EINDHOVEN UNIVERSITY OF TECHNOLOGY

Departmenﬁyof Mathematics

e

Memorandum 1980-01

January 1980

An approach to theorem proving

on the basis of a typed lambda-calculus
by

R.P. Nederpelt

University of Technology
Department of Mathematics
PO Box 513, Eindhoven

The Netherlands.

ACT 7¢

An approach to theorem proving on the basis of a typed lambda-calculus

(*)
R.P. Nederpelt

Abstract and introduction

This paper describes a system of typed lambda-calculus suited to
representing mathematical texts, and discusses some theorem proving aspects
of the system. In part 1 a formal exposé is given of the system, with
comments on the principles chosen. A natural manner of rendering mathematical
texts in the system will be explained in part 2. Finally, in part 3 the
system will be investigated as regards its potentials for (partial) theorem
proving.

An ldea for a "completely" formalized, yet natural language for
expressing mathematical texts was conceived by N.G. de Bruijn. In 1968 he
developed the mathematical language Automath. Automath has since been
extensively applied and tested on numerous mathematical topics, language
theory has been developed for establishing its computational soundness, and
a computer programme has been produced for checking the formalized texts.
For Automath and applications, cf. references [1], [2], [8] and [5].

Automath is essentially a typed lambda~calculus presented in a
medified form in order to make it more accessible to the customer. The
underlying typed lambda-calculus, which we call A, is relatively simple and
in a sense natural. In contrast to types in the usual typed systems, types
in A behave like terms, and do not look different to terms. The system A
obeys the same "nice properties" as does Automath, such as the Church-Rosser
property, unique (strong) normalization and closure (see section 1.6). For
language theory of Automath and A, see (6], [3] and [4].

Since A has a simple, transparent structure, it would seem promising to
investigate its practical theorem proving aspects. However, there has not
been much experience in this direction. Some considerations and comments,
arising from a A-text example presented in this paper, may nevertheless be

helpful for practical applications to theorem proving.

(x)

Thanks are due to A.V. Zimmermann for remarks concerning the use of the

English language.

1.

A concise definition of the system A

1.1. Notations

L.ike Automath, A uses notations that deviate from lambda-calculus
conventions. For AXB, x having type A, we write (AAX)B. Instead of (BA)},
i.e. "function" B applied to "argument" A, we write (AS)B. Here § is the
signal for a functional application. There are two main reasons for
inverting the order of function and argument: (1) there is an analogy
between the dual operations "abstraction” (leading from B to (AAX)B) and
"application" (leading from B to (A6)B); (2) the inversion 1s very practical
when rendering mathematical texts by means of A (see e.g. sections 2.6 and

2.7).

1.2, Terms

We introduce the set ’I‘o of (open) terms by the following recursive
definition; the alphabet consists of variables, brackets and the symbols A
and §.

(1) The empty term is a term of To; each variable is a term of To.
(2) If A and B ¢ ° and if x is a variable, then (AAX)B and (AS)B are terms
of To.

The empty term is rendered invisibly; examples of other terms are:

Xi ((6)KX)Y-

The set TC is defined as the closed fragment of TO, i.e. the set of all
closed terms present in To; a closed term is a term without free variables.
We say that G is a swbterm of F, if F and G are terms and G occurs in F,
1f, moreover, the first symbol occurring after G in F (if any) is 6§ or),
we say that G is a genuine subterm of F. (This definition implies that z
and (xy)x are genuine subterms of ((AX)(Ay)xd)z, but (Ay) is a subterm that

is not genuine.)

1.3. Typing

We need types to enable us to attach "classes" to "objects": if C is a
term representing an object, then the type of C represents the class of
that object. In this context we note that the empty term acts as a kind of
class for all classes. See also section 2.2.

Formally, we define types as follows. If (ka) is a subterm of term A,

and x occurs as a variable in A that is bound by the) mentioned, then we say

that the type of the bound x, relatlive to A, is B, In the case that C is a
subterm of A e TO and C ends in a variable x (so C = Dx for some term D),
where x is bound in A, then the type of C, relative to A, is the
concatenation of D and the type of x. We denote the type of C, relative to
A, by TypA[C], or, when no confusion is possible: Typl[cC].

