation, (}, E, Q) and (F+,.E+, Q,) respectively.
(b, E+, Q+) is an extension of (-, E, Q) if |- :}—+, E =» E+ and
Q = Q+, i.e.: B tresp. B; £}l resp. B; £F+4 (E/Q B) =
B F+ resp. B; E]—+ resp., B; £ F+ (E+/Q+ B).
We further just write F+A E/Q B instead of F+A E+/Q+ B. The "new"
system F+ is said to be consgervative over the "old" system F if all

new facts about o0ld objects are old facts, i.e. if
UEO bda, FB, b4 £/Q B = FA E/Q B.

An extension is unessentiZal if no "essentially new" objects are
formed, i.e. if all new objects are equal to old ones. This means
that the new system can be translated into the old one by a mapping—.

working on expressions, books and contexts, such that
UE1 A= FAQ A and b4 > A = 4
UE2 B F+ resp. B; £F+ resp. B; 5F+A >
B resp. B ; £ resp. B; £ 4~
UE3 B; &h,4 E/Q3 » B & 4 E/QB

Clearly unessential extensions are conservative. Property UE3
means that new formulas imply their old counterparts. Unessential

extensions also satisfying UE3', the converse of UE3,
UE3 F+A, F+B, -4 E/Q B = F+A E/Q B

are called definitional extensions.

In a definitional extension new formulas are equivalent to o©14d
ones. All unessential extensions satisfy the Q-part of UE3%, but for
the E-part we need property LQ for the larger system (at least if the
smaller system satisfies LQ). For that matter, if the +-system

satisfies LQ, we have
UE1, UE2 = UE3!

and: UEo, UE1, UE2 = UE3

167
3.3.3. The translation

Of course, we take Bn-AUT-QE for our smaller system - and we take
Bnd-AUT-QE+ as the extension F+. We are going to prove that F+ is an
unessential (but not a definitional) extension.

For an expression 4 we intend its translation 4 to be the normal
form w.r.t. a certain reduction relation =_, In order to make 4 well-
defined and in view of UE1l, UE2 we require
(0) > normalizes and satisfies CR
(1) > just affects the new elements of expressions (l-application

parts and definitional constants) and removes them
(2) > is part of the reduction relation of the new system and
satisfies CLPT

For contexts £ = £ E o the context £ is simply z E & (where the
meaning of o is clear). Similarly schemes for primitive constants
E*p(;) E B are translated into E*;XE) E B”. But schemes for defini-

tional constants have to be omitted in the translation.

J]

Before fixing 2 we define i--reduction Zi, i~reduction of degree

3 (where i1 is B, n, § or a combination of these). This is the reduc-

J-reduction, defined as

tion relation generated from elementary i
follows:

A elementary il-reduces to 4’ if 4 elementary i-reduces to 4’

and degree(.1)=j. The corresponding one-step reduction is denoted >i.

Notice that for degree-correct A the degree of A’ above is j as well
(cf. sec. 2.7).
Now, in view of requirement (1) above, we define > to be the re-

duction relation generated from 2; and 26'
3.3.4. Notice that Bl—reductions cannot be inside reductions. Strong
normalization for Bl is easy to prove even without using normability.
From Ch.III we recall §-SN and §-CR. As in Ch.II, secs. 6, 7, 8 we can
show that BI-CR holds, and that 81 commutes with all other reductions
(such as 82, S, n2) except n1

So 2 commutes with all kinds of reduction but nl, and we have
>-SN and 2-CR (whence requirement (0) above).

Clearly 2-normal forms do not contain defined constants anymore;

a simple normability argument shows that 2_removes the l-application

168

parts as well.

3.3.5. A further property we want 2 to satisfy is CLPT. Since §-CLPT1
follows from the simultaneous substitution theorem (cf. 2.9.4) we just

want to know SAl
BACHENICIN R -
or, equivalently, UD1
File:2)C Q [z:adD ko Q B.

Here turn up the problems with l-expressions, announced in 3.3.,1.

To overcome these we seemingly modifv our system:

1
(1) we exclude n ~-reduction
(2) we change our l-application rule into
1.3 4 Ea, F'Bred [z:alC >, (4)B

where red_ is 2 restricted to the correct expressions, i.e. generated
by
La, - A, (43
+ ’ + 1 8

Clearly I.3. = I.3'., so the modification is a restriction.

A' or 4 > Al = }-+A red A’.

However, after having proved 2-CLPT (whence UE1, see sec. 3.3.6), UE2 a3
UE3 (sec. 3.3.7) for the modified version, we shall be able to show
that both I.3 and nl—equality:|—+A, A >§ A, F+A' > |—+A Q A" are
derived rules. Hence' the two versions of F+ are equivalent, and we

have the desired properties for the original +-system.

3.3.6.1. For the modified system the property SAl is clear, so we hawe
the theorem (%:CLPT):I:A (Ea), 4 24" =» F+A' (E a)
1

Proof: Since we know 6-CLPT, and 2, is just = on the non-l-expressions

™

we only need to consider A of degree 1. Use, e.g., a double induction,
viz. (1) on 8(4) - i.e. the length of the 2-reduction tree of 4, (2)
on length(4). The only interesting case is when 4 = {AI}AZ' Al E a,
A2 red [x:alC. If Al z_Al’ then A125A1’ so by §-CLPT Al' E a.
If Az > Aé then by the ind. hyp. and by =-CR: Aé red {x:a"3C",
(r:alC red [z:471C". Sso A; E o' and F+{Ai}Aé. If A2 = [x:A3]A4 then
A E A, (this is SA') and F 4,14, 1.

Since a reduction 4 2 A’ starts with an inside or with an out-

side reduction, we are finished by the first ind. hypothesis.

169

3.3.6.2. Corollary (UEL): bk A4 = | 4 Q A~

. 1 .
3.3.7. Theorem (UE2 and UE3): Consider the systemwithout n~ and with

rule I.3'. Then BP+, resp. B; ihj resp. B;£F+A(E/Q B) =
B}, resp. B ;& }, resp. B ;£ FA (E/Q B7)
Proof: By induction on F+, using 2-CLPT. The interesting rules are

(i) appl. rule I.3': let F+A E o, F+B red [x:2]C. By ind. hyp.

-4 E o . Clearly B = [z:a 1C and by ind. hyp. FB , soz E o FC ,
so F({4}B) = ¢ 1471, g.e.d.

(ii) instantiation rule (vi'): let Bcontain a scheme y E 8 % d(y):= [
{possibly followed by *d(y) E C). Let E, be the book preceding this
scheme. By ind. hyp. B; ¥y E B D (E C). Now if B;£ B E BIED, then
by ind. hyp B ;£ FB E (BIB)) = 8 (8 1, so B ; ek (d(B))~
CTLEIE (ctBh T = CTUBT), g.e.d.

(1ii) Q-rule: let} 4 Q B,k .C, B > C. By ind. hyp. -4 0B ,kC .

1
Since 2z commutes with all other reductions, except possibly n which

we have forbidden, we find B 2 (so by CL for Bn-AUT-QE B 0 ¢~

and'-4~ Q ¢, g.e.d. The case that C > B instead is completely similar.

3.3.8.1. Now we prove that I.3. is a derived rule in the modified
1 - - -

system. So assume F+A E a, F+B Q {x:al]C. BY 3.3.7]—13 Q lx:a IC ,

whence B must be [x:B]Bl with Fa~ Q 8 and 4—+a Q B. Purther, by

3.3.6.1., - B red_ B~ and by 1.3' |-, {418, q.e.d.

3.3.8.2. Similarly, nl—equality is a derived rule. Let|—+A,|—+A’

3
1
4 4', We can assume that degree(4) = 1. By induction on length (4)

we prove that #+A Q A'. The interesting case is when 4 = [x:aij{x}A’,
o £ Fy(4’). As in 3.3.8.1., x E a1|—+A' red_ [x:az]Al with x ¢ Fv(azL

1 .)
By SA” x E a1|—+a1 Q a, and by strengthening {-+a1 Q a,. So J—+A 0
el ya v - !
[w.dllil Q [m.aszl Q 4", g.e.d.

1
3.3.8.3. Hence the system with I.3 and n -equality is equivalent to
1 1
the system with I.3' and without n -equality. So we have SA", > -CLPT,
UEI' UE2 and UE3 for the original system of Bn6-AUT-QE+ now,

170

3.3.9. The proof of CLPT

3.3.9.1. As in 3.2.6.5, we can prove CLPT1 from outside—CLPTl, by
induction on correctness. Clearly §-CLPT (and a fortiori §-outside-

CLPTI) is included in 2 -CLPT, so we just need 8- and n—outside—CLPTl.

In the next section we infer PT° and SA from our UE-result, which
2 2
leaves us to prove the B - and n -case of outside—PT1 only. These two

cases are dealt with in 3.3.9.3.

3.3.9.2. Consider the properties mentioconed in 3.1.5. In this section
we distinguish the two versions of a property (viz. for the smaller
and the larger system) by providing the latter with a + below. It
is clear that

UT* > UT" ana UTL, PTY s iy

whence UTi, PTi and LOi.

The property UD is also preserved in passing to the larger system, and
in fact, as in 3.2.3.1,

F+[x:a]A Q [x:p18 = }-+a Q 8, (z Ea]—+A 0 B

By.LQi we have (*i). SAi we knew already. Now we show SAi for i#1: let
P4)x:BIC. since i#l, ({AM2:B10) = {(A)wx:B I, so by UE,,
|—%{A_]{x:B—]C— and by SA, A4 E B . Hence by LQi again, we have

SAi for i#1 as well,

2
3.3.9.3. In sec. 3.2.5 we used cantyp in proving 8- and n—outside—PTl.
The same procedure applies in the +-system, but with typ (defined as

in 1v.3.2) instead of cantyp now. In particular we have

(ii') typ(d(@)) = typ(d) Al
for defined constants of degree 2 and 3 now
and (iv) typ({4}B) = {A}typ(B)

for both B of degree 2 and 3.

As in 3.2.4.2 we get
2
F.AEBEa-= A E typtd) Coa

and,

171

as in 3.2.5.2.,

}iA Ea, (xEak’0) = typldl) = typ(2) 4]

So, as in 3.2.5.4 and 3.2.5.5, we get
F21a) e B)C 5 typ({A)[z:BI0) Q typ(ClAD)
whence B—outside—PTill, and
Fileializ)a, = £ A = typTaializid) Q typw4)

whence n—outside-PTill.
3.3.10.1, In 3.3.9.2 we have carefully avoided the properties which

do not hold in the larger system, in particular LQ2 and (*2). For a
counterexample let d(x) be defined by E 1 * d(x) := [y:xlx, with
typ(@) = 1. If o E 1, then d(a) Q [y:0la E [y:alTt, but certainly not
d{u) E [y:alt, so not LQ2. 1f, furthermore, 4 E o, then F{4}{y:ala
but not ~{A}d(a), whence not (*2). Consequently, the +-system is not
a definitional extension of the old system.

3.3.10.2. Besides, if we stick to our counterexample,

s B () k2 E [y:ala, so 2 E d(a) +{4)z E o, but not

5 B d(a) F{4}d(a) (= typ({4}z)). This shows that typ applied to 3-
expressions can lead us out of the correct expressions (in contrast

with the situation in the smaller system), and that not:
3
"4 =4 E typd)
. 2
3.3.10.3 In the next section we restore (*) and LQ” by a further ex-
tension of the language., But first we give a theorem stating some very
2 2
weak versions of LQ” to hold in Bn8-AUT-QE+ instead of LQ". Recall

the symbol @ from sec. 3.2.3 and the result (sec. 3.2.4.3, 3.2.6.1)

for En-AUT-QE:

FAEB, FAEC=> |-BOC.

Theorem: Let]—+A E B,|—+C ED, F4 Q C. Then

F+A ED or F+C E B

172

Proof: By UE we get FATEB, LC ED, R4 Q0 c . By LQ for
3n-AUT-QE we get ~C E B so FB OD , so l—+B QB o0 0D,
i,e. [—+F 0Op, i.e. BLDor DL B, g.e.d.

3.3.11.1. The aforementioned anomalies can partially be removed by
properly extending Bnd-AUT-QE+ to a language Bné-AUT-QE*. In this

new system we first replace the application rules by
(1) B Q [z:alC, AEa=> }F{4)B
(2) BEC, H{A}C » F{ABE {4)

Rule (1) is simply I.3 without the restriction to degree 1. Rule
(2) is III.3.B' (sec. 2.15). So, indeed, AUT-QE* extends AUT-QE-+.

3.3.11,2, By this modification we gain the property

FBA = +typ(4d), so it is a proper extension.
Furthermore, by n-reduction we get

B E [x:0]1C » B Q [x:al{x}B, which yields property (*)

for the new system.

Our counterexample, however, shows that there are still problems:
LQ2 does not hold, so we do not yet have a definitional extension of
AUT-QE. Besides, now the new 2-expressions (e.g. {4 Jd(a) in the
example, which is correct now) do not have a correct typ, and not

even an E-formula.

3.3.11.3. The following theorem shows that the difference between AUT-QE+
and AUT-QE* just lies in the particular role of the definitional 2-
constants, and that AUT-QE* is an unessential. extension of AUT-QE+
(though it is no definitional extension).

Theorem: Let l-* stand for correctness in AUT-QE*, and let 4' be the

5% _normal form of A. Then A/ B) = F—+A'(E/Q B'Y(so FA4 (E/Q 7)).

Proof: Induction on F*.

3.3.11.4. A drastic way of combining 2-constants with type-inclusion
and still preserve LQ, is to add LQ explicitly to the language defini-

tion, or at least something like

L24, CE B, A2§C=:>AEB

173

Adding this rule to Bné-AUT-QE+ produces the smallest defini-
tional extension of AUT-QE which includes Bné-AUT-QE+, and it gives
us AUT-QE* plug all the missing E-formulas.

An alternative way of defining this new system (we still call it
AUT-QE*) 1s by ignoring the type-assignment part of definitonal 2-
schemes, and by defining the typ of a definitional 2-constant to be
the typ of its definiens (compare the definition of u in IV.4.4).

From the latter definition of this new system it will be clear
that our desirable properties {(except UT2, of course) can be proved

for it by the same methods as used in the closure proof of AUT-QE+.

3.3.12.1. Up till now we have, for definiteness, just compared
2n-AUT-QE with Bné-AUT-QE+ (and Bnd-AUT-QE*), i.e. we made the exten-
sion in one step and added the definitional constants and the 1-appl-
expressions simultaneously. One can as well, of course, consider
intermediate languages like An-AUT-QE+ and Bnd-AUT-QE.

Then one notices that the problems with (%), LQ2 and typ are ex-
clusively due to the ¢(in particular 62) and not to the + in
Znd-AUT-QE+. Thus Rn-AUT-QE+ satisfies L and (%), and is a neat de-
finitional extension of Bn-AUT-QE, .whereas Bnd-AUT-QE has all the un-
pleasant features of RnS-AUT-QE+. In fact, Bnd-AUT-QE+ is a definitional
extension of Bndé-AUT-QE, and 8nd-AUT-QE can only be made into a
definitional extension of Bn-AUT-QE (call this new system from now

on AUT-QE') by adding a rule like in sec. 3.3.11.4.

3.3.12.2. If one takes AUT-68 instead and adds an application rule:
AEa, [x:0JCQBET=> {ABET-

(compare 3.3.11.1, rule (1)) one gets the corresponding +-language.
(i.e. smallest value degree = smallest function degree), AUT-68+.
These systems are easier to handle than AUT-QE: both AUT-68 and
AUT-68+ satisfy UT, LQ and (*), even in the presence of definitional
constants, and AUT-68+ 1s a definitional extension of AUT-68.

Without definitional constants, AUT-68+ is already contained in
AUT-QE, but 8nd-AUT-68+ is not contained in 8né-AUT-QE. It is
contained, though, in the system AUT-QE' of 3.3.12.1.

Closure for AUT-68+ can, e.g., be proved by the methods of the

next section (see 3.4.5).

174

3.4. Some easier closure proofs

(for simpler languages)

3.4.1. There are various ways of proving closure for simpler languages,
such as 2n-AUT-68 or RS-AUT-QE. First, one can take the closure proof
of the previous sections and adapt it to the language under considera-
tion. Since n-reduction, type-inclusion and liberal degree specifica-
tion (in particular for function degree) are responsible for many
technical details in the proof, the simpler languages allow some
obvious simplifications. E.g. if a language lacks n-reduction we can
clearly skip the n-closure part and, besides, we can freely use CR.
Or, if a language has more restricted function degrees (AUT-68 vs.
AUT-QE, non-+-languages vs. +-languages), we have to push SA, LQ, UD
etc. through less degree levels. And, if a language lacks type-inclu-
sion (AUT-68 and Nederpelt's A), we simply have PT = L}, and do not
need to introduce something like cantyp for this purpose.

A second approach is suggested by the fact that our language de-
finition contains some technicalities which are only introduced to
make the closure proof (i.e. this kind of closure proof, for a
complicated language like Rn-AUT-QE) possible. In particular, I intend
the use of the restricted (Q-rule V.2 instead of the more liberal Vv.2',
i.e. the use of the restricted system type I, instead of the liberal
system type II (see sec. 1.2.). Recall that after having proved
closure for I, I and II can be proved to be equivalent, and that,
after all, we are more interested in system II than in system I.

Now it turns out that, for the simpler languages, the modifica-
tions in the language definition (and the detour via system I) are
superfluous, and that we can give a direct closure proof for a type II
language definition.

Such direct closure proofs are presented below for all the regula:x
languages which either lack n-reduction, or have just function degree
3: B(8)-AUT-68(+), B(8)-AUT-QE(+) and Bn(8)-AUT-68. A mere sketch is
given for Bn(8)-AUT-68+ (for the definition of AUT-68+ see sec. 3.3.12).

3.4.2. So we give these languages by an E-definition with (Q-rule

V.2 4QB,ByC, FC» AQC

175

which a priori is stronger than V.2 but later turns out to be
equivalent., The properties in secs. 2.9, 2.10 such as the substituticx
sheorem, correctness of categories, and the property: a of domain
degree, A of value degree, x E o +4 & [[x:0al4 simply go through.

As in sec. 3.1., we essentially just need SA for proving closure.
So below we confine ourselves to SA and, in connection with this,

UD for the various languages. We start with the n-less languages.

3.4.3.1. Thecrem: UD for n-less languages
Proof: Let [x:alB Q [x:2]1C. Then by CR, [z:alB ¥ [x:a]C so a + B and

Z 4., whence « Q Bandax E a B Q C.

3.4.3.2. Corollary: SAl for B(8)-AUT-QE+, SA2 for R(8)-AUT-68+.
proof: Let 4 E o, [x:B1C Q {x:a]D. Then B Q o so 4 E B.

3.4.3.3. Let C be defined as in sec. 2.14, We need a lemma:
-FC G, 6> [2:BD »F > [x:2)C with |a} = || and @ +B (i.e.
. v a, 13 .

Ll 1 az 82, etc.)

Proof: Induction on L.

3.4.3.4. Corollary: SA2 for £(8)-AUT-QE (+), SA3 for B{8)-AUT-68 (+)
Proof: Let 4 E o, [x2:BJC E [x:alD. Then {x:B1C E [x:BIF C [x:alD. So
by the previous lemma B Q a and 4 E B,

3.4.3.5. Now in order to get SA3 for B-AUT-QE (+) we need a lemma
again. Notice that the proof of this lemma fails when there are
definitional constants.

temma: 24 E B, B > [%:BID, A = [2:3)C, |a| = |B] = a ¢ B

Proof: Induction on the length of A. The interesting cases are:

o

~—
159
1

fx :ul]Al, A, =2 (e a0 10, . E a FAl E Bl' [xl:a1]51 C

1 1 272 1 1
5 » [fI:%1][x2:§2]D, layl = |B,[. By 3.4.3.3 « ¢ B, and B, 2
Ex2:82]Eg with B, j 8. ?y the ind. hyp. &2 v B so &2 i é2 and
x = (al,a2) A\ (81,82) = B, g.e.d.
(2 4 =

{Al Mz, Al E v, A2 E [Z:Y]Bl, ElﬂAln C B> [x:810.
By 3.4.3.3 again, BlﬁAlﬂ > [E:E']Dl with 8 + B'. Because Bl has

; 1 and 4 > [2:8 ith & A 8
degree 1 and 4, has degree 3, B1 Lx-BO]DO with BOWAlﬂ > B

176

Similarly, since A2 has degree 2, if {Al} A2 > [2:2]C then A2 >
givy! o lo. with a o o~ . =

(i][f XOJDO aO[Alg > a, COHAlz > “ By the ind. hyp. a, ¥ BO
so i < noﬂélﬂ ¥ BOUA1] > 8 and by CR o ¥ 8, g.e.d.

3.4.3.6. Corollary: SA3 for B-AUT-QE (+)
Procf: Let » E a, [x:B8]10 E D E [x:alF. Then [x:B1C E [x:B1G Q D whence

2 = [x:3"]0" with B 2 B', By the lemma B + o, so B Q a and 4 E B.

3.4.3.7. So we have SA for B(§)-AUT-68(+) and B-AUT-QE (+). In order
to tackle the Bé-case of AUT-QE we first prove 8-CLPT, which give us
an unessential extension result. Then we can either extend SA directly,

or first extend the lemma 3.4.3.5 to B6-AUT-QE+ and proceed as before.

3.4.4.1 Now consider Bn-AUT-68. We cannot use CR anymore.

Theorem: UD? for Bn~AUT-68.

Proof: All 2-expressions are of the form [Z:aly or [z:alp(C). So if
]—2A 2 [x:8]B, then 4 = [x:a]Al with a > B. By ind. on Q we can prove:

if I-2A Q [x:81B then 4

1t

[x:a]Al with @ Q B . This gives UDZ.

3.4.4.2. Corollary: SA for gn-AUT-68

Proof: Immediate.

3.4.4.3. The same proof works as well for fné§-AUT-68, as follows.
2 2

Lemma: |- 4 e [x:a]Al, F°B, A ¥ B =B 26 [x:B]Bl, a +B.

Proof: Since 2, commutes with 2z, [z:0l4;> [x:a’]Af =5 E < B. By

d-advancement (sec, 11,9,3), B8 2, C 2 [x:a"]A{’ %[m:a']Ai. Here the re-

8
duction C 2 [x:a"]Ag does not contain 8-reductions so C = rr:B]Bl with
f2a” £d 20, g.e.d.

3.4.4.4. By the simultaneous substitution theorem we have &-CLPT

again. Then by induction on Q we can prove:
|—2F Q [x:81B » F 2 [x:0]4, a Q B.

This gives us U02 whence SA, as before.

3.4,5. It is possible to extend these results (for Bn(8)-AUT-68) to
the corresponding +-language £n($)-AUT-68+, but it is rather
complicated. We can use a mixture of the methods in 3.4.4.3 and

3.4.4.4 and the methods in sec. 3.3. Thus we start with leaving n2—

177

reduction out of consideration, and restricting the appl-rule of
degree 2 to: A E a, FzB > [x:R1C, a =2 B > {43B.

Later on these two restrictions prove to be immaterial. For the
restricted system SA2 is immediate and 82—closure is guaranteed. Then
we need6—82—advancement and the fact that 682—reduction commutes

with =, and get:
L%F Q [2:81B = F 252 [£:0)d, o Q 8.

2
This yields UD”, and SA3 and we are finished,

178

V.4. The equivalence of the E-definition with the algorithmic
definition

4.1. Introduction

4.1.1. Since in the E-definition the correctness of expressions and
formulas (relative to a correct book and a correct context) was
given by an ordinary inductive definition, the correctness relation
is a priori just recursively enumerable and not necessarily recursive
i.e. effectively decidable,

In this section V.4, though, we prove the decidability and
discuss some related topics. First we give some introductory considerc
tions leading to a sketch of a decision procedure (secs. 4.1.3-4.1.6).
The whole verification process is, in principle, reduced éo the
verification of Q-formulas, for which the decidability follows from
the normalization property N and the Church-Rosser property
(compare sec. II.5.4).,We can use normalization freely because we
proved N for a very large system in IV.4.5, but £fn-CR we do not know
vet. Therefore we assume throughout V.4 property CR for the correst

expresstons, for the proof of which we refer to Ch. VI.

4.1.2, Then (sec. 4.2.2) we present the actual algorithmic definition,
to be adapted for the various languages by a suitable choice of a re-
duction relation, of a typing fUnction-Cantyp and of a domain function
dom for the computation of domains (sec. 4.2.3., 4.2.4).

The equivalence proof in sec., 4.3 is organized as sketched in

sec., 1.2 and 1.6, with the following effects:

(1) the strengthening rule can be skipped from the E-definition

(2) the E-systems are decidable

(3) the algorithmic system satisfies the nice properties of the E-
system: closure etc.

The final sections concern the verification of Automath languages
in practtce. This is a matter completely different from the
theoretical decision procedure discussed before. Particularly some
remarks are madeon suitable reduction strategies for deciding Q-

formulas.

179

4.1.3, Deciding Q and C

No matter whether a system has (Q-rule V.2 or Q-rule v.2', there holds
AQB < |4, B, A +B

proof: =. By induction on Q, using CR.
<. This is precisely rule V.2' so either it holds by definition
or it follows from CL.]
So, by N (as in II,54), for correct 4 and B, 4 Q B is decidable.

In 8(n)-AUT-QE all l-expressions are of the form [x:alt.
We have FlA Ct <= FlA
and (sec. 3.2.3.1).
LIA C [m:B]B1 < A = [x:a]Al, @ Q Band x E « FAl C Bf

So, for correct l-expressions A and B, A C B is decidable (use induc-
tion on the length of B). Since on non-l-expressions C is just 0,
this is true for 4 and B of other degrees as well,

Let } stand for correctness in B{n)-AUT-QE, !—+ for some larger
system, like Bn6-AUT-QE+ or BnS-AUT-QE* and let denote the als-

normal form. By UE (secs. 3.3.2, 3.3.3) we have.
I-+AEB®{-+AI i-+BI “A EB

So, in the larger systems, too, A C B is decidable, for correct 4 and

4.1.4. Deciding E-formulas

In principle, E-formulas 4 E B, for correct 4 and B are going to be

decided by the equivalence
AEB <= typd) C B

which reduces the E-formula to a E-formula.

However, there is some trouble with typ. First, typ can lead us
out of the correct expressicns of the language we consider. There
are two ways to solve this problem: first one can introduce for each
language a specific modified type-function cantyp (for: canonical
type) which does not suffer from this defect. Then we get what we

want (as in 3.2.4 for AUT-QE)

180

4 EB < |4, FB, cantyp(d) L B
Alternatively, one can use the fact that the new, possibly in-
correct expressions created by typ in general are correct in some
larger system (e.g. the corresponding +-system). Then one can decide

the E-formula in the larger system:
AEB @ |-4, }B, -, typd) C 8

where F+ stands for correctness in the larger system.
If we make sure that F+cantyp(A) Q typ(4) then, by conservativi-
ty, the two approaches are clearly equivalent.
A second difficulty with typ occurs exclusively in AUT-QE' and
zg c =
FB E D, and for the new category D of B the property typ(B) T D (even

AUT-QE*, These languages have the rule: FzB, LCED, B

if typ(B8) is correct) is not necessarily true anymore.
This problem can be solved by taking a type-function which first
2
eliminates all the § -constants. For a 62—constant d we have then

cantyp(d(4)) = cantyp(dz—nf(d(ﬁ))).
4.1.5. Deciding correctness of expressions

3ll correct expressions relative to a correct B and a correct £ have
to be B; g-expressions, i.e. the constants have to be in B and the
free variables have to be in . The verification of compound
expressions can roughly be described as: verify the subexpressions,
plus their possible type- and degree-restrictions. E.g. for abstr-

expressions use the eguivalence

Flx:ald & Fa, a of domain degree, x E o |-4, A of value degree.

For the subexpressions B in ¢!B) there are type-restrictions
prescribed in the scheme of o, viz. if the context of the scheme is

¥ E B then
Fe(B) = B E B[B) (i.e. B1 E 81, B2 E BzﬂBlﬂ etc.)

To verify the right hand-side first verify FBl. Since]—Bl
(it occurs in B), we can decide 31 E 81 as indicated above. Then
check I—Bz. Since B1 E B1 and Yy E BI]—B2 we know }—BzﬂBlﬂ so we can

tackle the next E-formula etc.

181

4.1.6, Verification of application expressions
Now we discuss the type-restriction implied in the correctness
of {A1B. We restrict ourselves to AUT-68 and AUT-QE here,.

Define a to be a domain of B if
(i) B E {x:a1C for some C, or (ii) B E ¢ E [x:alD for some C, D.

Then, in view of the formation rules for appl-expressions, we

have the equivalence:
-{4}B <> }B, B has a domain a, 4 E o

The arbitrariness w.r.t. the domain can be somewhat reduced by

another property of uniqueness of domains, viz.

if a, and o, are domains of B then al()a

1 2 2

(which will be proved below, 4.2.4.2). This allows us to modify the

equivalence:

F{A}B <> }B5, B has a domain, and Va (R has a domain o =4 E o

i.e. we need just one domain to check the type-restriction.

If one fixes a particular procedure for the computation of some
domain of an expression, one can define a domain funetion dom
(specific for each language). E.g. for AUT-68 one might inductively

define
§%-nf(cantyp(B)) = [x:a]C = dom(B) = a.

Now define an extended reduction relation -, as follows:

(1) A>E A+ R
(ii) A~ typ(4)
(iii) + is transitive.

Then, an alternative way to compute a domain of an expression B,
is to perform a more or less specified search through the --reduction
tree of B until one possibly encounters an abstraction expression,
say [x:0]C; if so, this o is some domain of B. Certain restrictions
(specific for each language) have to be imposed upon the search in
order to guarantee that not too many expressions get a domain in this
way .

Just like property N (at least 62—N) is crucial in the definition

of dom above, the well-foundedness (i.e. property SN) of - is needed

182

for the termination of the second procedure. This will indeed be
proved below (4.4.11).

As a whole, the situation with the two possible ways of finding
a domain can be very well compared with the two ways of deciding a
Q-formula: either one can compare normal forms (use N) or one can

search for a common reduct in the respective reduction trees (use SN).
4.2. The algorithmic definition

4.2.1. Now we give, guided by the considerations in the preceding
sections, the algorithmic definition of correctness. Apart from the
compatibility condition of def and typ (see below), the book-and-
context part of the definition is as usual (see IV.3) and will be
omitted. So we just define the correctness of expressions and
formulas (new notations Fa' Ea' Qa and Ea, with the subscript for
"algorithmic") in terms of reduction, dom and cantyp (sec. 4.2). Later
we discuss the choice of cantyp and dom for the various regular

languages (4.2.3, 4.2.4).

4.2.2.1. Let B;¢ Fa. The conventions for omitting B and £ in
B; ¢ Faanre as in V.2.1.. Degrees are indicated as superscripts and

defined as usual. The compatibility conditioen reads: def(d) Ea typ).
4,2.2.2., Formula part of the definition

Let A and B be B; f-expressions (so not necessarily correct). We

define: (i) A Qa B: «A VB

with the straight forward extension to strings: 4 Qa

[s5]]

(ii) A Eé B, if degree(B) =" 1: <=

36t onfa) = (z:ada,, 8'6'nf®) = [z:81c, 3 Q B
(iii) A Ea B, if degree(B) # 1 : <> A Qa B
(iv) A Ea B : <> cantyp(4) Ea B

with a straightforward extension to strings 4 Ea B.

4.2.2.3, Expression part of the definition

T
P}

(1)

183

(ii) I—ax: <> r occurs in £
(iii) b ¢B,,..,B) : = }+ B, ,..., + B, ¢ occurs in B and,
a 1 m a1l _ a m _ o
if the scheme of ¢ has context ¥y E 8 then B Ea R NB].
(iv) A Ea B : <= cantyp(4) Ea B

with a straightforward extension to strings 4 Ea B

4.2.2.3., Expression part of the definition

1

(i) F T
(ii) Fax: <> x occurs in §
(iii) }—ac(Bl,...,Bm) 1 }-aB ,...,I-aBm, ¢ occurs in B and, if

the scheme of ¢ has context ¥ E B then B Ea gIBI.
(iv) £ Fa[x:a]A e g}-ia and £, * E a4 and 4 has value degree.
(v) Fa{A}B 16 }-zA, FaB, B has function degree, 4 Ea dom(B)

4.2.3. The choice of cantyp

4.2.3.1. For our purposes (see 4.1.4) we require that, for correct 4,
cantyp(4) is as well correct, is a category of 4, i.e. 4 E cantyp4),
and is minimal with respect to C: A E B = cantyp(4) C B.

This leaves us still a lot of freedom for our choice of cantyp:
e.g., as long as different definitions of cantyp yield definitionally
equal results, they are equally good to us. In some languages typ
itself meets the requirements mentioned above, viz. Bn-AUT~QE+ and
Nederpelt's A. In most languages, however, typ causes some problems,
e.g. there are correct expressicns with incorrect typ; then we choose
cantyp to be some suitable modification of typ.

Below we give a survey of the difficulties with typ, and how

these can be solved by cantyp.

4.2.3.2. We start with the languages where the trouble with typ is

due to mere degree restrictions.

(1) 8n-AUT-68: if]—z[m:a]B then its typ is not correct in AUT-68, but
is a tvpical AUT-QE-expression. Then cantyp of this expression has to
be 1. Tucther, typ({A}B) where degree(B) = 3, is incorrect in AUT-68

but correéf in AUT-68+ (so, see 3.3.11.2, in AUT-QE). In cantyp ({41B)
we have to remove the applicator {4}, so we can define cantyp({41B) =

CllA], where cantyp(B) = [x:01C. This is the same idea as in 3.2.4, but

184

now for x of degree 3.

(2) -v-AUT-QE and 3n-AUT-68+: Application of typ to {4 1B of degree 2
vields AUT-QE+ expressions. For AUT-68+ cantyp of these expressions
hias to be T. For AUT-QL .we remove {A} from cantyp, by B-reduction as

in 3.2.4 (and in (1)).

4.2.3.3 Now we add definitional constants. This gives rise to the
interference of 62-constants and type-inclusion, discussed before in
3.3.10-3.3.12,

(3) Bnd-AUT-68: Consider the example of 3.3.10 which is also correct
in AUT-68. There occurs an {4 }B of -degree 3 such that typ({4}B) does
not belong to AUT-68 (of course not, as in (1)), does not even belong
to AUT-QE and AUT-QE+, but does belong to AUT-68+, AUT-QE' (3.3.12.1)
and AUT-QE* (3.3.11). Again, we must remove the applicator in cantyp,

but we cannot be certain anymore that cantyp(B) is an abstr-expression.

Therefore we define cantyp ({4 1B) ClA), where 52-nf(cantyp(B)) 3
(z:alC.

(4) Bn6-AUT-QE (+) : The same expression typ({4}B) of (3) is again in-
correct here. Now the applicator is allowed in cantyp, but we need the
62-reduction in order to remove the effect of the type-inclusion:
cantyp({413) = {4 }(52—nf(cantyp(3) 1) .

