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An approach t o  theorem proving on the  b a s i s  of a typed lambda-calculus 

R.P .  Nederpelt (*  

Abstract  and in t roduc t ion  

 his paper descr ibes  a system of typed lambda-calculus s u i t e d  t o  

represen t ing  mathematical t e x t s ,  and d iscusses  some theorem proving aspec ts  

of t he  system. In  p a r t  1 a formal expos6 i s  given of t h e  system, with 

comments on the  p r inc ip l e s  chosen. A na tu ra l  manner of  rendering mathematical 

t e x t s  i n  t he  system w i l l  be explained i n  p a r t  2 .  F ina l ly ,  i n  p a r t  3 t h e  

system w i l l  be inves t iga ted  a s  regards i t s  p o t e n t i a l s  f o r  ( p a r t i a l )  theorem 

proving. 

An idea  f o r  a "completely" formalized, y e t  na tu ra l  language f o r  

expressing mathematical t e x t s  was conceived by N.G. de Brui jn .  I n  1968 he 

developed the  mathematical language Automath. Automath has s ince  been 

ex tens ive ly  appl ied and t e s t e d  on numerous mathematical t op i c s ,  language 

theory has been developed f o r  e s t ab l i sh ing  i t s  computational soundness, and 

a computer programme has been produced f o r  checking t h e  formalized t ex t s .  

For Automath and appl ica t ions ,  c f .  references [ I ] ,  C21, C81 and [S]. 

Automath i s  e s s e n t i a l l y  a typed lambda-calculus presented i n  a 

modified form i n  order  t o  make it more access ib le  t o  t he  customer. The 

underlying typed lambda-calculus, which we c a l l  A ,  i s  r e l a t i v e l y  simple and 

i n  a sense na tu ra l .  I n  con t r a s t  t o  types i n  the  usual  typed systems, types 

i n  A behave l i k e  terms, and do not  look d i f f e r e n t  t o  terms. The system h 

obeys the  same "nice p rope r t i e s "  a s  does Automath, such a s  t h e  Church-Rosser 

property,  unique ( s t rong)  normalization and closure ( see  s ec t i on  1 .6) .  For 

language theory of Automath and A ,  see  C61, C31 and C41. 

Since A has a simple,  t ransparen t  s t r u c t u r e ,  it would seem promising t o  

i nves t i ga t e  i t s  p r a c t i c a l  theorem proving aspects .  However, t he re  has not  

been much experience i n  t h i s  d i r ec t i on .  Some considerat ions and comments, 

a r i s i n g  from a A-text example presented i n  t h i s  paper,  may nevertheless  be 

he lp fu l  f o r  p r a c t i c a l  appl ica t ions  t o  theorem proving. 

(*I Thanks a r e  due t o  A.V. Zimmermann f o r  remarks concerning the  use of the  

English language. 



1 .  A concise d e f i n i t i o n  of the  system 

1.1. Notations 

Like Automath, A uses notat ions t h a t  deviate  from lambda-calculus 

conventions. For X x ~  , x having type A ,  we wr i t e  (AX ) B .  Instead of (BA) , 
X 

i . e .  "function" B applied t o  "argument" A ,  we wr i te  ( A 6 ) B .  Here 6 i s  the  

s igna l  f o r  a func t iona l  appl icat ion.  There a r e  two main reasons f o r  

inver t ing  the  order  of function and argument: (1) t he re  is  an analogy 

between the  dual  operat ions "abs t rac t ion"  ( leading from B t o  (AAx)B)  and 

"appl icat ion" ( leading from B t o  ( A ~ ) B )  1 ( 2 )  t he  inversion is  very p r a c t i c a l  

when rendering mathematical t e x t s  by means of A (see e.g.  sec t ions  2.6 and 

2 . 7 ) .  