Example: Typl ((8)yA) ((x8)z)x] = ((8)y)) ((x6)z) (8)y.

We note that the types are not given beforehand as a separate set. They
can be calculated for some subterms of a term in To. In particular, all
genulne subterms of a closed term A that end in a variable, have a calculable
type. So for A < To, Typ., 1is a partial function from the set of all subterms

A
2 3
of A to TO. The iterates of Typ are denoted, as usual, by Typ ,Typ , etc.

1.4. Reductions

We provide To with the usual reduction relations, called a-, B- and n-
reduction. Since a-reduction is a mere renaming of variables, we prefer to
consider T° as being the set of all a-equivalence classes, terms being a-
equivalent if and only if one term reduces to the other by means of a-
reduction.

The essential reduction for To is B-reduction (symbol: >8), which is the
formalization of the application of a function to an argument. It is induced
by the rule: (A8) (BA)C >, :c, the latter term being the result of
(simultaneously) substituting A for all x's free in C. We also have n-
reduction, induced by: (AAX)(XG)C >n C if x does not occur freely in C.

As usual, conversion is the equivalence relation generated by >B and >n.

We denote conversion by the symbol ~,.

1.5. Strong functionality

In systems of natural reasoning there is a natural desire to restrict
the functional applicability. In words: (AS§)B is only
permitted as a subterm of a given F, if B has a domain, say C, and if A fits
in domain C. We shall express "having a domain" and "fitting in" by means of
the function Typ.

Formally, we define: F ¢ TC is strongly functional if and only if the
following condition applies: for all genuine subterms of the form (A§)B it

holds that there exist a non-negative numbex n, a variable y and terms C and

D such that

(1) Typ"[BJexists and Typ [B] ~ (),
(ii) Typ A exists and Typ A ~ C.
We define A as the set of all closed terms that are strongly functional.
Note: For theoretical purposes, a much weaker form of functionality is
sufficient to ensure the validity of the "nice properties” (see the next
section). One may define "weakly functional" terms, which have a functional
structure comparable to that in usual typed lambda-calculuses. The weak
system is helpful, proofs of (strong) normalization for A being given with

the aid of the analogous proofs for the weaker system, which are relatively

easy. A definition of weak functionality is given in an appendix to this

paper; for details, see [4] and (61].

1.6. Properties of A

(1) The Church-Rogsser (or diamond) property, i.e.: if A € A reduces to
B, and A reduces to C, then B and C have a common reduct.

(2) Closure, i.e.: if F € A, then Typ[F] ¢ A; moreover, if F reduces to
G, then G ¢ A.

(3) (Unique) normglization, i.e.: if F . A, then there is a unique
normal term H such that F reduces to H. (H is normal when there is no G such
that H >8 G or H >n G.)

(4) Strong normalization, i.e.: each reduction sequence starting from a
strongly functional term, terminates.

For proofs of these theorems, see [6] and [4].

Expressing mathematics in A

2.1. Translation of a text

There is a standard way, 1n a sense natural, for translating mathematical
texts into A. We shall comment on the principles of this manner of
translating. The idea is, that a mathematical text transforms into a long-
drawn term of A. Not only mathematical entities such as sets and functions,
present in the original text, become subterms of this term, but also text
units such as theorems and assumptions have their direct counterparts in
subterms. The order of the text units in the original reasoning is generally
maintained in the translation.

For obtaining a term of A, having no free variables, one should in
principle have a text that is complete in a double meaning: the text should
not have gaps in the reasoning or argumentation, and all foreknowledge
(axioms, theorems, definitions used in the text) must be explicitly given.
In practice one only translates a portion of text when all foreknowledge is
accessible in translated form, so that the text under consideration becomes,
after translation, a mere extension of an already existing (possibly very
long) A-term.

We shall now discuss a possible way of translating some mathematical

notions or text units.

2.2. Sets and propositions

Our (long) A-term opens with two subterms: (AT) and (An). We think of =t
as being the class of all sets, and m as being the class of all propositions.