(5) 8nd-AUT-68+: This language has 2-expressions {418 (see 3.3.11.2),
the typ of which is incorrect in all the languages, and even not
normable, e.g. {4}t. The cantyp of such {4}B must be T.

(6) BnS-QUT-QE' and Rn8-AUT-QEx: Here we have the same {4 }JB of degree
2 of AUT-68+. Besides, the typ of a degree 2 definitional const-ex-
pression {even if typ is correct) need not be a minimal category
anymore. Therefore we define cantyp(d(4)) :Ecantyp(62—nf(d(Z))). Then
for the cantyp of {41B of degree 2 we can simply take {4 Jcantyp(F) in
AUT-QE*, whereas in AUT-QE' we must take (4] where 61—nf(cantyp(E)) =
(wc:alC.

4.2.3.4. Resuming: we have three types of difficulties, viz.

(1) In AUT-68(+) the only 2-expression is T, so the typ of 2-ex-
pressions can be incorrect. Remedy: define cantyp to be T.

(ii) In non-+-languages (AUT-68, AUT-QE and AUT-QE') the typ of {41}F
of minimal function degree (say: 1) is incorrect. Remedy: create
an abstr. expression by taking the (Bé)i—l-normal form of

cantyp(B) and remove {4} by another Bl_l—reduction.

185

(iii) In languages with 62—constants and type-inclusion typ produces
incorrect appl-2-expressions (AUT-QE(+)) or appl-l-expressions
(AUT-QE' and AUT-QE%*), Besides, in AUT-QE' and AUT-QE* the
typ of a 62—const—expression is not necessarily a minimal
category. Remedy: remove the 52—constants after (AUT-QE(+)) or

before (AUT-QE' and AUT-QE*) taking cantyp.

4.2,3.5. In view of the arbitrariness of cantyp (4.2.3.1) we need
only three different definitions of cantyp, one for the AUT-68-
family, one for the restricted AUT-QE languages AUT-QE and AUT-QE+,
and one for the liberal AUT-QE branch (AUT-QE' and AUT-QE#*). Since
the above list of difficulties is exhaustive, for the rest (e.g. for
variables and const-expressions) the definition of cantyp differs

only as regards the following clauses:

(1) for AUT-68 and AUT-68+

(1) degree(B) = 2 = cantyp(8) := 1

(i1) degree(B) = 3, 8252—nf(cantyp(8)) Z [x:alC = cantyp({43B) :=
Clal

(2) for AUT-QE and AUT-QE+

(i) degree(B) = 2, Blél—nf(cantyp(B)) 2 [x:2]C = cantyp({41B) :=
CLA]

3, = cantyp({41B) := {A}(éz—nf(cantyp(B)))

fii) degree (B)

(3) for AUT-QE' and AUT-QE*
2 = cantyp(d(4)) := cantyp(62—nf(d(Z)))
2, Bldl—nf(cantyp(B)) = [x:alC = cantyp({4A1B) :=

(1) degree (d)

(ii) degree (B)
Cll4]

4.2.3.6. That the proposed definitions of cantyp actually satisfy the
requirements of 4,.2.3.1 can be proved directly for the E-systems using
the results (CLPT, LQ, UE etc.) from section 3, but will become clear
as well in the course of the equivalence proof, below.

4.2.4. The choice of dom

4.2.4.1. We start with a recapitulation of the appl-rules for the

186

various languages. First, the appl-rules of AUT-68 ((1) 4 E «,

2 E [x:all = |-{41)3) and of AUT-QE ((2) A E a, BE C E [x:alD =

|- {:1}3) are simply valid in all the languages (though rule (2) is
vacuously so in AUT-68(+)). Then, additionally, rule (31)

(4 E o, FiB Q [x:a]C = {41B); this rule is with i = minimal value
degree necessary for defining the +-languages AUT-68+ (i=2), AUT-QE+
and AUT-QE* (i=1). For languages satisfying LQi, where i is not the
minimal value degree, rule (3i) is a derived rule. Indeed, for such i
is Fi[x:a]C E [x:a1D so by LQi B E [x:a1D. Hence, rule (33) is
anyhow valid, rule (32) is valid in the AUT-QE languages without 62—
constants, further in AUT-68+, AUT-QE' and AUT-QE*, and rule (31) is
valid in AUT-68 (+) (vacuously) , AUT-QE+ and AUT-QE%*, Alternatively
formulated, rule (3l) is always valid but for- rule (3) in AUT-68

and AUT-QE (+) with 62—constants, and: rule (3) in AUT-QE and AUT-QE'.

4.2.4.2. So, for certain languages we must extend the definition of
domain from 4.1.6 with the clause: (iii) B Q [x:a]C = a is a domain

of B. The set of domains of an expression is clearly closed under Q:

@, a domain of B, oy Q a, = o, a domain of B.

The converse of this is the announced uniqueness property, which we

prove here for the enlarged notion of domain:

oy and a, both domains of B = o, Q o,

Proof: From 3.2.3.2, 3.2.4.3, 3.2.5.7 we recall the properties of fr-
AUT-QE

Fl[x:al]c El[x:az]D =, Q a, (this includes UDl)
2 2

- [x:al]C E [x:u2]D = o Q a, (EUD™)

F2lzia, 10 Q Lexa,dD = o, Q oy (UD?)

Now let | [x o 1€ B [x:a]D Then also |- [x o ¢ E [a: o]r. By
UT? we get [x:u]D Q (x: o 7 and by UD Q a, So we have EUD as
well. Further F [x o]c Q [x: a, ip. Then also P [x IH JC E [x: o 1=
and by LQ [a: o, 10 E [x a, IF. So by EUD> Py Q o ThlS amounts to
UD3. These results can all be extended to the extensions of Bn-
AUT-QE by translation (e.g. Blé—reduction) into An-AUT-QE, as follows:
let l—+fx:d110 /0 [x:uz]D, where F+ stands for correctness in the

larger system. By UE, F[I:QI]U~ E/O [x:a;]D_, correct in Bn-AUT-QE,

187

so by one of our (E)UD results: o Q aI Q a; Q &,. Of course, in AUT-
63(+) these (E)UD results are also valid.

Now we treat the various possibilities for oy and a, to be a
domain of B.

(1) [x:al]C Q B()[x:a2]D. use UD.

(2) [x:al]C QBE [x:az]D. If necessary, translate (e.g. by 52
reduction) into a language satisfying LQ: [x:a;]C— QB E
[x:a;]D—. Then by LQ we get [x:aI]C_ £ [x:a;]D_, and can use EUD.

(3) [x:aljc QBEDE [x:az]F. Use LQ: [x:aijc EDE [x:a2]F.
But also [x:al]C E [x:al]G and by UT3: [x:ale Q D we arrive in

case (2) again.
(4) BE [x:aIJC, B E [x:uz]D. Then [x:al]C‘D [x:asz so o, Q P

(5 BE [x:al]C, BEDE [x:a2]F. By UT3: [x:ale Q D we are again

in case (2).

(6) BECE [x:aljD, BEFE [x:aZJG. By UT? we get ¢ Q F. Translate
into a language satisfying LQ. This gives ¢ Q F E [x:a2]G
and by LQ ¢ E [m:a2]G . It also gives C E [x:aljD , and case
(4) applies.

4.2.4.3. It would be nice if the notation of domain of an exrression
was preserved under Q: B Q C, o a domain of B = o a domain of (. This
is indeed true for languages satisfying LQ, but not for the others,

viz. Bn8-AUT-QE and Bnd-AUT-QE+. By CLPT, there holds
B =2 (C, o a domain of B = o a domain of (C

i.e. the notion of domain is preserved under 2. So the converse direc-
. 2 . . .
tion (C 2 B, in particular with 6 -reduction), fails in BnS8-AUT-QE (+) .

For all the languages we have
BQC, a a domain of B = a a domain of C

where is the 62—normal form of B.
Proof: By the translation " wearrive in a language satisfying LQ, so
from B Q C—, o a domain of B we get the desired result.

As a corollary of this, we get

B QC, « a domain of B, C has a domain = a domain of C.

188

4.2,4.4. In view of the above remarks we still have a lot of freedom
in defining a domain function dom which picks some expression from
the set of domains. Dom is going to be defined in terms of cantyp ang,
just like cantyp, in terms of 62—reduction and (Bd)i—reduction, where
i is the minimal value degree. I.e. by application of cantyp and these
reductions we arrive at an expression which we call the domain normal
Jorm, dnf, 1If the dnf is an abstr-expression then we read off the

domain dom from it:
dnf(3) = [x:alC = dom(B) := «a,

Otherwise, dom is simply not defined.

The rules for computing dnf are for the non-+-languages:

(1) AUT-68: dnf(B) := Bzdz—cantyp(B)
(2) AUT-QE('): (i) degree(B) = 3 = dnf(B) :=
sls! nf(cantyp(6%-nf (cantyp(3)))).
(ii) degree(B) = 2 = dnf(B) := Bldl—nf(cantyp(B))

The 82 of AUT-68 and the 81 of AUT-CE(') were only added in order
to cover the corresponding +-languages too. Now, we can deal with the
+-languages by simply adding a rule for B of minimal value degree:

degree(B) = i, i is minimal value degree = dnf(B) := (Bé)i—nf(B).

This rule gives us AUT-68+ from AUT-68, AUT-QE+ from AUT-QE and
AUT-QE*x from AUT-QE'.

4.2.4.5. That dom(B), as defined above, gives us a domain if B has
one, and gives us nothing otherwise, can be proved directly, but will

also become clear in the course of the equivaLence proof.
4.3. The equivalence proof

4.3.1. As announced before, the equivalence of the algorithmic defini-
tion with the E-definition will also prove the superfluity of the
strengthening rule. To this end we use, along with the algorithmic
defini£ion system III, two distinct versions of the E-definition,
system I and system II. Here, system I is the system of sec. 2: it
has the strengthening rule and it has (Q-rule Vv.2. System II, however,
lacks the strengthening rule and has Q-rule Vv.2' instead.

By CL for system I, we have: str., V.2 e (str.,V.2") = V.2', so

189

system II is clearly included in system I.
Below we denote correctness in I, II and III respectively by -,

F

o and }5; hence the inclusion of II in I becomes:]—O = }.
Now the equivalence of the three systems is shown by additiocnally

proving }—a=> }-O (sec., 4.3.2) and } = I—a (sec. 4.3.3).
4.3.2. The }—a = }—O -part.

4.3.2.1. We first formulate the theorem, which we want to prove.
i+1
a

Theorem: If B }-a resp. B;g]—-a resp. B;g]—;A resp. B;g |~
resp. B;g& }-éA resp. Big }—é-HA E cantyp(4). So the theorem implies

A then B} 0
that cantyp is well-defined on the non=l-expressions of the algorithmic
definition. The proof of the theorem is by induction on '}-a and
depends of course on dom and cantyp, i.e. on the language we consider,
However, large parts of the proof can be done for all or some of the

languages together.

4.3.2,2. Some properties

() FA R AQ B> FAQEB

Proof: this is simply rule V.2'.

(2) R A= FBlslonf) Q4

Proof: By the simultaneous subst. theorem §-CLPT holds. Further SA1
can be proved as in 3.3.6.1-3.3.8.2, or holds vacuously so SI—CL. By
25-CR and BS6-N the Bldl—nf is well-defined.

(3) Let I—OA, l—-OB, AEa B. Then }-—OAE B

Proof: For B of degree 1, by (2) }—OA Q Bléi—nf(/}) = [5:&]:41[[z:a]T
v [z:Blt = Blél—nf(B) Q B so l—OA C B. If degree(B)# 1 this is 1)
again. ‘
(4) }-OA E cantyp(4), }—OB= }-OA EB

Proof: apply (3).

(5) The l—o—system satisfies CR

Proof: l-—o = | and we assumed CR for |F.

{(6) Strengthening for Q:

SFAQB, gsubg, g FoA g - B8 FAQB

Proof: By ind. on Q we get 4 ¥ B so 51}—0/1 Q B.

190
4.3.2.3, Proof of the theorem, part 1

We only need to give the inductionstep for those clauses:'in the
definition of }-a which differ from the corresponding clauses in the

definition of Fo. We start with the easy cases.

(1) the compatibility condition
let E*d(g) :=4 « d(x) E B be a correct scheme according to the
algorithmic definition, i.e. & FaA, E’FaB and 4 Ea B. By the ind.
hyp. § POA E cantyp), FOB, so by (4) above E}—OA E B, g.e.da.

(2) expressions (easy cases)

(1) T: trivial

(ii) wvariables: let E]—a then by the ind. hyp. EI—O, so for x
in €, ¢ L—Ox E typ(x) = cantyp(x).

(iii) const-expressions, except 62—const—expressions in AUT-QE'
and AUT-QE*: let the scheme of ¢ be in B with context
y E B. Let }—aBl,...,}—a%n and B Ea BIBD. By the ind; hyp.
}—OBI E cantyp(Bl), }—082 E cantyp(Bz) etc. Further y E B}-a
soy E B FO so |-081, Y4 E 811-062 etc. So]—OB1 E 81 and
by the subst. theorem]—082ﬂ31], so FOBz E BzﬂBlﬂ etc. up

to FOEh E Bmﬂéﬂ. The conclusion is]—00(5)(E typ(c)ﬂéﬂ
cantyp(c(B))).

(iv) abstr-expressions: let £ an and £, x E al—aA, A of value
degree. By the ind. hyp. E]—éa and £, x E al—OA(E cantyp(4)).
For A of degree 2 in AUT-68(+) this is £, E a FOA Ex
which yields E}-O[x:a]A E v = cantyp({z:al4). Otherwise,
we get & }-O[x:a]/l (E Cx:alcantyp(4) B cantyp([x:al4)).

4.3.2.4. Some more properties

Before discussing the remaining clauses we prove some more
properties of FO. First something about C. 0f course, the Bldl—nf's
of l-expressions are of the form [x:alt. As in 3.3.6-3.3.8 (leave n]
out of consideration, restrict the appl-l1-rule) we can prove, even

without using CR

}-éA Q8= slslonfa) = [Z:alr, 8'6l-nf(B) = [z:Blt, a0 E

and, by induction on [,

191

,LféA Co=glslnfa) = [z:adly:y)r, 686 -nf(®) = [2:81r, b5 QE.
So we get: koA C [2:81B, » 8'6'-nf(d) = [w:ald, F 208, o Ea H,CE
Now we prove a lemma: FOA(E B) =]—éA E cantyp() ©C B).
Proof: E.g. in AUT-68(+) there is nothing to prove. Anyhow, the cases
A = 1, A a variable or 4 an easy const-expression (i.e. not a 52—const—
expression in AUT-QE' or AUT-QE*) are immediate. For the rest we
proceed by induction on (1) the length of Gz—reduction tree of 4, (2)
the length of 4.

Abstraction expressions are easy. If 4 is a 62—const—expression
in AUT-QE' or AUT-QE*, by 6-CLPT and the first ind. hyp. }—édz—nf(A)E
cantyp(dz—nf(A)) = cantyp(4) (C B). Then by the extra type modification
rule of these languages we get }-éA E cantyp(4) (C B), g.e.d. Now let
A= {4)M, wehave kA Ea, /A, E cantypd) C [z:alC. So elslonf
(cantyp(Az)) E [x:aljcl with o, Qoa, xE o 1—01 C C. We want
FOA E cantyp4) = CllAlﬂ(E B). If the formula 4 E B in the assumption
comes directly from CHAIH C B we get ClﬂAlﬂ C CﬂAlﬂ C B g.e.d.. Other-
wise A4 22 D, FOD E B (i.e. the extra gule of AUE—QE' and AUT-QOE* has

8
been used). This D = {Dl]D2 with Al > D, A. 2. D., so LD, Eaqa,

%5 Y1r P2 Fs Mo 0”1
_ 151_ = - 1 .
and | oPs E cantyp(Dz)Q 8468 nf(cantyp(D2)) = Lx.achz C [x.aljcl
(apply one of the ind. hypotheses to D2)’ and by the first ind. hyp.
}—OD E cantyp (D)

FOA E ClﬂAlﬂ, q.

1

CZHDlﬂ Q CQHA1H C Cl[Alﬂ. So, by the type mod. rule,
.d.

o

4.3.2.5. Proof of the theorem, part 2

Now we prove the induction step for the two remaining cases.

(1) 62-const-expressions in AUT-QE' or AUT-QE*
As in 4.3.2.3.(iii) we can get]—éd(g) from }—ad(E). Then by the
lemma }-Od(é) E cantyp(d(B)).

(2) appl~expressions
Let]—zA, FaB, B of function degree, 4 Ea dom(B). By the ind.
hyp. }-SA E cantyp(d) + dom(B), }-BO(E cantyp(B)). For the
computation of cantyp and dom in the various languages see
4.2.3.5 and 4.2.4,4 respectively.
(1) AUT-68(+), I—gB: 8262—nf(cantyp(8)) =z [x:alC, dom(B) = a.
By 6-CLPT }—OB E [z:0]C and | .o, so]—OA E o and

192

}-O{A B B COAD = cantyp({41B)

(ii) AUT-68+, F22%8262—nf(8) = [x:a]C. We have SA2 (see e.g.
3.4.5) so B8°-CL so I—OB Q [x:0]C and I—O{A BET:=
cantyp ({4 18)

(iii) AUT-QE (+), I—gB; Blél—nf (cantyp(éz—nf(cantyp(B)))) =
[x:a]C, dom(B) = a. By 6-CL and the lemma in 4.3.2.4
- B E 6°-nf(cantyp(5) E [z:a]C so b (418 E
{A}(dz—nf(cantyp(B))) = cantyp({4}B).

(iv) AUT-QE' and AUT-QEx*, }—gB: As (iii), but from
Foéz—nf(cantyp(B)) E [x:a]C we infer now Focantyp(B) E
[z:0]C so }—O{A B E {AXantyp(B) = cantyp({41B)

(v) AUT-QE, FgB: Like (i) but decrease the degrees by 1

. 1 . .
(vi) AUT-QE+ and AUT-QE*, FOB: like (ii), but decrease the
degrees by 1.

This finishes the proof of the theorem in 4.3.2.1.
4.3.3, The = }—a—part
4.3.3.1. We formulate our theorem.

Theorem: If Bl resp. B;£} resp. B;£ L4 then Bl—a resp. B;¢ Fa resp.
B;E}—aA. Further, if B;£ A E B then 4 Ea B.

The proof will be by induction on F . We just discuss AUT-QE,
because with AUT-68 everything is completely similar or somewhat

easier.
4.3.3.2. First, we need some properties

(1) Strengthening holds in the }—a—system
Proof: notice that the definition of cantyp only refers to the
relevant parts of the context, i.e. to assumptions concerning actually
occurring free variables, and that the other notions in the
definition of correctness do not refer to the context at all.

Hence, strengthening can be proved by a simple induction on Fa.

(2) on PCT2 (preservation of cantyp): In 3.2.5, we proved fn-outside-

2 2
PCT1 for Bn-AUT-QE. However 6—outside—PCT1 is wrong, so for AUT-

(3)

(4)

193

QE (+) with Gz—constants we can only get restricted PCT2:
if FZA, A 2z B not using 62—reduction then cantyp(4) Q cantyp(B)

2
In order to prove this, start with "4 E o= 4 E cantypid)Ca
(e.g. as in 4.3.2.4). Then, as in 3.2.5, one can prove:
PZA, A 2 B not by 62—reduction = cantyp(4) Q cantyp(B).

2
Restricted PCT? gives us restricted LQ” for AUT-QE (+):
if FZA, B EC, 4 QB without using 62—reduction then 4 £ C
However, in AUT-QE' and AUT-QE#*, full PCT2 is still valid and
2
hence LQ” holds (this was already implicitly claimed in

3.3.11.4).

Proof: In AUT-QE’ and AUT-QE* we have
8 —nf(cantyp (4)) < 2 cantyp (6 2 _nfay)

So, let 4 =2 B, Then § —nf(A)z 6—nfiB) without using 52—reduction,
so by restricted PCT? we have cantyp(dz—nf(B)).

By CR vve have +F4 Q B =4 Q B. As in 4 3 2.4 we have
Fla B = glsionfu) = (2 a][y 7it, 8letonf(®) = [Z:81t, FxQF

So }-AEB:AEaB

4,3.3.3. Proof of the theorem

Note that the }+4 E B =4 E B part of the theorem, for A4 of

degree 2 follows from K 20 EB = L4 E cantyp(4) € B (in 4.3.3.2(2)

and 4.3.3.2.(4). The proof is by induction on } . We first discuss

some of the clauses for the formation of expressions:

(1)

(ii)

(1i9)

abstr-expressions: let }—2u, z E a]—Al(E B,). By the ind. hyp.
2 .
]—aa, x E o FaAl’ (Al Ea Bl' i.e. cantyp(Al) Ea Bl)' so

Fa[x:a]Al, (Cantyp([x:a]Al) = [x:ajcantyp(Al) C [x:a]Bl, so
[x;a]Al Ea [x:a]Bl), q'f'd'_

const-expressions: let y E 8 be the context of the scheme of ¢,
LB E Eﬂgﬂ By the ind. hyp. F B B E BIBl, so - c By. If ¢ is
not a 6 —-constant in AUT-QE' or AUT QE* then cantyp(c(B)) =
typ @) [B] so certainly cantyp(e (B)) Ea typ(ei[Bl, q.e.d. Other-
wise use the remark above.

2-appl-expressions: let |—3A Ea, -8B E [z:a]C. By ind. hyp.

194

(iv)

(vi)

4.4.

4.4.

}3.--'., }—aS, cantyp(4) + a, cantyp(B) a Lc:alC.

So slil—nf(cantyp(B)) = [2:a'1C", dom(B) = o' ¥ a. By CR,
cantyp(4) ¥ dom(B) so }-a{A}B.FUrther, by the remark above,

{413 Ea ClAl, q.e.d.

3-appl-expressions: let FBA E o, FC E [x:alD. By the ind. hyp
}—zrl, cantyp(4) + «a, l—aB, cantyp(B) + C. By 62—CLPT, |-<32-nf(C)
E [z:alD. By the I—a = l—o—part, }—OB E cantyp(B) so +B E
cantyp(B), so lcantyp(B) so }-62-nf(cantyp(B)). Further
62—nf(cantyp(B)) 4 62—nf(C) without using 62—reduction, so by
restricted LQ, I—dZ-nf(cantyp (B)) E [x:a]D and cantyp

(>-nf (cantyp (B C, [z:ald. I.e.8's'-nf(cantyp(s’-nfcantyp BNz
[z:a’1D', a +a' = dom(B). Hence }—a{A}B. Further {A}cantyp(B) }
{AX and {4 }(62—nf(cantyp (B)) +{AX so anyhow cantyp({41B) +

{A¥, g.e.d. Finally we discuss the type modification rules and

the strengthening rule.

Type modification: let -4 E B, BL C. By the ind. hyp. FaA,
A Ea B, i.e. cantyp(4) Ea B and by 4.3.3.2.(4) B Ea C. use CR
to get 4 Ea C g.e.d.

Strengthening: Use 4,3.3.2.(1).

This finishes the proof of the theorem } = }-a and the proof

of the equivalence of the three systems |-, F Fa. So we do

0'
not distinguish between }, FO and 'Fa any more and have

FA(E o) = FA(E cantyp(4) C «)

and }F {41B = cantyp(4) ¥ dom(B).

The actual verification

. Before discussing the actual verification we make some con-

cluding remarks on the formal decidability of the Automath languages.

First, on the well-definedness of the decision algorithm suggested

by the definition of Fa in sec. 4.2, in particular the well-definedness

of cantyp and dom. Cantyp and dom are partial functions, so by well-

definedness we understand: (1) it is decidable whether an expression

has a cantyp (or a dom) (2) Zf it has one, this is effectively

computable. All this is already implicitly included in the equivalence

proof. E.g. the]—a = Fo—part states that cantyp on the correct non-

105

l-expressions delivers a correct expression again. In the course of

the decision process cantyp and dom are required of correct expressions
only. E.g. before settling cantyp(4) Q B (in the verification of AE F) we
first check kA4, and before settling A E dom(B) (in the verification

of {AB) we first check FB. The definitions of cantyp and dom just
computation of degrees, and computation of Bié-norma1 forms where i

is the minimal value degree. Notice that BimN in this case, and in

fact for all i< 3, can even be proved without using normability.

4.4.2. Our second remark concerns the normability. Below we make sure
the normability result of sec., IV.4.4., as we claimed already several
times, actually covers the regular languages, viz. by proving that
the system of sec. IV.4.5 contains our most liberal language AUT-QE*.
Let us abbreviate the system of sec., IV.4.5 by system IV. Theorem:
System IV contains AUT-QE*,

Proof: This system avoids Q-formulas as indicated in 2.12. For the
rest it is like our system }—O, with type-modification rule V.2'

(sec. 2.11) and without strengthening, but of course with much weaker
degree restrictions. The expression formation rules are the familiar
rules of AUT-68 and AUT~QE, except perhaps for the appl-rules which
are most similar to the rules in 3.3.11 for the first version of AUT-
QE*. We only consider the l1-appl-expressions. Let (in AUT-QEx)

1 E a, FIB Q [z:a]C. By Bld—reduction we get B 2 [x:0’]C' which

x Q a'. The substitution theorem and SA1 (and hence Blé—CL) are as
usual valid in system IV, so using induction on AUT-QEx —correctness

we get (in system IV) A E o', FB 2 [x:a’]C" so -{4) B, g.e.d.

4.4.3. From our axiomatic introduction in sec. II.1.3 the actual
nature of expressions does not become very clear, viz. that they are
just some well-structured symbol-strings. In view of this fact, a
verification process for the correctness of expressions must be able
to perform the following task: given a correct book and a correct
context (mere symbolstrings as well), each symbol-string must, in a
finite amount of time, either be recognized as a correct expression
(relative to book and context) or be rejected.

The verification of such a string can be analyzed in several

stages, e.g.: {1) bracket structure has to be correct, (2) the free

196

variables have to occur in the context and the constants have to occur
in the book (after this stage the constants in the string can be
assigned an arity, variables and constants get a degree and possibly

a typ and a def), (3) the arity of each constant has to fit the arity
of the argument string going with it (only after this stage we can
speak of expressions in the sense of sec. II.1), (4) degree restric-
tions {(and possibly norm restrictions) must be satisfied, (5) the

type restrictions have to be fulfilled (i.e. of the argument 4 in {4 5
and of the argument string C in 0(5).

Here it is just stage (1) which represents the context-free part
of the verification. The stages (2)-(4) are literally context-dependent,
but still trivially recursive. After passing stage (3) an expression
is pretyped. From our point of view stage (5) is the interestihg part
of the verification.

The actually running verification program for Automath languages
at Eindhoven University has indeed been organized along this lines
(see Zandleven [751, Jutting [37]). There is a first pass with a
"syntax—-che 2ker' covering stages (1) and (2). This pass is optional
since there is a next pass with a "translator" covering stages (1)-(4)
(but without checking norm-restrictions). And finally there is the
"processor", operating on the result of the translator, which covers

Stage (5).

4.4.4. First we discuss the verification of definitional equalities
A ¥ B. As in the case of d-equality (sec. III.6.2) we do not want to
compute normal forms but rather design a strategy which after a few
reduction steps in 4 or B either results in common reduct of 4 andF
(if this exists), or enables one to conclude that it does not exist.
As explained in sec, II1I.6.3, when confronted with certain 4 and
B during the decision process, we have to answer the following ques-
tions: (1) shall we do an outside reduction, (2) if so, on which of
the expressions? The form (or: shape) of 4 and B (i.e. whether they
are abstr—-, or appl-expressions etc.) plays a crucial role here. E.g.
if A4 and B are both in <mmeie form (see II.4.9) then there is no choice:
there is simply no outside reduction possible. So either we can
immediately decide our definitional equality (if A and B are of

different shape, or if A and B are atomic), or we have to spZit up

197

(or: decompose) the equality into the equalities of the corresponding
subexpressions of 4 and B. But if 4 and B have different form, not
both immune, then an outside reduction is required.

The basic construction aim for a decision strategy is of course
to minimize in most of the cases the total number of reduction steps
required for a conclusion: 4 is equal to B or not. There is of course
uncertainty about what happens in most of the cases, but the intuitive
{and possibly questionable) ideas on this subject, underlying the
algorithm in the next sections, can be summarized as follows:
generally, the definitional equalities arising in the course of the
verification and offered to the decision process, are true, and a

common reduct can be reached in relatively few steps.

4.4.,5. We define new, restricted relations >h, Zh (h for head reduc-

tzon) and >;, 2; which precisely cover: (1) outside reduction steps,

(2) the reduction steps needed in order to make new outside steps

possible. The relations are given by a simultaneous inductive defini-
tion:

(i) B 2;1 (x:0]C = {A)B >;1 C{AD

(ii) d(C) >}'] def (d)1C]

(iii) 4 zh {BID, B zh x, D2C, xg Fv(C) = [x:0l4 > c

(iv) 4 >; B=4> B

(v) 2; (resp. Zh) is the reflexive and transitive closure of >;

>
(resp. h)

- > ; - i > >
h and h are juft n lgss versions of h and Z Clearly
>

B, and if 4 >h B (ox A > B) then B is a first main

I.e. >
42 B=4
h h
reduct (see sec. I1,4,9) of 4.
Remark: This reduction does correspond to the head reduction common
in the literature [4] , i.e. to thé "first half of" the so-called

normal reduction [25]. A reduction 4 2. B consists of mere simple
head contractions, i.e. {Al}i..{Ak}B > {Al}...{Ak} ¢ where B > (is
an elementary Bd8-reduction, and even only such of these that their
reduct eventually becomes a new simple head redex.

The unrestricted reduction D 2 C in clause (iii) is put there

on purpose: it is of course possible that internal contractions are

198

neededin order to remove free variables from an expression.

The main property of zh (or 2;, depending on whether n-reduction
is present) is: if 4 2 B then 4 Zh C 2 B wkere the reduction from C
to B consists solely of internal reductions. So if 4 > B and 4, B

have different shapes, then 4 2 A" =2 B,

4.4.6. The intuition formulated in 4.4.4. leads us to the idea that a
sensible decision process for definitional equalities must search for
a common reduct (i.e. an affirmative answer) rather than normalize, by
means of zh (in order to get a negative answer), and that during the
reduction process the definitional constants must be saved, i.e. left
intact, as much as possible.

The strategy presented below (corresponding to what is actually
implemented in Eindhoven [75 1) can indeed be characterized by the
following principles:

(1) decomposition is preferred above main reduction

(2) B-reduction is preferred above §-reduction (is preferred above n-~
reduction)

(3) reduction of a "younger"” definitional constant is preferred above
reduction of the "older" one (see sec. III.6.3).

For example, if there is to be decided whether {4 1B +{C1D, the
process first tries decomposition: B + D and A + C. 1If this succeeds,
i.e. B2 F < D, A 2G <(C then we have a common reduct {G}. Only
after this has failed, an outside reduction is attempted on one of the
expressions: e.g. {4}B >y E, i.e. B 2 [x:alF, E = F[A4], and the new
question to be decided is E + {C}. Was no outside reduction possible,
then the other expression is tackled: {C ¥ n E is tried, possibly
resulting in a new question {4}B ¥ E. And, when confronted with the
question {4 1B + d(a),.the process tries to main reduce the appl-ex-

pression rather than the other one.

4.4.7. The inductive definttion of >y and 2 can be read as a

recursive algorithm for deciding questions of the form 4 >h B, 3

B (4 >h B),
BB BB (A Zh [x:Blsz) etc. We give our algorithm for deciding + also

in the form of an inductive definition. Here are the rules:
(0) Exchange: B + 4 =:4 VB

(i) Variable, t1: 4 Zh re : A +x, and 4 Zh Te:d 4T
(1) Prim: (4 z_ p(C)y, C + B) e:A + p(B)

199

(i1i) Appl-appl, decompose: B +D, A +(C =: {AB +{CD
(iv) Appl, R-red: {4}B > C=(C vyDe:{4B + D)

(v) Def-def, decompose: B ¥ C =:d(B) + d(C)

(vi) Def, &-red: d(B) >, €= (C ¥ D e:d(E)+ D)

(vii) Abstr-abstr, decompose: ¢ VB, 4 + B e:[x:ald ¥ [x:81B
(viii) Abstr, n-red: [x:ald >y B= (B v 0 e: [x:add +0)

The notation B 4 C is used in the ordinary sense, i.e. B1 + Cl’

52 4'02 etc. The clauses (i)-(viii) are given in their order of
pricrity, they have to be tried successively until a clause applies.
Clause (0) must only be applied, and of course only once: (1) if

none of the rules (i)-(viii) applies, (2) if by the exchange a rule of
higher priority among (i)-(viii) can be made to apply, (3) in case
the question d(Ay + e(E) is presented, where ¢ is a "younger”
definitional constant than . The clauses containing a bi-implication
((i), (ii), (vii)) are terminal: if application of one of these rules
does not lead to an affirmative answer, a negative conclusion about
the presented definitional equality can be drawn. In contrast with
the other clauses, e.g. clause (iii): if not (4 + (), so not (4 +C
and £ ¥+ D) then it is of course very well possible that rule (iv)
produces a common result of {4}B and {C). Further, a negative con-
clusion can be drawn if after exchanging still no clause applies at
all. If n-reduction is not allowed then one has to read >; and 2;
instead of >h and Zh, and rule (viii) has to be skipped.

4.4.8. It should be clear that the algorithm above on the correct
expressions indeed corresponds with ¥. The only interesting point is
the bi-implication in clause (vii), which makes that clause (viii)
never has to be applied to a pair of abstr—-expressions. This is
justified by our property UD (for correct expressions only) from the
previous sections.

We also have to show the termination of the algorithm (this
shows the decidibility of ¢ once more). First, the questions con-
cerning >h and zh (e.g. whether 4 zh [x:31]B2 for certain Bl' B2) are
decidable on behalf of SN. Secondly, the procedure sketched above
(for deciding 4 + B) is easily shown to terminate by induction on
(Ly 8y + 98(B), (2) &(4) + 2(B) - where 8 stands for length of

reduction tree and % stand for length of expression -.

200

Clearly the n-rule (viii) is equivalent to:
A+ {x}B, B2C, x @ Fv(C) = [x:0]4d ¥ B

By a careful implementation of the handling of bound variables - this
falls outside the scope of my thesis - there can be guaranteed that
whenever during actual verification an equality [x:alAd } B is offered
to the decision procedure, B does not contain free occurrences of the
same free variable ¥, This enables us to modify (viii) into the
simpler rule (viii'): 4 ¥ {x)B = [x:ald ¥ B, which avoids the nasty
internal reductions in the course of an outside n-reduction completely.
The termination of the algorithm is still guaranteed with this new
rule; we can even use the same induction as before, because it can be

shown that rule (viii') never will be applied with a B such that

L1y

Zh [y:21C.

