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THE LANGUAGE THEORY OF Am, 

A TYPED A-CALCULUS WHERE TERMS ARE TYPES 

by 

L.S. van Benthem Jutting 

1. Introduction 

In the present paper we present the theory of a system op typed A-calculus 

Am, which is essentially the system introduced by Nederpelt in 161. Its 

characteristic feature is that any term of the system can serve as a type. 

The main difference between the two systems is that our system only allows 

for 6-reduction, while Nederpelt's system has 0-reduction as well. 

The importance of Am lies in the fact that it may be considered as basic to 

the AUTOMATH languages. Therefore its theory can also be seen as basic to 

the theory of AUTOMATH [. 2 , 3  1 . 

In our notation we will follow the habits of AUTOMATH, that is: 

for terms u and v, types a and variables x we will denote 

C1 Ax u by Cx:alu 
and 

(UV) by <v>u 

The system consisting of such terms will be called A. The system A is the 
m 

subset of A to which a term <u>v belongs only if v is a function, and if the 

domain of v and the type of u have a common (6-)reduct. 

Our main theorems will be: 

1 .  Church-Rosser for A. This will be proved along the lines of well-known 

proofs by Tait and Martin-~6f [5] .  

2. Strong normalization for a subsystem of "normable terms" in A. 



Our proof w i l l  be along the l ines  of proofs by Gandy [41  and de Vrijer 

/ 7 ]  for  strong mormaization i n  simple typed A-calculus. 

3.  Closure of A, under (6-)reduction. For t h i s  we have a new di rec t  proof, 

though the theorem has been proved previously by van Daalen [31  . 

Moreover, we prove tha t  the terms of Am are "normable" i n  the sense intended 

above; therefore those terms strongly normalize. This, together with correct- 

ness of types, implies tha t  Am is  decidable. 

In our presentation we wi l luse  "nameless variables" as  suggested by de 

Bruijn 11 1.  That i s ,  our variables w i l l  not be " l e t t e r s  from an alphabet" 

but "references t o  a binding A", or  rather ,  because of our notational habi ts ,  

"references t o  a binding square brackets pair". In order t o  grasp the use 

of nameless variables one should note tha t  terms can be interpreted as t rees .  

Consider e.g. the term: 

The corresponding t r ee  i s  

In t h i s  t r ee  the bindings may be indicated by arxows, omitting the names of 

the variables : 



and here, again the arrows may be replaced by numbers, indicating the depth 

of the binding node to which the arrow points as seen from the node where 

the arrow starts (only binding nodes, indicated by "on , are counted!): 

This last tree can again be represented in a linear form: 

Note that the same variable x in the first term (or tree) is represented in 

the "nameless" term (or tree) once by 1 and once by 2, whereas the same refer- 

ence 1 in the "nameless" representation once denotes x and once y. Both the 

name carrying and the nameless linear representation can be considered as 

formalizations of the underlying intuitive notion of "tree with arrows". 



The presentation with nameless variables makes the notion of a-conversion 

superfluous (and even meaningless). Thereby the definition of operations 

where "clash of variables" might arise (e.g. substitution) becomes more 

definite, and the proofs more formal. The drawbacks of this presentation 

might be a loss of "readability" of the formulas, and the need of a number 

of technical lemmas for updating references involved in certain formula 

manipulations. 

In our presentation frequent use will be made of inductive definitions (e.g. 

the definition of term, of substitution, of reduction and of A,). Subsequently 

proofs are given with induction with repect to these definitions. This should 

always be understood in the sense of "induction with respect to the number 

of applications of a clause in the definition", or, in other words, "in- 

duction with respect to the derivation tree". This concept is not formalized 

here. 

Preliminaries and notations 

In our theory we will use some notions of intuitive set theory. N will denote 

the set of natural numbers (0,1,2,3,. . . . ) , N+ the set of positive natural num- 
m 

hers (l,2,3, . . . I  , andIN =IN U (03) the set N extended with infinity. The 

w 
predecessor function is extended tom by defining - 1:= 

+ 
For n E N  we definelN := (k ElN 1 k 6 n), solN = 0, the empty set. n 0 

Let A and B be sets, Then A x B denotes the cartesian product of A and B, 

that is the set of pairs ra,bl where a E A and b E B; and A + B denotes the 

set of functions with domain A and values in B. If f F: A + B and a E A then 

<.a>f will denote the value of f at a; and if for a E A we have b(a) E B then 

[a E Alb(a) will denote the corresponding function, that is the set 

([a,b(a)l E A x B I a E A) . 