1.2. Terms 

0 
We introduce the s e t  T of (open) terms by the  following recursive 

d e f i n i t i o n ;  t he  alphabet cons i s t s  of va r i ab l e s ,  brackets  and the  symbols A  

and 6 .  
0 0 

(1) The empty term i s  a term of T ; each var iab le  i s  a term of T . 
0 

( 2 )  I f  A and B E T and i f  x is  a var iab le ,  then ( A X  ) B  and ( A 6 ) B  a r e  terms 
X 

0 
of T . 
  he empty term is  rendered inv i s ib ly ;  examples of o ther  terms a r e :  

x; ( (6)Xx)y. 
0 

The s e t  T' i s  defined a s  the  closed fragment of T , i . e .  t he  s e t  of a l l  
0 

closed terms present  i n  T ; a d o s e d  term i s  a term without f r e e  var iab les .  

W e  say t h a t  G i s  a subterm of F, i f  F and G a r e  terms and G occurs i n  F. 

I f ,  moreover, t he  f i r s t  symbol occurring a f t e r  G i n  F ( i f  any) i s  6 o r  X ,  

we say t h a t  G i s  a genuine subterm of F' . (This d e f i n i t i o n  implies t h a t  z 

and ( A  ) x  a r e  genuine subterms of ( ( A  ) ( X  1x6) z ,  but  ( A  ) i s  a subterm t h a t  
Y x Y Y 

i s  not  genuine. ) 

We need types t o  enable us t o  a t t ach  "c lasses"  t o  "objects":  i f  C i s  a 

term represent ing an ob jec t ,  then the  type of C represents  the  c l a s s  of 

t h a t  ob jec t .  In  t h i s  context we note  t h a t  t he  empty term a c t s  a s  a kind of 

c l a s s  f o r  a l l  c l a s se s .  See a l s o  sec t ion  2.2. 

Formally, we define types a s  follows. I f  ( B X  ) i s  a subterm of term A ,  
X 

and x occurs a s  a var iab le  i n  A t h a t  is bound by the  X mentioned, then we say 



t h a t  t h e  type o f  t h e  bound x ,  r e l a t i v e  t o  A ,  i s  B. I n  t h e  c a s e  t h a t  C i s  a  
0 

subterm o f  A r T and C ends i n  a  v a r i a b l e  x  ( s o  C - Dx f o r  some term D) , 
where x  i s  bound i n  A ,  t hen  t h e  type  o f  C, r e l a t i v e  t o  A ,  is  t h e  

conca tena t ion  o f  D and t h e  type  of  x.  We denote  t h e  type  o f  C,  r e l a t i v e  t o  

A ,  by TypACc], o r ,  when no confusion i s  p o s s i b l e :  ~ y p c ~ ] .  

Example: ~ y p C (  (6)yXx) ( ( x G ) z ) x l  5 ( (6)yhx)  ( ( x 6 ) z )  ( 6 ) y .  

We no te  t h a t  t h e  types  a r e  n o t  g iven beforehand a s  a  s e p a r a t e  set. They 
0 

can be c a l c u l a t e d  f o r  some subterms of  a  term i n  T . I n  p a r t i c u l a r ,  a l l  

genuine subterms o f  a  c l o s e d  term A t h a t  end i n  a  v a r i a b l e ,  have a  c a l c u l a b l e  
0 

type.  So f o r  A c T , TypA i s  a  p a r t i a l  func t ion  from t h e  s e t  o f  a l l  subterms 
2 3 

of A t o  TO. The i t e r a t e s  of  Typ a r e  denoted,  a s  u s u a l ,  by Typ ,Typ , e t c .  

1 .4 .  Reductions 

0 
We prov ide  T  wi th  t h e  u s u a l  r educ t ion  r e l a t i o n s ,  c a l l e d  a - ,  B- and n- 

reduc t ion .  S ince  a - reduc t ion  i s  a  mere renaming o f  v a r i a b l e s ,  we p r e f e r  t o  
0 

cons ide r  T  a s  be ing  t h e  s e t  o f  a l l  a-equivalence c l a s s e s ,  terms being a- 

e q u i v a l e n t  i f  and on ly  i f  one term reduces  t o  t h e  o t h e r  by means o f  a- 

reduc t ion .  
0 

The e s s e n t i a l  r e d u c t i o n  f o r  T  i s  @-reduct ion (symbol: , which is  t h e  

f o r m a l i z a t i o n  of  t h e  a p p l i c a t i o n  o f  a  func t ion  t o  an argument. I t  is induced 
X 

by t h e  r u l e :  ( A & )  (BXx)C > C ,  t h e  l a t t e r  term be ing  t h e  r e s u l t  o f  
B A 