4.4.9. In accordance with our views on the actual verification process
it may be sensible to provide the decision procedure with a device
which gives a warning in the following cases: (1) if the decision
process requires too much time, or rather: too many reduction steps
(2) if a question d(E) 4 d(C) or {AY +{F)X is posed and not

(5 4f5), resp.{(D +G and not (4 + F)) has been concluded.

The warnings in case (2) can be partly motivated by the idea
that most defined constants in an Automath-book are ")AI-constants"”
(see III.5.5.3, I1I.6.3) and that most functions in an Automath-book
are AI-fuwnctions, where D is a AI-function if: D 4 [x:alF = x € FV(F).
The following example shows however that this motivation is not quite

satisfactory: D = G = [a:al{Vi, A = [y:Blp(y,V), F = Ly:8lrly,y).

4.4.10. Now we discuss the verification of E-formulas. Since the
definitions of cantyp in 4.2.3, with their computation of normal forms,
are very unpractical, we prefer the alternative approach sketched in
4,1.4. Besides, the latter approach avoids the different definitions of
cantyp and is by uniformity easier to implement for several languages
simultaneously.

As our "universe", the large language which we use to decide our
E-formulas, we take AUT-QE*, Let } denote correctness in AUT-68, AUT-
68+, AUT-QE or AUT-QE+ and let]-* stand for correctness in AUT-QEx*,

One easily proves by induction on 4, using LQ, CLPT etc. for]—*, the

201

important properties: (1) FA4 = | typ(4), and - unless 4 is a 2-
expression in AUT-68(+) -
(2) -4 = typ4d) = cantyp(4).

This justifies the equivalence mentioned in 4.1.4.
FAEB® FA, B, b typ(4) C B
except, trivially, the degree 2 case of AUT-68(+)
24 EBe L24, B =1

The {-procedure of sec. 4.4.7 can be adapted in order to decide
v and simultaneously by making some obvious modifications, e.g.:
- clause (0) becomes: B ¥/LT/d4 : 4 +/J/C B
(where "B ¥/I/J A" reads "B ¥+ A resp. B [C 4 resp. B JA", etc.)
- to clause (i) there is added: degree (4) = 1= ALC ¢
- clause (vii) becomes: a ¥+ B, 4 /IO B e:(x ald /T/3 [x:815
etc.
We do not bother to give a practical algorithm for deciding E in
AUT-QE' and AUT-QE*, because we think that these languages are of

mere theoretical purpose.

4.4,11, Rather than computing domains via the domain normal forms
(dnf's) of sec. 4.2.4.4. we use the alternative approach of 4.1.6 of
searching through the > -reduction tree of an expression. Recall that
—~ is generated by (1) ordinary reduction, (2) taking typ. We promised
the following theorem,
Thecorem: - is well-founded on the correct expressions
Proof: As long as we stay inside the correct expressions we can use a
double induction, viz. (1) on degree, (2) on 6(=length of reduction
tree). For, reduction preserves degree and decreases 6, and taking
typ decreases degree. We must be a bit careful with applying typ to a
degree 2 AUT-QE* expression - such as, e.g., can originate by taking
typ of a degree 3 AUT-QE expression - because an incorrect ana even
not normable l-expression might arise. A typical example is {4 }r.
However, this does no harm to the well-foundedness, because Bl—SN can
be proved, without using norms at all, for all degree correct ex-
pressions.

Also, we have another uniqueness result (compare 4.2.4.2).

Theorem: 4 correct, 4 - [x:alC, 4 > [x:8]1D = a ¥+ 8

202

Proof: For 3-expressions A we even have a kind of CR-result 4 2 47 =
typ(i) ¥+ typ(4’). Now let degree (4) = 2, and let 4 = A'. In AUT-68(+)
and AUT-QE(+) this gives } typ(4) 3 typ(4'), but in AUT-QE* this is
not generally true, because typ(4) and typ(4') need not be correct.
Luckily such incorrect l-expressions (see the proof of the previous
theorem) never reduce to an abstr-expression. So by UD we still get

the desired result.

4.4.12. The internal n-reductions included in - are of course useless
during domain computation where one only wants to reach an abstr-ex-
pression. So in an algorithm for domain computation we rather employ

a restriction of » which we name h and is generated by head reduction
2; and taking typ.

In general unrestricted search through the +h—reduction tree can
be permitted - provided the degree restrictions are respected. However,
the 2-expressiors of AUT-QE and AUT-QE+ form an exception. Here the
search for an abstr-expression has to start with taking typ. Otherwise
too many expressions would get a domain, which would give rise to
typical AUT-QE* appl-expressions.

Besides, unrestricted search can be very unpractical. E.g. in
AUT-68 (+) one never needs to inspect 1-expressions: if the 2-ex-

pressions in the =+ -reduction tree fail to produce a domain, going to

the l-expression b; taking typ will not help. In general it is no goocd
strategy to start the domain computation with reduction, unless we are
obliged to because the expression under consideration is already of
minimal value degree.

So, a simple and probably rather practical strategy for AUT-68(+)
and AUT-QE (+) may run as follows. Let A be the expression we start
with. Take typ until one arrives at an expression of minimal value
degree. Then reduce (with 2;) until one possibly finds a domain. If
this does not succeed, A can still have a domain if it is a 3-ex-
pression of AUT-QE(+), otherwise A has no domain. In the indicated
case unrestricted search of the »h—reduction tree of typ(4) is
required, to be executed as follows: one-step reduce (typ(4) >; B),
then take typ, then reduce (with 2;). If this does not yield a domain,

one-step reduce B once more etc. The well-foundedness of - guarantees

the termination of this procedure.

203

CHAPTER VI. THE Bn-CHURCH-ROSSER PROBLEM OF
GENERALIZED TYPED A-CALCULUS

VI.1. Introduction

1.1. The problem with 8n-CR in Automath-like languages was first pointed
out by Nederpelt ({51], p.71). Let x € FV(B), then

[z:a]C <8 [x:al{x}[x:8]C >n [x:B]C

and the question is whether [x:a]C and [x:8]C have a common reduct, i.e.
whether Bn-CR1 holds. In untyped A-calculus this case of CR1 is particu~

larly trivial, because without the type-labels there just remains
Ax.C <B Ax. (Ax.C)x >n Ax.C

and for the common reduct we can simply take Ax.(C itself. If
[x:a){x}[x:8]C is not necessarily correct, a common reduct does not need
to exist, for d and B can be any expressions.

Nederpelt conjectured already that for correct expressions 8n-CR
(so Bn—CRl) does hold. This we shall prove below, making free use of the
results of the previous chapter, in particular sec. 3. So, if
blx:al{x}[z:8]C then by SA we know o Q B so [x:a]C Q [x:8]C; but we know
nothing about a common reduct.

It is possible that certain versions of the algorithmic definition
allow a proof of Bn—CRl. But then it is not so easy to infer CR, because
we do not yet know CL for the algorithmic system. An alternative to the
approach below is presented in the next chapter. There CR and CL are
proved simultaneously for an algorithmic system, by induction on so-

called big trees.

1.2. Below we concentrate on Bn-reduction and leave S§-reduction out of
consideration. It is easy to extend our result to 8né-CR, since & com-

mutes with Bn-reduction:

< 4 =2 C B = D < C
Bsgdzg U= B2 Doy

and, of course, 6-CR holds.

204

We start (in sec. 2) with a partial solution of the Bn-problen,
for n-reduction of degree 2, which works for regular langages only.

Then (sec. 3) we prove full gn-CR.
VI.2. A first result concerning 8n-CR for regular languages

2.1. We prove the Church-Rosser property for regular languages with a

reduction relation 2.generated by B-reduction and n2

-reduction, i.e.
n-reduction of degree 2: degree(d) = 2, £ £FV(4) = [z2:a){x}A >§ A,
The motivation for studying this restricted Bn-reduction lies in
the fact that the actual verification of mathematics in AUT-QE (in
particular, of Jutting's Landau-translation, see [37]) just required
this specific type of n-reduction. I.e. the Automath texts offered to

the verification program appeared to be correct BGnZ—AUT-QE.

2.2, Heuristics

The idea is to proceed in two stages. First we consider a seemingly

2_reduction which is tailor-made to avoid the critical

weaker form of n
8n-case mentioned in the introduction. For this restricted Bn?-reduction
we prove CR. Afterwards (sec.2.5) it is shown that full Bn2-equality is
equivalent to the restricted form. This can be compared with the situ-
ation in sec. v.3.3.8 - where nl—equality turned out to be provable.

How to define the restricted form of n-reduction? I.e. under which
conditions do we permit the reduction of [x:a]{x}4 to 4? Clearly, we

require:
(1) x € FV(a)

Further, that A is not of the form [y:B]C - to avoid the critical case -.
But this is not enough. Consider, e.q., [x:al{z}F, where F 2 [y:F1]F,,

x € FV(F). So we require:

(2) A % [y:8lC

i.e. A does not reduce to an expression of the form [y:8]C.

Thirdly we want to preserve the substitution lemma

B 2 B' = B[D] = B'[D]

205

at least for D of degree 3, so we further require
(3) degree(d) = 2

This shows why the method works for regular languages only.

Condition (2) can now be weakened to
(2') A #g [y:8]C
or, in the presence of 8-reduction, to: 4 *26 [y:8]C.

2.3. The definition of the restricted reduction relation

For definiteness we give a formal definition:

(1) > is the disjoint one-step reduction generated by the ele-

mentary reductions:
(i) {A}[x:BlC > ClA]

(ii) = € FV(4), 4 #é [y:8]C, degree(d) = 2 > [x:a]{x}4 > 4
(2) 2 is the transitive closure of >

2.4. The proof of CR for the restricted reduction

2.4.1. Substitution lemma I: (i) A > A' = B[A] > B[A']
(ii) 4 2 4' = B[A] = B{A']

Proof: As usual, by induction on B and 2z respectively.

2.4.2. Weak Bl-BJ—postponement: if i+3 and A is degree correct then

43 paastosdpdd

i
B 8 g B 5

Proof: If a Bj—contraction produces an essentially new Bl—redex
then i=3 or i=j. If i=j there is nothing to prove, so unless i=3

S B=A4> ¢ <t B. So, using Bi—SN, Bi—CR

J
1,8°1,8 7 1,6 8 "B
and the fact that 8 and BJ commute we get the desired property,

we have 4 >

as in II.7.4.

206

2.4.3, Something about 82 (for degree correct expressions)

(i) Degree(B) =2, Bz [y:C]D =B Z% [y:C' 1D

(ii) If degree(B) = 2, degree(d) = degree(x) = 3 then
Blz/A] 2% [y:C1D = B 2% [y:C'1D'

Proof: (i) Let B = [y:C]D, degree(B) = 2. By Bn-postponement and

weak B2-83-postponement we get B Zé F zg G Sé H Zﬂ {y:C1D. Then

H, G, F are abstractions expressions, g.e.d.
(ii) Use the square brackets lemma (II.11.5,.1IV.2.4) and the
previous property.

2.4.4. Substitution lemma I1I: if degree(4) = degree(x) = 3 and A, B are
degree correct then
(i) B > B' = Blx/Al] > B'lx/A]
(ii) B 2 B' = Blx/Al = B'[x/A]

Proof: (i) By induction on B. The crucial case is when

B = [y:B,1{y}B,, y € FV(By), B, #g [y:C1D, degree(B) =

= degree(Bj) = 2. Of course, y € FV(B,[4]), degree(B,[A4]) = 2 ang,
by 2.4.3.(ii) B,[Al *é [y:C1D. so BlA] = [y:B11411{y}B,14] > B,lA]
I.e.4d.

(ii) By induction on 2,
2.4.5,. Theorem (CR1 for the restricted reduction): if A degree correct
then
A> B, A>C=B84+7C

Proof: Let A > B, 4 > (. By induction on 4 we define a common re-

duct D of B and (. The crucial cases are

(i) A4 = {Al}[x:Az]A3, B = A3|IA1]] (by B~red.), C = {A{}[x:AZ']Aé

(by monotonicity). Take D = AéﬂA{B and use the substitution lemmas.

(ii) A = {A;}x:A,{x}A5, B = {A{}Aa {by n-red. and monotonicity),
€ = {A}43 (by B-red.). Simply take D = B.

(iii) 4 = [x:4,]{x}4A,, B = A, (by n-red.), C = [x:4]1{z}4, (by
monotonicity). Clearly degree(d;) = degree(d,) = 2, x € FV(47).

207

1f 45 2% [y:C11C5 then Ay 2 [y:C1]C, so by 2.4.3.(i)

Ay zg [y:C{1C}. Hence 4, ié [y:C,]1Cy so D = A} can serve as the
common reduct.

2.4.6. Corollary: If A degree correct and normable then CR(4).
Proof: By induction on the reduction tree of 4,

2.5. The extension to full an-reduction

2.5.1. From now on we label the notions referring to the restricted
reduction relation with a subscript o. Thus we write >0, 20 and +O, and
by Fo we denote correctness in AUT-QE(+) with an equality relation QO

generated, e.g., by
FA, FoB, A > Bor B>, A=4Q, B

By 2.4.6. we have
AQ,B=4 Yo B-

On the other hand the notations without a subscript have to be
interpreted in terms of "full" an-reduction. Thus, we write F for

correctness in AUT-QE (+) with equality Q, generated by
F4, FB, 4 > Bor B> 4 =4 Q B.

Below we sketch the equivalence of the two systems. The implications

>4 = > so Fo ='F and Q, = Q are immediate.

2.5.2, First we go through some theory of the o-language (i.e. with Fo
and Qy). The theorems about renaming of contexts and weakening (see
V.2.9) are still valid. We have a restricted substitution theorem:

If n = (n1, g E E), all Y, in y have degree 3, and B E B[B] then
n FoC(E/Qq D) = ny FoCl Bl (E/Q, DIED)

So we have the single substitution theorem: if degree(y) = 3 then

FoB E 8, y E B |oCE/Qo D) = FoCIBI(E/Qy DIE]).

208

Hence, from SA™ we can infer 2.4 Bl—CLPT, as usual. Now SA? works pre-

cisely as in the previous chapter (V.3.2.4) so we may assume 82 - CL.

2.5.3. The proof that F = Fo and Q = Qo goes by induction on F. The
only interesting case is when F2[x:al{x}4, x € FV(4), 4 zg [x:4,14;.

Then nz

-reduction is possible, but restricted reduction is not. So from
FA one gets Flx:al{x}4 Q 4 and we like to show that holx:a){x}A4 Q A
holds as well. By the ind. hyp. folx:al{x}4 and }oA, and by B2-CL

A Qo [x:41145 and [x:al{z}4 Qp [x:al{x}[x:4,]4, Q [x:a]d,. By SAZ

o Qy A) so by the substitution theorem [x:a]d, Qg [x:4,]4,, whence

[x:al{x}4 Q4 4.

2.5.4. So the o-language is equivalent with the an—language, for which
the properties CL, PT, SA etc. can be proved as in the previous chapter.
Now let 4 Q B. By the equivalence 4 Q B and by CR 4 ¥+, B, so a fortiori
we have CR for all full Bn?-reduction.

Extension to the corresponding S8-language is possible as in sec.

vV.3.3.

VI.3. A proof of CR for full gn-reduction from closure and strong

normalization
3.1. The assumptions

3.1.1., In contrast with the proof in the previous section, the sequel
does not presuppose regularity of the language. So, after having proved
CL for, e.g., Nederpelt's A, the present proof applies to this language.
We assume that correctness of expressions and equality formulas is
defined relative to a correct book B and a context . The book is fixed
throughout this section and omitted in the notation.

Below we introduce an extended reduction relation and a corres-
pondingly extended equality. Since we want to reserve our usual nota-
tions 2, Q for these new relations, we write 2z, and QO for the ordinary
Bn-reduction and the corresponding equality relation, generated e.g., by
by

£FA, €FB, 4 25 C <, B=¢E |4 Qg B.

209

We use our ordinary shorthand notation, writing

n H4 for &,n k4 ana

A Qy B for g FA Qo B etc.

3.1.2. Fordefiniteness we give a list of the properties which we assume

through this section and use in the proof.

(1) Strengthening, and in particular the following consequence :

if n = (np,n)) then
notA, noFB, n kA Qo B = ngk4 Qg B
(2) Soundness of equality w.r.t. abstraction,

@ Q, 8, 2 Eald Qo B [x:0]l4 Qy [x:8]B

(3) w.r.t. application,
AQy B, C QD= {A)C Qg {B}D

(a consequence of LQ, see below)

(4) and w.r.t. substitution

Ay Qu ATy wevs Ag Qg Ag = c(d) Q, c(dr)

(also a consequence of LQ)
(5) closure: FA, A z, B = FB

(6) SA, so (this concerns directly the critical fn-case)

Fle:al{x}y:81C = 2 E a o Qg 8
(7) strong normalization (with respect to 25): 4 = SN(4).
Remark: the properties (3) and (4) depend on LQ. As we know (see V.3.3.10)

LQ fails in AUT-QE(+) with S8-reduction, but CR for these languages can

be proved in two ways:

210

(1) From CR for AUT-QE(*)

(2) By firstproving CR for a 6-less version, and then extend the

result by using UE.

3.2.1 Heuristics

We saw that in the critical case of Bn-reduction the two direct
reducts of [x:0]{x}[x:B]C are syntactically equal (=) but for the domaine
a and B which are just definitionally equal (Qgy). Below we define the
relation & which precisely covers this kind of syntactie similarity
intermediate between = and Q.

It would be straightforward to try and prove a modified CR-property

Bs Az, C=>B2,DmD s

° c

o

by proving s~postponement, i.e.
Am B 2, C=42,B'"=~C(C

However there is a problem with the latter property if A = [x:al{x}4,,
Bz [x:al{x}C, x € FV(C), A] » C. For it is possible that x € FV(4;).
So we take a different approach. We define an extended reduction rela-

tion > which is disjoint Bn-one-step reduction, enriched by the clause
A~ B=>4>B (elementary ~— reduction).

This means that internal contractions in the domains for the bookkeeping
of reduction steps are ignored., For the new reduction relation we can
simply prove CRI. Further there holds a certain version of >-SN, which

gives us CR.

3.2.2. Structure of the proof

We point out the difference with the approach in sec., VI.2. There
we first restricted our reduction relation, proved CR for the restricted
reduction and then extended the result to the original reduction. On the
other hand, here we start with proving CR for the extended reduction
relation 2, and afterwards we still must prove (R for 2,. In fact we

first prove modified uniqueness of 2-normal form, i.e. uniqueness with

211

respect to~ : A Q B, A and B 2z-normal = 4 m~ B. And then, using the
equivalence of Qg and Q, uniqueness of 2 -normal form. So we have ZO—CR.
For a comparison of 2, - and z-normalisation see sec. 3.7.1 below.

3.3. Definition of the extended reduction relation

3.3.1. By simultaneous inductive definition we introduce the syntactic
similarity =, the extended reduction relation 2, with one-step reduction
>, and the extended definitional equality Q, between correct expressions,

as follows.

I. Elementary reductions
(1) {A}[x:BJlC > clAl (B-reduction)
(2) [z:Bl{z}C > C if = € FV(C) (n-reduction)
(3) A~ B=4>028 (- reduction)

II. Monotonicity rules
(1) A >A', B> B' = {4A}B > {4'}B'
(2) z Eal4d >4 = [x:a)d > [x:0]A"

(3) Ay > 4y, ..., A >A}'<=>C'(Z) > C(4")

k
III. (1) = is the transitive closure of >

(2) Q is the equivalence generated by >

Iv., (1) A=A
(2) ¢ Qa', 2k a FB ~ B' = [x:a]B s~ [x:a']B"’
(3) AsA', Bss B' = {A}Bw~ {4'}B'

(4) Ay mAy, ..., AkNA]'{=>C(A_1) s C(AY)

3.2.2. Some remarks concerning the definition

3.3.2.1. It is not necessary to define the above notions simultaneously.

212

For in view of 3.4.3. below, we might as well have taken instead of IV.(2)

W.(2") a Q, o', 2 E a B~ B = [x:0]B =~ [x:a']B"

3.3.2,2, Except for the rules I.3 and II.2, the rules of I and II are

the ordinary rules for > ; disjoint one-step Bn-reduction. Rule I.3

1,8n
can be considered a strong form of the reflexivity rule A > A. Rule II.2
is one half of the usual monotonicity rule for abstr. expressions. The
other half can be derived using IV.1, IV.2 and I.3: if o > o' then

@ Q a', further 4 ~ 4 so

[x:0]A ~ [x:0']A so [.’I!:G.V]A > [z:a']A

3.3.2.3. If we had defined > to be the corresponding "nested" one-step
reduction we might have been able to prove the diamond property for >.

Then we could have avoided the appeal to SN when deriving CR fram CR;.

3.4, Some easy properties

3.4.1. By simultaneous induction on definition 3.3.1., using the sound-

ness of Qo w.r.t. expression formation, we get
if A >A' or A2A' or AQA" or AmA' then A4 Qo 4

3.4.2. From 3.3.2.2. it is clear that 2 satisfies all the monotonicity

rules and that
A >0 B=>4 2 B,
so Az B =>4 2 B,

and A4 Q, B=AQB

3.4.3. So combining this we have Qg & Q.
"As a corollary we have the monotonicity rules 3.1.2.(2)-(4) now also
for Q. The monotonicity of ® is immediate. Further =~ is an equivalence

relation.

213

3.5. On s¥-reduction and normalization

3.5.1. In certain A-calculus systems (see, e.g.[25)) renaming of bound
variables is not ignored - like we do here - but formalized in the form

of a-reduction:
y € FV(B) = [z:8]B >y [y:8]Blx/y]

Then (see our definition of substitution, sec.II.2.4) it is possible
that a-reductions are needed before some B-reduction can be carried out.
In such systems, a suitable definition of proper reduction sequence is:
a sequence in which only a finite number of a-reductions occur. I.e.

a reduction sequence L] > Zp > ... is proper if from a certain Zn on,
only a-reductions are applied. Similarly £ is mormal if only a-reduc-

tions of I are possible.

3.5.2. Here we treat the = -reductions analogously, as extended a-re-
duction, and call them tmproper reductions. Proper reduction sequences
are reduction sequences in which only a finite number of such improper
reductions occur. An expression is now SN if all its proper reduction
sequences terminate and normal if only improper reductions are possible.
So

A is normal, 4 2 A' = A s A" .

3.5.3. In 3.5.1., we mentioned the possibility that a-reductions created
new R-redices. For & -reductions this is not the case. Let >B (resp. >n)
denote the disjoint one-step reduction generated by the rules I. (1)
(resp. I.(2)) and II of 3.3.1. So, e.g., 4 >8 A' if some B-redices not
lying inside a "domain" are contracted. Then we have, indeed, B = -
postponement

A ~ B >8 C =4 >B B' &~ C

However n s -postponement fails because = -reductions can create new

n-redices (see 3.2.1.). Fortunately we have = n-postponement instead

A > Bs(C =4~ B"> (
n n

3.5.4. Now we can prove SN (in the sense of 3.5.2). Let a proper

214

reduction sequence I] > L, > ... be given. If no B~step turns up then
the sequence terminates because from some Zn on only n-steps are applied,

which decrease the length of the expression. Otherwise, for some n, by

s~ n-PP

By 8n-PP and B~ -PP

L] " Z
Zl >B ' =r n Zn+1

By o-SN, i.e. SN with respect to 2., 6_(I) is defined for correct I and

2s 84
8,(21) > 0 6

(T'). So by induction on 6, we can prove SN.

B8
3.6. CR for 2

3.6.1. Substitution lemma I: If I-BIIA]], |—B|IA']] then

(1) 4 > A' = B[A]

v

BlA']

v

(ii) A = A' = BlA] BlA']
(iii) 4 Q A" = BlA] Q HA']

(iv) A =~ A' = B[A] =~ B[A']

Proof: All parts can be proved separately by ind. on B using the

monotonicity rules for >, 2, Q and ~.

3.6.2. Substitution lemma II: If }-B[[A]] and }—B'IIA]] then
(1) B > B' = B[A] > B'[4]

(ii) B = B' = HA] B'[Al

v

(iii) B Q B' = Bl4] Q B'[4]

(iv) B~ B' = B[A] =~ B'[A]

Proof: By simultaneous induction on the definition of >, 2, Q and

~ .,

215

3.6.3. Main lemma (CRl): If A correct, B < 4 > C then B + C.
Proof: By ind. on A. If 4 ® B then for the common reduct D we can
take D = C. Similarly if A ~ C. In case 4 = {Al}Az, B = {BI}BZ'

C = {01}02, B, < Al > Cl' B < A2 > 02 then by the ind. hyp. and by

1 2
monotonocity of 2 we find a common reduct {01}02 with B1 > D1 < Cl,
S < . . = .

B2 > D2 < C2. Similarly if 4 C(Al""’Ak)

Furthexr distinguish:

(1) 4 = {Al}[x:A2]A3’ B = {Bl}[x:Bz]B3, C = A3[A1ﬂ, A1 > B

1.’
A2 Q Bz, AB > B3. By the substitution lemmas above
B > B3ﬂB1ﬂ < A3ﬂA1D so take D = B3ﬂBlﬂ.
(ii) 4 = {Al}[x:Az]{x}A3, B = {Bl}A3 (by n-red.), C = {Al}A (by

3
B-red.), x € FV(A3), A, > Bl' Then C = B and take D = B,

1

(iii) A = [x:A1]A2' B = [x:BllB2, C = [x:CIJCZ, Al Q Bl' A1 Q 01
B2 < AZ > C2. By ind. hyp. 32 = D2 < 02 so take e.g.
D = [x:31]D2.
(iv) A = [x:Al]{x}A2, B = [x:Bl]{x}Bz, C = A2 (by n-red.),
x & FV(AZ), Al Q Bl’ A2 > Bz. It is easy to see that
A2 zBﬁ D2 = B2' Clearly x £ FV(DZ) so
B =~ [x:Bl]{x}D2 > D2 < A2 = C. So take D = D2.

(v) A = [x:Al]{x}[x:A2]A3, B = [x:Al]A3, C [x:AZ]A3, x ¢ FV(AZ).

This is the critical case. By assumption (6) from 3.1.2 Al Q A2
so we can take D = B~ (.

3.6.4. Theorem (CR): If 4 correct then CR(4)
Proof: By SN we can define 6(4) the maximal number of proper re-
duction steps in reduction sequences of A. Use induction on 6(4).
Let B <A 2 (C. The cases A & B and A = C are trivial. Otherwise,

and Cl’ A > B

for certain proper reducts B z B, 4 > Cl 2 (, First

1 1
apply 3.6.3. to get B1 2 D, £ (,. Then apply the ind. hyp. to Bl’

1 1
Cl and Dl'

3.6.5. Corollaries: I. 4 Q B=4 + B

II. similarity of normal forms:

A Q B, A4 and B normal = A = B

216

3.7. CR for 2

3.7.1. Call an expression o-normal if it is normal with respect to 2.,
i.e. if it does not contain B- or n-redices. So, if A o-normal then

there are no reduction steps 4 >, B or 4 >n B possible. But it might

B
be possible - as long as we do not have CR - that after some =~ -re-
ductions new n-redices are created. So a priori we do not know whether
A is normal.
But, if A is o-normal and A does not have abstraction form and
A 2 B then this reduction is an internal, and not a main reduction.
E.g. 4 = (.41}142 @ B = {31}32, and:
= = A, 2

A {AI}AZ = B {Bl}BZ' 1 Bl' 5)
3.7.2. Theorem (unigueness of o-normal form): Let 4 and B be o-normal,
then

A QO B=A =B

Proof: By induction on the sum of the lengths of A and B. Let
A Qo B, soA Q B, soc A 2 C < B. Distinguish the following cases:

(1) Both 4 and B are abstr-expressions, [.'z::Al]A2 resp. [m:Bl]Bz.
By prop. 3.1.2.(2), A1 Q Bl' xz E Al}—Az Q5 B2. By the ind.

hyp. Al = Bl' A2 = B2 so 4 = B,

(2) Neither A nor B are abstr-expressions. Then A4 and B and (
have the same form. E.g. if 4 = {A1}A2' then C = {01}C2, so
B = {31}52 with ’41 > C’1 < B1 and A2 2 6'2 < Bz' So A1 Q Bl,
A2 Q 32 and A1 Qo B, A2 Qo B and by the ind. hyp.

AIEBI'AZEB

5
(3) A has abstr. form and B has not. Then 4 = [x:Al]Az,
Ay 2 {x}Dzr x € FV(D2), Ay Q D,. and
A= [x:Dl]{a:}D2 > D2 >C < B. By CL, x E Dll-{a:}D2 and by
3.1.2.(3), = E D, } {2}, Q {x}B. sox E A }A, Q {x}B and
both 4, and {x}B are o-normal. By the ind. hyp. A2 = {z}B.

Clearly x £ FV(B), so A is not o-normal, contradiction. So

thHis case does not occur.

217

3.7.3. Corollary (CR)

(i) A correct, 4 ER B, A2 =Bz D=< (C

(1) 4 Qo B=4 2, C <, B

3.7.4. Now we can conclude
A o-normal = 4 normal

For, if A o-normal, A = B >n ¢ (i.e. A is not normal) then
A = ...[x:Al]{x}Az..., xGFV(AZ), B = ...[x:Bl]{x}Bz...,
z € FV(B), A, 0B, = E AI}—AZ Q B,. By CR, B, 25 4,, so

FV(A2) < FV(BZ)' impossible.

218

CHAPTER VII. THE ALGORITHMIC DEFINITION AND THE THEORY OF
NEDERPELT'S A: THE BIG TREE THEOREM,
CLOSURE AND CHURCH-ROSSER

VII.1. Introduction and summary
1.1. The history of A

A further unification of the concepts underlying AUT-68 and AUT-QE
led Nederpelt and the Bruijn [49, 50, 9], after the construction of an
intermediate version A-AUT, to the introduction of the language A or,
as de Bruijn names it, AUT-SL, for: single line Butomath.

First Nederpelt noticed that via a suitable translation instant-—

Zation, i.e. substitution in constant-expressions c(x ..,xn), could

e
be replaced by application and that, by this translation, §-reduction
reduced to B-reduction. We used this fact for one of our proofs of &-SN
in III.5.4. However, in order to cover substitution with 2-expressions,
as is allowed in Automath languages, the restriction to argument degree
3 and domain degree 2 had to be dropped. This would in combination with
type-inclusion have given a higher order system, so to avoid normability-
and normalization problems, one had to skip type-inclusion. Then, a
further streamlining of the definition was attained by dropping the
restriction as to tnhabitable degree as well, thus allowing expressions
of any degree.

By the aforementioned translation and the relaxation of the degree
restrictions it became possible to dispense completely with constants
and schemes: constants could be translated into variables, schemes coulad
be turned into assumptions and a book could be transformed into a con-
text. Besides, quantification over all free variables was allowed now,
so all assumptions ¢ E o from a context could be converted into ab-
stractors [x:a).

Thus, a statement B;E}-A expressing the correctness of 4 w.r.t.
book B and context £ could be translated into the correctness of a
single expression [ﬁzé][iza]A', where the abstractor strings [E;E] and
[x:a] and the expression A' are intended to symbolize the translations
of B, £ and A respectively. I.e. a whole bock reduces to a single line.

For details of the translation see 6.2.1, 6.3.3 and 6.4.6.

219

Resuming, Nederpelt's A - as defined in his dissertation - is
characterized by the following three features: no degree restriction at
all, no type-inclusion, and single-line presentation. His definition is
a typical algorithmic definition - for the terminology see V.1.1. -
which, due to these simplifications, is remarkably short and elegant.
Nederpelt introduced his norm as a measure of functional complexity and
proved normability, normalization and strong normalization for his
system. He just conjectured, in the introduction to this thesis, that

the system satisfied closure and Bn-Church-Rosser.

1.2. The present treatment

The discussion in the previous chapters: starting from the E-defi-
nition (V.2), first proving closure (V.3) and Bn-Church-Rosser (VI),
and finally proving the equivalence with the algorithmic definition
(V.4), though concentrating on the socalled regular languages AUT-QE and
AUT-68, applies to Nederpelt's language as well, which shows that this
conjectures were justified.

Here we choose an altogether different approach. Below we start with
the algorithmic definition of correctness (VII.2). We follow Nederpelt
but for his single-line presentation: we fit the system into the book-
and-context framework of the previous chapters. Whereas the definition
of the constant-less part of the language (sec. 2.1) simply can take
place in the pretyped expressions(see IV.3), it turns out that adding
constant-expressions (sec. 2.2) requires the introduction of degree-
norm correct expressions (2.2.4).

Then both Nederpelt's conjectures are proved directly from the
algorithmic definition, using the socalled big-tree theorem (BT). This
theorem states that, on the correct expressions - and, in fact, on the
much larger domain of normable expressions - the partial order 1 gene-
rated by Sub (i.e. taking proper sub-expressions), by 2 and by taking
typ is well-founded. So BT is an SN-result for an extended reduction
relation and, hence, implies ordinary SN. The big tree theorem was first
formulated and proved by de Vrijer [70] for his regular language XA\.

Section 3 below contains the closure proof of A without constants,
serving as a motivation for BT. Section 4 contains two different proofs
of BT, and in sec. 5 we prove closure and CR for the constant-less part

of An. In sec. 6 we give some equivalence proofs: of the systems with

220

and without (definitional) constants, and of the single-line version
with the book-and-context presentation. As a result we get the various

nice properties for all these systems.

VII.2 The definition of A and An

2.1 The part without constant expressions

2.1.1 Both A and An are systems of admissible expressions in the sense
of IV. ., The correctness of books and contexts is standard (see
so we just present the part of the definition concerning the correct-
ness of expressions. A simplification compared with e.g. AUT-QE is that
no degree restrictions are imposed. If in the definition below > (resp.
2, resp. +) is interpreted in terms of Bn-reduction then we get An
otherwise just A.

The function typ is defined as in 1IV.3.2, degrees are as in IV.4.4.2.
Throughout sec. 2.1 we follow Nederpelt and do not admit constant-
expressions., Later on (secs, 2.2, 2.3) we show how the language can be

extended with the formation of constant expressions.

2.1.2 By taking typ of a non-constant-expression A4 the degree is de-
creased by one (see IV.3 and IV.4), so by successively taking typ one

arrives at a l-expression. This l-expression is called typ*(4). so,

typ*(4)

A if degree(d) =1

typ*(4) typ*(typ(4)) otherwise.

Now let B be correct and let f{ be correct w.r.t. B. We use the con-
ventional shorthand: nkA instead of B;£,nk4 , typ instead of £-typ etc.
Of course, as long as we do not form constant-expressions, the pre-
sence of the book B is completely irrelevant. Now correctness of non-

constant-expressions is defined as follows:

(1) Fr
(ii) Fx if x among the variables in §

(iii) Flz:alB if |a and x E ofB

221

(iv) F{4}B if FA, FB, typ(4) 2 «, typ*(B) > [x:0]C for some
a, C.

2.1.3 So correct expressions are pretyped expressions satisfying the
socalled application condition: in appl. expressions {4A}B the expression
B has a domain (to compute from typ*(B)) corresponding with the typ of
4. In the next section where we also introduce constant-expressions, an
additional condition concerning instantiation will be imposed.