If we wish to express, somewhere in the translation, that variable s
must denote a set, we write (TAS) in our A-term. Then Typlsl = 1, in
correspondence with our interpretation of t and of Typ. Analogously, if we
wish to regard variable p as a proposition, we write (nAp).

An element x of set s may now be introduced by embodying the subterm
(Skx) in our term. For the analogous subterm (plt), where p is a proposition,
there is a nice and practical interpretation: t is a proof of p. (This so-
called propositions-as—types notion has fairly recently been introduced by
several investigators, among others De Bruijn; for comment, see [4]).

In this manner one obtains interpretations for four different grades of
terms. The O-grade only contains the empty term, to be interpreted as the

class of all classes. The l-grade contains 1, the class of all sets, and T,

the class of all propositions. The sets and the propositions themselves can
be found in the 2-grade. Finally, the 3-grade contains elements of sets and
proofs of propositions.

Hence, if X is an element (or proof) in the 3-grade, then Typ[X] is a
set (or preposition) in the 2-grade, Typ2[X] is t (or m respectively) and
Typ3fX] is the empty term. It is striking that we only need these four grades
for representing a large section of mathematics, although A has possibilities

for arbitrary n-grades (n being a non-negative number).

2.3. Functions

It is convenient to use the functional structure of lambda-calculus in
describing functions. For example, the identity function on A can obtain the
term (Axx)x as its counterpart in 2. We take the term (AXX)A as type of
this function, usually written A . This interpretation of (AAX)A is not
self-evident, but such a type-valued function is, again, very practical in
use. We note that this policy corresponds with the formal identity
Typ(AAx)x = (AAX)A. For further explanation, see [4].

Following the above convention concerning type-valued functions, there
is a plausible interpretation for the term (pkt)q, where p and gq are
propositions, viz.: p = g. This can be understood as follows. If u is a
proof of q (so Typlul = g according to the propositions-as-types notion),
then function (pkt)u conveys any proof t of p into proof u of g. Hence (pkt)u
proves the implication p = g, so that the type of (pxt)u must be p = g. But
Typ[(pxt)u] is (pAt)q, so the latter represents the implication.

Analogously, term (Axx)q, where A embodies a set and g a proposition,

represents: Vx A[qj. Here q is a term that may contain the free variable x.

2.4. Assumptions and introductions

The text unit "Let x ¢ A" introduces a variable x of type A. In
translation this becomes (AAX). Analogously, the assumption "Assume p" can
be translated by (pkt). Note that the latter mode of translation is in
accordance with the propositions-as-types notion: the subterm (pkt) can be

read as: "Let t be a proof of proposition p".

2.5. Axioms, axiomatic notions

Axioms and axiomatic notions may be regarded as introductions (or
assumptions) with an unbound validity range. For example, the primitive
notion "natural number" can be introduced by means of the subterm (TAIJ).
The first Peano axiom, "1 is a natural number", reads: (IQAone), and so on.

2.6. Definitions

When object o of class B is abbreviated by variable x, then it is to be
understood that each occurrence of x "means" o. This 1is essentially what the
definition x := a does. Let A and B be translations into A of a and B. Then
we can write the definition in translation as (AG)(BAX), since R-reduction
enables us to again replace by A every x bound by this A. Moreover, by
strong functionality both A and x must have type (convertible to) B. These
observations imply that the effect of the insertion of (AG)(BAX) is that x

"means" A.

2.7. Theorems, lemmas and intermediate results

In translating theorems, we lean heavily on the propositions-as-~types
notion. Let B be the translation of a proposition that we regard as a
theorem, and let A be the translation of its proof. Then we may insert the
subterm (AG)(BAt), expressing both the theorem and its proof. By strong
functionality, TyplAl ~ B, in accordance with "A proves B". Variable t may
be regarded as a name of the proof A. Theorem B may later be applied by
referring to its proof, which can be done by calling the name t of the proof.

Lemmas and intermediate results may be treated analogously.