(s imul taneously)  s u b s t i t u t i n g  A f o r  a l l  x ' s  f r e e  i n  C.  We a l s o  have q- 

r e d u c t i o n ,  induced by: (Ahx)  (x6)C >n C i f  x  does n o t  occur  f r e e l y  i n  C. 

A s  u s u a l ,  convers ion i s  t h e  equivalence  r e l a t i o n  genera ted  by > and > . 
B 11 

We denote  convers ion by t h e  symbol -. 

1.5.  S t rona  f u n c t i o n a l i t v  

I n  systems o f  n a t u r a l  r eason ing  t h e r e  i s  a  n a t u r a l  d e s i r e  t o  r e s t r i c t  

t h e  f u n c t i o n a l  a p p l i c a b i l i t y .  I n  words: (A6)B i s  o n l y  

pe rmi t t ed  a s  a subterm o f  a  g iven F, i f  B has  a  domain, s a y  C ,  and i f  A f i t s  

i n  domain C. We s h a l l  express  "having a  domain" and " f i t t i n g  i n "  by means o f  

t h e  f u n c t i o n  Typ. 
C 

Formally, we d e f i n e :  F  r T i s  s t r a o n g ~ y  functionai! i f  and on ly  i f  t h e  

fo l lowing c o n d i t i o n  a p p l i e s :  f o r  a l l  genuine subterms o f  t h e  form (A6)B it 

ho lds  t h a t  t h e r e  e x i s t  a  non-negative number n ,  a  v a r i a b l e  y  and terms C and 

D such t h a t  



(i) 'I 'ypnr~l e x i s t s  and ~ y p " C ~ 1  - (CA ID, 
Y 

(ii) Typ A e x i s t s  and Typ A - C. 

We def ine  A a s  t he  s e t  of a l l  c losed terms t h a t  a r e  s t rongly  func t iona l .  

Note: For t h e o r e t i c a l  purposes, a much weaker form of func t iona l i t y  is  - 
s u f f i c i e n t  t o  ensure t he  v a l i d i t y  of the  "nice p rope r t i e s "  (see t he  next 

s e c t i o n ) .  One may de f ine  "weakly func t iona l"  terms, which have a func t iona l  

s t r u c t u r e  comparable t o  t h a t  i n  usual  typed lambda-calculuses. The weak 

system i s  he lp fu l ,  proofs  of ( s t rong)  normalization f o r  A being given with 

t he  a i d  of t he  analogous proofs  f o r  t he  weaker system, which a r e  r e l a t i v e l y  

easy. A d e f i n i t i o n  of weak func t iona l i t y  is given i n  an appendix t o  t h i s  

paper; f o r  d e t a i l s ,  see  C4J and 161. 

1.6.  Proper t ies  of A 

( 1 ) The Church-Rosser (or  diamond) propctrty , i .e . : i f  A E A reduces t o  

B, and A reduces t o  C, then B and C have a common reduct .  

( 2 )  CZosure, i . e . :  i f  F E A ,  then ~ y p [ F ]  E A ;  moreover, i f  F reduces t o  

G I  then G c A .  

( 3 )  (Unique) normalization, i . e . :  i f  F r A ,  then the re  i s  a unique 

normal term H such t h a t  F reduces t o  H .  ( H  i s  normal when there  is  no G such 

t h a t  H > G o r H  > G . )  
B n 

( 4 )  Strong normalizat ion,  i . e . :  each reduct ion sequence s t a r t i n g  from a 

s t rong ly  func t iona l  term, terminates .  

For proofs  of these  theorems, see C61 and C41. 