There are various alternative, equivalent, formulations of the
application condition possible. E.g. one can replace "typ(4) = a” by
"typ(4) + a". In A (i.e. without n-reduction) we have CR, so it is even
sufficient to require typ(4) = o and typ*(B) = [2:2]C, in other words:
typ*(8) = [x:typ(4)]C - where = is full definitional equality (see
11.4.6-7, V.2.11) -or, anticipating certain results of sec.6.2.6, we might
restrict the computation of the domain of B by requiring

typ*(8) éé [x:0]C (compare v.3.3),

2.1.4 Since norms are preserved under taking typ and under reduction
(see IV.3.4) the correct expressions are strictly normable. This can be
shown by induction on the definition of F. E.g. that {4}B is strictly
normable if it is correct: By ind. hyp. 4 and B are normable, so

u(d) = u(typ(4)) = u(a) and p(B) = u(typ*(8)) = u(lz:elC)y = [u(a)lu(C),
so {4}B is normable, with u({4}B) = p(C).

Hence the correct expressions are SN and the system is decidable.

2.2 Introducing constant-expressions; degree-norm correctness

2.2.1 We allowed the presence of a book containing schemes for the
constants. Now we can simply introduce constant-expressions by adding

the Znstanttation rule:

(v) If y E B * ¢(y) E vy is a scheme of B, k = !&I,FBI,...,FBk
and typ(B) ¥ 8,,...,typ(B) + 8,[B} then be(B).

That is, in a constant-~expression C(E), the arguments Bi have to
satisfy the imnstantiation condition typ(Bi) ¥ BiﬂBE.

However, we have to make sure that typ* is still well-defined,
particularly that taking typ still decreases the degreé by one. E.g.
typ(c(B)) (= typ(c)ﬂﬁ] = y[B]) and typ(c) (= y) must have the same degree.

222

2.2.2 call a substitution [y/Bl degree correct if
degree(yi) = degree(Bi) for i=1,...,|g|. Degree correct substitutions
preserve the degree:

If Y is a y-expression and [y/B] is degree correct then y[B] and v
have the same degree. So, if we would add the requirement of degree
correct substitution to the instantiation condition, then we might be
satisfied. But this is not what we want: we rather would like to show
that the instantiation condition Zmplies the degree correctness of the
substitution involved. This amounts to showing that degrees are pre-
served under reduction as well, To this end we introduce the concept of

degree—norm correctness.

2.2.3 Degree-norms are defined by:

(1) positive integers are degree-norms

(ii) if vi, v2 are degree-norms then [vli]v2 is a degree-norm.

So, just like ordinary norms (iV.2.1) are built up from T and square

brackets, degree-norms are constructed from 1,2,... and square brackets.
For degree-norms v we define the degree-norm v+1 as follows:

(1) if v is an integer then v+1 is as usual

[vilv2 then v+1 := [vi](v2+1).

(i1i) if v
so ([[2]3]12) + 1 = [[213]3.

2.2.4 Now we define degree-norm correctness of books, contexts (w.r.t.
a book) and expressions (w.r.t. boock and context). It is implicitly in-
tended that an expression is degree-norm correct (dnc), if its degree-

norm (dn), w.r.t. book and context, is defined.

The definition of the latter runs as follows:

(i) dn(t) := 1

(ii) dn(x) := dn(typ(x)) + 1

(iii) dn({z:a]B) := [dn(a) + 1]dn(B)

(iv) dn({4}B) := if dn(B) = [dn(4)]v then v

(v) dn(c(®) := dn(typ(e)) + 1, if dn(B,) = dn(y,) for i=1,..., ¥l

where y E B * c(y) E y is the scheme of c.

223

Here the notational conventions are just like those w.r.t. ordinary
norms: we write dn instead of £-dn and e.g., clause (iii) would in full

read like this:
(iii) g-dn([z:a)B) := [(£-dn(a))+1](&,x E a)-dn(B).

Further a context is dnc if all its type parts are so, and a book is

dnc, if all the contexts and typ's of it are dnc.

2.2.5 A degree-norm Vv can be translated into an ordinary norm v* by

replacing all occurrences of numbers by T. Notice that (v1)* = V¥, so

dn(4)* = u(4). This shows that dnc-ness implies strict normability.
Further, degree(A) can also be constructed from dn(4), for dn(4)

ends precisely in the degree of 4.

We call a substitution ﬂg/éﬂ dnc if dn(Bi) dn(yi), for

i=1,...,‘§[. Clearly dnc substitutions are degree correct.
Degree-norm correctness is preserved under dnc substitutions:

if 5 E 8hy, k='§|,FBl,...,FBk, Y dnc and [y/B] dnc then
dn(y) = dn(ylBD)

Proof: By induction on the definition of dn(y). O
This gives us the following corollaries:

(1) C dnc, degree(C)$1 = typ(C)anc, dn(typ(¢))+1 = dn(C()

(2) Cdnc, C 2D =D dnc, dn(D) = dn(C)

(3) ¢ dnc, degree(C)+1 = degree(typ(C))+1 = degree(()

(4) C dnc, C 2z D = degree(D) = degree(().

So typ* is total on the dnc expressions and, since dnc-ness is clearly

decidable, typ* is well-defined on all the expressions, in the sense of

v.4.4.1.

2.2.6 Now we are able to show that correctness implies degree-norm

correctness.
Proof: By induction on F. E.g. let kA, FB, typd) 2 «a,

typ*(B) 2 [z:a]C. By ind. hyp. 4 and B are dnc (so typ (B) is
indeed defined), so typ(4), «, typ(B), typ(typ(B)),...,typ*(B) and

224

(x:2]C are dnc as well. Now dn(typ*(B)) = dn([x:a]C) = [dn(a)+1]dn(C) =
[dn(typ4))y+1ldn(C)y = {dn(4)]dn(C), while dn(typ*(B)) and dn(B) just
differ as to their "end number" so dn(B) = [dn(4)]v for some v. Hence
{415 is dnc.
or, let y £ 8 » c(y) E y be a scheme, let PBl,...,FBk (with k=|g\)
and let the Bi satisfy the instantiation condition: typ(Bi) ¥ BiﬂBH. By
ind. hyp. the Bi and the 8. are dnc. Now dn(Bl) = dn(typ(Bl))+1 z
dn(81)+1 z dn(yl), s0 ﬂyl/Blﬂ is a dnc substitution. So
dn(BZ) = dn(typ(Bz))+1 = dn(szﬁBlﬂ)+1 = dn(s2)+1 = d"(yz" So
Hyl'yz/Bl’BZH is dnc, etc. Hence c(B) is dnc. 0
So typ* is also total on the correct expressions, and correctness
is well-defined. Further, the above proof shows that the system with

constants is strictly normable as well, so (using SN) it is decidable.
2.3 Introducing definitional c¢onstants

2.3.1 After the formulation of instantiation and application condition,
it will also be clear how the compatibility condition of det and typ

for the formation of definitional constant schemes has to read:

typ(def(d)) + typ(d), for definitional constants d.

2.3.2 The scheme of a definitional constant d is defined to be dnc, if

dn(def(d)) = dn(typ(d))+1, and for the corresponding d(B) we define
dn(d(B)) := dn(typ(d))+1

provided {[y/B] is dnc, where y E B is the context of the scheme.

So, still dn(d(B)) = dn(typ(d) = dn(typ(d[BD)+t = dn(typ(d(3)))+1,
and degree-norms remain preserved under reduction: dn(d(B)) =
dn(typ(d))+1 = dn(def(d)) = dn(def(d)[Bl). And, by induction on correct-
ness, we can prove that correctness implies degree—norm correctness.
E.g. let the scheme of d be correct, then Fdef(d), so def(d) dnc, and
dn(def(d)) = dn(typ(def(d))+1, and |-typ(d) so typ(d) dnc,

dn(typ(d)) = dn(typ(def(dy) and dn(def(d)) = dn(typ(d))+1, q.e.d.

225

VII.3 The closure proof for A

3.1 what to prove

The decidability of the Automath languages is one of the major
aims of the language theory. By using an algorithmic definition we got
the decidability of A and An, both with and without constants, directly
from normalization (see 2.1.4 and 2.2.6). So one might wonder what else
there is to prove,.

First there are both Nederpelt's conjectures, the Church—-Rosser

property (CR) for An, and the closure property (CL). We define

CR¢4y : B <A

v

=B+ C

CLd) : F4, A

v

B = FB

A main lemma for 8~CL (and 6-CL) is the substitutivity of correct-
ness: substitution with correct expressions of the right types preserves

correctness. Formally:
x E oFB, F4, typd) + a = }Blx/A]

Other properties which play an important role in the proof of ClL,
are sound applicability (SA), preservation of typ(PT), of typ*(P*T) ana

of domatn (PD). we write

SA(Ay: A = {B}[x:C]D = typ(B) v C

PT(4y: A 2 B= typ(4d) + typ(B) (degree(d)$l, degree(B)}1)
P*T(A): 4 = B = typ*(4) + typ*(B)

PD(A)y: A = [x:BJC, A =z [x:D]JE =B + D

The properties PTl’ CLl’ P*T1 and le are the respective one-step
variants of PT, CL, P*T and PD.

The above properties are not mere technicalities from the closure
proof, but are also meaningful from the point of view of Interpretation.
E.g. SA is characteristic for the fact that the Aut-languages do not
allow "proper inclusion” of type, and PT (resp. P*T) expresses the nice
behaviour of typ (resp. typ*) w.r.t. definitional equivalence,

Further, these properties serve to establish the correspondence

226

between the present, algorithmic systems and the E-systems, and between

the versions with and without constants (see 6.2, 6.3).
3.2 Some simple facts

3.2.,1 Throughout this section VII.3 we just discuss A without constants.
So we may assume CR, and PD(4) (for all A) and SA(4) (for correct 4)
are immediate.

By induction on FA one also proves easily that FA implies Ftyp(A)
(so Ftyp(typ(A)),...,}typ*(A)). This is not easy any more for a system

with constants. This property is called correctness of types.

3.2.2 As with the E-systems (see V.3.1), we prove CL from CL1 by ind.
on 2. For the B-outside case of CL1 we need substitutivity and SA. Pre-
viously substitutivity (i.e. the substitution theorem, V.2.9) was easy
and SA was rather involved, but here SA is easy and substitutivity is
quite complicated.

First some properties of substitution, which are valid already for
pretyped expressions. Let 4 be a £-expression, let Bbe a (£,2 E a,n)~

expression. Let C* denote Clxz/A]. Then
(1) typ(4d) + typ(x) = typ(B*) + typ(B)* , i.e.,
written out in full,
E-typ(4d) ¥ a = (E,n*)-typ(B*) v ((£,x E o,n)-typ(B))*
(2) typ*(4) ¥ typ*(x) = typ*(B*) + typ*(B)*

Both facts are proved by ind. on the length of B. Notice that (1) and
(2) are valid for each right monotonic, reflexive relation instead of

¥, so e.g. for 2.

3.2.3 The problem with substitutivity is that the condition typ(4) + «
is clearly not sufficient. We would also like to know something about

typ*. In fact we have the following theorem (modified subst., for short SC):

Let E a, nFB, let }4, typ(4) + typ(z) and typ*(4) + typ*(x). Let C*
denote C[x/A] again. Then n*FB*.

227

Proof: By induction on FB. E.g. the application case. Let FBI, FBz,
typ(Bl) 2 B, typ*(Bz) 2 [y:8]C. By ind. hyp. FBT and FB;. By (1),
(2) and CR typ(BT) ¥ B* and typ*(BZ) + [y:8*1C*. so by CR again
typ(BI) >y, typ*(BE) 2 [y:y1D for some vy, D. So F{B:}B;.

3.2.4 Corollary:
x E ofB, F4, typ(d) ¢ typ(x), typ*(4) + typ*(x) = }FBl4].
Another consequence of (1) is PTl(A) for correct 4, i.e.
}-AV, A > B= typ(4) + typ(B)

Proof: Assume for definiteness that > is disjoint one step

reduction ;1.

The proof is by induction on the length of A. For example:

(i) A= {Al}[x:a]Az, B = AzﬁAlﬂ. By SA typ(Al) ¥ a so by (1) above

typ(4) = {Al}[x:a]typ(Az) > typ(Az)[[Alll ¥ typ(AzﬂAlﬂ) = typ(B).
(ii) A = {Al}A2’ B = {Bl}Bz, A, > B, A, > B,. By ind. hyp.
typd) = {A Jtyp(4,) + {4, }typ(B,)) > {B }typ(B,) = typ(B),

so by CR we are done.

3.3 Heuristic considerations

3.3.1 At first sight SA, PT1 and correctness of types seem to give a
good starting position for proving CL. In a way this is true: we only
have to find the right induction and the right induction hypothesis.

Let us first try to prove CLl(A) by induction on the length of 4,
or rather by induction on the relation "being a subexpression of", for
short: by induction on subexpressions. We interpret CL1 in terms of
disjoint one step reduction. For the appl. case of inside reduction the
ind. hyp. is not strong enough, we additionally need P*Tl. So instead
we try to prove CL1 and P*T1 together, again by induction on subexpress-
ions. Now everything is allright with the inside reductions, but with
outside 81 we still come in trouble: 4 = {Al}[x:a]A2, SA gives

typ(Al) + o but in view of the previous section we also want

typ*(4,) + typ*(a).

228

3.3.2 So let'us see under what conditions we might prove this typ*—
requirement. First notice: if we knew CL already, then we could use PT1
to prove PT (for correct expressions), e.g. by induction on 2. The in-
duction step runs as follows: let FA, Az BzC. By CL we get |B and
by ind. hyp. typ(4) + typ(B) + typ(C) whence by CR: typ(4) + typ(C),
g.e.d. An alternative proof of PT(4) from CL works by induction on the
reduction tree of 4 (by virtue of SN(4)), for short: by induction on
reducts. Viz. let FA, A > C. If A = C then typ(4) = typ(C). Otherwise
for some B, 4 >, B 2 C. By PT1 typ(4) + typ(B), by CL |B and by ind.

1
hyp. typ(B) + typ(C), so by CR typ(4d) ¢ typ(C).

3.3.3 Further from PT we can prove P*T, or rather:
FA, FB, A + B = typ*(4) + typ*(B)

by induction on degree(4) + degree(B), as follows. If degree(4d) = 1
then degree(B) = 1 too so typ*(4) = A v+ B = typ*(B). Otherwise,
degree(B) % 1 either, so we can apply PT to 4 and B. By CR we get
typ(4) + typ(B), by correctness of types Ftyp(A), Ftyp(B) so by the
ind. hyp. typ*(4) + typ*(B), g.e.d. An alternative proof of P*T from
CL and PT is by induction on +, the order generated by (1) "being a
proper reduct of", (2) "being the typ of" (as in V.). So the in-
duction on + includes the induction on reducts mentioned before. That
> is indeed well-founded will become clear in the sequel.

The proof looks like this. Let F4, let A = B. By CL FB and by PT
typ(4) =2 F < typ(B). By correctness of types Ftyp(A), Ftyp(B) and by
the ind. hyp. typ*(4) + typ*(F) + typ*(B), and by CR typ*(4) + typ*(B).

3.3.4 1In section 3.2.2 we announced to prove CL from CL1 by induction

on 2. However, this can be interpreted in two ways:

(1) to prove FA, A2 B= FB, by induction on A > B, i.e. on the

number of reduction steps between 4 and B,

(2) to prove CL(4) by induction on the reduction tree of 4, i.e.
by induction on reducts. Both inductions work, but the second one has
an advantage: we just need CLl(A), but can freely use CL(B) in the

course of the proof, for each proper reduct 4 of B!

229

3.3.5 Now it becomes probably plausible to try and prove CL(4) directly
by an induction on i, the order generated by - (3.3.3) and by Ssub. In
this way we combine the induction on subexpressions (3.3.1, for the
"inside" cases of CLl)’ on reducts (3.3.2, to prove PT), and on + (3.3.3,
to prove P*T).
In order to make the induction work we need the well-foundedness
of > on the correct expressions, i.e. the socalled big tree theorem BT.
Section 3.4 contains the proof of CL as sketched above, assuming

BT, section 4 is devoted to the proof of BT,

3.4 The actual closure proof

3.4.1 Definition of -+
+ 1s the reflexive and transitive relation generated by
(1) 4 > typ(4)
(2) A =2B=4->B
*
3.4.2 Dpefipition of -
X is the reflexive and transitive relation generated by
*
(1) BsubAd=A4-+>B

(2) A>B=453B

3.4.3 The bZg tree of an expression A4 is the reduction tree of 4 w.r.t.
* .
the extended reduction relation ». We assume the big tree theorem BT,
*
which states that - is well-founded on the correct expressions (and,

hence, that their big trees are finite).

3.4.4 Lemma: Let FA, CL(4). Then PT(4) (degree(4) + 1)

Proof: As in 3.3.2, e.g. by ind. on reducts, using PT1 and CR.

3.4.5.1 Define:

(LY 4): @4 »B=}B

230

3.4.5.2 so CLT(4) = CLw)

3.4.6 Lemma: Let FA, CL+(A). Then P*T(4).

Proof: By BT we can use induction on »+. Let 4 = B. If degree(4) =1
then degree(F) = 1 too and there is nothing to prove. Otherwise,
degree (B) # 1 either, so by the previous lemma PT(4), i.e.

typ(4) 2 F < typ(B). By CL and correctness of types |typ(4),
Ftyp(B) and by the ind. hyp. typ*(4) + typ*(F) + typ*(B). Now use
CR.

3.4.7 Theorem: FA = CL(4)

*
Proof: By BT we can use induction on . Let }4, 4 2 B, 1f 4 = B
then there is nothing to prove. Otherwise 4 > € 2 B with ¢ a proper

reduct of A. We want FC. The interesting cases are:

(1) 4= {4)}4,, C=1{C)C,, M, typUd) = a, H4,,

* . .
typ*(4,) 2 Lx:01D, A > C., A, >C,. By ind. hyp. }cl, }02.

2
By PT1 typ(Al) + typ(Cl), so by CR typ(Cl) + @. Now by the
ind. hyp. we can assume CL+(A2), so P*T(Az) and

typ*(Az) + typ*(cz), and by CR typ*(cz) v [x:a3D, g.e.d.

(2) A = {Ai}[x:a]Az, FAl, F[m:a]Az, typ(Al) ¥ a. By ind. hyp. we

can assume CL+(A1), L™ (a), so typ*(Al) + typ*(a), and by

substitutivity (3.2.4) FAzﬂAlﬂ C, qg.e.d.

VII.4 The Big Tree Theorem
4.1 Introduction

For the definition of the extended reduction relations =+ and z we
refer to sec. 3.4. Both definitions make use of typ, so =+ and 3 are
only defined on pretyped expressions, i.e. expressions with a context.
Notice: taking subexpressions often requires extension of the context.

The big tree of an expression 4 is its reduction tree w.r.t. i,

*
i.e. the branches of the tree are the proper --reduction segquences of 4.

231

We define:
BT(4): & 4 has no infinite proper i—reduction sequences

The big tree is infinitary so:
BT(4) & the big tree of A is finite

In this section VII.4 we prove the big tree theorem BT:
(BT) A normable = BT(4).

So BT states that on the normable expressions % is well-founded,
i.e. that >-SN holds.

De Vrijer [70] introduced % ana big trees, and proved BT for a
system of normable expressions containing his language AX.

Below we give two different proofs of BT. The first (sec. 4.5)
is modelled after the second proof of 8-SN (Iv.2.5), the second one
(sec. 4.6) uses an idea from de Vrijer's proof (the "bookkeeping pairs")
but further follows the first B-SN proof (IV.2.4.4). Actually both
proofs deal with a modification ZBT of 3 which is somewhat easier to
handle and gives rise to even bigger trees (sec. 4.4.2).

For simplicity we start with a system without constants, and take
just R-reduction for the ordinary reduction 2 involved in = and i. Later

(5.2, 6.2, 6.3) BT will be extended to cover the remaining cases.

4.2 Heuristics 1

After de Vrijer we also call - and % rt-reduction and rst-reduction
respectively, with r for ordinary reduction, s for subexpression, t for
type. Similarly we speak about r-reduction (i.e. ordinary 2), s-reduct-
ion (4 s-reduces to its subexpression), t-reduction (4 t-reduces to
typ(4) etc.) and their combinations. The meaning of rs-SN, st-SN etc.
and ers - the length of rs-reduction tree of an rs-SN expression - etc.
will be clear.

We want BT, i.e. rst-SN for the normable expressions. Let us

summarize what SN-results we know already:

(1) x-SN. This is ordinary R-SN as proved in IV.2.4 for the

normable expressions.

(2) s-SN and t-SN. s-reduction decreases length of expressicns,

t-reduction decreases degree of (pre-typed) expressions.

232

(3) xt-SN. This was proved for correct expressions in V.4.4. The
same induction (1) on degree, (2) on er, applies to all
degree-norm correct expressions: taking typ decreases the

degree, r-reduction preserves degree,

(4) rs-SN. Provable for the normable expressions by induction on
(1) er, (2) length of expression. In fact the induction used
in the proof of the square brackets lemma SQBR (Iv.2.4.3),
and in several B-SN proofs as a subordinate induction (IV.2.4.4,

IV.2.5.3) is just induction on the rs-reduction tree.

(5) st-SN. Can be proved by induction on the definition of pre-

typed expressions (IV.3.2).

Clearly these inductions fail for full rst-SN: s-reduction can in-
crease the degree, r-reduction generally increases length of expression,
and taking typ can increase both length of expression and length of r-
reduction tree. Besides, on the normable expressions r-reduction does

not preserve the degree.
4.3.1 Norm properties

From IV.,2.1 we recall some properties of the norm y and of the
normable expressions. We write 4 <u B for: u(4) is shorter than u(3).

(1) {A)}B normable = {A}B <u B and 4 4 B

(2) 4 normable = p(typ(4)) = u(4)

(3) up(x) = u(4), B normable = p(B[x/4A]) = u(B)

(4) A = B, A normable = u(B) = u(4)

(5) B c A, A normable = B normable

Properties (2), (4), (5) make that the normable expressions are

*
closed under -+ and that =+ preserves the norm.
4.3.2 BT-conditions

Similarly to the SN-conditions in 1IV.2.4.1 we can formulate

necessary and sufficient BT-conditions:

233

(1) BT(x) & BT(typx))
(2) BT((y:B,18)) « BT(5,), BT(B,)

(3) BT({B1}Bz) & BT(Bl), BT(BZ) and (B,> [y:81C = CﬂBlﬂBT)

Proof: We just give the <-part of (3). Let BT(Bl), BT(B2) and
B2 -~ [(y:81C = BT(CﬂBlﬂ). B, is rst-SN so rt-SN so we can use

2
ert(B2)' B is rst-SN so r-SN so we can use Gr(Bl). Using induction

1
on er(Bl) + ert(BZ) we prove that all one-step rst-reducts of

{BI}B2 are BT. Distinguish:
(1) D sub {Bl}Bz, so D c B1 or D c B2' so BT(D).

(ii) 32 >y 8 Dor D = typ(Bz). We have BT(BI), BT (D) and
D - [y:RIC = BT(CﬂBlﬂ). Apply the ind. hyp. to {BI}D' this
gives BT({Bl}D).

(iii) B D. Apply the ind. hyp. to {D}B2'

>
1 1,8
(iv) B, = [y:8]C. Then by assumption BT(CHBIB).

4.,3.3 Heuristics 2

If BT(Bz), 32 -+ [y:B1C then clearly BT(C). So BT-condition (3)
above suggests as a main step in proving BT the substitution theorem
for BT: BT(4), u(x) = u(d), BT(B) = BT(Blx/Al).

Indeed, if we knew this theorem, we could simply proceed by in-
duction on pretyped expressions and get BT. The similarity with the
situation around B-SN suggests us to use SQBR (1v.2,4.3), for -
instead of 2: If B* » [y:8]C then either (1) B ~» [y:BO]CO with 35 > B,
CS > C, or (2) B~ {Flx, ({Flx)* » [y:B]C, where * stands for [x/A4].

However the following counter example shows that this lemma is
wrong: Take B = {Bl}[z:yl[y:B]{z}x, A = [u:¢]reue+u. Then
B* ~ [y:B*ﬂBIH]--B?--Y*, but B ~ [y:BﬂBlﬂ]{Bl}x, and ({Bl}x)* - -'BI-'B;.

4.4 Bt~reduction

4.4.1 One point which makes SQBR break down for - is that not:

B » C = Blx/4] » Clz/A]

234

Example: B = x, ¢ = typ(x) and the only connection between x and 4
concerns their norms (not their typ’'s).

The other substitution property: A > A' = B[A] - B[A'] does not
hold either, due to the lack of monotonicity clauses in the definition

of +. Example: A > typ(4) but not c-*A-ss > ce-typ(4d)--- .

4.4.2 Now we introduce Bt-reduction by adding these monotonicity rules
to the definition of -+, What we get is a reduction in the usual sense,
that a one step reduction consists of replacing a subexpression (redex)

by another expression (contractum). The redices are here of two kinds:
(1) PB-redices which contract as usual

(2) 1-redices: variables x which contract according to x >T typ(x).

We use the same terminology as before (II.7.1.2): ZT, >1 o’ >BT etc.,
r’
7-SN, Bt-SN, OBT etc.
Now ZBT satisfies the second substitution property (above) indeed

but the first one is still not valid (same counter example).

*
Just like - and -, ZBT is only defined for pretyped expressions.
Formally, we ought to speak about " ZBT w.r.t. context £”, and the

monotonicity for abstr. expressions then would read:

1f Bl >ar Cl w.r.t. £ and B2 > a1 C2 w.r.t. (£, y E Bl)

B
then [y:BljB2 >

8

8t [y:01]02 w.r.t. &

4,4,3 We are going to prove BT1-SN and then conclude BT from the
Theorem: BT1-SN(4) = BT (4)

Proof: Let Bt1-SN(4). Using induction on (1) GBT(A), (2) length of 4 we
show that all one-step rst-reducts of A are BT. So 4 itseld is BT.

4,4.4 B1-SN conditions

These are quite similar to the BT-conditions. The only non-trivial

modification concerns the appl. case.
(3) BT‘SN({BI}B2) © BT-SN(BI), BT—SN(BZ) and

B, 20 y:B C = B,T—SN(C[[Blll)

Proof: 2s in 4.2.3 but now we use induction on 8, (B,) + 06_ (B.).
Bt 1 Bt 2

235

4.4.5 Something on ZT

Just like st-SN (see 4.2(5)) we can prove T1-SN. Further we verify

1-CR: Let I contain subexpressions A = [x:aleexe+, T = [y:B8]--y-*

Then A >T A" = [x:aleeaee, T >T r fy:8]-+8++ and we want a common
t-reduct of e*A'ceT+-+ and ¢**A-I''+*- |, As in I1I.8.2 we consider
all the possible cases. Generally the reductions simply commute:
cesATaoe 0o >T ceeAVeeTVeve <T..-A.o]'"--- ., In case the specific X
occurs in B or the specific y occurs in o then two T-steps are needed,
e.g. [y:..x..]..y.. >T [y:..a..]..y.. >T [y;..a..]..(..a..).. <T<T
(y:e-2ze+]e-(+°x*) > . Anyhow the weak diamond property holds for >T,

so by 1-SN we get 1-CR, and unigqueness of t-normal form.

4.4.6 This gives an easy way of reaching a B81-normal form: first Tt-
normalize then f-normalize., Notice: the norm properties guarantee that
ZST preserves the norm of normable expressions.

> and 21 do not commute, but we still can get BT-CR for the
normable expressions, as follows. For norms v we define a ft-normal
expression v¥: (1) ™ = 1, (2) ([v1]v2)* = [x:v;]v; . Now we can prove

4 normable = 4 2BT (AN ™

by ind. on the definition of u. This gives Bt-CR and@ uniqueness of B81-
normal form. The procedure above assures the existence, so for normable
4 we can speak of Br-nf(d).

In fact v* is Nederpelt's original representation of the norm v,

4.5 First proof of Bt-SN; a correction to IV,2,5.3

4.5.1 1In view of 4.4.4 it seems reasonable to concentrate on the sub-
stitution theorem for Bt-SN: A Bt-SN, B Bt-SN, n(x) = u(4) = B[AJRT-SN.
Just like with -, SQBR fails for ZBT' so we rather let us inspire by
the second proof of B-SN (IvV.2,5.3).

In fact we also take the occasion to indicate (and repair) a flaw

in that proof, concerning the distinction between replacement and sub-

stitution.

236
4.5.2 Replacement vs.substitution

when defining substitution (I1.2.4) we have assumed the concept
of literary replacement to be understood. Substitution amounts to re-
placement with precautions, viz. that no clash of variables takes place,
and substitution can also be considered a special case of replacement.

Now let us see what went wrong in 1IV.2,5.3 (and also in (IV.2.6.2).
Essentially we wanted to replace a specific subexpression A in I by an-
other expression A', thus producing I'. We had the idea that this replace-
ment of A with A' could be performed via substitution for a new "fresh"
variable y, such that L, = e+y--, I = Zoﬂy/AH, ' o= Zoﬂy/A'ﬂ. However
this is wrong: possible bound variables of Z, which become free in A,
can never get the appropriate bindings in Zoﬂy/Aﬂ.

What we need here is literary replacement (LR) of y with A and A"
resp. We introduce a new notation: Bﬁx/AHLR is the result of literary

replacing all free occurrences of X in B by 4.

4.5.3 Below we follow the general idea of IV.2.5.3, but instead of
using a substitution theorem for SN, we use the - stronger! - replace-
ment theorem - as we ought to have done there (and in IV.2.6.2) too.

The easiest way is to use replacement with a set of expressions.
Notation: Bﬁx/a}iR, where o is a set of expressions, is the set of ex-
pressions which result from B by (literary) replacing all free x in B
by an expression 4 € o, but possibly different A's for different

occurrences of x (compare multiple substitution, in II.10).

4.5.4 The monotonicity of ZBT makes the replacement property work:

A 2

gr A" = BlAl oz BlAMD

provided A has been put in the appropriate extended context.
We make this slightly more explicit. Let A be an occurrence of a sub-
expression in I. The context of A Zn £ can be defined by induction on
the length of I. Intuitively speaking, it consists of all the assumpt-
ions & E a, which one encounters (in the form of abstractors [z:a])

when scanning I from "left to right" until one arrives at A. The crucial
clause in the definition is of course: if §{ is the context of A in I

2
then (x E EI,E) is the context of A in [x:leiz.

237

Now the context of A in the replacement property must provide all free
variables of A with the same typing as they get when 4 is inserted in
E. E.g. we can take (&,no) where £ is the context of B and no is the
intersection (in the sense of context inclusion SUb, cf.V.2.6) of all
the n's which are the context of a free occurrence of x in B.

We define p(4) to be the set of Bt-reducts of A. Then, again if A4

has been put in the right context,

C € Bkx/p (A)}LR = Blx/p Ak 2. C

4.5.5 The other replacement property B ZBT C = B* 2g1 C*, where *
stands for ﬂx/AﬂLR is still not generally valid, but we have a restricted
version. Lemma: If 4 201 typ(x) and B 2gr C then B* 281 c*.

Proof: Ind. on ZBT' E.g, if B >1 . C, B = seogesesgess,

r

S seotyp(x)eccxere, then BY = scedeccfses 28 cestypla)serdeee = c*.

QN

Corollary: B* 8t-SN, A 2gy typ(x) = B Bt-SN.

Proof: Use ind. on (1) BBT(B*), (2) length of B*. E.g. inspect the

31~-SN conditions.

4.5.6 Now we are ready for the Bt-SN proof.

Replacement theorem for R1-SN: Let * denote {x/p(A)}LR.
Let B normable, u{x) = u(4), A, B 81-SN. Then

C € B* = (¢ Rt-SN

provided 4 has the right context.

Proof: By induction on (I) u(4d), (II) 6 T(B), (III) the "ecapacity" of

B
the transition from B to C, i.e. the sum of the GBT'S of the reducts of
4 inserted in B. Now consider a single reduction step C >y 81 D. We
’

distinguish: (1) this reduction step concerns an old redex, i.e. a redex
already present in B, (2) this step concerns a new redex. The latter

are of two kinds: (2a) multiplied redices, i.e. redices inside an in-
serted reduct of A, (2b) newly composed redices. All T-redices fall
under case (1) or (2a) and the B-redices are classified as before, so
the only possibility of case (2b) is as follows: B = -~-x---{Bl}x-v-,
...Al...{cl}[y:Y]E..., D 5...A1...Eﬂclﬂ..., where 01 € B*,

aq Al' A 281' Ly:vIE.

~
/
1%

4

I\

238

In case (1) and (2a) the replacement and the reduction commute,
i.e. B > DO, D € DS. To be precise, let {Cl}[y:y]C2 be an "o0ld" redex,
i.e. (B }[y:81B, < B, C, € B;, c, € B;. Then D = +++C[C J-+- €
(°°-BzﬂB1B---){x/p(AﬂBlﬂ)}LR, and not simply D € DS. Then we get
81-SN(D) by ind. hyp. II (case (1)) or III (case (2a)).

Now we tackle case (2b): create a new variable 2z and form B0 by
replacing the intended {Bl}x by z. So B = Boﬂz/{Bl}xBLR. For simplicity
we put typ(z) = Br—nf({Bl}x), so p{z) = u({Bl}:r) and BT—SN(BO) ~-by 4.5.5.
Then we form Bé € BS by replacing the remaining free x's of BO
with the appropriate reducts of 4, i.e. the same as used in the formation
of C, and finally replace the 3z of B6 by EﬂCIH. This gives us
D
D
Further B8t-SN(4) so B1-SN([y:y]E) so R1-SN(E). By normability B1 <

i1

Boﬂz/LﬂCIBHLR back. Informally: B = sseXessgess, BO = --'Al---z°--,

0
-'-Al--~EﬂClﬂ"' . Either by ind. hyp. II or III we get BT-SN(Cl).

i

ux

so Cl <, X. Substitution is a special case of replacement, and replace-

u
ment [HLR is a special case of % }LR so by the first ind. hyp.
BT—SN(EHClﬂ). Bé is Bt-SN by ind. hyp. II or III, EﬂClﬂ <, & so by ind.

hyp. I again B1-SN(D) q.e.d.

4.5.7 Corollary 1: B normable, u(x) = u(4), 4, B B1-SN = B[A]RT-SN

(substitution theorem for BT-SN)
Corollary 2: B normable = B B1-SN (see 4.4.4)

Corollary 3: B normable = BT(B) (as in 4.4.3)

4.6 Second proof of B1-SN

4.6.1 Bookkeeping pairs, t-expansion and w¥-reduction

4.6.1.1 Assume that 4 2. B, i.e. B results from A by successively
replacing variables x by their type typ(x). Alternatively we can work
backwards from t-nf(4), by successively replacing newly created sub-
expressions by the original variable.