2.8. Deduction rules and logic

We shall briefly comment on the way in which logic can be incorporated.
By introducing an axiomatic notion "contradiction": (nkcd), we can express
the negation 5 p of proposition p as p = cd, or, in translation: (pAt)cd.
The logical connectives A, V etc. now can be expressed by means of the
implication and the negation.

The universal quantifier is already "present" in A, as we saw in 2.3.

The existential quantifier 3 then can be easily expressed as o V 4.

The elimination and introduction rules of natural deduction now are
implicitly present in the system. They are a result of the natural language

structure, and need not be introduced as primitive rules or axioms. See

also {77,
When wishing to apply classical logic, one adds the double negation

rule: .4 p = p as an axiom.

2.9. Remarks on some translation difficulties

There are a number of pecularities that hamper the translation of a

mathematical text into A. We mention a few. (For more extensive comments on
these topics, see [5] and [4].)

(1) The system A has "uniqueness of types". That is to say: if A
converts to B, then TyplAl] converts to Typ[B]l. This presents practical
difficulties as to the hierarchy of types. For example, if x is a natural
number, then x is not automatically a real number as well, since N and R
are obviously non-convertible. A way out is to write in A a mechanism of
embedding and "exbedding", to enable us to deal with sets and subsets.

(2) Two proofs of a certain statement are in principle different. This
gives undesirable effects in the case in which only the existence of a proof
matters, not its nature. For example, the natural logarithm 2n will have two
arguments in A: a number x, and a proof s that this number is positive. So in
fact we should not write £&n x, but &n(x,s). If s and t are two different
proofs of the positiveness of x, however, then nevertheless &n(x,s) and
n(x,t) should be "equal". One can write in A an axiom yielding such an
"irrelevance of proofs" in these cases.

(3) In A there is no primitive equality, apart from conversion. So some
forms of equality (e.g. between sets, and between numbers) have to be
expressed axiomatically. This treatment of equality is in principle feasible,
but in practice somewhat cumbersome.

(4) When A is used in the form as described above, it gives rise to
numerous repetitions inside the A-term. See the example in section 3.2.
Front parts of subterms are often repeated; they are subterms themselves,
but since they end in the empty term, they cannot be abbreviated as is done
with definitions (cf. section 2.6). It is not hard, however, to extend A in

such & manner that the abbreviations meant can be carried out.

An approach to theorem proving on the basis of A

3.1. The shape of a translated mathematical text

When following the translation conventions discussed in section 2, one
obtains a single A-term that may be considered a concatenation of fragments.
Fach fragment is a subterm ending in the empty term. There are three kinds
of fragments:

1. the Znitial fragments, which stand at the heading of the term, namely
(AT) and (AW),

2. primitive fragments of the form (Akp), A being a 1- or 2-grade term
(see section 2.2},

3. stating fragments of the form (Aé)(BAx), B being a 1- or 2-grade term.

The role of the initial fragments will be clear. The primitive fragments
are the translations of axioms and axiomatic notions. The stating fragments

are translations of theorems, lemmas, intermediate results, but also of

definitions.

3.2. Example of a text in A

As an example we render the first few lines of Jutting's complete
translation of Landau's "Grundlagen" (see [5]). Jutting's translation is in
Automath; we give the A-version. For reasons of economy (cf. section 2.9,
note (4)) we draw a line when a repetition is meant. E.g., the fourth line
in the subjoined A-text should read ((nka)(wkb)nkimp). Numbers 1 to 11 are
extra-textual, only meant for numbering the fragments. The A-text below,
read uninterruptedly, yields a single A-term. The content of each fragment

will be explained afterwards.