2. Expressing mathematics in h 

2.1. Translation of a text 

There is a standard way, in a sense natural, for translating mathematical 

texts into A. We shall comment on the principles of this manner of 

translating. The idea is, that a mathematical text transforms into a long- 

drawn term of A. Not only mathematical entities such as sets and functions, 

present in the original text, become subterms of this term, but also text 

units such as theorems and assumptions havetheir direct counterparts in 

subterms. The order of the text units in the original reasoning is generally 

maintained in the translation. 

For obtaining a term of A, having no free variables, one should in 

principle have a text that is complete in a double meaning: the text should 

not have gaps in the reasoning or argumentation, and all foreknowledge 

(axioms, theorems, definitions used in the text) must be explicitly given. 

In practice one only translates a portion of text when all foreknowledge is 

accessible in translated form, so that the text under consideration becomes, 

after translation, a mere extension of an already existing (possibly very 

long) A-term. 

We shall now discuss a possible way of translating some mathematical 

notions or text units. 

2.2. Sets and propositions 

Our (long) A-term opens with two subterms: ( A  ) and (AT). We think of T 
T 

as being the class of all sets, and a as being the class of all propositions. 

If we wish to express, somewhere in the translation, that variable s 

must denote a set, we write (TX~) in our A-term. Then ~ypcs 1 E T, in 

correspondence with our interpretation of T and of Typ. Analogously, if we 

wish to regard variable p as a proposition, we write (TX ) .  
P 

An element x of set s may now be introduced by embodying the subterm 

(SX ) in our term. For the analogous subterm (pXt), where p is a proposition, 
X 

there is a nice and practical interpretation: t is a proof of p. (This so- 

called propositions-as-types notion has fairly recently been introduced by 

several investigators, among others De Bruijn; for comment, see C41). 

In this manner one obtains interpretations for four different grades of 

terms. The 0-grade only contains the empty term, to be interpreted as the 

class of all classes. The 1-grade contains T, the class of all sets, and n, 



the class of all propositions. The sets and the propositions themselves can 

be found in the 2-grade. Finally, the 3-grade contains elements of sets and 

proofs of propositions. 

Hence, if X is an element (or proof) in the 3-grade, then TYPCXI is a 
2 

set (or proposition) in the 2-grade, Typ [XI is T (or T respectively) and 
3 

Typ [XI is the empty term. It is striking that we only need these four grades 
for representing a large section of mathematics, although A has possibilities 

for arbitrary n-grades (n being a non-negative number). 

2.3. Functions 

It is convenient to use the functional structure of lambda-calculus in 

describing functions. For example, the identity function on A can obtain the 

term (AX )x as its counterpart in A .  We take the term (AX )A as type of 
X A X 

this function, usually written A .  his interpretation of (Ahx)A is not 

self-evident, but such a type-valued function is, again, very practical in 

use. We note that this policy corresponds with the formal identity 

Typ(AAx)x 5 (AX ) A .  For further explanation, see C41. 
X 

Following the above convention concerning type-valued functions, there 

is a plausible interpretation for the term (pX )q, where p and q are 
t 

propositions, viz.: p - q. This can be understood as follows. If u is a 
proof of q (so ~ypru] z q according to the propositions-as-types notion), 

then function (pX )u conveys any proof t of p into proof u of q. Hence (pX )u 
t t 

proves the implication p =+ q, so that the type of (pX )u must be p 19 q. But 
t 

TWC (pht)ul is (pX )q, so the latter represents the implication. t 
Analogously, term (AX )q, where A embodies a set and q a proposition, 

X 

represents: V CqJ. Here q is a term that may contain the free variable x. 
xc A 

2.4. Assumptions and introductions 

The text unit "Let x c A" introduces a variable x of type A. In 

translation this becomes (AX ) .  Analogously, the assumption "Assume p" can 
X 

be translated by (pit). Note that the latter mode of translation is in 

accordance with the propositions-as-types notion: the subterm (pX 1 can be 
t 

read as: "Let t be a proof of proposition p". 



2.5. Axioms, axiomatic notions 

Axioms and axiomatic notions may be regarded as introductions (or 

assumptions) with an unbound validity range. For example, the primitive 

notion "natural number" can be introduced by means of the subterm (TX 1.  nr 
The first Peano axiom, "1 is a natural number", reads: (NX , and so on. 