In general it is of course not possible to retrace which subex-
pressions are newly created, and from which variable they stem, unless
we store this information somewhere inside the expression!

r]

Following de Vrijer [70] we use a new pairing operation ' es-,s=-

for this kind of bookkeeping.

239

Definitions: (l) If A, B are expressions then rA,B1 is an expression.
(2) 1f A, B are g-expressions then "4,B" is a £-expression.
(3) If A, B are normable, u(4d) = p(B) then p("4,B") = u(4).

For the rest the definitions of pretyped and normable expressions are
unaltered. The notions of subexpression and substitution are extended
in a straightforward way. As a new monotonicity rule, for each kind of

reduction, we can have, e.g. 4 > A', B > B’ = "4,8" > "4',B*".

4.6.1.2 Now the alternative way of producing B from A (above) can be
described as follows: (1) first provide all variables x successively
with a copy of their type, i.e. replace x by rx,typ(xf and so on,
(2) then for some of these pairs simple restore the lefthand part, and
for the rest pick the righthand part.
In the process (1) the T—eipansion of A, 1-exp(4), is constructed,
i.e. each x of 4 is replaced by rx,r—exp(typ(x))“. The process (2) we
describe in terms of a projection reduction (m-reduction).
Definitions: (1) The t-exXxp of pretyped expressions is defined
inductively:

(i) T-exp(x) = "x,t-exp(typ(x))’

(ii) Tt-exp({4}B) = {t-exp(4)}1-exp(B)

(iii) t-exp(Lx:alB) = [x:t-exp(a)jt-exp(B)

(iv) t-exp(4,B") = "1-exp(4),1-exp(B) "

(2) (1) one-step w-reduction >1 . is generated from m-contraction:

7
r 1 r !
A,B >1,n A, A,B >1,W

(ii) Tw-reduction 2TT is the transitive and reflexive closure of

B by the monotonicity rules

1,n

4.6.1.3 Remark: Formally we should have defined the rt-expansion of
expressions w.r.t. theixr context, notation £-t-€Xp(B). The abstr. case

of the definition then becomes:

g-t1~exp(lz:alB) = [x:(E~-t-exp(a))]((E,x E a)-T-eXp(B))

240

4.6.1.4 The point of this alternative approach of 2. making use of
A ZT B = 1-exp(4) 2" B (see 6.2.2)

is that Zﬂ is definitely easier to handle than ZT, roughly because 2*

does not depend on the context, and that =2 T—reductions of an expression

8

can be simulated by ZB“-reductions of its T-expansion.
Our proof below consists of two parts: first we show that Run-SN

implies R1-SN, then we prove the SQBR lemma for ZBN and Bm-SN.

4.6.2 Bn-SN implies Bt-SN
4,6.2.1 Lemma: 4 > B = 1-exp(4) = T-exp(B)(in fact >)
1,1 m 1,n

Proof: Ind. on > :
l,t

(i) rt-contraction, A= x, B= typ(x). Then t-exp(4) =

"z, T-exp(typ(x)) " > T-exp(typ(x)) = t-exp(B)

1,m

(ii) Monotonicity, e.g. 4 = [x:Aljx, B = [x:Bl]x, Al >1'T Bl:

By ind.hyp. r—exp(Al) z r—exp(Bl), so 1-exp(4) =
[x:r—exp(Al)]'x,r-exp(Al)1 zﬂ[x:r—exp(Bl)]'x,r—exp(Bl)’ =
T-exp (B)

4.6.2.2 Corollary 1: A 2T B = 1-exp(4) zn T~exp(B)

Corollary 2: A ZT B = 1-exp(4) Zﬂ B (because 1-exp(B) z B)

4.6.2.3 Lemma: Let 4 be a £{-expression, let B be a (£, E a,n)-express-

ion. Let I and 11 stand for [x/A] and [z/1-exp(4)] resp. Then

-exp(®) T > t-exp(8)

I I
with 1-exp(B") taken w.r.t. &, n .

Proof: ind. on .the definition of t-exp(B):

(i) r—exp(x)II = rx,r—exp(a)1II = "t-exp(4) ,t-exp(a)’ >

1-exp(4) = T-exp(zl).

(1) t-exp(y) Tt = Ty, t-exp(typyn > L T-expltypy D) =

r-exp(yI).

241

13}

. II II
(iii) (T—EXP({Bl}Bz)) ({r—exp(Bl)}T—exp(B2)) 2

{r—exp(Bf)}T-exp(B;) = r—exp(({Bl}Bz)I) etc.

4.6.2.4 Corollary: Let 4 be a E-expression, B is a (£,2E a)-expression.

Then t-exp(B)[x/t-exp(4)] S T-exp (Blx/A])

4,6.2.5 Corollary: 4 > B = t-exp(4) > Zn T-exp(B)

1,8 1,8

Proof: Ind. on > :
1,8

(i) B-contraction, 4 {Al}[x:A21A3, B ABHAlﬂ,

T-exp4) > T—exp(AB)ﬂx/T—exp(Al)] z T—exp(A3ﬂA1ﬂ) =

1,8
T-exp(B), by 4.6.2.4.

s . . - r al = r a -
(ii) monotonicity, e.g. A = Al,A2 , B = Bl'BZ ’ Al >1,B Bl’

- .) o) .
A2>LBBT By ind. hyp. T-exp(4) ‘TﬁPMHurMpMQ

r a - _
> "1-exp(B)),T-exp(B,) " = t-exp(B).

vi

1,8

4.6.2.6 Theorem: T1-e€Xp(4)Bt-SN = 4 g1-SN

Proof: Let T-eXp(4) be Rw7-SN, use ind. on eBn(T_exP(A))' If 4 >1,B B
then t-exp(4) >1,B zn T-eXp(B) (by 4.6.2.5), so by ind. hyp.
81-SN(B).

Similarly, if 4 >1’T B then B1-SN(B). So 4 is ARm-SN.

4.6.3 The proof of Bgm-SN

4.6.3.1 The normable expressions are closed (and norms are preserved)

under ZBW' Further Zn satisfies both substitution properties (see4d.4.l).
Notice that Zﬂ does not satisfy CR but that 8 and 7 commute (use nested
one step reduction > , see I1.3.4) and that weak mR-postponement holds:

, T
37 T B ¢ ™ B

N =

4 = B=4 >

[\

4.6.3.2 Bm-SN conditions
These are again quite similar to the B-SN conditions. The interest-

ing clauses are:

(1) A 87-SN, B Bn-SN = [x:41B and "A,B" gn-SN

242

(2) A Bn-SN, B Bn~SN and (B Zé

So, again, we want the substitution theorem for Bt-SN.

5 x:alD = D[A]Bn-SN) = {4}B Bm-SN

4.6.3.3 Square brackets lemma for ZBN: Let B be Bn-SN. Let * stand for
* . . . ,
[x/A). Let B 2a0 [y:8]C. Then either (1) B 20, [y.Bo]CO with

* * LN T * -
B3 2o B, C 20 C, or (2) B 20 {Bk} {Bl}x, ({B}x)* 2 [y:BIC.

Proof: As in 1IV.2.4.3, by induction on (I) eBn(B)’ (II) the length of
B. The new case is rBl,B21, B* = rBI,B;‘. Then either

* . * . 3
B1 ZBH Ly:B1C or B2 28“ [y:B1C, and we can apply ind. hyp. I to B1

or B2.
Remark: An alternative proof is provided by Barendregt's lemma, which

is still valid for ZBn (see II.11.3.5).

4.6.3.4 Substitution for Bn-SN: Let B be normable, u(x) = u(d), A and
B are Bn-SN. Let * stand for [x/A]. Then B* gu-SN.

Proof: As in IV.2.4.4, by ind. on (I) u(4), (II) eBn(B)' (III) length
of B. The new case concerns B = rBl,sz, B* = rB;,B;‘. Both B;
and B; are Bm-SN by ind. hyp. II so B* is Bm-SN.

4,6,3.5 Corollary: B normable = B Bun-SN

4.6.3.6 Notice that the T-expansion of normable 4 is again normable,

so A normable = T1-€Xp(4) normable.
Corollary: 4 normable = A B1-SN (by 6.2.6)

Corollary: BT

VII.5 Closure and Church-Rosser for An
5.1 Introduction

5.1.1 Here we consider the constant-less part of An, defined as in sec.
2.12, but with 2 standing for Bn-reduction. It is easy to derive a
strengthening rule (sec. V.1.6) for such an algorithmic system, so n-CL
does not cause major difficulties. The problems with closure for An, as

compared to A, are rather due to the fact that CL and CR appear to be

243

heavily interwoven. Namely, a proof of CL (see, e.g., VII.3) seems to
make quite essential use of CR, while in turn we seem to need CL in the
course of the CR-proof - because 8n-CR holds for correct expressions
only.

The solution is of course toprove CR and CL (and a number of other
properties) simultaneously, by induction on big trees. In sec. 5.2,

below we prove indeed that BT extends to the present situation.

5.1.2 We introduce some notation that enables us to make the structure
of the proof more explicit. Here 3 is as in VII.3.4.

Definition: If P is a property of expressions then P* and Pg are
given by

*

(1) P*(4): @A 3> B=p(B) _
(2) P{(4): ® (A properly % reduces to B) = P(B)

Using this notation, we can express our induction step by
FA, CRE(4), CLY(A) = CR(4), CL(4)

for which, of course, it is sufficient to prove
F4, CRG(4), CLgA) = CR (4), CL 4

The properties SA, PD, PT and P*T from 3.1 play again a role
in the proof, and further property SC, substitutivity of correctness,
here defined by SC(B): &

(x E alB, F4, typd) + typwx), typ*d) ¥ typ*(x) = }BlAD).

5.1.3 Now the proof below is organized as follows. First we present
some preliminary facts, among which Bn-BT (sec. 5.2), strengthening and
~-PT (sec. 5.3).

Section 5.4 contains the actual closure proof. First we assume FA,
CR%(4), CLg(4), and prove SA(4) and PD(4) (in sec. 5.4.1), PT, (4), SC(4)
and CRl(A) (in sec. 5.4.2-5.4.4) respectively by a separate induction
on big trees, and by simple induction on length. Then we complete the
proof by proving PT(4), P*T(4) and CLl(A) simultaneously, by induction

on the big tree of A again.

244

5.2 Extension of BT to the 8n-case

5.2.1 A postponement result

Let Zrn and ZBTn be the straightforward extensions of ZT and 2

as defined in 4.4.2. Mere verification shows that

B[
A Pret.\‘lped' A > B = A > ; B
>1I 1I[1,[1’ H

whence - as in II.7.3.2~ tn-postponement:

> >
A pretyped, 4 - B=A 21 z B.

Combining this with fn-pp we get

A ‘pretyped, 4 ZBTH B=A ZST Zn B.

5.2.2 B8nt-SN and Bn-BT

In 4.6.3 we proved Bt-SN, which - as in II.7.3.5 - together with
(81) -n-pp and n-SN gives us Bnt-SN, for normable expressions. Then

Bn-BT follows, as in 4.4.3.
5.3 Some simple facts

5.3.1 Strengthening

If B is a (£,x E a,y E B)-expression, but x ¢ FV(B) and ¢ FV(B),
then B is a (E,g E B)-expression as well, and the typ (if degree(B) + 1)
and typ* of B w.r.t. both contexts are syntactically equal (Z).

So, by induction on the definition of correctness, we get
strengthening: if x E o, g E éF(B), x ¢ FV(B) (and x ¢ FV(B)) then
Q E EF(B) - read this twice, with and without the parts concerning B - .

As a corollary we have: z E o4, « ¢ Fv(4) = FA

whence n—outside—CLl: b z:a {2}4, x § FV(A) = }A,

5.3.2 n-PT and n-P*T
For pretyped A there holds

A >n B typ(4) >n typ(B) (if degree(4) + 1), typ*(A) > typ*(B)

Proof: Induction on the length of 4.

So, induction on 2n gives
A > B = typ(4) 2 typ(B) (if degree(d) # 1), typ*(4) = typ* (B)
and, a fortiori, we have n-PT and n-P*T

4z B = typ(4) + typ(B) (if degree(4d) % 1), typ*(4) + typ*(B)

5.3.3 From 3.2.1 we recall the property of correctness of types
A = ftyp@)
and the substitution properties from 3.2.2

(1) typ(4) + typ(z) = typ(BlA]) + typ(B)[4]

(2) typ*(d) + typ*(x) = typ*(BIA]) + typ* (B)[A]

5.3.4 Property: Let degree(4) =1, u(4) [v1]~°-[vk]e. Then

A = [xlzaljo--[xk:ak]C.

Proof: Induction on the length of 4. E.g. let 4 = {AI}AZ’ then
u(Az) = [u(41)10vq]-++0vy Je, so by ind. hyp.

A2 2 [I:B][xl:alj"'ka:ukjc and 4 > [xl:ai]"'[xk:aﬁjC', g.e.d.
Corollary: Degree{(d) = 1, u(4) = [vl]vz =24 2 [x:a]C.
Corollary: FIA, A= [x:adC, 4 2 F=F 2 [x:8]D

Proof: If 4 correct, then A normable, so F normable, with

u(F) p(d) = {u(a) u(@).

1

Corollary: F!4, A4 = [x:0]C, A v+ F = F = [x:81D.

5.4 The actual closure proof

5.4.1 Lemma: Let }4, CR (4), CL,(4). Then PD(4) and SA(4)
Proof: By induction on the big tree of 4.

(PD). Let 4 = [x:Alez, A = [x:BljB2. If Al > Bl’ A2 > 32 then
certainly Al ¥ Bl' Otherwise A2 b3 {x}[x:Blsz. The latter expression is
correct, satisfies CR* and CL*, so we can use SA and get A1 4 Bl' q.e.d.

(SA). Let 4 = {Al}[x:A2]A3. Then FAI, typ(Al) > ¢, F[x:A2]A3,

246

typ*([I:AzlAa) = [x:AZJtyp*(A3) > [é:¢]C. By correctness of types
F[x:AZJtyp*(AB), which also satisfies CR™ and CL* so we can apply PD
and get A2 + ¢, whence typ(Al) ¥ A2, q.e.d.

5.4.2 Lemma: Let |4, CR¥(4), CLj(4). Then PT, (4)

Proof: Induction on length(4). n-PT1 we know already (sec. 5.3.2). For
8—outside—PT1 let 4 = {Al}[x:A2]A3. By 5.4.1 typ(Al) ¥ A2 and by the
substitution property 5.3.3.(1) typ(4) = {Al}[x:AZJtyp(A3) >
typ(A3)ﬂA1H ¥ typ(A3ﬂA1H), g.e.d. The other cases are immediate.

5.4.3 Lemma: Let = E a, y E 8FB, CRy(B), CLg(B), F4, typ4) + a,
typ*(4) + typ*(a). we write * for [x/Al. Then (SC(B)) y E B*}B*.

Proof: Induction on length(B). The crucial case is: B = {Bl}Bz,
typ(B)) = ¢, typ*(B,) = [u:¢Iy. By ind. hyp. FBI, FBz. We do not know

CR or CL for the substitution results, so we use a trick. Distinguish:
(1) B1 does not end in &, then typ(Bl) z typ(Bl)* > ¢*.

(2) Otherwise, let B1 = essypeesx and form C1 from B1 by just re-
placing the final &, C = e+*x-++typ(4). Then C1 4 typ(Bl)
and by CR, C1 v . So typ(B;) = CI v 9F.

Anyhow, in both cases typ(BI) = ¢'™, with ¢' + ¢.

Further distinguish:
(1) B2 does not end in &, then typ*(B2) = typ*(Bz)* 2 [u:o*Jy*.

(2) Otherwise form 02 from 32 by replacing its final x,
By = seezeecx, O, = eesgeestyp™(4) + typ*(B2). Then, by
CR(typ*(Bz)), €, + [u:¢1y and, by 5.3.4 C, 2 [u:¢"1y" with,

by PD, ¢ + ¢". Now typ*(B;) = c; > [u:p"* ™,
So in both cases typ*(B;) > [u:¢"*Jy"*, with ¢ + ¢".
Now use CR(¢), this gives ¢' ¢ ¢", whence ¢'* + $"* and
typ(B;) ¥y ¢"*. so F{B;}B;, q.e.d.

5.4.4. Lemma: Let }4, CR§(4), CL§(4). Then CR (4)

Proof: Again by induction on length. The crucial case is the critical
Bn-case: A = [x:Al]{x}[x:A2]A3, x ¢ Fv(Az). By 5.4.1 SA({x}[x:A2]A3)
so A1 ¥ A2, [x:A1]A3 ¥ [x:A2]A3, g.e.d.

247

5.4.5 Lemma: Let }4, CR;(4), CLy(4). Then CL, (4, PT(4) and P*T(4).

Proof: Induction on the big tree of 4,

(1)

(2)

(3)

(CLl). Let A > B, we must prove FB. The n-outside case we know al-
ready. Consider, e.g.: 4 E{Al}[x:A2]A3, B = A3HA1H. By 5.4.1
typ(Al) ¥ A2. By P*T - ind. hypothesis - we get typ*(Al) v typ* (x)
as well, so by 5.4.3 we are done. This is B~outside CLl'

e Bl’ A2 > Bz’ B = {Bl}Bz, typ(Al) =z ¢,
typ*(Az) 2 [u:¢J¥. By (e.g.) the ind. hyp. we get FBI, FBZ,

typ(Al) ¥ typ(Bl) and typ*(Az)-&typ*(Bz). Now use CR, this gives
typ(B,) + ¢ and typ*(Bz) ¢ Tuzoly.

So, by 5.3.4, typ*(Bz) 2 [u:¢'Jy' and by 5.4.1 ¢ + ¢'. Finally

Or consider: 4 = {Al}A2' A

CR(¢) yields typ(Bl) ¥ ¢', so F{BI}BZ' g.e.d. The remaining case

of CL1 is trivial.

(PT). PT1 we know already. Now let 4 >y B > (C. By CLl FB and by

ind. hyp. PT(B), so by CR(typ(B)), typ(d) + typ(C), g.e.d.

(P*T). Let degree(4) = 1. Then by PT, if 4 > B,

typ(4) > F < typ(B). By CLl(A) (this implies CL(4)) }B, so by
correctness of types, Ftyp(A) and Ftyp(B). Now apply the ind. hyp.:
typ*(4) v typ*(F) + typ*(B) and use CR: typ*(4) + typ*(B), q.e.d.

5.4.6 Theorem: If }A then CR(4), CL(A4)

Proof: By induction on the big tree of A. The ind. hyp. reads CRj(4),

5.4

CL3(4), and the preceding lemmas produce CRl(A) and CLl(A). As we
noticed before, this yields CR(4) and CL(4).

.7 cCorollary: If }A then SA(4), PD(4), PT(4), P*T(4) and SC(4).

5.4.8 Note: The separate inductions on big trees in 5.4.1, 5.4.5 and

5.4.6 can of course be compressed into a single induction on big trees.

248

VII.6 Various equivalence results

6.1 Introduction

In VII.2 we introduced A(n) with and without (definitional) con-
stants. The results in VII.3-5 are derived for the constant-less system.
In this section we extend these results in an indirect way to the re-
maining systems, by showing that, in a certain sense, they can be em-
bedded in the constant-less version.

Sec. 6.2 is devoted to primitive constants only. First we giveée a
translation which eliminates the constant-expression. Then we explain
the relations between (a) the system with constants, (b) its image under
the translat;on, and (c) the constant-less system. Afterwards we easily
extend our nice properties (CL, CR, BT) to the system with constants.

Sec. 6.3 cerrs the additional extension with definitional con-
stants. In 6.4 we prove another equivalence: between Nederpelt's single
line presentation with abstractorstrings ¢ and our presentation, with
contexts £. In this case too, the correspondence is close enough to

show that Nederpelt's original system satisfies the required properties.
6.2 Eliminating primitive constants

6.2.1 The translation '

For the system with constants (for short: C-system) we use the
notations A(n)C and FC' Now we define a translation of the C-system into
the system without constants. The translation (notation ') is characte-

rized by:
(1) it transforms constants p into variables p',

(2) it converts constant-expressions p(Al,-",Ak) into appl. express-
i ' Yees{A' I
ions {Ak} {Al}p ’

(3) it eliminates schemes g EB * p(g) E v one by one from the boock by

including an additional assumption p' E [y:B'ly' in the context,

(4) it commutes with the other formation rules (for expressions, strings

and contexts).

249

Thus a statement B; FCA is translated into B', E'FA' where B' is
understood to be a context consisting of the additional assumptions for

the new variables p'.

6.2.2 Why the indirect approach?

Below we use the properties of the constant-less system in our
proof of the desired correspondence. Afterwards we can extend these
properties to the C-system.

The point is that the constant-less system is definitely easier to
nandle. In particular: the fact that the typ of a constant-expression
is constructed by substitution is a complicating factor, because cor-
rectness of types is not immediate any more.

E.g. by using this indirect approach we would have been able to

introduce constants without using degree-norms.

6.2.3 The nature of the correspondence

For terminology about extensions we refer to V,3.3.2., However,
because we study an algorithmic system now, we replace A £ B by
typ(4d) v+ Band A Q Bby A4 ¥+ B.

Clearly the C~system is an extension of the system without con-
stants. Because typ and 2 remain the same, it is a conservative extens-
ion too. Of course it is not an unessential one: primitive constant-
expressions do not main reduce at all, so they can never be definition-
ally equivalent to an expression without constants.

Contrarily, the translation '

maps expression (and contexts},
correct w.r.t. B in the C-system, properly into the expressions (and*&“
contexts), correct w.r.t. B': expressions {Z}p' that do not have enough
arguments in front, i.e. where IZI is smaller than the arity of p have
no counterpart in the C-system.

For the image of the C-system (w.r.t. a fixed book B) under ', we

introduce the notation F . L.e.

n}_, resp. nF_B: & n £', B = A' and B; EFC resp. B; EFCA'

Then below it will appear that the expressions (and contexts) correct

w.r.t. B' in the constant-less system, form a conservative extension of

250

the system F_. In the presence of n-reduction, it will be definitional

(so unessential) too. See sec. 6.2.9.

6.2.4 Facts about '

Notice that ' is a purely "syntactical" matter, which has nothing
to do with correctness: pretyped-ness is sufficient.

As a map from statements B; 5}A to statements B, E'FA' the trans-
lation in not one-one, but as a map from B-expressions and - contexts
into B'-expressions and - contexts it is one-one indeed. For the (part-

ial) inverse we use the notation 0¢

(A')O = A
Clearly, A[Bl' = A'[B'] so A 2B=A' 2B', soA + B= 4" ¥ B'.

Further typ(4') = typ(4)' - there are only head-g8* contractions involved,

where degree(A) = i+l (for the definition of head- and of l—reduction

I

see V.3,3.3 and v.4.3.3,5). And typ(4') = ¢' for some ¢.

If there is no n-reduction then we have
(1y A' > B=4 > BO' 36 = B
SO (2y A" 2 B'"=4 2B

and (3) A' v+ B*' =24 + B

6.2.5 ' and n-reduction

With n-reduction, (1) above does not hold any more:

([x:a]p(Ak,---,Al,x))' sz [x:0' {x}{A'}p' may reduce to {4'}p'.

Lemma: A' 2 B'= A4 2 B
n n

Proof: Ind. on the length of 4. E.g. let 4 = [x:a]C, so 4' = [x:a"1C".

If B' = [x:8'1D' with o' Zn g, C' Zn D' use the ind. hyp. Otherwise
c' zn {x}B'. The latter expression is ({x}B)' so by ind. hyp. C Zn {x}EB
and 4 zn B, g.e.d. 0

Now let A' 2 B' then by B8n-pp: 4' 28 c zn B'. This ¢ B Cj, so Co Zn B

by the lemma, and 4 2 B, This is property (2) above. Property (3) can

be proved in the same fashion.

251
6.2.6 Something about typ*

Lemma: [B' = (Ftyp™(B)', typ*(B)' + typ™(B"))

Proof: The translation ' preserves the degree, of course. We use induct-
ion on degree(B'). The degree 1 case is immediate. Otherwise
typ*(B') = typ*(typ(B')) and typ*(B)' = typ*(typ(B))'. By correct-
ness of types Ftyp(B'), reducing to typ(B)' and by P*T
typ*(B') ¥ typ*(typ(B)'). By CL Ftyp(B)' so by ind. hyp. Ftyp*(B)"',
qg.e.d., and typ*(B)' + typ*(typ(B)'). By correctness of types
Ftyp* (typ(B)') so by CR typ*(B)' + typ*(B'), q.e.d. 0

Now that we know CL, CR, PD and SA for A(n) we can extend property
5.3.4 to: FlA, Flfx:a]c, A ¥ [x:alC =4 2 (x:81D, a + B. So, as alter-

native application condition, equivalent to the one used originally:
L4, FB, typ4) = «, typ*(B) = [z:alC = |H{A}B
we can as well use, e.qg.

typ(4) v a, typ*(B) ZB [x:alC
Qr

typ(4) + a, typ*(B) + [x:alC, Flx:alC

6.2.7 The proof of the correspondence

Theorem: B; EFCA & B',E'FA'

Proof: =. By induction on correctness. The formation of the context B’
is allowed, due to the liberal degree conventions of A(n). Consider,
e.g. the appl.rule: let FCA, FCB, typ(4) = o, typ*(B) = [z:0]C. By
ind. hyp. FA', FB', further typ(4') 2 typ(4)' = o' and by the
lemma in 6.2.6 ktyp*(B)', typ*(B") v typ (B)' = [z:a']1C'. By CR,
typ*(B') ¥ [x:a'3C'. By CL, F[x:a']c' so, by the alternative appl.
rule F{A'}B'. Or consider the instantiation rule: CBl'...'FCBk'

y E g*ply) E y is a scheme in B, |§| = k and typ(B;) + Biﬂgﬂ for
i=1,...,k. The translated scheme reads p' E[(y:8"}y'. By ind. hyp.
B} e+ e FBy - Now typ(B]) = typ(B)' + 81, typ™(p') = [y,:81] "1,
so }{Bi}p'. Further typ(Bj}) 2 typ(B,)' + szﬂBlﬂ' = séﬂBiﬂ and
typ* ({Bj}p') = {B{}typ*(p") > [y,:8,[B{}]1-+-1, so F{Bé}{Bi}p'-

252 .

Etc. up to I-{B}'(}---{Bi}p' = p(B)', q.e.qd.

< Also by induction on correctness. E.g. consider an appl. express-—
ion. Either it is ({4}B)' or it is p(B)'. First case: if F{4'}B"
then FA' (so FCA), FB‘ (so FCB), typ(A)' < typ(A') =z a (so
typ(A)' v a), typ*(B)' v typ*(B') 2 [x:alC (so typ*(B) + [x:2]C).
Hence typ™(3)' 2, [x:81D = [2:8)IDf = ([x:8yIDy)" with a + B. By
CR typ(4)' + By, so typ(4) + B,s and typ*(B) 2 (z:8,1D,s so
tC{AEB. Sefond case: F{Bé}---{Bi}p' so FCBk,---,FCBl. Let

y E B x ply) E y be the scheme of p. Typ(Bi) 2 ¢,

typ*(p") = [ylzsi]-'-r > [y1:¢1]"'T SO typ(Bl)' ¥ Bi,

typ(Bl) + B,. Further typ(Bé) 2 ¢,, and [yz:BéﬂBiB]---T <
{Bi}typ*(p') = typ*({Bi}p') 2 [y2:¢2]---1, so t_yp(BZ) ¥ 82l131]].
Etc. up to typ(Bk) ¢ Bkﬂﬁﬂ and|—cp(§) q.e.d.]

6.2.8 The required properties
Theorem: The strictly normable constant-expressions (see IV.3.4)
satisfy BT

Proof: Strictly normable C-expressions transform into strictly normable
expressions without constants under the translation ', and all 3
sequences of C-expressions 4 transform into subsequences of ~
sequences of A': (1) typ(4') = typd)', (2) A >1 B=4 >1 B',

(3) A ¢ B=>A' c B'. so by BT for the constant-less version we

are done. O
Theorem: A(n)C satisfies CR

Proof: Let FCA, A 2 B, A 2(C. By the = -part of the correspondence FA'
and by CR for A(n) B' + ', so B+ (C, g.e.d. g

Theorem: A(n). satisfies CL
Proof: Let FCA, A > B. Then FA', A', B' so by CL FB'. So FCB.
Theorem: A(n). satisfies SA, PD, PT, P*T, SC etc.

Proof: Either from CL and CR, or using the correspondence 0

6.2.9 An unessential extension result

Now we explain the connection between the F_—system and the

ordinary r—system of A(n) without constants. Recall

253

l'_A' = f—CA , i1.e. f'_Aﬁ I_CAO

The first half of the correspondence result shows F_ = F, i.e. a
simple extension result. Now we define a translation = from the larger
into the smaller system, as follows: if x E a * p(E) Ey is a scheme

in B, |z| = k, 1 < k then

({fi}°"{A1}p)y = [xi+1:ui+1ﬂA]]-'°[xk:ak[A'ﬂ]{xk}"°{xi+1}{Ai}"“
{Al}p', i.e. we n-expand until p' gets enough arguments in front. For
the rest acts as identity.

Clearly 4~ Zn A, 47 = (A_a'. Viz. ({Ai}"°{A1}p')_OE

[x, :ai+1ﬂﬁ'0]]]- . -[xk:ak[[ABII Ip (ﬂ'o,x

i+l R

iel’ T
The translation is a bit intricate, because ({A}B)_ is not necessarily
{47}B . In general {4 }B 28 ({4}B)” and B [4] 28 (Bl4]) . Further
typ4™) 2 typ(4) , and also typ(4") +g typ(4) . Without proof we
state that A 2 B= A 2 B , and that typ*(4”) + typ*(4) . From these
facts, it can be proved that: FA =|—A_, so by the second part of the
correspondence FA ='F_A—.

In case of Bn-reduction, this is a typical unessential extension

result.

6.3 The case of definitional constants

6.3.1 We have three main possibilities to incorporate definitional
constants in our theory. The first one studies the new system (we call
it A(n)d, with correctness predicate Fd’ and also speak about the
"d-system etc.) independently, as a separate subject, the second one
considers it as an extension of A(n)c, and the third one embeds it into

A(n), by extending the translation from the previous sections in
order to cover definitional constants.

Here we actually use the second method, and just mention some
points on the third one.

But we start by proving the big tree theorem for A(n)d, for
reasons of completeness and as an indispensable prerequisite for the

separate study of the system (method one above).

254

6.3.2 The big tree theorem for A(n)(g

In 6.2.8 we proved BT for A(n). by means of the embedding ' into
A{n). It is indeed possible to extend ' to the case of definitional
constants, but (see 6.3.3) the translation does not reflect the type-
structure sufficiently, which makes this method fail here.

So instead we revise the BT-proof of 5.2 (for A(n)) and adapt in to
the A(n)d—case, which is relatively easy. First we mention the BT-con-

dition (see 4.3.2):

(5) BT(p(d)) & BT(4,), *++, BT(4,), BT(typp)[4])

(6) BT(d(A)) = BT(4), «++, BT(4,), BT(typ(dI4]), BT(def(d)[4]).
The B81t-SN conditions are quite analogous, and, as in 4.4.3, we have:
Theorem: BéT;SN(A) = BT (4)

This suggests that, in this case as well, the substitution property
of 881-SN is crucial. We choose to adapt the first BT-proof (sec. 4.5)

so need the replacement theorem (see 4.5.6) instead: Let * denote

{x/p(A)}LR, let B be normable, p(x) = p(4), A, B 86t-SN. Then:

C € B* = C p61-SN

Proof: As in 4.5.6. We consider a single reduction step (>1,86T D. For
all B-steps and all t-steps concerning variables (not constants),
B81t-SN(D) can be proved as in 4.5.6. The remaining steps, i.e.
d-steps and t-steps of constants, can only fall into the categories
(1) and (2a) so we get B8§t-SN(D) by ind. hyp. II or ind. hyp. III.

So we have a list of corollaries:
(1) B normable, u(x) = u(d), A4, B BSt=SN = B[A] 86&1-SN

(2) B normable, u(xi) = u(Ai),
A; (i=1,+-+,k) and B 85t-SN = B[A] B&t-SN

Proof: The simultaneous substitution can be simulated by iterated single

substitution.
(3) B normable = B g8§1t-SN

Proof: Induction on pretyped expressions. For the new cases use the pre-

vious corollary.

(4) B normable = B gn&t-SN

255

Proof: Tn-pp extends to the present case (see 5.2.1), dn-pPp we knew
already (see II.7.4). This gives (8871)-n-pp and, by n-SN,
BnsT~SN.

(5) B normable = Bn§-BT(B)

6.3.3 The translation into A(n)

' can be extended to the d-case.

Here we show how the translation
Viz. an expression d(4) transforms into {Aé}--'{Ai}[E;&']D', where
z Ea*d(x) :=D % d(x) Ey is the scheme of d.
This translation behaves nicely w.r.t. to reduction: A > B= A' > B',
But of course it is possible that an expression 4' B-reduces to an
expression which is not some B'., This is in contrast with the situation
with primitive constants where this could only occur by n-reduction.
The best we can get is: A' > B=>B=>2_(C, 4 >

1,8 8 1,86
on GB(A’), we get 4’ ZB B=B2

C. So, e.g. by ind.

8 ', A 2 C. For the rest the translation
seems to be not too useful, because properties like A' ¢+ B' = A V B (at

least where n-reduction is allowed) and typ(4') + typ(4)' are only valid
in the correct fragment. Note that typ(4') 2 typ(4)' is simply wrong

here.

6.3.4 Some properties of A(n)C

Translation of A(n)d into A(n)C just requires the elimination of
abbreviations, which can be done by é§-normalization. In the next
sections we show that this actually constitutes a translation, i.e.
that it preserves correctness. Here we first give some properties of
A(n)c which we need in the - rather complicated - proof below, '

The single substitution result (of A(n), and of A(n)C too)
FA, typ(4d) + a, (z E a,nkB) = nlAl}BL4]

can, by induction on]5], be extended to a simultaneous substitution

result
M, typ(4) ¥ o[4] for i=1,+++,|A], (x E o}B) = [-B[4]

The properties of sec. 3.2.2 concerning the typ of substitution

results can be generalized to (1) the simultaneous substitution case,

<006

(2) successive applications of typ, resulting in:

typ (A ¥ typ) (xi)ﬂ/ﬂ], for i= 1,00+, |&| = typd (BIA] + typd (BLAI), for
all relevant j, where tpr stands for j successive applications of typ.
This holds for A(n) but also for A(n)c and A(n)q. Notice, that in case B

does not end in one of the xi we even have

typ? (B1AD) = typ’ (B)1]]

6.3.5 The translation into A(n)C

Our notation for the translation is . For expressions amounts
just to taking §-normal form. It is clear how " acts on strings and
contexts. It is intended that the book B is formed from B by é-normal-
izing and by skipping the abbreviational schemes. The translation is
of course nét 1-1.

We recall that B[A]

nr

B{A 1, that d(4) = def(d) [4 1, and that

§-reduction commutes with Bn-reduction. The latter implies

A=2B=A4A 2B and A+ B=A4 B .