3. ((wA) (wA) (aX)Dbé)
a b X

(——————A)
imp

4. ((nAa)(nkb)(wxc)((bd)(ad)imp Ai)((cd)(bé)imp Aj)(akx)((xé)id)jé)

((cd) (ad)imp Atrimp)

6. ((wka)(cdé)(aé)imp §)

7. ((n%a)((aG)not S)Ynot &)

(——A_)
nn

8, ({(mx _)Y(ax_ ,) ((ad)not X) (a, 8)xé)
a X 1

al
(———————(ad)nni__)
n

ni
9. ((nxa)((aé)nnkw)akdn)
10. ((whx)Y(cdr) ({(ad)not A)cld8) (ad)dné)
a cl X
e a>‘cir1e)

11. ((nxa)(ﬂxb)((aé)not Xn)((cdkx)(xd)bﬁ)dned)(nd)(bd)(cdé)(a&)trimp §)

((b8) (ad) imp Ath)

Fragments 1 and 2 are initial fragments, 5 and 10 are primitive
fragments. The others are stating fragments, where 3, 6 and 7 concern
definitions; 4, 8, 9 and 11 may be regarded as theorems.

The content of the fragments is the following. Fragments 1 and 2 need
no comment, In 3 the implication is defined (see also section 2.3), 4 states
the transitivity of implication. In 5 contradiction is introduced as an
axiomatic notion. Fragment 6 defines negation (see also section 2.8), 7 the
double negation. In 8 the theorem is proved that a = - 5 a holds; 9 states,
as an axiom, the double negation rule. Fragment 10 proves the falsum-

principle. In 11, finally, the logical theorem - a = (a = b) is proved.

3.3. The construction of a proof

We ignore the proof given in the first part of fragment 11 (previous
section), and try to construct a proof independently. In this construction
we follow a strictly formal approach; we do not appeal to any mathematical
insight. To begin with, we transform the text above into normal form. This
is, of course, a crude and inefficient thing to do, especially for longer
A-texts, but we obtain so doing a clearer view on the principles of proving.

Fragments 1 to 10 transform into the normal A-term:

(AT)(AW)(ﬂAcd)

fragments. Now a proof of the theorem has to be a term with type (converting

((mXx_) (((aXx)ecdXr)edX Yar_), consisting of four primitive
a vy X w dn

|

to) Y, where Y = (nAa)(ﬂAb)((akx)cdkn)(akxo)b, which is the normal forxm
obtained from the term expressing the theorem:

(mx)Y (mwA) ((ad)not X) (bS) (ad)imp.
a b n

- 11 -

We can describe the actual proving state as follows: on one hand we
have a stock of variables and matching types, on the other hand there is a
target, determined by one or more types. In our case, we have the following
initial proving state: the stock consists of the "leading variables" of the
four primitive fragments, namely 1, 7, cd and dn, together with their
types; the target is to find a term with type (converting to) Y.

In view of the shape of Y, it 1s appropriate to change the proving
state: add a, b, n and x0 to the stock, with types as above, and change the
target into a term X with type (converting to) b. None of the variables in
the stock has a type that is b, converts to b, or ends in b. As to all
stock-variables except dn, there is no way of changing the final variable
of thelr types into b by reductions. Only dn can give us hope: the final a
of its type is "internally bound”, i.e.: bound by a A that occurs inside the
same fragment; so variable a can possibly be changed into b.

Hence we now direct our searching attempts at dn and, again,we change
the proving state. We look for terms x1 and x2 (the new targets) such that
(x26)(X16)dn has a type (converting to) b. Then X1 must have type 7 and x2

must have type ((X Ay)chx)cd, according to strong functionality. Now

1
Typ[(xzd)(xld)dn] = Xl' as can be easily computed, so X, must be b. The

1
remaining target is an X, with type (converting to) Y, = ((bky)cdxx)cd.

2 2
In view of the shape of Y2, we add x to the stock of variables, with

its type: (bxy)cd. Now the target becomes a term x21 with type cd. The only

possibilities are to use dn, n or x from the stock. We choose to use n and

have to find an X211 such that (X211

type a, and, indeed, X211 = x0 does the job.
Thus we have reached the final proving state, in which no target is

§)n = (x068)n;

§)n has type cd. Then x211 must have

211 X1 = oy

x2 = ((bAy)chx)XZI; x1 = b and X = (x26)(x16)dn. The requested proof is

(mA_)(mAx.) ((ar_)ecdX) (aX_.)X. Inspection shows that we have found the "same"
a b X n x0

left. Recapitulating: we found X z a;

proof as given in fragment 11 of the example in section 3.2 when written in
normal form.