2.6. Definitions 

When object a of class fi is abbreviated by variable x, then it is to be 

understood that each occurrence of x "means" a. This is essentially what the 

definition x := a does. Let A and B be translations into A of a and 6. Then 

we can write the definition in translation as (A&) (BXx), since 6-reduction 

enables us to again replace by A every x bound by this A. Moreover, by 

strong functionality both A and x must have type (convertible to) B. These 

observations imply that the effect of the insertion of (A&) (BX ) is that x 
X 

"means" A. 

2.7. Theorems, lemmas and intermediate results 

In translating theorems, we lean heavily on the propositions-as-types 

notion. Let B be the translation of a proposition that we regard as a 

theorem, and let A be the translation of its proof. Then we may insert the 

subterm (AG) (BA ) ,  expressing both the theorem and its proof. By strong 
t 

functionality, TY~CAI - B, in accordance with "A proves B". Variable t may 
be regarded as a name of the proof A. Theorem B may later be applied by 

referring to its proof, which can be done by calling the name t of the proof. 

Lemmas and intermediate results may be treated analogously. 

2.8. Deduction rules and logic 

We shall briefly comment on the way in which logic can be incorporated. 

By introducing an axiomatic notion "contradiction": (nhcd) , we can express 
the negation 7 p of proposition p as p * cd, or, in translation: (pAt)cd. 
The logical connectives A ,  v etc. now can be expressed by means of the 

implication and the negation. 

The universal quantifier is already "present" in A ,  as we saw in 2.3. 

The existential quantifier 3 then can be easily expressed as 7 V 1. 



The elimination and introduction rules of natural deduction now are 

implicitly present in the system. They are a result of the natural language 

structure, and need not be introduced as primitive rules or axioms. See 

also C71. 

When wishing to apply classical logic, one adds the double negation 

rule: 7-1  p * p as an axiom. 

2.9. Remarks on some translation difficulties 

There are a number of pecularities that hamper the translation of a 

mathematical text into A. We mention a few. (For more extensive comments on 

these topics, see C51 and C41.I 

(1) The system A has "uniqueness of types". That is to say: if A 

converts to B, then ~ y p C ~ 1  converts to T ~ ~ C B I .  This presents practical 
difficulties as to the hierarchy of types. For example, if x is a natural 

number, then x is not automatically a real number as well, since IN and lR 

are obviously non-convertible. A way out is to write in A a mechanism of 

embedding and "exbedding", to enable us to deal with sets and subsets. 

(2)  Two proofs of a certain statement are in principle different. This 

gives undesirable effects in the case in which only the existence of a proof 

matters, not its nature. For example, the natural logarithm Rn will have two 

arguments in A: a number x, and a proof s thatthisnumber is positive. So in 

fact we should not write Rn x, but Rn(x,s). If s and t are two different 

proofs of the positiveness of x, however, then nevertheless Rn(x,s) and 

Rn(x,t) should be "equal". One can write in A an axiom yielding such an 

"irrelevance of proofs" in these cases. 

( 3 )  In A there is no primitive equality, apart from conversion. So some 

forms of equality (e.g. between sets, and between numbers) have to be 

expressed axiomatically. This treatment of equality is in principle feasible, 

but in practice somewhat cumbersome. 

(4) When A is used in the form as described above, it gives rise to 

numerous repetitions inside the A-term. See the example in section 3.2. 

Front parts of subterms are often repeated; they are subterms themselves, 

but since they end in the empty term, they cannot be abbreviated as is done 

with definitions(cf. section 2.6). It is not hard, however, to extend A in 

such a manner that the abbreviations meant can be carried out. 



3. An approach t o  theorem proving on t h e  b a s i s  o f  h  

3.1. The shape o f  a  t r a n s l a t e d  mathematical t e x t  

When fol lowing t h e  t r a n s l a t i o n  conventions d i scussed  i n  s e c t i o n  2 ,  one 

o b t a i n s  a  s i n g l e  A-term t h a t  may be considered a  concatenat ion o f  fragments. 