As a consequence of our notation for the values of a function our notation 

for the composition of functions will be a little unusual: if f and g are 

functions with domains Aand B respectively, then 

So a > ( f  0 g) =<<x> f>g for x E C. 

If A is a collection of sets then U A  denotes the union of A. 

If A is any set and n E hl then A(") denotes N + A, i.e. the set of finite n 
(0) sequences of elements of A with length n. In particular A = (0) and 0 

* 
is the empty sequence. A will denote U {A'") In C N) , that is the set of all 

* 
finite sequences of elements of A. If s E A then L(s) is the length of a; 

* * 
and if sl E A and s2 E A then sl&s2denotesthe concatenation of sl and s2. 

* 
In particular, 0&s = s for s E A . 
If a E A we will often confuse a with (rl,al), that is the element of A (1) 

* 
with value a. In particular, if a E A and s E A*, then a&s E A , 

<:>-(ass) = a, and <n+l>(a&s) = ul>s for !-I I L(s) . 

Where no confusion is expected we will often omit the symbol " a " .  

For the updating of references we will use the following functions and oper- 

ations on functions: 

For m E N qm = En E N+I (n + rn) . 



where 

+ 
It follows that = O = En E Nth, the identity on lN , and that for 

0 

iy E at + N+ we have $<O> = $. Note that qm and Om are injective, and that 
<m> 

if $ is injective then so is $ . 

Simple computation shows that the following lemmas hold: 

LEMMA 2.1. If k,m €IN then 

i. 'k O 'm = 'k+m 

ii. O<m' . 0 = 0 k m k+m ' 

<1> - 
iii . Ok 0 Om - $ 0 Ok+m 

LEMMA 2.2. If k,m E N  and $ E  N++  then 

0 qCk> = $ <k> 
iii. Ok- 1 Ok- 

LEMMA 2.3. If k €IN and I41,$2 EIN' +IN+ then 

$p> 0 $z<~' = ($1 O $2)<k> . 



+ 
LEMMA 2.4. If k,m E N  and n E N  then 

LEMMA 2.5. If k , R , m  EDJ then 

3 .  Terms, transformation and substitution 

We define the set of terms A inductively as follows: 

DEFINITION 3 . 1 .  

1. -r E A 

2. if n E N  thennE A 

3. if urv E A then <u>v E A 

4. if u,v E A then [u]v E A . 

Transformation, i.e. adaptation of the references in terms by means of a. 

function $ is defined as follows: 

+ 
DEFINITION 3 . 2 .  Let $ E N+ +- N . Then $ is defined by 



Clear ly  i f  u E A then qu - E A. Moreover 

Jlu = 7 - i f f  u = T I  

@ = m  - i f f  u = n a n d < n >  - = m ,  

Jlu = < v l > v 2 i f f u =  <ul>u2, Jlul - = v l  and Jlu2 = v2 , - 
< I >  

$u = [vl]v2 i f f  11 = [u l lu2 ,  Jlul = v l  and $ u2 = v2 . - - - 

It follows t h a t  f o r  i n j e c t i v e  $, $u = $v implies u = v. - - 

Proof: By induction on u. 

+ u 
For u,v E A .  k E IN we def ine  s u b s t i t u t i o n  bf u i n  v a t  k ,  denoted by 1 k v  

as follows: 

D E F I N I T I O N  3.3. 1. 7 = T 

u 
Clear ly ,  again, if u,v E A then 1 v E A .  

k 

Now we have the  following technica l  lemmas: 

LEMMA 3.2. 
Qk- lU 

g v =  Z1- Ok - 1v . 



Proof: By induction on v. 

qu <I' 
LEMMA 3 . 3 .  Q 1; v = IT LV - 

Proof: By induction on V. 

LEMMA 3 . 4 .  ~f m < k then 1:: 

Proof: By Lemma 3.2 and Lemma 2.1. 

u <Dv - < !Dv 
LEMMA 3 . 5 .  1f m+Q 2 k > then Ipm - 'm- 1 

Proof: By induction on v. 

' U  
COROLLARY 3 . 5 .  ~f m L k then Ik mmv = y~ - - 

These lemmas a r e  used t o  prove t h e  following theorem: 

THEOREM 3 . 1  Subs t i tu t ion  theorem. 