6.3.6 The translation preserves correctness

Theorem: B; EfqA= B ; E_Fctypi(A)—, typi(A)_ ¥ typi(A_) for i=0,=--,
degree(4)-1 (this concludes FCA' itself).

Proof: By induction on Fd' Crucial cases are: (1) the application case:

A

{4,34,, }dAl, FdAz' typ(4,) > a, typ (4,) 2 [x:alC. By the ind.
hyp. R A, B tYPW)DT, typA) T v typUD L b typT Ay,

typh(4,)7 v typt43). Clearly typ(d)” 2 o7 so by CR typ(d)) + a”.
Similarly, typ*(Az)_ > [x:a”1C, and typ*(typi(Az)_) +

typ*<typi(A;>> = tyP*(A4) v typ*(4))” (by P*T), so by (R,
typ*(typi(A2)_) + [x:a 1C . Hence }—Ctypi({Al}Az)_(E {Az}typi(Az)U.
See 6.2.6 for the alternative appl. condition. The property
typi({Al}Az)— ¥ typi(({Al}Az)_) is trivial. (2) the definitional
constant case: 4 = d(B), hiBj’ typ(Bj) ¥ BjKED for j=1,+~,|y|,

where y E B » d(y) :=D * d(y) E Yy is the scheme of d. By ind.

257

hyp. Lng and typ(B;) v typ(Bj)_ v Ejﬂé'ﬂ. Also by ind. hyp.
yEBR D, y EB LY,y EB L typD)” and typd) v typd)).
So, by the simultaneous subst. property, FCD_HE_H(E ATy,
}ty'ﬂé‘ﬂ(s typ(4) 7). We know that y + typ(D), so y ¥ typ(D) so
by CR typ(D™) + vy , whence typ(D)IB] + Yy [B] and, again by CR,
typ(4™) + typ(4) . Now there is left to prove:

(1) Lctypi(A)'(s typ L y[BD)), ana (2) typt)” v typt@T), i.e.

i-1

typ (vIBl) T + typi(D'né'n), for i=2,ees,degree(4)-1, The ind.

), Pctypi(D>'. typ™ T T typt Ty,

hyp. gives us |—Ctypl_1

typt (D)™ + typ* (D7) for these i, and Fttypk(3j>_(+ typk(BS)), for
k=0,++,degree(B,)-1, for j=1,+++,|y|. Now (2) is simple:
typt T (yIB]) ¢ typtTh Bl so typtTvIBD T ¢ typt Tl IETD ¢
typi_l(y')ﬁé’ﬂ ¥ typi(ﬁ-)ﬂB_B ¥ typi(D_EE_HL Here we use PT and the
substitution property of types. By CR we get (2). Property (1) we

formulate in the form of a lemma.

Lemma: Let g E éhjy, thj, for j=1,-'-,,§| with y and B as above.

Then Fctypi(yﬂgﬂ)_, for i=0,++**,degree(y)-1.

Proof: If y does not end in some of the y, then typi(yﬂéﬂ)_ =
typi (y) TB] which is correct by the simultaneous subst. property.
This also covers the case i=0 (which we knew already). For the
rest we use induction on the length of y. The case y = y, is true
by assumption. Further consider the application case: y = {Yl}yz,
Fgvir Fgvar tYPGr) 2 ¢, typ*(vy) 2 [2:¢JF. By ind. hyp. f. v, I3l ,
ko typ(yv, [BD) 7, kctypi(yzﬂ§n>' for all i. We have typ(y,[B']) +
typ(y JEBT + typy) TB7] 2 ¢ [B], so by CR typ(y,[B17) + 413 .
similarly typ (v IBD)” + typ (v TE] + typ' (v IF]. so by CR
and P*T typ*(typi(yzﬂﬁﬂ)_) ¥ typ*(typi(y;>ﬁé‘ﬂ> v typ* (v IB] v
typ* (v,) U571 = [2:¢0B1 JEB1 7. again by CR, typ* (typ’ (v,IE1)) +

258

[2:60B) JE1B], whence k. typ' ({y,[B1}v 087, q.e.q.

The abstr. case is straightforward. This finishes the proof of
the lemma. This finishes the definitional constant case of the
theorem. Now the remaining cases of the theorem are straight-

forward. This finishes the proof of the theorem. O
Corollary: B; SFdA = B_;E—}bA_, B ; E_Fbtyp(A)_, B ; E_h:typ*(A)_

and typ(47) v typd) , typ*@d7) + typ*d) .

6.3.7 1Is A(n)d a definitional extension of A(n)c?

The above corollary amounts to the unessential extension properties
UE2 and UE3 (see v.3.3.2). Of course we also have h:A =4 = A and it
is tempting .to conclude the other half of UELl:

B; thyd = B; £fy4”
from the corollary., This is however not immediate as yet: we can conclude
Bi ghyAd =B ; £ kA
and we know
(B;£)-typ(4") = (B ;&)-typd")
but we hardly know anything about
(B;E)-typ*(47).

Instead, we first prove the substitution theorem for A(n)d; this
gives correctness of types, as well as 6-CL. The latter implies UE1,

which completes our definitional extension result.

6.3.8 Some nice properties of A(n)d

The corollary in 6.3.6 gives us already some nice results.
Theorem: /\(n)d satisfies (1) CR, (2) SA and (3) PD
Proof: (1) Let }aA, B <4 > (C. Then h:A—, B <4 >cC. By CR B v C,
so B4 C.

(2) Let I—d{A}[x:B]C‘. Then }-C {A7}x:B JC° so typd) + B .
Further typ(4) + typ(4) and by CR, typ(4) + B.

259
(3) Let Fd[x:alA, [x:add = [x:R]B. Then Fc[x:a_]A-,
[x:a 1A = [x:8 1B . By PD o + 8 so o + 8. g
Remark: We also prove some form of PT and P*T.
Let 44, k4B, A 2 B. Then typ(4) v typ(B) and typ*(4) + typ” (B) .

Proof: }tA', FCB", A" 2B, so typd)” + typd") + typ(B) + typ(B)~
and by CR typ(4) + typ(B). Similar for typ*. 0

6.3.9 The substitution theorem for A(n)d
Lemma: Let }-dBl, l-de, |-C{Bl}32. Then f—d{Bl}B2

Proof: typ(8,) z typ(Bl)— v typ(BI) 2 ¢, typ*(3,) = typ*(Bz)_ ¥
typ*(B;) +[u:¢ly. By CR, typ(B,) + ¢, typ*(Bz) v Lu:¢dy.
So }-d{Bl}Bz. g

Lemma: Let i—-dB, i=1,+e+,k. Let g E B * c(g) E ¥ be the scheme of ¢,

with Iz;] = k. Let l'-cc(l—f). Then I—dc(g).

Proof: typ(B,) 2 typ(Bi)_ ¥ typ(B;) v B;ﬂﬁ_ﬂ < BiﬁEﬂ. By CR,

typ(B) B, [B]. so ch(B). 0

- - * - =
Theorem: Let & E on}-dB. Let stand for [x/4] . Let }-dAi and

typ(Ai) v aZ for i=1,+++,|x|. Then]v-dB*.

Proof: We use induction on I—dB. So, by ind. hyp. }-da; for i=1,--',|55].

Now typ(4) ¥ a,. So typ(AI) ¥ typ(Al)_ v oo,

' , @and by CR

typ(4]) + o). similarly typ(d,) + 5

5 = a;[[z_]}. Etc., and for all

i typ(Ai) ¥ a;ﬂz_]] . Now consider, e.g., the application case:
a_cEa}—d{Bl}Bz. By 6.3.6, x E E—FC{BI}B; and by the subst. theorem
. A T AT (= * Ty kT . * *
in /\(n)c, f"c{Bl[[A]]}BZ[[A 1¢ {Bl }32). By ind. hyp. |—dBl, }—de,

so by the first lemma,|-d{B’I}B§. Similarly use the second lemma for

the constant-expression case. The other cases are immediate. 0

260

6.3.10 The remaining nice properties for A(n)d

Corollaries of the preceding theorem are (1) correctness of types,

(2) 5—outside—CL1, (3) B-outside—CL1 (use SA).,

Lemma : /\(n)d satisfies CL1

Proof: The n-outside case is mere strengthening. We use the lemmas in

6.3.9 £ i i . ’ ’ . ind.
3.9 for the inside cases Let—]-dEBl}B2 ?1 > ?1 ?2 > ?2 By ind
hyp._|—d€1, }dcz. By 6.3.6 |-C{B1}BZ, and B, > ¢y, B, > C,, so
FC{Cl}C2 so Fd{Cl}Cz. Similarly for const. expressions. B
Theorem: A(n)d satisfies CL
Proof: As usual, by ind. on 2, O

Further we get the remaining UE-result:

g4 = (Fg47, typ(d) + typdD), typ™d) + typ*)

6.4 Nederpelt's original formulation

6.4.1 Nederpelt's original definition of A [51] used single-line
presentation. I.e. instead of defining correctness of expression rela-
tive to a context, he defined correctness of expressions having an ab-
stractor string [x:a] (notation §) in front.

For definiteness we give his rules. We write FN for correctness
in his system. But for certain provisions making sure that no confusion

of variables occurs, the rules read:

(1) |yt

(2) ko= fQz:ale

(3) f Qo @y = b @Qlx:aly

(4) k@4, - 9B, typ(@d) 2 Qu, typ*(@B) =z Qlx:alC = |- Q{A)B

6.4.2 BApart from the use of abstractor strings instead of contexts,
there are two other points that make the two approaches not completely
parallel, The first point concerns abstraction; our abstraction rule

has no counterpart in Nederpelt's system. Nederpelt rather follows a

261

combinatory (in the sense of combinatory logic) way of building ex-
pressions. In the language of combinatory logic, rule (2) above is the
rule for Ia’ the identity in o, and rule (3) is the rule for Kay' the
constant function on o with outcome y. Alternatively, rule (3) might

be called a rule of weakening (see V.2.9.3)-

6.4.3 The second point that requires attention is that an abstractor
string can get involved in a reduction (notably an n-step), whereas
contexts are of course immume to reduction. First some notation. We
write |Q[for the number of abstractors in &. We write § 2> @' if
@=[x:a], @ = [z:0']) and o = o' in the obvious sense.

Now we have the following lemma: @4 2 @'4', fo = ‘Q'

=4 2 A4"*,

Proof: If there are no n-steps involving the border line between & and
A, then clearly @ = @', 4 =z A'. Otherwise § = Qlfx:a], a =o',

9 2@, A2 {x}Bwitha ¢ FV(5) and 9B = @lw:lA". I.e.

QA Ql[x:a]A 2 Qi[x:a']{x}B >n QiB 2 QI[x:B]A'. Now we can, e.g.,

use ind. on 8(§4) and conclude that B = [x:RJA'. But then 4 2 4°',

g.e.d.

6.4.4 The equivalence proof

Now we are ready for the eguivalence proof.

Theorem: Let

Q= [z:al, £ =2 E a.
Then

F 94 = eF4

Proof: The <-part is immediate. We use induction on F. E.g. consider
our variable rule: from z E &F we conclude x E &in. If xi is the
most "recent" variable then we must use rule (2). Viz. x E &F is
itself a result from xl E al,-°-,xi_1 E ai—lkai' By ind. hyp. we
get }N[xl:alj---[xi_l:ai_ljai. Otherwise we must insert the

abstractors inbetween[ki:ai] and the end of § by successive

applications of rule (3). Now consider the = -part. The crucial
case is the application clause. So let FNQA, FNQB,

typ(g4) = Qa, typ*(@B) = Q[x:a]C. By ind. hyp EFA, EFB. Now

typ(€4) Q typ(4) = Qo so by the lemma typ(4) 2 o. Similarly

typ* (B) [z:a]C. So we conclude £-{4}B, g.e.d.

v

262

6.4.5 The nice properties for Nederpelt's system

One of the consequences of the theorem is:

}—I\{élﬁl—/l

so the N-system can be considered a part of our system. This gives us
CR and CL immediately. From this one can get the other properties SA,
PD, PT etc. as usual.

6.4.6 Alternative way of embedding Ad into AN

Resuming the results of the preceding sections: we have constructed
an embedding of A(n)d (via A(n)C and A) into AN.

Here we introduce an alternative way (due to Nederpelt [49]) of
embedding A(n)d directly into AN. Our notation for the translation is,
again, '. Let a statement B; EFdA be given. Primitive schemes
2 Ea * p(x) Ey are, as is to be expected, turned into abstractors

[p' E [x:a'ly']. The context £ is of course transformed into an ab-

stractorstring £' = @. Essential is the translation of definitional
constant schemes. A scheme £ E a * d(x) := D * d(x) E vy is translated
into an expression "segment" {[x:a'1D'}{d' : [x:a'ly']. All constant

expressions ¢(4) are now translated into {Ai}---{Ai}c’. So B; EFdA is
translated into a single expression B'E'A', where B' is a string of
abstractors and applicators, and £' consists solely of abstractors.
For expressions the translation is quite similar to the translation

' in 6.2.1. In particular we have (as in 6.2.4) typ(") ZB typ(4) .
However, w.r.t. to d-reduction the correspondence is not too close: it
is not possible to eliminate occurrences of d' one at a time. So in
order to establish A + B= A' ¢ B' we need a partial §-normal form
again.

Anyhow, it is indeed possible to prove B; EFdA ﬁ'FNB'E'A'.

263

VIII SOME RESULTS ON AUT-Pi

VIII.1 Introduction and summary

1.1 There are two languages of the Automath family that have been
developed for practical (in contrast with, say, language theoretical)
purposes and have actually been applied in extensive formalization pro-
jects. On the one hand there is AUT-QE, used by L.S. Jutting in his
Landau translation [37]. The latter reference also contains an informal
introduction to the language [27]. The theory of AUT-QE is to be found
in Chs. IV to VI of this thesis. On the other hand there is AUT-Pi,
invented by J. Zucker, and employed by Zucker and A. Kornaat for the
formalization of classical analysis and some related topics. In [77]
cne finds a short account of both the language and the formalization
project, This chapter is devoted to the theory of AUT-Pi, which is not
quite as complete as the theory of AUT-QE. Some work remains to be

done, notably on the extensional version of the language (see sec. 6).

1.2 What AUT-QE and AUT-Pi have in common

In IV.l we described AUT-QE as a first-order pure, regular, gene-
ralized typed A-calculus system. Using the same terminology, AUT-Pi is
a first-order extended, regular, generalized typed A-calculus system.
So both languages have much in common and, in some sense, AUT-QE can
be considered a sublanguage of AUT-Pi.

We resume: both languages are regular, i.e. they have just ex-
pressions of degree 1 (supertypes), 2 (types and typevalued functions)
and 3 (terms). They are first-order, i.e.there is only quantification
and A-abstraction over term variables, not over type-variables. Further,
they have generalized type structure, i.e. the types are constructed
along with the terms. Besides, AUT-Pi and AUT-QE have the book-and-
2ontexl structure in common. Books to introduce primitive and defined
constants, depending on variables, for which substitution (instanti-~
ation) is permitted. Contexts for the introduction of variables.

Here we want to emphasize that, just like AUT-QE, AUT-Pi is a non-
arithmetical system, i.e. it has no recursion constant with the cor-

responding reduction.

264

1.3 The additiocnal operations of AUT-Pi

But, where AUT-QE belongs to pure typed A-calculus (abstraction,
application and instantiation as the only term-forming operations),
AUT-Pi is a typical extended system, with the additional kinds of terms:
pairs <P,A,B>, projections A(l) and A(2)’ injections il(A,B) and
iz(B,a) and @-functions (or: ®-terms) A ® B. Here the P of the pair,
and the 8 and a of the injections are mere type-labels to guarantee
uniqueness of types.

Corresponding with these new terms there are new type-constructs:
first the swm—type ZP containing the pairs <P,4,B> as elements, where
P 1is a type-valued function with domain a, A belongs to a and B is of
. type {4}P. In case P (as a type-valued function) is constant, i.e. {4}P
does not depend on 4, the pair and the sum type can be considered to
degenerate to <4,B> and a ® 8 respectively, where ® is the ordinary
cartesian product and 8 is the type of B. Secondly, there is the dis-
Jjotnt union or e-type o ® B, containing the injections il(A’B) and
i2(B,a), where A and B are of types o and B respectively.

The pairs get their meaning by the presence of the projections and
the associated reductions: if 4 is a pair, i.e. element of a sum-type,
say XP, then A is an element of the domain of P and 4 is element

(1) (2)
of {A(l)}P. Now <P,A,B>(1) n-reduces to A and <P,A,B> n-reduces to E.

In the extensional version of AUT-Pi, <P,A(1),A(2)> cfi;duces to 4,
provided A belongs to ZP (otherwise the type would vary under reductior}.

Similarly, the injections get their meaning by the ®-terms and the
associated reduction. Let us first explain what a @é-term is. Roughly
speaking, when f is a function on a and g is a function on B, then -
under certain conditions - f @ g is a function defined on o @ B, acting
on (injections of terms of type) o as f and on {injections of terms of
type) B like g. So the reductions are as follows: {il(A,B)}(f ® g)
+-reduces to {A}f and {iZ(B,a)}(f ® g) +-reduces to {Blg. The corres-
ponding extensional reduction is e-reduction: [x:a]{il(x)}f ®
[x:B]{iz(x)}f e-reduces to f, provided f does not contain x as a free
variable (i.e. does not depend on X).

Please note the use of parentheses: @ is supposed to bind more
loosely than the other term forming operations.

A more precise definition of AUT-Pi follows in sec. 2.

265

1.4 The connection with natural deduction systems

By the well-known formulae-as-types, derivations-as-terms inter-
pretation, systems of typed A-calculus can be brought into close corres-
pondence with certain natural deduction systems for intuitionistic
logic (including the usual proof theoretic reduction relations). Thus,
pure systems correspond to logical systems with - and V only, and ex-
tended systems correspond to systems with more connectives., In particu-
lar, the ¥, the pairs and the projections of AUT-Pi may provide the
interpretation of "strong" existential quantification with its intro-
duction and elimination rules (though this has not been exploited in
Zucker's book, see [77]). And @, the degenerate form of I, corresponds
precisely to conjunction,

As for the interpretation of Vv (disjunction) by ®-types, the in-
troduction rules of v do correspond to injection, but the elimination
rule of v differs slightly from its counterpart in AUT-Pi., The usual
elimination rule of Vv (see, e.g., Prawitz [59]) operates on three argu-
ments: from (1) a derivation of a VvV B, (2) a derivation of vy under the
assumption a, (3) a derivation from Yy under the assumption B, one can
form a derivation with conclusion Y. The assumptions o and 8 of the
derivations (2) and (3) are discharged.

The AUT-Pi operation representing this rule must be constructed
in several steps: first (2) and (3) are transformed into derivations
of @ > v and 8 > Y respectively. These two derivations are combined into
a derivation of (a v B) > y (by using @). Then the conclusion y follows
from modus ponens (by (1)).

Here we stick to the AUT-Pi variant of the rule. For a discussion
of the alternatives see Pottinger [56, 57].

Because AUT-Pi is still non-arithmetical, it cannot represent

natural-deduction systems for arithmetic (in the sense intended above).

1.5 Product formation versus type inclusion

Now we discuss a specific difference between AUT-QE and AUT-Pi,
that prevents AUT-QE from being an actual sublanguage of AUT-Pi. In
AUT-QE there is no difference in notation between type-valued functions
and function types. I.e. the expression [x:al]B8, with B an expression

of degree 2, stands for the function that to arguments 4 in o assigns

266

types BlA], but also for the type of the functions which, when applied
to A4 in o, produce a value in B[4]. and, to make things even more com-
plicated, it is possible that B allows such multiple interpretations
as well.

In AUT~Pi there is reserved a special symbol for referring to the
function type, viz. Tl (for cartesian product formation): by prefixing
with Tl the type-valued function [z:a]f is turned into the corresponding
function type Tllx:alB. More general, if P is a type-valued function,
then TP is the corresponding product type, containing those functions
as elements which, when applied to arguments 4 of the right type,
produce values in {4}P,

The language AUT-Pi is named after the Tl of product formation.

In AUT-QE the expression [x:0]B can get (at least) two possible
types, viz. [x:alt and 1, according to which interpretation is intended.
This is implemented by the rule of type inclusion. As a conseguence,
uniqueness of types is valid for terms only. Some problems arise from
this in connection with defined constants (see Vv.1.9 and Vv.3.3.10). In
AUT-Pi uniqueness of types is valid for types as well: e.g. if B is a
type, then [x:alB has type Tlx:alt and Mx:a]8 has type T.

Note here the use of T again which makes the (constant) "super-type
valued function" [x:a]t into a super-type Mlx:alt.

At first sight it seems that the here-indicated difference is a
trifle, and that AUT-QE can be made into a subsystem of AUT-Pi by simply
inserting TI's at the right places. However, as noted by the Bruijn, the
correspondence is not that close: the rule of type-inclusion (of AUT-QE)
is somewhat stronger than the product formation rule (of AUT-Pi). See

sec. 6.1, [15] and [17].
1.6 Some features of AUT-Pi not discussed here

For completeness we mention two important, more or less syntac-
tical, features that enrich the language used by Zucker and Kornaat in
their AUT-Pi book. First, there is the use of AUT-synt, a kind of Auto-
math shorthand, as documented in Jutting [37]. Secondly, there is the use
of strings—-and-telescopes (see [77]).

However, these features do not belong specifically to AUT-Pi; they
rather can be attached to any Automath language, but were not yet avail-

able when Jutting started his Landau translation. On the contrary, the

267

strings-and telescopes generalize (and, hence, duplicate) in some sense
the pairs-and-sums of AUT~Pi. These two features are not discussed in
this thesis.

In [77] 2Zucker describes how the whole language is divided into a
t-part (for terms and types) and a p-part (for proofs and propositions).
This division originates with the distinction between the two degree 1
basic constants, T (or type) and 7 (or prop). Connected with this is
the principle of equality of proofs (two proofs of the same proposition
are considered to be definitionally equal; only consistent with classical
logic) . Here we just use T as our basic constant. As a conseguence we

do not discuss equality of proofs.

1.7 Section 2 below contains a more precise definition of AUT-Pi. In
section 3 we prove the closure property: Correctness is preserved under
reduction. In section 4 we first define two systems of normable ex-
pressions, AUT-PiO and AUT—Pil, which have the same "connectives" and
reductions as AUT-Pi but a simplified type structure, We study SN for
these two systems. First we show that the methods of proving g-SN
directly apply to the situation with Bn-reduction. In sec. 5 we give
some different proof methods for SN in presence of +-reduction. Then

we extend the AUT—Pi1 results to AUT-Pi. Section 6 just contains some
remarks on the connection between AUT-Pi and AUT-QE (type-inclusion vs.

product formation), and on the particular problems posed by the

addition of e-reduction.

VIII.2 A short definition of AUT-Pi

2.1.1 We give an E-definition of AUT-Pi, along the lines of the AUT-QE
definition in V.2. For the formation of books and contexts we refer to
Iv.3, and for their correctness to the requirements in V.2.1.3. However,
the inhabitable degree condition, to the effect that correct expressions
can be of degree 1, 2 and 3 only, has to be restricted further, to an
tnaabitability condition: Expressions acting as the typ of a variable

or a constant have to be inhkabitable. Where we define o to be inhabitable

when degree(a) = 1, or: degree(a) = 2 and o E 1 (oxr « E m,

268

2.1.2 But first we must define the degree (and, implicitly, the notion

of degree correctness) of the typical AUT-Pi expressions:

degree(A) = 1 or 2 = degree(l1(4)) = degree(4)
degree (4A) = 2 = degree(Z(4)) = 2
degree(4) = 3 = degree(A(l)) = 3, degree(A(z)) =3
degree(4) = degree(B) = 2 or 3 = degree(d ® B) = degree (4)
degree(4) = 3, degree(B) = 2 = degree(il(A,B)) =

=3

degree(iz(A,B))

degree(C) = 3 = degree(<4,B,C>) = 3

degree(4) = 2, degree(B)

2.1.3 Correctness of expressions, E-formulas (for typing) and Q-formulas
(for equality) is defined simultaneously. For the notational conventions
and abbreviations we refer to v.2.1 and V.2.2. E.g., we display degrees
as superscripts to the correctness symbol F, we freely omit books and
contexts (or parts of contexts) not relevant to the rule under con-
sideration, and we sometimes omit F as well (viz. in front of a formula

when context and degree are not shown).

2.2 The general rules

2.2.1 We start with the rules, which AUT-Pi has in common with AUT-QE.
We assume a correct book B and a correct context £. First the general

rules for correctness of expressions and E-formulas.

1
(1) type and prop: F't and |—11r
(ii) variables: =+++,x E a,---Fx(Ea)
(iii) instantiation: if ¢ is introduced in B, with context Q £ E,

then B E B[B] = ¢(B) (E typ(a)[B])

For our language theoretical purposes we need not distinguish between

7 and m. So in the sequel we just use T, intending to cover 71 as well.

2.2.2 Then the remaining general rules: for Q, for type-modification

and strengthening.

269

(iv) Q-reflexivity: FA =4Q4

(v) Q-propagation: A4 QB,FC, (B>Coxr C>B)=4AQC

(vi) type-conversion: AEBQC=4ELEC

(vii) strengthening: if (x E a,n)FB (E/Q C), x does not occur free

in n(,C) and B then nkB (E/Q)

The (-propagation rule still depends'on an assumed reduction relation,
e.g. either with or without the extensional reductions n, €, o. The rule
of strengthening is only included for technical reasons associated with n
and €, so can be omitted in the non-extensional case.

Notice that the rule of type-inclusion of AUT-QE has been left out
here. Its role, viz. of transforming (type-valued) functions into types,
is to be played here by the product rule for 2-expressions of the next

section.

2.3 The specific rules I

Now we come to the rules specific for AUT-Pi. They are divided
into three groups. Each consists of one (or more) introduction rule(s)
one (or more) elimination rule(s) and a type formation rule to provide
the introduction expression(s) with a type. With each group an IE-re-
duction rule (i.e. introduction-elimination reduction rule) and its

extensional counter part can be associated.

I Abstraction, application and products

1. Product rule 1: x E of'B = ' N([z:01B)

2. Product rule 2: B E NM([x:ajt) = M(B) E 1

3. Abstr. rule: R, @ E of T B(E) = FY 20 IB(E Mifx:all))
4. Appl. rule 1: AE a, 2B E MIz:alf)> 2{4}B(E slaD)

5. Appl. rule 2: AEa, BEMWCEC), ¢ ENMlx:altr) = {4)}B(E {4}C)
The associated reduction relations are 8 and n:

(A}(x:adB >g BlAD, [z:ad{z}d > A if = ¢ FV(4)

270

It is in the above group of rules that the difference between AUT-QE
and AUT-Pi becomes explicit. For a discussion of the rule of Tl see 1.5,

and 6.1.
Notation: In case I ¢ FV(B) we abbreviate T([x:a]B) by a - B.

Using this convention, product rule 2 and appl rule 2 become

BEo-»1t=TB E 1
and

AEao, BEMC, CEa~»1={4A}B E {4}C

2.4 A possible extension concerning l-expressions

Notice that all compound correct l-expressions have a Tl in front,
or possibly (when l-abbreviation constants are present) {§-reduce to an
expression starting with JI. In fact, each correct l-expression §-reduces

to an expression like TI([wx, :a, JM(Lax_ :a JM(eecese-TI([z :a JT)=*))).
1 2 2 n n

1

As a consequence all l-expressions are inhabitable (see 2.1), just
like in AUT-QE, but they generally contain parts which are not correct,
e.g. the part [x:alt in T([x:alTt). If we do not like this we can easily

extend the language by

(1) restricting the notion of inhabitable l-expressions: 1-expressions
are said to be inhabitable according to: (i) T inhabitable, (ii)
(ii) if B inhabitable then T([x:al]B) inhabitable, (iii) if B in-
habitable, B Q ¢ then C inhabitable.

(2) restricting preduct rule 1!:
2 E of'B, B inhabitable = F([x:alB)

(3) dropping the restriction to degree i +1 in the abstr rule. Then,
we can further extend AUT-Pi to a +-language (i.e. all value

degrees are also function degrees, see V.2.7) by
(4) adding a new appl rule:

A E a, BQI[x:ale =|{4)B

These changes are relatively unimportant, of course.

271

2.5 The specific rules II

2.5.1 The rules of group I can be considered as just rephrasing the
corresponding rules of AUT-QE. Now, however, we come to rules which

have no counterpart in AUT-QE.

II Pairs, projections, sums
Let ¢ E o > 1. Then
1. Sum rule: FZ(¢) (E 1)
2. Pair rule: A Ea, BE (4} = F<¢,4,B>(E $(¢))

3. Projection rules: C E Z(¢) = FC (E o), fc (E {C(l)}¢)

(1) (2)

The reduction rules associated with group II are m and 0:

<¢,A,B>(1) >n 4, <¢,A,B>(2) >ﬂ B

< A >> A
AEZ() = ¢,A(1), (2) s
2.5.2 Notice that here, for the first time, reduction ceases to be a
purely syntactical matter. The condition A E Z(¢) is inserted here

because we want to maintain preservation of types

AEa,4d>B=>BEa

Otherwise, we come in trouble with ¢ E a » 1, 4 E o, ¢ = [x:al{4}4,
5 E {A}¢, where C = <¢,4,B> E Z(¢) and <1p,C'(1
+ Q4.

As a consequence we must modify one of the monotonicity rules into:

if x Ea=4>B then {x:alJd > [x:alB.

),C(2)> E Z(y) and not

2.5.3 Notation: in case ¢ FV(B) we abbreviate X([x:alB) by o ® 8.

For pairs <¢,4,B> in such a degenerate sum we can omit the type label

¢ and just write <4,B> (because it is intended that ¢ can be constructed
from A and B in this case).

The degenerate versions of pair rule and projection rules are:

AEa, BEB=><4,B>FE aeRg

CEao®pg=>C Ea, C

(1) (2) BB

272

For degenerate pairs the typing condition for o-reduction can be omitted.
Notice that, in contrast with products, only degree 2 sums are
formed, and consequently only degree 3 pairs. Besides,the two components

of a pair are 3-expressions too.

2.6 The specific rules III
See the discussion in 1.4. The rules concern
III Binary unions, injections and plus-terms
Let o E 1, 8 E 1. Then
1. Binary union: Fa ® B(E 1)
2. Injection 1: A E a= Fi1(4r8><5 o @ B)
3. Injeétion 2: BEg= Fiz(B,a)(E a ® B)

4. Plus rule: YE1, BEa>y, CERB+>y=}FBo C(E(@a®B) + ¥v)
The associate reductions are + and €:
{il(B,A)}(C & D) >+ {4}c, {iz(B,a)}(C ® D) >+ {41}D
[w:a]{Z (2)}F @ [z:g){i (@) }F > F if x ¢ FV(F).

Notation: @ is supposed to bind more loosely than the other connectives.
This is why the function parts of the +-redices are, and the left- and
right part of the e-redex are not put inside parentheses.

We mention also the alternative form of +, +' (which is in fact +

followed by B):

{il(A,B)} [x:a]B @ C) > , BlA]

+|
and an alternative form of €, calt:

[x:a]Bﬂy/il(x,B)H @ [x:B]Bﬁy/iz(x,a)ﬂ > (y:o ® BIB

calt

We clearly have >0 >, 2 (see 1I.7.1.2 for the notation). Further

+ B
{il(A,B)}(B ® () <n {il(A,B)}([x:a]{x}B o C) >, {4}B
etc. i.e. >, =< > So, as far as equality Q is concerned, we have
n

(in the sense of 1I1.0.4.3) (B,+ = +') and (n,+' = +). Since we always

include 8, and n is opticnal, we prefer the rule + in our definition.

273

Similarly we have > and <¢ v SO (w.r.t. o

= > > > = > >

> galt n ealt R B

(n,ealt = ¢) and (B,e = calt). Thus we prefer rule €.
Binary unions always have degree 2, injections always have degree

3. Only ®@-functions of degree 3 are formed.

2.7 A possible extension concerning @-functions

We can, however, define an extension of the language by also ad-
mitting degree 2 &-functions, i.e. glueing type-valued functions together
into a single type-valued function. To this end we put: Let a E T,

8 E 1. Let $ Ea~+1, 9y EB > 1. Then
4', Plus rule 1: F¢ ® Y(E(a ® B) »~ 1)
5. Plus rule 2: BETN(¢), CEN(yY) = FB o CE Mo @ v))

The old plus can be considered as a special case of rule 5, by using ¢

or calt:
X ® lx: > xX:0 @
lx:aly ® [x:8ly aalt[By
We do not discuss this extension here, because it really complicates

the normability problem (see 4.6).

2.8 Elementary properties

As in V.2.7 - V.2.9 we can infer some nice properties. First, con-

cerning the degrees:
FA = A degree correct

A Q B = degree(4)

degree(B)

A E B = degree(4)

degree(B) + 1

Then, concerning contexts, renaming (see V.2.9.2) and weakening

(v.2.9.3). Further, the stmultaneous and the single substitution theorem

(V.2.9.4-5), and correctness of categories (V.2.10): A E B = }-B.
Analogously to the abstr and appl properties in V.2.10 and V.2.1

(which m.m. hold as well in AUT-Pi) we have properties like

F<¢,4,B>= (AEa, ¢ Ea~ 1, BE {4}¢9) etc.

274

i.e. the "inversion of the correctness rules".
An important additional property (to be proved in the next section)

is uniqueness of types:
AEB, AEC=BQC

which in AUT-QE did not hold for A of degree 2, because of type in-

clusion.

VII.3 A short proof of closure for AUT-Pi

3.1 Proving closure for AUT-Pi is not very different from proving it for
AUT-QE. So we just sketch how to modify the proof in V.3.2.
We start with a version without the extensions mentioned in 2.4

and 2.7, but we include all reductions (also 61—reduction).

3.2 For the terminology see V.3.1. Let > denote disjoint more step

reduction. By the properties in II.7.4.3 we have
A > B=§-nf(4) > §-nf(B)

By the substitution theorem we have §-CLPT. The §-nf's of l-expressions
are of the form T([x:aJ4) or 1. Reductions of these expressions can only
be internal, so by induction on Q we get (including what might be called

UD1 here) :
Flﬂ([x:a]A) Q M([x:8]B) > a Q8 and (x E of4 Q B)
, 2 . 2 . 2
3,3 From this follows SA® (whence B—out51de—CL1) and B—outSLde-PTl.
viz. let A E ¢, Fz[x:B]C E M([x:alD), with conclusion F{4}[x:B1C. Then,

for some E, x E B-C E E and H({x:BIE) Q M({x:alD). So o Q B and
© E B-E Q D whence 4 E B (i.e. SA®) and « E BMC E D. so

clA] E DIA] (i.e. s-outsiae-CLPTf).