Each fragment i s  a  subterm ending i n  t h e  empty term. There a r e  t h r e e  k inds  

of fragments : 

1. t h e  i n i t i a l  fragments,  which s t a n d  a t  t h e  heading o f  t h e  term, namely 

( A T )  and ( A v ) ,  

2. primitive fragments of t h e  form (AX ) , A being a  1- o r  2-grade term 
P  

( s e e  s e c t i o n  2 .2)  , 
3 .  s ta t ing fragments of t h e  form ( A & )  ( B X x ) ,  B being a  1- o r  2-grade term. 

The r o l e  of t h e  i n i t i a l  fragments w i l l  be c l e a r .  The p r i m i t i v e  fragments 

a r e  t h e  t r a n s l a t i o n s  of axioms and axiomat ic  no t ions .  The s t a t i n g  fragments 

a r e  t r a n s l a t i o n s  o f  theorems, lemmas, in te rmedia te  r e s u l t s ,  b u t  a l s o  o f  

d e f i n i t i o n s .  

3.2. Example of a  t e x t  i n  

A s  an example we render  t h e  f i r s t  few l i n e s  o f  J u t t i n g ' s  complete 

t r a n s l a t i o n  of Landau's "Grundlagen" ( s e e  C51). J u t t i n g ' s  t r a n s l a t i o n  i s  i n  

Automath; we g ive  t h e  A-version. For reasons  o f  economy ( c f .  s e c t i o n  2.9, 

note  ( 4 ) )  we draw a  l i n e  when a  r e p e t i t i o n  is  meant. E.g., t h e  f o u r t h  l i n e  

i n  t h e  subjoined A-text should read  ((nX ) (ah ) a 1  ) .  Numbers 1 t o  11 a r e  
a  b  imp 

e x t r a - t e x t u a l ,  only  meant f o r  numbering t h e  fragments. The A-text below, 

read  u n i n t e r r u p t e d l y ,  y i e l d s  a  s i n g l e  A-term. The con ten t  o f  each fragment 

w i l l  be expla ined a f te rwards .  

4. ( (vh ) (nh ) (nh ) ( (b6) ( a s )  imp h i )  ( (c6)  (b6) imp A , )  (ahx) ( ( x 6 ) i 6 )  1 6 )  
a b  c 



Fragments 1 and 2 a r e  i n i t i a l  fragments,  and 10 a r e  p r i m i t i v e  

fragments. The o t h e r s  a r e  s t a t i n g  fragments,  where 3 ,  6 and 7 concern 

d e f i n i t i o n s ;  4 ,  8 ,  9 and 11 may be regarded as theorems. 

The con ten t  o f  t h e  fragments is  t h e  following. Fragments 1 and 2 need 

no comment. I n  3 t h e  i m p l i c a t i o n  i s  def ined  ( s e e  a l s o  s e c t i o n  2.31, 4 s t a t e s  

t h e  t r a n s i t i v i t y  o f  impl ica t ion .  I n  5 c o n t r a d i c t i o n  is int roduced a s  an  

axiomat ic  no t ion .  Fragment 6 d e f i n e s  nega t ion  ( s e e  a l s o  s e c t i o n  2.81, 7 t h e  

double negat ion.  I n  8 t h e  theorem i s  proved t h a t  a  1 -, a ho lds ;  9 s t a t e s ,  

a s  an axiom, t h e  double negat ion r u l e .  Fragment 10 proves t h e  falsum- 

p r i n c i p l e .  I n  11, f i n a l l y ,  t h e  l o g i c a l  theorem 7 a ( a  b) is proved. 