There were only a few cholces to be made in this simple proving problem.
Yet, if we had chosen to use dn instead of n, when loocking for X21, we would
have returned to a prior proving state. Hence, in principle we could have

been caught in a loop.

- 12 -

3.4. Remarks on partial theorem proving on the basis of A

A general strategy for theorem proving on the basis of normal forms can
easily be derived from the construction example above. This normal strategy
does indeed work in uncomplicated cases, but it fails when major mathematical
tools are needed, such as induction. In such cases there is, presumably, only
hope for a mechanical theorem prover when it is built in an interactive way:
the theorem prover must be able to react to hints from the human textwriter.

For general use one has to abandon the transformation into normal form.
The normal proving strategy, as explained above, can however be adapted for
non-normal A-texts, such as given in section 3.2. The strategy itself then
becomes more complicated. It is, for instance, not sufficient to regard the
final variable of a certain "type-term", but one also has to consider all
variables that can possibly replace this variable when reductions are
applied. This leads to the tracing of certain chains of variables. The
comparison of variables, being a major activity in the normal strategy, then
has to be replaced by a method of comparing variable chains.

Summarizing, there appear to be possiblities for partial theorem
proving on the basis of A, in particular when small gaps have to be bridged.
For exacting proofs, however, a form of interaction between man and machine

appears indispensable.

References

[11 N.G. de Bruijn, The mathematical language AUTOMATH, its usage and some
of its extensions, Symposium on Automatic Demonstration, IRIA,
Versailles, France, 1968. (Lecture notes in Mathematics, Vol. 125,

Springer-Verlag, pp. 29-61, 1970.)

{21 WN.G. de Brutjn, AUTOMATH, a language for mathematics, Lecture Notes

prepared by B. Fawcett. Les Presses de l'Université de Montreal, Canada, 1973.

(3] D.T. van Daalen, B description of AUTOMATH and some aspects of its
language theory. Proceedings of the Symposium APLASM, Vol. I,

ed. P. Braffort, Orsay, France, 1973,

(4] D.T7. van Daalen, The language theory of Automath, thesis, Technol.

University Eindhoven, the Netherlands, 1980.

(s1 L.S. van Benthem Jutting, Checking Landau's "Grundlagen" in the
AUTOMATH system, thesis, Technol. University Eindhoven, 1977.

(Mathematical Centre Tracts 83, amsterdam, the Netherlands, 1979.,)

6] R.P. Nederpelt, Strong normalization in a typed lambda calculus with
lambda structured types, thesis, Technol. University Eindhoven,

the Netherlands, 1973.

(7} R.P. Nederpelt, Presentation of natural deduction, Recueil des Travaux
de 1'Institut Mathématique, Nouvelle série, tome 2 (10), p. 115-126,
Symposium: Set Theory, Foundations of Mathematics, Beograd, Jugo-Slavia,

1977.

[81 J. Zucker, Formalization of classical mathematics in AUTOMATH, Actes of

the International Logic Colloguium, Clermont-Ferrand, France, 1975.

- 14 -

Appendix

Weak functicnality

We define the norm (the "functional skeleton") I All of a term A by the

following partial definition:

(i) the norm of the empty term is the empty term; if x is a variable and

lTyplx1ll exists, then I x|l := (Typlx]l;
(ii} if A and B are terms for which lall and IIBll exist, then
I (AAX)BH ;= (lalh)y IBl;

e %

if, moreover | BI (“A"XX)D, then Il (A8)BIl := D.

If |All exists for some term A, then llAll is a term as well, without free
variables. There are no 8's in llAll. The essential step in norm calculation
is the cancellation of adjacent pairs (Bé)(ckx) when some weak functicnal
condition is obeyed as to "argument” B and "domain" C. This condition is
expressed in the second part of (ii). The calculation of the norm of A
breaks off prematurely {(and A has no norm), or terminates in a unigue norm
Fall.

We say that a closed term F is weakly functional if IIFl exists. It is
not hard to prove that strongly functional terms are weakly functional as

well.