2
The proofs of UT2 and the inside cases of PT1 are by ind. on }.

275

3.4 The strengthenlng rule gives n-outside- CL . Here follows a proof
of n-outside- PT different from the proof in V 3.2.5. viz. let
F (x:al{z}4d E Y, x § FV(4). Then, for some C, [z:al{x}4 E
M(Lx:alCly/xl) Q vy, where z E of4 E M([y:a'IC), o' Q a. So, as well,
z E of4 E M([y:alC). By weakening « E a, ¥y E af4 E M({y:a)C) and
zEa, y EalHyldEC so z E ofly:al{y}d E M([y:alC). Again by
weakening « E of[x:a){z}4 E v, so by uT? & E oFy Q M([y:a)C). Hence
x E a4 E v and by strengthening 4 E vy, g.e.qd.

2 2
3.5 This completes the proof of PT . Then PT and LQ” follow by ind.
on 2> and Q respectively. Now we come to pTcL’ . For properties like sA°

we need

() QZ() =4 Qy
M) Q M) = ¢ Qv

(ac®B)Q (y®d8 »aQy, QS

3.6 To this end we study Bz—reduction and, in particular, Bz—head—
reduction, for short 82 (for the definitions see V.3.3.3 and V.4.4.5).
We know already 8% _outside- CLPT (thlS is B-outside- CLPT). From this
follows B CLPT by ind. on |-, and 8 -CLPT by ind. on 2. Now we use the
fact that 3 is the only argument degree and that, hence, Bz—reductlon
does not create new 82—redices. Compare V.3.3.4, VI.2.4,

As a consequence, 82-5N is quite easily provable (for degree
correct expressions) even without using norms: namely, if 4 82—SN, B
82—5N then Al B] 82—5N by ind. on (1) 62(3 (2) length (B). So, as
usual, B -SN by ind. on length (see IV.2.4.1). A fortlorl, Sh -SN.

Besides B satisfies CR, so we can speak about B —nf s. E.g.,
2 _ 2 _
degree(B) = 2, Bh—nf(B) = [z:a)C = Bh—nf({A}B) = ClA]

2
Clearly Bi and § commute, so BEG—CR and Bhd—nf's are defined too.

3.7 Theorem: FZA Q =(¢) = Bié—nf(A) =T, ¢ Qu

Sketch of proof: Ind. on Q. For the induction step we need the following
property: i-zA, Bid-nf(/l) =35(¢), A>Cor C>4, Fc= Bié—nf(C) = I(y),

¢ Q ¢v. 1£f € > A it is eacy, (Bi)-i-pp holds here for all kinds of

276

reduction i (see II.7.3), so Bié—nf(C) = Z(P), ¢ > ¢. Otherwise, 4 > C.
Now Bid commutes with all other kinds of reduction, except ni (see
IT1.7.2). And it even commutes with the latter, except for "outside"
domainf. Yhefe_we define the latter to be the ai, Bj, etc, in
{A}x:0l{B}y:8]+++, with {4} possibly empty. But there are no "ocutside"
domains left in X(¢). So, in any case, Bié—nf(C) = X(¢), ¢ > ¢. In fact,
if A >f1h C then ¢ = ¥.

By 8i6—CL we know that both X(¢) and Z(y) are correct so from
(¢ >¢ or Y >¢) we can conclude ¢ Q ¢. This proves the wanted property. [

Corollary: X(¢) Q Z(y) = ¢ Q ¥

3.8 Both the theorem and the corollary can be proved in precisely the

same manner .for T and &, yielding the properties in 3.5.

Remark: The theorem above is a kind of minimal result for the desired
. 2

properties. E.g., we can, alternatively, prove a kind of weak CR"-

result as in VI.2.4, or prove a similar but stronger theorem in the

spirit of Vv.3.3, v.3.4.

3.9 Now we are able to prove the outside cases of CLPT?. E.g. for +-
reduction. Let {il(A,B)}(F @ G) E y. Then il(A,B) Es, FoGE M),

4 E 8+ 1, {il(A,B)}¢ Qy.2and A Eo, a®@B Q6, FEa' »vy',
GER">vy', (" ® 8" »~v"'" QT(¢). So [x:a'" ® B')y' Q ¢, and

[x:a' ® B')y'" E &> 1. So (a' ® 8') Q & Q(a ® B), whence o Q o',

8 Q 8'. so {A}F E v'. Further y' Q {il(A,B)}[x:a' & g'ly' Q {il(A,B)}¢
Q v, whence {A}F E v too. Similarly for the other variant of +.

3.10 Then follows full CLPT1 by ind. on } and CLPT by ind. on 2.
Besides, we have of course UT and LQ. And we can freely make the
language definition somewhat more liberal, as follows.

First we can change the Q-propagation rule into
AQB, BYC, Fc=24Q¢C
Secondly we can add the appl rule, with i 2 1
i+1
AEa, 7B Q[x:alC = }{4)B

and drop the degree restriction in the appl rule 1 (i.e. rule I.4).

277

3.11 Now we shall say something about proving CL for AUT-Pi with the
extension of sec. 2.4. Just adding abstr expressions of degree 1 does
not matter at all, we still can get up! without any difficulty.

Making the language into a +-language (i.e. adding appl-l-express-
ions too) causes some trouble with the domains in case n reduction is
present. Which can however be circumvented as in V.3.3: First leave nl

out, then prove Bl—CL and add n1 again.

3.12 Finally the extension of sec. 2.7, i.e. where &-2-expressions are
present. If there is also ez-reduction the situation is essentially more
complicated, because 8 and ¢ interfere nastily. But without 82 the
proofs of 3.3-3.8 just need some modification: (B+)2—SN can be proved

as easy as Bz—SN, +2—CLPT is not difficult either. Then theorem 3.7 can

2
be proved for (R+) -8-head-nf's instead.

3.13 Requirements for the pp-results in II.9 were:

(1) The result of outside-8-reduction is never a ®-, an inj- or on

abstr-expression
(2) The result of outside n or € is never an inj-expression or a pair.

Now we can easily verify them for AUT-Pi using the results of this
section. First let <¢,A(1),A(2)> >s A. I.e. degree(d) =3, A E Z(¢). 1If
A4 were an abstr-term then 4 E TI(y) for some ¢. UT states that
M(y) Q £(¢). Theorem 3.7 states that TI(P) = Z(x) for some x. This is
impossible. Similarly for inj- or &-expressions. Or let [z:al{x}4 - a.
By PT 4 E M(¢) for some ¢. If 4 were an inj-expression then degree(4) =3,
4 E (B ® vy) for some B, vy. By UT T(¢) Q (B @ v). Use the suitable variant

of theorem 3.7 again (sec. 3.8), this gives a contradiction.
VIII.4 A first SN-result for an extended system
4.1 Introduction
The word "extended" in the title of this section refers to the

presence of other formation rules than just abstr and appl (and possibly

instantiation) and other reduction rules than just B and n (and possibly

278

8). In the case of AUT-Pi we are concerned with the additional presence

of:
(1) pairs and projections, with reductions 7 and o

(2) injections and @-terms, with reductions + and €

In IV.2.4 we gave some versions of a "simple" (as compared to a proof
using computability) proof of B-SN. Then we extended it to fn using
Bn-pp. Afterwards we included 8 as well.

Here we stick to the separation of § from the other reduction
rules. Below we first show (4.6) that addition (1) mentioned above does
not cause any trouble: the first version of the "simple" proof of R-SN
immediately covers the Bn-case. And afterwards, we can include § and n
by a postponement result again.

However the second addition essentially complicates matters. The
presence of + makes the first B-SN proof fail here, because the impor-
tant induction on functional complexity (norm) goes wrong. (see sec.
5.1.2). We add new, socalled permutative reductions (sec. 4.3.1, III)
in order to save the idea of the proof (5.1.3). These permutative re-
ductions, in turn, complicate the SN-condition, and a way to keep them
manageable consists of adding (in 5.1.5) still another kind of reduct-
ion, viz. Improper reductions (sec. 4.3.1, IV).

our second B-SN proof of Ch. IV can fairly easy be adapted for the
present situation however. We just have to add improper reductions to
make the proof work (see sec. 5.2). For completeness we also include a
proof based on the computability method (sec. 5.3).

However, these three proofs just cover the situation with 8+ n-
reduction and can, by ext-pp be extended to B+ wén. Alas, we have not
been able to handle e too. We cannot use pp anymore, so we have to in-
clude € from the start of the proof on. And none of our methods can
cope with this situation.

The problems with @ (or v) are well-known from proof theory. E.g.
Prawitz in [59)] first proves normalization for classical propositional
logic, where he avoids the problem with v, by defining v in terms of
"negative" connectives. Then, when studying intuitionistic propositional
logic, he also needs permutative reductions for proving normalization.
By the way, our improper reductions turn out to be identical with the
semi-proper reduction used in the SN proof for arithmetic by Leivant in

fa0].

279

4.2 The system AUT-Pij

4,2.1 For brevity and clarity we study a system of terms with the same
"connectives" and reductions as AUT-Pi (so the essential problems with
SN become clear) but with a simplified type-structure. It can be com-
pared with the normable expressions of Ch. IV. Later (sec. 5.4) we ex-

tend our results to AUT-Pi.

4.2.2 Reduced type structure

The reduced types or norms (syntactical variables o, B, Yy, Vv) are

inductively given by:
(1) 1 is a norm

(2) 1if o and B are norms then also a ® 8, oo > 8 and o & R

Note: If we write [al]B instead of o - B it is clear that the norms of
Ch. IV form a subset of the present norm system., We write o + B with
the purpose to show that our norms form a simple type structure over a
single fixed type, T. This is also true of the norms in Ch. IV, Hence
normability results (as in Ch. IV, or as given earlier by Jutting and
Nederpelt [36,51] for certain Automath variants) can alternatively be
proved as follows: the generalized systems under consideration are not
essentially richer than simple, non-generalized type theory, in the
sense that they do provide the same set of terms of free A-calculus
with a type as does a simple, non-generalized system. Compare Ben-

velles (6].

4.2.3 Terms of AUT-Pi,

All terms (syntactical variables 4, B, C,***) have a norm. The

o. Terms are

norm of A4 is denoted p(A). We also write 4 € o for p(4)
constructed according to:

(1) variables x, Y, 2,**+ of any norm

(ii) z€oa, A€o, BEB=[x:AIBE o~ B

(iii) C € o ~ B, A € o, BE€E B = <C,4,B> € o ® B

(iv) A € o, BE g8 = il(A,B) € a ® 8, iZ(A,B) € 8@

280

(v) B&€a—+B, A€ a=(A}BER

(vi) B € a ® 8= B(l) € qa, B(2)

(viiy [x:41C € a > v, [y:B1D € 8 vy = ([x:AJC e [y:BID) € (a®B) »Y

€ B

These terms can be compared with the 3-expressions of AUT-Pi. However
there are no constants, no instantiation (and no §8), it has simpler
type structure and it has only @&-terms of the form [x:41C ® [y:B]D.
Below we also consider a variant AUT-Pij which has general é-terms. In-

stead of rule (vii') it has rule
(vii) B€a~»y, CERB>y=>B&(C € (0 ® B) > ¥

Below, we often omit type-labels in [x:41B, il(A,B), iz(A,B) and
<C,A,B>, just writing [2]B, il(A), iz(A) and <4,B>.

4.3 The reduction rules

4.3.1 We consider four groups of reduction rules
I The introduction-elimination rules (IE-reductions) B, m and +'
(see 2.6).

Rule +' is particularly appropriate for AUT-Pij, i.e. in connection
with rule (vii'). For AUT-Pij we rather use rule +.

11 The ext-reductions n, o and ¢

Here we use the simple unrestricted version of o: <C,A(1),A(2)> > A.

III Permutative reductions (p-reductions)
() {AXBY([x)C ® [yID) > {B}([x]{A}C e [y1{A}D)

() ({A}([x]1C & [y]D))(1

(2)-projection

y > {A}([x]C(l) ® [y]D(l)) - similarly for

() D=E®F={{A}([xlB o [x1O)}D > {A}([x1{B}D @ [x]{C}D)

The general pattern of these rules looks like
0({4)([z1B @ [y1C)) > {AY([x10(B) @ [y10(C))

where (is an operation on expressions, given in one of the following

281

B(l) or (0(B)

The norms of these B's are respectively a -+ 8, a & 8 and o ® 8. That is

ways: 0(B) ={4}B, 0(B) z {B}(E e F), 0(B)

Bioy-

why the rules are coded (»), (®) and (@).

In case the argument of 0 allows outside (i.e. ®-reduction), the
p-step does not produce a new equality: 0({i1(A)}[x]B ® [yJo) > 0(BlA]) =
0B [4] < {il(A)}(ExJO(B) @ [y10(C)). Below (6.2), it turns out that,
generally, p-equality is generated by Bn+e-reduction.

The above mentioned rules are the standard ones from proof theory.
There it is formulated like this: if the conclusion of an V-elimination
rule forms the major premise of an elimination rule, then the latter
rule can be pushed upward through the V-elimination rule. E.g. our -

rule can be compared with the following proof theoretic reduction:

[al [g] Lol (8]
B c D A c A D
aveg y>s y~>§ Yy vy>*3%8 y y~>é
A vE > B
Y ‘Y—)'(S a Vv B § J
+E
8 §

Both here and in proof theory the p-reductions are primarily intro-
duced for technical reasons. However, as Pottinger [56] points out there
is some intuitive justification for them too., Part of it, that in some
cases they do not extend the equality relation is stated above.

It has been suggested to allow other permutative reductions as
well (Pottinger [56], Leivant [40]). However, Zucker [76] has shown

that this spoils SN.

v Improper reductions (im-reductions)

(im) {A}Y([z:B1C ® Ly:DJE) > C,

{A}(Cx:B1C ® Ly:DIE) > E

Notice that the set of free variables of the expression can be enlarged
by performing an im-reduction. If an inside im-reduction takes place
inside the scope of some bound variable, the latter variables have to
be renamed in order to aveid any confusion.

These reductions can be compared with Leivant's [40] semi-proper

282

reductions. They degenerate to what Prawitz calls inmediate simplifi-

cations, when & ¢ FV(C), resp. Yy ¢ FV(E).

4.3.2 One step and many-step reduction

One-step reduction >, is, as well, generated from the main or out-

1
stde reductions given above, by the monotonicity rules. Then follows

many-step reduction 2 from reflexivity and transitivity.

4.3.3 The usual substitution properties are valid, e.g.,

B >1 B' = 4] >, B'[4] and

1

A > A' = B[A] = BlA'] etc.

4.4 Closure for AUT-Pig

4.4.1 First notice that AUT-Pij is certainly not closed under n,
because of the restrictive rule (vii'). So the proof below is intended

for the n—less case.

4,.4.2 Due to the simple type structure it is quite easy to show that
norms are preserved under substitution and reduction and hence that

AUT-Pig is closed under reduction.

4,4,3 Substitution lemma for the norms: * € o, 4 € o, B € B8 = Blx/A] € &
(and Blx/Al a term).

Proof: Ind. on length of B. 0

4.4.4 Reduction lemma for norms: 4 € a, A > A' = A' € o (this includes

CLl).

Proof: Ind. on the definition of >. For B and +' use the substitution

lemma., E.g. +': let 4 = {1‘1(:411)}([.7::1:42 ® [yJA3), A€ a,

At = A2ﬂA1ﬂ. Then, for some a_, Gy A1 € o

L ([a:JA2 ® [y]A3) €

1’

(a, ® a2) +> a, So [x]A2 €a, +0, &€ o A2 € o. So AzﬂAlﬂ € o,

1 1

qg.e.d. Or a permutative reduction: 4 = ({Al}([x]A2 ® [y]A3))(1),

283
A€ qa, A' = {Al}([x]Az(l) ® [y]A3(l)). Then for some B, Y

{Al}([x]A2 ® [y1A3) €Ea®B, x€a,,6 yct€ Gy Al € o ® a_,

2
A2 € a® B, A3 € a ® B. So 4" € a. 0

1’

4,4.5 Theorem: (closure) 4 € o, 4 2 A' (without n) = A4' € o

Proof: Ind. on =,

4.5 The system AUT-Pi,

4.5.1 Instead of rule (vii') it has the rule
B€a—+y, CEB>y=>Be(C € (a0 ®B) ~ v

and it has + instead of +',

Of course (vii') = (vii), so indeed AUT-Pi;) contains AUT-Pig. We
can define a translation ¢ from AUT-Pig to AUT-Pij; such that ¢ (4) Zn A
and which shows that AUT-Pi) is not a very essential extension of
AUT-Pig.

The translation is given by ind. on length. The only nontrivial

clause is ¢(C1 & C2) z [x:Ma]{x]¢(Cl) ® [x:MBJ{x}¢(02), where

C1 ® 02 € (o ® B) - y and Ma' M_ are suitable fixed expressions of

B
norms «, B and x, y are chosen of norm a, B such that x ¢ FV(Cl),

y ¢ FV(CZ), respectively, A. On variables, ¢ acts like identity. For

the rest, ¢ Jjust commutes with the formation rules. Clearly, ¢ leaves

the norm invariant and is indeed a translation into AUT-Pig.

4.5.2 We have the following properties
(1) o Blx/Al)y = ¢(B) (Tx/¢(A)]), if n(x) = n(4)
(2) For 1E-reduction: 4 >, B= ¢ (4) >y $(B)

(3) For (IE-ext)-reduction: 4 >, B = ¢(A) properly reduces to ¢(B).

1
Proofs: By induction on length. The 8-case of (2) uses (1):
$UA YA, = 16U IYI0UY) > $UAPI6UNT = 944D, q.e.a.

The +-case of (2): ¢({i1(A1)}(A2 ® Aj)) =

284

{11(¢(Al))}([x;MaJ{x}¢(A2) ® [x:MBJ{x}¢(A3)) >y

¢({A1}A2). The e-case of (3): ¢([x:A]{il(x)}B ® [x:C]{iz(x)}B) z

{¢(41)}¢(A2) =

[x:Ma]{x}[x:¢(A)]{il(x)}¢(B) ® [x:MB]{x}[x:¢(C)]{iz(x)}¢(3) ZB

[x:Ma]{il(x)}MB) @ ([x:MB]{iz () }¢(B) > ¢ (B). We particularly
investigate the case of n which is not allowed in AUT-Pig:

¢ ([x:A{x}B @ C) = ([x:Ma]{x}[x:wA)]{xM(B) ® [y:MBJ{y}cb(C) >B

(z:M =l (B) @ [y:M yle(0) = 9(Be) - if = ¢ FV(B) -.

4.5.3 In the sequel we prove SN for some versions (i.e. with and
without p-red. etc.) of AUT-Pip. By the above properties we can easily
extend the p- and im-less case to AUT-Pi;:

AUT-Piy SN (with +') = AUT-Pij; SN (with +).

Proof: Let A4 be an AUT-Pi; term. Use ind. on 8(¢(4)).)

But, from SN with + follows SN with + and +', because each +'-step can
be simulated by a + a f-step, so 8+ decreases under +'-reduction. And,
because AUT-Pi; contains AUT-Pij we also get SN for AUT-Pig with +

and +'.

4,5.4 The postponement requirements

For AUT-Pigp- and AUT-Pi)-expressions it is quite straightforward
to show the requirements (1), (2) of 3,13. E.g. let <A(1),A(2)>A.
Then A € o« ® 8, So 4 is not an inj-term, a ®-term, or an abstr-term.

Etc.

4.6 The first-order character of the systems

4.6.1 1In IV.1.,5 we emphasized the importance of the property
u({Al}B) = ”({Az}B)’ in particular u({Al}[xlAz) = u(Az)

i.e. the functional complexity of {4}B does not depend on the argument
A, Alternatively stated: it is of course possible that the different
values of Bhave different types, but apparently there is a strong uni-

formity in these types, for the functional complexity of all the values

285

is the same. In fact, we defined a system to be first—order if this

property was present.

4.6.2 Generally, the introduction of @é-types and e&-terms might spoil
this uniformity: we might be able to define functions completely
different on both parts of their domain. So, by "general” @-functions
the first-order property above gets lost. However, in AUT-Pig, AUT-Pi,
and in AUT-Pi the domain of ®-functions is explicitly restricted in
such a way, that the first-order property can be maintained, viz. by

requiring
(1) in AUT-Pigy that u(B) = u(C) when forming (x)B & (y)C
(2) in AUT-Pi; that B€ o + y, ¢ € 8§ » vy when forming B & C

(3) in AUT-Pi that B € o« > vy, C € B8 > vy when forming B & C

As aconsequence we still have u({Al}B) = u({AZ}B) and in particular
u({AY(LxlB @ [y1C)) = nu(B) = n(C).

4.6.3 Now it will be clear that the generalized ®-rules of 2.7 would
spoil the first-order character., Example: let A E t, BE 1, C E 1,

D E 1 then [x:AJC E 4 > 1, [¢:BID E B~ 1. So [2:4]C ® [2:B1D E

(A ®B) ~ 1. S0, if EEA~+C, FEB > D then (F @ F) E M([x:A1C &
(x:B1D). Clearly the functional complexity of {il(G)}(E ® F) for G E A
and {iz(H)}(E ® F) for H E B can be completely different, viz. that of
C and D respectively.

4.6.4 It is possible that a notion of norm (i.e. simplified type) can
be defined which is manageable and measures functional complexity of
these general ®-terms, but the present norm (and the corresponding SN

proof) is certainly not suitable for this situation.

4.6.5 Remark: Strictly speaking, the suggested correction between the
typing relation in AUT-Pi and the norms in AUT-Pig has not yet been
accounted for. The preceding statements have to be understcod on an

intuitive, heuristic level.

286
4.7 A proof of Bmno-SN

4.7.1 Here we show that the first B-SN proof of Ch.IV straightforwardly
carries over to the case of Bmno-SN. As our domain of expressions we

take, e.g., the terms of AUT-Pi,.

4.7.2 SN-conditions for 8w

For non-main-reducing expressions (also called immume forms or IF's)
it is sufficient for SN if all their proper subexpressions are SN. Inci-
dentally this is also true for projection expressions (because main 7-
reduction amounts tec picking a certain subexpression). So we have:

A SN = A SN, and the funny property: 4 SN & 4 SN.

(1) (1) (2)
We recall the SN condition for appl expressions in this case:

{A}B SN & A SN, B SN and (B = [x]JC = Cc[4] SNy

4,7.3 Heuristics: the dead end set for B8

So, the substitution theorem for SN is again sufficient for proving
SN (see 1IV.2.4). The crucial case of the substitution theorem for 3-SN
was where 4 is SN, B = {51}32 is SN, BZHAH 2 [y1C, but BZ # lylCy. 1.e.
the reduction to square brackets form depends essentially on the sub-
stitutions. Then we used the square brackets lemma: 32 > {F}z,
({Flz){A] = [yIC.

We define the set Ex of these expression {F}x symbolically by a
recursion equation Ex =z + {U}Ex'
where U stands for the set of all expressions and it is of course under-
stood that all expressions in Ex are in AUT-Pi; again.

The expressions {Fl}z can be considered as dead ends when one tries
to copy in B2 the contractions leading from BzﬁAD to [yJC, i.e. when
one tries to come "as close as possible" to an abstr expression. We do
not bother to make the concept of dead end more precise, or more general,
but just give this informal explanation for naming E, the dead end set

w.r.t. x, B-reduction, and abstr expressions.

287

4.7.4 The dead end set for BT7

When one tries to copy a Bn-reduction sequence of B[A] in B one
need not end up with an expression in Ex' but, e.g., can also end in

x(l). The following theorem states that F defined by

F=x+ F(l) + F(2) + {UJF

is the dead end set w.r.t. x, Bn and immume forms (IF's). Let = stand

for ZBn’ and let * stand for [x/A4].

Theorem: If B SN, B = C, C € IF then B 2 CO, CB > (with either (i)

CS non-main reduces to (, or (ii) CO € F.
Proof: Just like the square brackets lemma (second proof, IV.2.4.3), by
ind. on (1) 6(B), (2) 2(B). Let B* main-reduce to ((otherwise take
B CO).ThenB::z:, (and take CO:B, COEF),BED(l),BED(Z) or
B {Dl}Dz' E.g. let B = D(1)'

Then D* = <D1,D2>, 01 2 (. Apply
ind. hyp. (2) to D, In case (i), D = <E1,E2>, EI 2D, E

n

*
2

BzE,, E; z C. Then apply ind. hyp. (1) to E, . In case (ii),

* * - ok
D> EO, Eo € F, Eo > <D1'D2> and B 2 EO(l) € F, Eo(l) = Eo(l) > C,

2 D2, so

so case (ii) holds for B too.

Remark: (1) Similarly we can prove a more general outer-shape lemma
(see I1.11.5.4) for Rm, where the condition "C € IF" simply has been
dropped.

(2) It is probable that such "standardization-like" theorems can

also be proved without using SN (as in II.11).

4.7.5 Heuristics: the norms of dead ends
The point of the B-SN proof is:
B € Ex = 2(u(B)) < 2(ulz))

- where £ is the length of the norm -. So, if B[A] 2 [y]C then
R{u(y)) < &£(u(x)), and we can use ind. on norms in the crucial case of
the substitution theorem.

We are lucky that the same method works for Bm-reduction too.

Namely

BeF=2u(d) < 2ulx))

288

So, if

BlA] 2, [y1C then L(u(y) s &lu(@).

4.7.6 The substitution theorem for ARmw-SN
Theorem: A Bn-SN, B Bn-SN = Blx/A] B8n-SN

Proof: Ind. on (1) w(4), (2) %“(B), (3) 2(B). Let 2 be ZBN' If B= x

then B[A]) = A so SN, If B € IF or B = C(i) or B = 0(2) use ind.
hyp. (3). If B = {31}82 proceed as for B-SN, using the norm

properties of the dead end set F. O

4.7.7 gn-SN and Rmnog-SN

An immediate corollary of the substitution theorem for gn-SN is
Bw-SN itself. Now we can extend this to Bmno-SN (as in II.7.2.5) using
(81)-(no)-pp, a case of ext-pp (see II.9.2). The requirement for pp is
indeed fulfilled (see 4.5.4).

VIII.5 Three proofs of 8n+-SN, with application to AUT-Pi

5.1 A proof of Bm+-SN using p- and im-reductions

5.1.1 Here we show how the preceding SN-proof (based on the first
version of the simple B-SN proof in Ch. IV) has to be modified in order
to cope with + (or +'). First we shall see how the norm considerations

of that proof do not go through.

5.1.2 The dead end set for Bm+

Let 2 be 28ﬁ+' The following theorem states that the set G defined

by

G ==z + G(l) + G(2) + {U}G + {G}(U & U)

*
is the dead end set w.r.t. x, Bm+ and IF's., Let stand for [x/A].

*

Theorem: Let B be SN, B* = ¢, C € IF then B 2 CO with either (1) CO

non-main reduces to C, or (2) CS z C, CO €G

289

Proof: As in 4.7.4, by ind. ond (i) 6(B), (ii) 2(B) 0

Similarly, we can prove the corresponding outer shape lemma.
The problem is now that the norm of the expressions in G is not
related to the norm of x. E.g. consider the typical +-dead end

{x}(B® ().

5.1.3 Improving the dead end set by p-reduction

We restrict our domain of consideration to AUT-Pip. Instead of rule
+ we choose rule +'. Besides we add permutative reductions. Then a great
deal of the "bad guys" among the dead ends, i.e. whose norm is not re-
lated to that of X, can be main reduced by a p-reduction. This will (in

the next section) result in an tmproved dead end set H defined by
H=F + {(F}(U @ U) with F as in 4.7.4.
5.1.4 Let 2 be B+'mp-reduction. The direct reducts of a p-main step are

of the form {A}([x]0(B) ® [¥1O(C)) (see 4.3.1 for the definition of 0),

so never are in one of the immume forms (abstr, inj, pair, plus).
Lemma: p-main reduction steps in a reduction to IF can be circumvented

Proof: The last p-main step in a reduction to IF must be followed by a
+'-main step. However this combination can be replaced by a single

internal +'-step. il

Corollaries:

(1) {B}([x]c1 @ [x]Cz) >D, DEIF=2B=2 ij(A), CjﬁAB;zD (3j+1 or 2)

(2) {B}C =D, D € IF = Either (i) C = [yl&, E[D] = D or
(ii) B 2 ij(A), C =z ([x]Cl @ [x]Cz), CjﬂAH > D, j=i or j=2.

(3) B

v

D, € IF B> (C ,C ,C,ZD '=1,2.
(3) b = 172 7 %3 (9=1,2)

Proof: Each of these reductions to IF can be replaced by one without

p-main steps. O
Part of the two corollaries can be summarized (with 0 as in 4.3.1) by:
if 0(B) 2D, DE€IF then B2C, C € IF, 0(C) 2 D.

This gives another lemma.

290

Lemma: If O({B}([a:]Cl & [x]C2)) > D, D € IF then
{B}([x]O(Cl) ® [x]O(Czn > D.

Proof : {B}([x]C1 @ [x]CZ) >E, E€1IF, O(E) 2D. So B = ij(A),
Cj[IA]] > E, But then {B}([x]O(Cl) ® [m]O(Cz)) > O(CjﬂAD) = 0(E) 2 D,
q.e.d. O

This proof amounts to: if an expression allows both p-main and IE-main
reduction then we can insert p-main followed by +'-main before perform-
ing the IE-main step. Now we prove the theorem about the improved dead

end set H. Let " stand for fx/A].

Theorem: If B SN, B* 2 (, C € IF then B 2 C_, Cg 2 C with either (1) CS

0
non-main reduces to ¢, or (2) CO € H

Proof: As in 4.7.4, by ind. on (i) 6(B), (ii) Q(Bj. Here 8 refers to the
current reduction Bw+'p. Let B* main reduce to C, B # x. If the
first main step can be mimicked in B use ind. hyp. (i). Otherwise,
by ind. hyp. (ii) B 2 0(D), D € H, 0()* 2 ¢. 1£ D € F then
0(D) € H and we are done., Otherwise D = {D3}([yJD1 ® [y]Dz),

D3 € F. Then B properly reduces to Z = {DB}(EyJO(Dl) ® [y]O(Dz)),
E € H, and by the previous lemma E* 2 C, gq.e.d. O

5.1.5 Improving the SN-conditions by im-reduction
The crucial SN-conditions forfm +' (in AUT-Pi,) is

If (1y 4 SN, B SN, (2) B =2 [x]C = C[A} SN and for j=1,2

(3) B = [x]Cl) [x]Cz, 4 2 ij(D) = CjﬂDD SN, then is <4>B SN.

Now the p-reductions have improved our dead end set, but the problem is
that they make the SN-conditions quite complicated. E.g. in order to
prove that {A}{B}([x]Cl ® [x]Cz) is SN we need that {A}Cl is SN, in
particular if Cl > [y]E we need that E[4] is SN etc. I.e. the SN-con-
dition of {A}B ceases to be easily expressible in terms of direct sub-
expressions of reducts of A and B.

In order to solve this problem we add im-reduction. But at first

we show that the dead end set is not changed by this addition.

291
5.1.6 The dead end set of Bm+'p,im

Luckily the dead end set remains H. Let 2 stand for 2 The

Br+'p,im’
first lemma of 5.1.4 can be maintained. For let a p-main step be
follwed by an im-main step. Then we can skip the main p-step and just
apply the im-step internally.

The next corollaries need an obvious modification, in particular:

if {B}([acjc1 ® [x]Cz) >D, D IF then either (1) B 2 ij 4y,
chIAD > D (for j=1 or j=2), or (2) cj > D (for j=1 or j=2).

And the property thereafter becomes:

If 0(B) 2D, D € IF then either (1) B2(C, C € 1Fr, 0(C) 2 D, or
(2) 0(B) = {B}([x]Cl ® [I]Cz), Cj 2 D (for j=1 or 2)

But the second lemma of 5.1.4 remains unchanged. Namely, if an express-
ion allows p-main reduction but also im-main reduction, then we can

insert p-main followed by im-main before performing the im-main step.
>
E.g. {{Bl}([xjcl ® [ac]Cz)}([y]D1 ® [y]Dz) .

{Bl}([x]{cgw[x]Dl ® [y]DZ) ® o) > {Cl}([y]D1 @ [y]Dz) >im D1
So, the theorem of 5.1.4, that the dead end set is still H, carries

over too.

5.1.7 The new SN-conditions

The point of the im-reduction is that the SN-conditions for
27+'p,im are identical with those for Bm+' (see 5.1.5). First we give

the SN-conditions of {B}([:X:]C1 @ [x]Cz). These are (1) B SN, C1 SN and

02 SN, and (2) B Zij(A) = CjﬂAﬂ SN (for j=1 and 2).

Proof: Let the above condition be fulfilled. Use ind. on (1) 8(B8),
(2) 2(B), The interesting case is when the first main step in a
reduction is a p-step. So let B 2 {BB}([y]Bl ® [y]Bz), to prove
that {B3}([y]{Bl}C ® [y]{Bz}C) is SN, with C
ind. hyp. (1) or (2) we just need that B3 is SN (trivial) that
{Bj}C SN for j=1,2 and that {BjEDH}C is SN, where B3 > ij(D).

[x]C'1 ® [x]Cz, By

Since B properly reduces to both Bj and BjﬂDﬂ (in case B3 > ij(D))

we can use ind. hyp. (1) and get what we want. U

292

Theorem: The SN-conditions for Bm+'p,im are identical with those of

Bn+' (see 5.1.5).

proof: Let {A}B fulfill the SN~conditions (1), (2), (3) of 5.1.5. We
use ind. on 8(F). The interesting case is when the first main step
is p. The case that B > [x]Bl & [m]Bz has been done before, so let
B > {B3}([x]B1) [x]Bz), to prove that {B3]([33]{A}B1 ® [I]{A}Bz)
is SN. 1.e. that B3 SN, that {A}Bl and {A}32 SN and that {A}BIEDD,
{A}BzﬂDH are SN whenever B3 2 ij(D) (j=1 or 2). Now B properly
reduces to both Bj and BjHDH (if B3 p ij(D)) so we use the ind.

hyp. and get what we want. |

In other words: we just need that the direct subexpressions and the
IE-main reducts (not all the main reducts) are SN for proving that an

expression is SN,

5.1.8 The substitution theorem for SN
Notation: We just write u(4) </< p(B) to abbreviate L(p(4)) </< 2(u(B))
Theorem: B SN, 4 SN, u(x) = u(4) = Blx/4]SN

Proof: Ind. on (I) wuw(d), (II) 6(B), (III) R&(B). The crucial case is
when B = {BI}BZ and B[A] IE-main reduces. If this first main step
can be mimicked in B use the second ind. hyp. Otherwise we end up
with {Bi}c or {C}Bé with ¢ € H and B 2Bl oxr B, 2B} =
[y]D1 ® [y]Dz, respectively. If C € G then u(Bi) < u(C) < p(x) so
a first main reduction of ({Bi}C)EAH involves a substitution [z/F]
with u(z) = u(Bi) < p(x). And a first main-IE reduction step of
({C}Bé)ﬂAH must be a +'-step, so involves a substitution {[z/E]
with ClA] = ij(E). So in that case too u(2) = u(EF) < p(C) < u(x).
Anyhow if C € G, we can use ind. hyp. (I). Otherwise
C = {03}([y]C1 ® [y]CZ), with C3 € G. Then a p-step is possible
and can be inserted before doing the main IE-step. This p-step can

be mimicked in the reduction of B, so we can use ind. hyp. (11). OO

5.1.9 SN for AUT-Pip and AUT-Pi,

Like before, an immediate corollary is BAm+'p,im~SN for AUT-Pi,, so
gn+'-SN for AUT-Piy, whence Bmn+-SN for AUT-Pi,. Then by Pp we can ex-

tend the AUT-Pi) result to Bm+no-SN. (Not for e.)