The c o n s t r u c t i o n  o f  a  proof 

We ignore  t h e  proof  given i n  t h e  f i r s t  p a r t  o f  fragment 11 (previous  

s e c t i o n ) ,  and t r y  t o  c o n s t r u c t  a  proof independently.  I n  t h i s  c o n s t r u c t i o n  

we fol low a  s t r i c t l y  formal approach; we do n o t  appeal  t o  any mathematical  

i n s i g h t .  To begin wi th ,  we t ransform t h e  t e x t  above i n t o  normal form. Th is  

is ,  of course ,  a  crude and i n e f f i c i e n t  t h i n g  t o  do,  e s p e c i a l l y  f o r  longer  

A-texts,  b u t  we o b t a i n  s o  doing a c l e a r e r  view on t h e  p r i n c i p l e s  o f  proving.  

Fragments 1 t o  10 t ransform i n t o  t h e  normal A-term: 

( A T )  ( A  ) (nh ( (rXa) ( ( (ah ) cdXx) cdXw) ahdn) , c o n s i s t i n g  o f  four  p r i m i t i v e  
r cd Y 

fragments. Now a  proof o f  t h e  theorem has  t o  be a  term with  type (conver t ing  

t o )  Y ,  where Y -= (nh (TTX ( ( a 1  )cdXn) (ah ) b ,  which i s  t h e  normal form 
a b  x X 0 

obta ined  from t h e  term express ing  t h e  theorem: 

(rXa) (nhb) ( ( a 6 ) n o t  A n )  (b6) (a61 imp. 



We can descr ibe  t h e  a c t u a l  proving s t a t e  a s  follows: on one hand we 

have a stock of va r i ab l e s  and matching types,  on t h e  o the r  hand the re  i s  a 

t a r g e t ,  determined by one o r  more types. I n  our case,  we have t h e  following 

i n i t i a l  proving s t a t e :  t h e  s tock c o n s i s t s  of t he  " leading var iab les"  of t h e  

four pr imi t ive  fragments, namely T ,  n, cd and dn, toge ther  with t h e i r  

types;  t h e  t a r g e t  i s  t o  f i nd  a term with type (convert ing t o )  Y. 

I n  view of  t he  shape of Y ,  it i s  appropriate  t o  change t h e  proving 

s t a t e :  add a ,  b ,  n and xO t o  t h e  s tock ,  with types a s  above, and change t h e  

t a r g e t  i n t o  a term X with type (converting t o )  b. None of  t h e  va r i ab l e s  i n  

t he  s tock has a type t h a t  i s  b,  converts  t o  b ,  o r  ends i n  b. A s  t o  a l l  

s tock-variables  except dn, t he re  is  no way of  changing t h e  f i n a l  va r i ab l e  

of  t h e i r  types i n t o  b by reduct ions.  Only dn can g ive  us hope: t h e  f i n a l  a 

of i ts  type is  " i n t e r n a l l y  bound", i . e . :  bound by a A t h a t  occurs i n s ide  t h e  

same fragment; s o  va r i ab l e  a can poss ib ly  be changed i n t o  b.  

Hence we now d i r e c t  our searching at tempts  a t  dn and, again,we change 

t h e  proving s t a t e .  We look f o r  terms X and X ( t h e  new t a r g e t s )  such t h a t  1 2 
( X  6 )  (x 6)dn has  a type (convert ing t o )  b. Then X must have type r and X 2 1 1 2 

must have type ( ( X  X )cdh )cd ,  according t o  s t rong  func t iona l i t y .  Now 
l Y  x 

Typ[(X26) (x16)dnl E X l ,  a s  can be e a s i l y  computed, s o  X must be b. The 1 
remaining t a r g e t  is  an X2 with type (converting t o )  Y = ((bA )cdA )cd.  2 - Y X  

In  view of the  shape of  Y 2 ,  we add x t o  t h e  s tock of  va r i ab l e s ,  with 

i t s  type: (bX )cd.  Now t h e  t a r g e t  becomes a term X with type cd. The only 
Y 2 1 

p o s s i b i l i t i e s  a r e  t o  use dn, n o r  x from the  s tock.  We choose t o  use n and 

have t o  f i nd  an X Z l l  such t h a t  (X2116)n has type cd. Then X211 must have 

type a ,  and, indeed, X211 := xO does the  job. 

Thus we have reached the  f i n a l  proving s t a t e ,  i n  which no t a r g e t  is  

l e f t .  Recapi tulat ing:  w e  found X 211 5 a ;  X21 Z (X2116)n W x 0 6 ) n ;  

X2 5 ( (bX cdX ) X  X r b and X Z (x  6 )  ( X  6 )  dn. The requested proof is  y x 21; 1 2 1 
(nXa) (nXb) ((aXx)cdXn) (aAxO)X. Inspect ion shows t h a t  w e  have found t h e  "same" 

proof a s  given i n  fragment 11 of t h e  example i n  s ec t i on  3.2 when wr i t t en  i n  

normal form. 

There were only a few choices t o  be made i n  t h i s  simple proving problem. 

Yet, i f  we had chosen t o  use dn in s t ead  of n ,  when looking f o r  X we  would 
21' 

have returned t o  a p r i o r  proving s t a t e .  Hence, i n  p r i n c i p l e  w e  could have 

been caught i n  a loop. 



3.4. - Remarksonpartial theorem proving on the basis of A 

A general strategy for theorem proving on the basis of normal forms can 

easily be derived from the construction example above. This n0YWaZ strategy 

does indeed work in uncomplicated cases, but it fails when major mathematical 

tools are needed, such as induction. In such cases there is, presumably, only 

hope for a mechanical theorem prover when it is built in an interactive way: 

the theorem prover must be able to react to hints from the human textwriter. 

For general use one has to abandon the transformation into normal form. 

The normal proving strategy, as explained above, can however be adapted for 

non-normal A-texts, such as given in section 3.2. The strategy itself then 

becomes more complicated. It is, for instance, not sufficient to regard the 

final variable of a certain "type-term", but one also has to consider all 

variables that can possibly replace this variable when reductions are 

applied. This leads to the tracing of certain chains of variables. The 

comparison of variables, being a major activity in the normal strategy, then 

has to be replaced by a method of comparing variable chains. 

Summarizing, there appear to be possiblities for part ia l  theorem 

proving on the basis of A, in particular when small gaps have to be bridged. 

For exacting proofs, however, a form of interaction between man and machine 

appears indispensable. 
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Appendix 

Weak f u n c t i o n a l i t y  

We d e f i n e  t h e  norm ( t h e  " f u n c t i o n a l  ske le ton")  11 A 11 o f  a  term A by t h e  

fol lowing p a r t i a l  d e f i n i t i o n :  

(i) t h e  norm of  t h e  empty term is  t h e  empty term; i f  x i s  a  v a r i a b l e  and 

I1 ~ y p C x l  ll e x i s t s ,  then  11 x 11 : = II  TY~CXI 11; 

(ii) i f  A and B a r e  terms f o r  which II  A 11 and 11 B 11 e x i s t ,  then 

11 (AXx)BII := (IIAlhX) 11B11; 

i f ,  moreover 1 1 ~ 1 1  : ( I I A l l i x ) ~ ,  then 11 ( A ~ ) B I I  := D. 

I f  1 1 ~ 1 1  e x i s t s  f o r  some term A ,  then  IIAll i s  a  term a s  w e l l ,  wi thout  f r e e  

v a r i a b l e s .  There a r e  no 6 ' s  i n  1 1 ~ 1 1 .  The e s s e n t i a l  s t e p  i n  norm c a l c u l a t i o n  

is  t h e  c a n c e l l a t i o n  o f  a d j a c e n t  p a i r s  (BG)(CX ) when some weak f u n c t i o n a l  
X 

cond i t ion  i s  obeyed a s  t o  "argument" B and "domain" C. Th i s  c o n d i t i o n  i s  

expressed i n  t h e  second p a r t  o f  (ii). The c a l c u l a t i o n  sf t h e  norm o f  A 

breaks  off prematurely  (and A has  no norm), o r  t e rmina tes  i n  a  unique norm 

11 A 11. 

We s a y  t h a t  a  c losed  term F is weakly functional i f  IlFII e x i s t s .  I t  is  

n o t  ha rd  t o  prove t h a t  s t r o n g l y  f u n c t i o n a l  terms a r e  weakly f u n c t i o n a l  a s  

we l l .  