293

5.1.10 An alternative method

Actually im-reduction can be avoided in this proof., Namely the
effect of p-reductions on the SN-conditions can be expressed by means

of certain inductively defined sets.
We define a set of expressions B! by

B! = B+ {UY([x](B:) @) + {U}(U e [x1(B!)).
I.e. B! contains all those expressions that im-reduce to B.
Then the SN-conditions for Bm+' become

If (1) B SN, ¢ SN, (2) B2 B* € A}, ¢ 2 C' € (LydD): = DIA] SN,
and (3) B 2 B' € (ij(A)):, C =z ([y]01 & [y]Cz): = cjuAﬂ SN (3=1,2)
then {B}C SN,

5.2 A second proof of Bn+'-SN, using im-reduction

5.2.1 This proof is based on the second instead of the first B-SN-proof
of Ch. IV (sec. IV.2.5, see also VII.4.5). There we did not use the
square brackets lemma, and no dead end set, so we can do without p-

reduction. Our language is AUT-Pigp, again, and 2 stands for 2 Bm+',im.

5.2.2 Replacement theorem for SN

As explained in VII.4.5, the kernel of this type of proof is a

replacement theorem, rather then a substitution theorem, for SN.

Theorem: If B SN, 4 SN, u(x) = u{(4) then Bﬂx/ADLR SN.

Proof: By ind. on (I) p(4), (II) 6(B), (III) %(B). We write for
ﬂx/AHLR. Consider a reduction sequence B* >1--'>1 F >1 G, where
the contraction leading from F to G is the first contraction not
taking place inside some reduct of one of the inserted ocurrences
of A. Realize first that the number of those inside-A contractions
is finite, because 4 is SN. Now we prove that G is SN. Distinguish
two possibilities:

(a) The step F >1 G does not essentially depend on the inserted

294

A's and can be mimicked in B. I.e. B > Gy, G§j = G. In this case

we use ind. hyp. (II).

(b) Otherwise some reduct of some inserted A plays a crucial role
in the redex contracted. If F > (¢ is a m-step, then, e.qg.,
ees BY¥ = ciiflesed ves, F T eveftoeec(> .
(1) ! (1) ! 1'02 (1) !
G = --'A'-'-Cl-°-. Now form By Z «e+sx+e+y+++ from B by replacing

B Z esepssey

x(l) by a fresh y, with u(y) = oy (where o = a, % a2). And
B = Boﬂy/x(l)ﬂ so By, is SN, G(BO) f 8(B), 2(By) < &(B). So by ind.
hyp. (II) or (III), B, is SN and By 2 Gy = +e+A'eeryc- with

G = GOHy/CIDLR. Here GO is SN, Cl is SN, u(y) = p(Cj), Lu(y)) <

2(u(x)) so we can apply ind. hyp. (I) to get that G is SN. 1f

F > (G is a B-step argue as in 1V.2,5.3 or VII.4.5.6. If F > G is

a +'-step, the redex contracted is, e.qg., {il(D)}([y]C1 o [y]Cz),
reducing to CIEDD. Now distinguish (bl) a reduct of an inserted 4
is crucial in il(D), (b2) a reduct of an inserted A is crucial in
([y]C1 ® [y]Cz). First case (bl). Then B = ---x---{x}Co-~-,

CS > [y]C1] [y]Cz, A2 il(D). By a norm argument the ®-term must
be present in B already, so CO z [y]El ® [y]Ez, EI > Cl’ E; 2 C,.
Now form BO Z +eexe--E -+, This is an im-reduct of B, so SN and

by ind. hyp. (II) BS SN, reducing to GO = ---A'---Cl---, where

G = ---A'---ClﬂDHv--. Clearly GO SN, D SN and 2(u(D)) < Z(u(x)).

So G = Goﬂy/DHLR SN by ind. hyp. (I). In case (b2), argue as in the
B-case. Finally, the redex contracted in F is an im-redex, in which
A plays a crucial role. I.e. B = ---x---{Co}x---, A = [y]Diea[y]Dz,
C, F = «=+A"+--{C}([ylD, ® [ylD,) ==+, G = +++A'++-D =+, Form

D
*
v

B_ = eecgesoysee, B = Boﬂy/{CO}xﬂLR; so either by ind. hyp. (II)
or (III) BS is SN, reducing to GO Z eecsd'eceyess Clearly D1 SN,
R(H(Dl)) < f(u(x)) so by ind. hyp. (I) G = Goﬂy/DlﬂLR is SN. 0

5.2.3 An immediate corollary of this replacement theorem is the
ordinary substitution theorem. From this, as before, follows Bm+'im~SN

for AUT-Pig. So we get Bm+on-SN for AUT-Pi;.

5.3 A proof of Bm+no-SN by computability

5.3.1 1In this proof we do not include no by a pp-result afterwards,

but consider these ext-reductions from the beginning of the proof on.

295

We must consider AUT-Pi; because AUT-Pij is not closed under n. Our
definition of computability has been strongly inspired by de Vrijer's
definition in [70].

De Vrijer's definition is phrased in such a manner that the im-
portant properties: (1) computability implies SN, (2) computability is
preserved under reduction, follow almost immediately. Then, as usual,
we prove by ind. on length that expressions are computable under sub-
stitution.

Notice that we do not include €.

5.3.2 The definition of computability

We write Ca for the set of computable terms of norm a. The set Ca
is defined by induction on the length of o, as follows:

Let B € a. Then B € Ca if B SN and the following requirements are

fulfilled:
(1) a = @ > o, B> [ylc, A € Cal = C[A] € Ca2
(2) azal®a2,Bz<C,D>=>C€Ca1,D€Ca2
(3) a=za ®a, B2 ij(C) =>C € Cmj (3=1,2)
(4) o= (0 ®a)) >ay, B2C0D=CECy g, D€ Cyprage

Notice that each clause in the definition of Ca only depends on
CB's with 8 shorter than a.
5.3.3 We write C for the set of all computable expressions, the union
of all the Ca’s. By definition: 4 € C = 4 SN, Each condition in the
definition of computability of B has the form: B 2 C = P(C), with P
some condition on (.

So computability is preserved under reduction,

5,3.4 Now we try to express the computability of an expression in terms

of the computability of its subexpressions. First a lemma.

Lemma :

(1) [zx1C 2 [(zID=>C 2D

(2) <C,D> 2 <E,F>=>(C 2E, D =2F

296
(3) ij(C) > ij(D) =C 2D (j=1,2)
(4 CeoD2FeF=C=x>2E,Dz2F

Proof: Without main reduction it is trivial. Otherwise it is n or o.

(1) 2 E, D 2 <E,F>(2) > F

g.e.d. By the way, property (4) even holds in presence of ¢. 0

E.g. if <C,D> 2 <F,F> then C 2 <F,F>

Lemma (computability conditions):

(0) wvariables are in C

(1y ASN, CeC,DEL=><4,C,D>€CC

(2) ASN, ceC= il(C,A) € C, i2(C,A) ecC
3) CEC,DEC>CoDEC

(4 ceC= C(l) € C, 0(2) € C.

(s Be€C,celC={BlcecC

Proof: (0) is clear. (1), (2), (3) by the previous lemma. (4) as follows:
Let ¢ € C then C SN so C(j) SN. 1f C(j) 2 [ylD then C 2 <Cl,02>
with Cj z [y1D. Each of the Cj is in C, so [y1D satisfies the re-
quired condition. Similar if C(j) < <D1'DZ>' C(j)
Proof of (5): Let B, € C so B,C SN. Induction on u(B). We first

> il(D) etc.

check the SN conditions. Let ¢ 2 [y1D then D[B} € C so SN. or let
B 2 ij(D), C 2 C1 ® 02, to prove that {D}Cj is SN. well, both Cj's
are in C, D € C and we can use the ind. hyp. to prove that

{D}Cj € C (so SN). Further, if {B}C 2 [ylf (or reduces to <&,F>
etc,), this is only possible after a main step, so either via some
DI{B) with C = [y1D or some {D}Cj where B 2 ij(D), C 2 C1 ® 02.
Those expressions were in C so [yJE (and <F,F> etc.) satisfy the

required conditions. 0

5.3.5 Computability under substitution

For expressions [yJC such simple computability conditions cannot

be given. We define an even stronger notion than computability.

Definition: B is said to be computable under substitution (cus) if

AjscecsA € C, ue) = ul4) for i=1,-++,n= Blz/A} € C

297

Some easy properties are:
(1) Bcus = B € C (e.g. take n=0)

and (2) Bcus, B2(C=(C€C

Then a lemma: Let W (C) = @ > a and let F € C“l = {F}C € Caz' Then

¢ € Coyoay

Proof: Clearly C is SN. We use ind. on 2la). IE C 2 {ylD, F € Ca1 we
must prove D[F] € Caz' This holds because {F}C = D[F]. If
C 2 D ® E we must prove that D,F € C. For ii(F) € ca1’
{il(F)}C'GC so {F}D € C. Now use the ind. hyp. Similar for E. {

5.3.6 Lemma: B Cus,(Cus = [y:B]C Cus

Proof: Let C Cus, B Cus, A € C of the right norms. Abreviate K&/Zﬂ by *.
We must prove that [y:B*1C* € C. well, B* € C, C* € C so
(y:B*1C* €SN. 1f [y:B*3C* 2{y:DIE, F € C of the right norm then we
need that E[F] € C. Because C is Cus, Cﬂi,y/Z,FB € C, which ex-
pression reduces to E[F], g.e.d. In particular, if
C* 2 {y}(E, ®E)), y ¢ FV(E, ® E,), we have that {F}(E, ® E,) € C,
so by the lemma E1 @ E2 € C, E’1 €C, E, € C, q.e.d. 0

Theorem: All AUT-Pij expressions are Cus

Procf: Variables are Cus by definition. Further use induction on length.
For the abstr case use the previous lemma. For all the other cases
use the lemma in 5.3.4. E.g. to prove that {B}C is Cus. Let * be
as in the previous lemma. By ind. hyp. B* € C, ¢* € C, so
{B*}c* € C.

Corollaries: (1) All AUT-Pi; expressions are computable

(2) All AUT-Pi, expressions are Bm+no-SN

5.4 Strong normalization for AUT-Pi

5.4.1 The normability of AUT-Pi

In order to extend our results from AUT-Pi to AUT-Pi we must first
extend our definition of norm (see 4.2.3), and implicitly, of norma-

bility, as follows:

298

ui{t) = 1
u{d) = a > g8=n(N4)) z a8
w(d) =z a > B=n(zZ(4)) = ae@ B

A, B of degree 2 = u(4d @ B) = p(4) & u{(B)
And we must say what the norms of the variables are
p{x) = u(typ(x)).

Our definition of normability, here, is modelled after the norma-
bility definition of AUT-QE (weak normability), in particular as far as
the handling of 2-variables is concerned. For details see IV.4.4-1IV.4.5,

First we define norm inclusion c<:
(1) aanorm = o < T

(2) acBg=(y>a < (y>3B)

Then we say that A fits #n B (notation A fin B) if:

3 = p(4) W (B)

degree(4)

degree(4) 2 = pu(ld) ¢ u(B)

Now we define the norm of constant expressions

A fin ClA] = u(e(d)) := u(typ(e)l4l)

A fin CIA] = u(d(d)) := u(def(d)[4])

where x E C is the context of the scheme, in which ¢ (resp. d) was in-
troduced.

We want to show that correct expressions are normable, and of
course that whenever 4 E B, 4 fits in B. In view of the instantiation
rule and the fact that norms can change under substitution (for 2-
variables) we prove, as in Ch. IV.4.5 a kind of normability under sub-

stitution.

Theorem: If A4 fin Bl4], y E B-C E D then C[A] fin DIA] (note that "fitting

in" implies the normability of the expressions involved)

Proof: Ind. on correctness,

299

Corollary: FC E D= ¢ fin D (so C, D normable)

5.4.2 Note: By the above defined concept of normability lots of ex-
pressions become normable which are certainly not correct in AUT-Pi.

E.g. {A}Y(M(Lx:BIC)), with u(4) = p(B), and (Z(B)) , with

(1)
u{B) = 81 > 82. This is a consequence of the fact that AUT-Pi is handled
just like AUT-QE: M's are (as regards norms) ignored, and XI's are in

some sense identified with pairs.

5.4.3 Extending the SN-result to AUT-Pi

Clearly the presence of non-reducing constants such as X, T,
(for 2-expressions) and T does not harm the SN-results of the previous
sections. We just have to add §-reduction. The substitution (resp. re—
placement theorem for SN can easily be extended because S-contractions

in Bﬂx/AB(either take place inside A or can be mimicked in B al-

ready. TheiRLe can proceed as in IV.4.6 or directly prove B normable =
B SN, by ind. on (1) date(B), (2) 2(B). The new case is when B = d(C).
The Ci's are SN by ind. hyp. (2). Further we want that def(d)[C] is SN.
well, def(d) is SN by ind. hyp. (1) and def(d)[C] = def(d)[[clll---[[cn]].
So by iterated use of the substitution theorem we are done. Later we
can add on, by pPp.

Alternatively we can extend the SN proof by computability to the
present case, viz. by leaving the definition of computability unmodified
and prove computability under substitution by ind. on (1) date, (2)
length. In particular let Al,---,Ak € C of the right norms, let * stand
for [x/4], let BI,---,B; € C. Then we must prove that d(B)* € C. The
BI's are SN. By ind. hyp. (1) def(d) is cus, so def(d)[B*] € C, so SN.
Further, if d(B*) = (yJE (or <E,F> etc.) then this reduction passes
through def(d)[B*] (which was in C).

So, finally we have Bw+oné-SN for AUT-Pi.

300

VIII.6 Some additional remarks on AUT-Pi

6.1 The connection between AUT-QE and the abstr part of AUT-Pi

Here the abstr part of AUT-Pi is the part generated by the general
rules (2.2.1, 2.2.2) and the specific rules group I (2.3). If it were not
for the role of M, and the rule of product formation, this part of AUT-Pi
would be identical to AUT-QE.

In the introduction to this chapter we mentioned already that the
rule of type-inclusion is somewhat stronger than the rule of product
formation. This means that the obvious translation of AUT-Pi, viz. just
skipping the M's produces correct AUT-QE, but-hot all of AUT-QE. Namely,

without TT, ;he rule of product formation becomes
¢ E [(x:alt=¢ E 1 (I)
which is just a specific instance of the type-inclusion rule
¢ E [y:8llx:alt = ¢ E [y:8It (II)

Let us see whether sensible use of (I) can yield something like
- = - . = € “
(II). So let ¢ E[y:B8])[x:alt. Then y E BH{yl}¢ E [x:0lt (where y consists
- -
of the yi's in the reversed order). So by (I) y E BF{y}¢ E 7, and by
+ + P
iterated use of the abstr rule we get F¢ E v with ¢ = [y:81{yl¢.
Clearly
*t .2
2
¢ n ¢
which indicates that AUT-QE is not a very essential extension of the

image of AUT-Pi under the translation. Compare De Bruijn [15, 17].

6.2 The CR problem caused by €

In Ch. II we gave a counter example for Re-CR. Namely [x]x and
[y]il(y) & [y]i2(y) are distinct Be-equal normal forms (just two
different ways to write identity on a @&-type). This suggests to save

CR by adding ealt (see 2.6)

[x]Bﬂil(x)B ® [x]BHiz(m)ﬂ > [x]B

301

However, €alt and + interfere in a nasty way:
Lxd(eee{x}Free) @ [x](er{x)}Ge-*) A [x](---{il(x)}(F ® G)erv) @

[x](---{iz(x)}(F ® G)ee») > [el(s+<{x}(F ® G)+-+), so this does not
help.

In principle, CR is not too important for our purpose, we rather
need a good decision procedure for definitional equality. Just like

(in vV.4) we suggested to implement n-equality by the rule

{x}F QG=F Q [x]G

we conjecture here that we could generate full equality (including &)

by adding

{il(x)}F Q {16, {2, ()} Q{x}i=FQGoH

But in order to quarantee the well-foundedness of such an algo-
rithm, we need of course some kind of strong normalization result,
which applies in the present situation.

The general pattern of the counterexample to +ealt-CR reads

Cx10({x}F) ®© {210 ({x}G) Q [x]0({x}(F & G))

where 0 is a very general operation on expressions. This shows that
extensional equality generates the equality induced by permutative re-

ductions (sec. 4.3) O({4A}([x1B @ [x1C)) Q {A}a30({x}([x1B & [x]C))
Q {AY([z]0({x}[x]B) @ [x]0({x}[x]C)) Q {A}(Lx]0(B) @& [x210(C)). E.qg.,
{(Di{4}([x]B @ [2]C) <g {A}[x){DHx} ([z]B & [x]C)

> MH&HMM“@H&Be[MﬁQEMWH%wHﬂﬂB@MMH>

calt Fr 4

{A}Y(Lz1{D}B @ [x1{D}C), q.e.qd.

Conversely, we might generate part of the eg-equality by adding
general permutative reductions, paying due attention to the thus arising

SN problem.

6.3 The SN-problem caused by ¢

We strongly believe that SN holds for the full AUT-Pi reduction
(including €), and that there are just some technical problems which
prevent the proofs of the preceding section to apply to that situation.

We briefly sketch why each of the three proofs fails in presence of €.

302

The problem with the first proof (5.1) is that the dead end set
for, e.g., Be-reduction is not so easy to describe. E.g.
[y]{{il(y)}x}F @ [y]{iz(y)}F is a typical dead end for Be. Of course
Bn- or Ro-dead ends are not manageable either, but on can be included
afterwards, using pp.

Then the second proof (5.2). An e-redex [y]{il(y)}F] [y]{iz(y)}F
can be created by substitution [2/4] in two different ways: (1) from
x e [y]{iz(y)}F, A = [y]{il(y)}F (and similar with the right hand part),
(2) from [y]{il(y)}Fl ® [y]{iz(y)}Fz, FIHAB = F, FzﬂAB = F. In case (1)
we are suggested to replace x & [y]{il(y)}F by a single variable 2z, and
to introduce a new substitution [z/F]. Howevexr, (p(z)) > 2(ulx)),
which does not fit in the proof at all. But we can remove this case by
just considering AUT-Pij. Case (2) does not pose a problem: the sub-
stitution pius reduction can be simulated by reduction plus substitution,
starting from [y]{il(y)}Fo ® [y]{iz(y)]Fo, where both Fl and F2 can be
constructed from FO by substituting 4 for some of free x's. Besides,
the second proof is based on replacement. This means that the e-redex
above can also be created from, e.g., (3) [yl{x)}F e [y]{iz(y)}F, with
A = il(y), or (4) [y]{il(x)}F ® [y]{iz(y)}F. These two expressions do
not reduce, unless we switch to a generalized form of e ;4 (which does
not solve the problem, though - see below).

Finally the computability method (5.3) fails because the property:
FeEC,GelC=Fo®GEC is not so easy anymore. For, let
F [x]{il(x)}[y]D, G > [x]{iz(x)}[y]D. Then we just know that
A€C= Dﬂil(A)B € C, Dﬂiz(A)H € C, but we want that D[A] € C for

\%2

general 4 € C,
We have tried to adapt the second SN-proof to this situation, viz.
by restricting to AUT-Pi;, and by introducing a liberal version of

1]
Ealt' named €'.

e': [WIFlZ, (] G > [ylF, Go Ly IFLZ, 1 > ydF

This can be considered a kind of improper reduction in the sense that
it identifies expressions which in the intuitive interpretation do
correspond to different objects. A typical way of creating a new e'-
redex is, e.g., from [ylx ® G by the replacement [m/il(y)BLR, reducing
to [yly. One can indeed mimick this by first reducing to [yJz, and then
apply a new replacement, viz. [x/y]. But the norm of this new x is

longer than that of the old one.

REFERENCES

(1]

(2]

{31]

(4]

(5]

(el

(7]

(8]

(9]

[10]

(11]

(12]

[13]

[14]

[15]

303

P. Andrews, Resolution in type theory, Journ. of Symb. Logic,

36 (1971), p. 414-432

Barendregt, Some extensional term models for combinatory
logics and A-calculi, Ph.D. Thesis, Utrecht 1971

Barendregt, Pairing without conventional restraints, Zeitschr.
f. math. Logik u. Grundl. 4. Math. 20 (1974), p. 289-306

Barendregt, The type free A-calculus, in: Handbook of Math.
Logic, Barwise (ed.), North Holland, Amsterdam 1977

Barendregt, J. Bergstra, J.W. Klop and H. Volkema, Represent-
ability in lambda algebras, Indag. Math. 38 (1976, p. 377-387

Ch. Ben-Yelles, Article to be published in Zeitschr. f. Math. Logik

u. Grundl. 4. Math. 1980

S. de Boer, De ondefinieerbaarheid van Church' 6-functie in de

N.G.

*)

Dept.

A-calculus en Barendregt's lemma, stageverslag, Eindhoven 1975

de Bruijn, The mathematical language AUTOMATH, its usage and
some of its extensions, in: Symposium on Automatic Demonstrat-
ion (IRIA, Versailles 1968), Lect. Notes in Math., 125,
p. 29-61, Springer, 1970

*
de Bruijn, AUT-SL, a single-line version of AUTOMATH, AUT20),
1971

de Bruijn, Lambda calculus notation with nameless dummies, a
tool for automatic formula manipulation, with application to
the Church-Rosser theorem, Indag. Math. 34 (1972), p. 381-392

de Bruijn, AUTOMATH, a language for mathematics, notes (by
B. Fawcett) of a series of lectures (Séminaire de Math.
Supér., Montréal, 1971), Montréal 1973

de Bruijn, Set theory with type restrictions, in: Infinite
and finite sets I, Hajnal et al. (eds.), p. 205-214, Collogquia
Math. Soc. Jan. Bolyoi 10, 1975

de Bruijn, The AUTOMATH Mathematics Checking Project, in:
Proc. of the symp. APLASM I (Braffort volume), Braffort (ed.),
AUT34, 1973

de Bruijn, Some extensions of AUTOMATH: The AUT-4family,
AUT44, 1974

de Bruijn, Some auxiliary operators in AUT-II, AUT51, 1977

Items marked AUT... are reports distributed by the AUTOMATH group,
of Math., Techn. Univ. Eindhoven.

304

[16]

[17]
(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

N.G. de Bruijn, Lambda calculus with namefree formulas involving
symbols that represent reference transforming mappings, Indag.
Math. 40 (1978), p. 348-356

N.G. de Bruijn, AUT-QE without type-inclusion, AUT56, 1978
N.G. de Bruijn, A note on weak diamond properties, AUT57, 1978

N.G. de Bruijn, A namefree A-calculus with facilities for interna-
definitions of expressions and segments, AUTS59, 1978

N.G. de Bruijn, A survey of the project AUTOMATH, in: Combinatory
Logic, lambda calculus and formal systems (Curry Festschrift),
Hindley and Seldin (eds.), Ac. Press 1980

J.P. Bulnes-Rozas, GOAL: A goal oriented commend language for inter-
active proof construction, Ph., D. Thesis, Stanford A.I., Lab.,
Memo AIM-328, Stanford 1979

M. Coppo, M. Dezani-Ciancaglini and B. Venneri, Functional charac-
ters of solvable terms, Zeitschr. f£. Math. Logik u. Grundl.
d. Math., to appear

M. Coppo and M. Dezani-Ciancaglini, A new type assignment for
A-terms, Archiv. Math. Logik 19 (1978), p. 139-156

A. Church, A formulation of the simple theoxry of types, J. of Symb.
Logic 5 (1940), p. 56-68

H.B. Currxy and R. Feys, Combinatory logic I, North Holland, Amster-
dam 1958

H.B. Curry, J.R. Hindley and J.P. Seldin, Combinatory logic II,
North Holland, Amsterdam 1972

D.T. van Daalen, A description of AUTOMATH and some aspects of its
language theory, in: Braffort volume (see [13]) reprinted in
(371

G. Gentzen, Untersuchungen uber das logische Schliessen, Math.
Zeitschr. 39 (1935), p. 176-210, p. 405-431

G. Gentzen, Die Widersprachsfreiheit der reine Zahlentheorie,
Math. Annalen 112 (1936), p. 493-565

J.Y. Girard, Une extension de l'interprétation de G&del & 1l'analyse,
et son application & l'élimination des coupures dans l'analyse
et la théorie des types, in: Second Scand. Logic Symp. (Oslo
Volume), Fenstad (ed.), North Holland, Amsterdam 1971

J.Y. Girard, Interprétation functionnelle et élimination des cou-
pures de l'arithmétique 4'ordre supérieure, Thése, Paris 1972

M. Gordon, R. Milner and C. Wadsworth, Edinburgh LCF, A mechanical
logic of computation, Edinburgh 1979, submitted to Springer
Lect. Notes in Comp. E£cC.

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[4s]

[46]

[47]

305

J.R. Hindley, Combinatory reductions and lambda reductions compared,
Zeitschr. f£. Math. Logik u. Grundl. 4. Math. 23 (1979),
p. 169-180

W.A. Howard, The formulae-as-types notion of construction, unpubl.
1969, to appear in Curry Festschrift (see [20])

H. Jervell, A normal form in first order arithmetic, in Oslo volume
(see [30])

L.S. van Benthem Jutting, A normal form in a A-calculus with types,
in: Mitt. d. Gesellsch. f. Math. u. Datenverarb. Bonn, 17,
Tagung ib. form. Sprachen u. Programmiersprachen, Oberwolfach
1971

L.S. van Benthem-Jutting, Checking Landau's "Grundlagen" in the
AUTOMATH system, Ph. D. Thesis Eindhoven 1977, Math. Centre
Tracts, 83, Amsterdam 1979

L.S. van Benthem-Jutting and R.M.A. Wieringa, Representatie wvan
expressies in het verificatieprogramma YERA 1979, Internal
Report, Eindhoven 1980

S.C. Kleene, Introduction to Metamathematics, Van Nostrand, New
York 1952

D. Leivant, Strong normalization for arithmetic (variations on a
theme of Prawitz), in: Proof theory symposium Kiel 1974, Lect.
Notes in Math, 500, p. 182-197, Springer 1975

J.J. Lévy, Réductions sures dans le lambda-calcul, Thése 3° cycle,
Paris 1974

J.J. Lévy, An algebraic interpretation of the ABk-calculus and a
labelled A-calculus, in A-calculus and computer science theory
(Rome volume), C. BShm (ed.), Lect. Notes in Comp. Sc., 37,

p. 147-165

C.R. Mann, The connections between proof theory and category theory,
Ph. D. Thesis, Oxford 1973

P. Martin-L&f, Hauptsatz for the theory of species, in: Oslo Volume
(see [30]), p. 217-234

P. Martin-L&6f, An intuitionistic theory of types, Unpubl. 1972

P. Martin-L&6f, An intuitionistic theory of types, predicative part,
in: Logic Coll. 73, Rose and Sheperdson (eds.), North Holland,
Bmsterdam 1975

P. Martin-L&f, About models for intuitionistic type theory and the
notion of definitional equality, in: Proz. of the third
Scand. Logic Symp., Karger (ed.), North Holland, Amsterdam
1975

306

[48]

[49]
[(s0]

[51]

[52]

[53]

[54]

[55]

[se]

[57]

[s8]

(59]

[e0]

[61]

[62]

[63]

[64]

[65]

[66]

{67]

G. Mitschke, A-Kalkil, §-Konversion und axiomatische Rekursions-
Theorie, Habilit. Schr., Darmstadt 1976

R.P. Nederpelt, Lambda-Automath, AUT21, 1971
R.P. Nederpelt, Lambda-Automath II, AUT22, 1971

R.P. Nederpelt, Strong normalization for a typed lambda calculus
with lambda structured types, Ph. D. Thesis, Eindhoven 1973

H. Osswald, Ein syntaktischer Beweis fir die Zuldssigkeit der
Schnittregel im Kalkdl von Schitte fGr die intuitionistischen

Typenlogik, Manuscr. Math. 8 (1973), p. 243-249

P. Penning, Automath bewijzen voor tautologieén, Stageverslag,
Eindhoven 1977

G. Plotkin, Lambda-definability in the full type hierarchy, in:
Curry Festschrift (see [20])

W. Pohlérs, Ein starkes Normalisationssatz fir die intuitionisti-
schen Typen, Manuscr. Math. 8 (1973), p. 371-387

G. Pottinger, Letter to Prawitz, April 18, 1977

G. Pottinger, On analysing relevance constructively, Studia Logica
38 (1979), p. 171-185

G. Pottingex, A type assignment to the strongly normalizable -
terms, in: Curry Festschrift (see [20])

D. Prawitz, Natural Deduction, a proof theoretic study, Almquist
and Wiksell, Stockholm 1965

D. Prawitz, Ideas and results in Proof Theory, in: Oslo Volume
(see [30]), p. 235-307

L.E. Sanchis, Functionals defined by recursion, Notre Dame J. of
Formal logic 8 (1967), p. 161-174

D. Scott, Constructive validity, in: Symp. on Automath. Demonstrat-~
ion (see [8]), p. 237-275

J.P. Seldin, Review of [10], Journal of Symb. logic 40 (1975),
p. 470

J.P. Seldin, A theory of generalized functionality I, Unpubl. 1976

J. Staples, Church-Rosser theorems for Replacement Systems, in:
Algebra and Logic, Lect. Notes in Math. 450, p. 291-307,
Springer 1975

J. Staples, A lambda calculus with naive substitution, Unpubl.
Brisbane 1977

S. Stenlund, Combinators, A-terms and proof theory, Reidel 1972

[68]

[69]

[70]

(71]

[72]

(73]

(74]

[75]

[76]

{771

[78]

[79]

307

W.W. Tait, Intentional interpretation of functionals of finite
types, Journ. of Symb. Logic. 32 (1967), p. 198-212

A.S. Troelstra et al., Metamathematical Investigation of Intuition-
istic Arithmatic and Analysis, Lect. Notes in Math., Springer
1973

R.C. de Vrijer, Big trees in a A-calculus with A-expressions as
types, in: Rome colume (see [42]), p. 202-221

R.C. de Vrijer, A syntactic model for A-calculus with surjective
pairing, Ph. D. Thesis, Eindhoven, to appear

C. Wadsworth, Semantics and pragmatics of the lambda calculus,
Ph. D. Thesis, Oxford 1972

R.W. Weihrauch, A users manual for FOL, Stanford A.I.-lab. memo 235,
Stanford 1977

R.M.A. Wieringa, Binaire optelling en vermenigvuldiging in AUT-QE,
Stageverslag, Eindhoven 1976

I. Zandleven, A verifying program for AUTOMATH, Braffort volume
(see [13]), auT36, 1973

J. Zucker, Cut-elimination and normalization, Annals of Math.
Logic 7 (1974), p. 1-112

J. Zucker, Formalization of classical mathematics in AUTOMATH,
Actes du coll. intern. de logic, Guillaume (ed.), Clermont-

Ferrand 1975

D.A. Turner, Another algorithm for bracket abstraction, Journ. of
Symb. logic 44 (1979), p. 267-270

R.C. de Vrijer, "Stelling" to his [71]

308
SAMENVATTING

In het Automath project zijn een aantal wiskundige talen ontwikkeld
die geschikt zijn om grote stukken wiskunde zS weer te geven dat een
computer de correctheid van de wiskundige redenering kan controleren.
Het programma dat deze controle verzorgt wordt verificator genoemd. De
belangrijkste Automath talen zijn AUT-68, AUT-QE en AUT-Pi.

De Automath talen zijn gebaseerd op systemen van gegeneralizeerde
getypeerde A-calculus. De taaltheorie houdt zich bezig met syntaktische
kwesties, betreffende de definttiegelijkheid, de reductie-relatie en de
typerings~relatie in deze systemen. Drie belangrijke eigenschappen
waarop de taaltheorie zich richt zijn: (sterke) normalisatie, gesloten—
heid en Church-Rosser eigenschap. Deze eigenschappen zijn onder meer
van belang om de correcte werking van de verificator te kunnen aantonen.

Dit proefschrift kan worden opgevat als een voortzetting en een
aanvulling op taaltheoretisch werk van Nederpelt en de Vrijer. Hoofdstuk
I geeft een overzicht van het Autcomath project, gaat uitvoerig in op de
rol van de taaltheorie binnen het project, en wordt besloten met een
uitgebreide samenvatting van het proefschrift. Hoofdstuk II bevat de
nodige preliminaria. Hoofdstuk III behandelt de theorie van afkortingen.
In de hcoofdstukken IV, V en VI worden achtereenvolgend de drie genoemde
belangrijke eigenschappen bewezen voor AUT-68, AUT-QE en nog enige
varianten. Hoofdstuk VII gaat in op de theorie van Nederpelt's Autcmath
systeem A. De drie belangrijke eigenschappen worden bewezen (dit beves-
tigt twee vermoedens uit Nederpelt's proefschrift), en tevens wordt de
Vrijer's grote-boom stelling van een nieuw bewijs voorzien. Hoofdstuk
VIII bevat de theorie van AUT-Pi. Geslotenheid wordt bewezen voor het
volledige AUT-Pi, alsmede sterke normalisatie en Church-Rosser voor een
deelsysteem van AUT.Pi.

Sommige resultaten uit het proefschrift zijn niet alleen van toe-
passing op Automath maar ook van belang in de A-calculus, en, door de

formulae—-as—-types interpretatie, voor bewijstheorie.

309

CURRICULUM VITAE

De schrijver van dit proefschrift werd in 1949 in Bergeijk
geboren. Na het eindexamen gymnasium 8 aan het Lorentzlyceum te
Eindhoven, begon hij in 1966, op aanraden van Prof.Dr. J.J. Seidel,
aan de studie voor wiskundig ingenieur aan de Technische Hogeschool
Eindhoven. In juni 1972 studeerde hij met lof af, bij Prof.Dr. N.G.
de Bruijn. Na zijn afstuderen was hij tot eind 1976 verbonden aan
het Project Wiskundige Taal AUTOMATH, als wetenschappelijk mede-
werker in dienst van de Nederlandse Organisatie voor Zuiver-Weten-
schappelijk Onderzoek (Z.W.O.), en onder leiding van Prof. dé Bruijn.

Sinds maart 1977 is hij wetenschappelijk medewerker bij Prof.
Ir. W. Baarda, op de afdeling Geodesie van de Technische Hogeschool

Delft.

Adress of the author:
Department of Geodesy
Technological University
Thijsseweg 11
Delft