Proof: By induction on w. 

The re levan t  case i s  when w = 1 . 

I f  n= k then 



and on t h e  o the r  hand 

1f n = m + l  then 

and 
u u 

E P - k + l V  u 'm-k+lv 
l m + l w  = Lk rp u = c O m - l ~  by Lemma 3.5. 

m - - 

For o the r  values of n t h e  proof i s  straightforward.  

4 .  Reduction 

We def ine  on A t h e  r e l a t i o n  >, c a l l e d  one s t e p  reduction.  

u 
DEFINITION 4 1 1 <u> [wlv > 1 v 

If u > v then 

2. <u>w > <v>w 

3 .  <w>u > <w>v 

4.  [ulw >[vlw 

5. [wlu > [wlv . 

The r e l a t i o n  > on A i s  t h e  r e f l ex ive  and t r a n s i t i v e  c losure  of >, defined by 

2. If u > v and v > w then u > w .  



It is easily seen that the relation > is transitive and monotonic. By induc- 

tion on u > v, respectively Jlu - > Jlv - the following technical lemma is proved: 

LEMMA 4.1. If u > v then for any $ Jlu - > Jlvj - 

if Jl is injective then $u - > Jlv - implies u > v. 

Another technical lemma: 

LEMMA 4.2. If +u > v then for some w v = $w and u > w. - 

Proof: By induction on $u > v. - 

Finally is is easily.~shown that if [ul]u2 > v the v = [vl]v2 , 

ul > vl and u2 > v2. 

5. The Church-Rosser theorem 

We define on A the relation 3 called nested one step reduction. 

DEFINITION 5.1. 1. u 3 u 

If u 3 ul and v 3 vl then 

2. <u>[w]v 3 lU1 VI 
1 

3. <u>v 3 <ul>vl 

4. [ulv 3 [ullvl . 

3 denotes the transitive (and - of course - reflexive) closure of =.Byaneasy - 
inductive argument it is seen that u 2 viffu > v. 

The following technical lemma is proved by induction on u 3 v. 



LEMMA 5.1. I f  u 3 v then f o r  any $ 

Now we a r e  ab le  t o  prove two lemmas on subs t i tu t ion .  

LEMMA 5.2. I f  u 3 u1 then luv  k 3 rU1v. k 

Proof: By induction on v it i s  proved t h a t  f o r  any kl Uv k 3 1 U1v. k 

LEMMA 5.3. Subst i tut ion -- lemma f o r  3. 

I f  u 3 u1 and v 3 v1 then p v  k 3 1;'vl. 

' u l  
Proof : By induction on v 3 v l  it is proved t h a t  f o r  any k 13 3 Ik v l  . 

Lemma 5.2 and Theorem 3.1 a r e  used. 

Using these  lemmas we can prove t h e  diamond property f o r  3. 

LEMMA 5.4. Diamond lemma f o r  3. 

I f  u 3 u l  and u 3 u2 then t h e r e  e x i s t s  a term v such t h a t  u l  3 v and u2 3 v. 

Proof: Byinductiononu 3 u l  and u 3 u2, using Lemma 5.3. 

A s  a co ro l l a ry  w e  have: 

THEOREM 5.1. Church-Rosser theorem f o r  >. 

I f  u > u l  and u > u2 then t h e r e  e x i s t s  a term v such t h a t  u l  > v and u2 > v.  

6. Norms, norming func t iona l s  and monotonic funct ionals  

A term u E A i s  c a l l e d  normal i f  u > v implies u = v. A reduction sequence 

of u i s  a f i n i t e  o r  i n f i n i t e  sequence uo, u l ,  u , ... such t h a t  uo = u and 
2 

+ 
u > u f o r  n E N . We say t h a t  u s t rongly  normalizes i f  a l l  reduction n- 1 n 

sequences of u a r e  f i n i t e .  This i s  t h e  case, by Kbnig's lemma, i f f  t h e r e  i s  

a uniform upperbound t o  t h e  lengths  of the  reduction sequences of u. 



We w i l l  prove strong normalization f o r  a subset of A ,  the  s e t  of normable 

terms. Our proof extends proofs of Gandy [41 and the  Vri jer  [71 f o r  strong -. 

normalization i n  simple type theory. It i s  based mainly on de Vr i j e r ' s  

"quick proof" ; we re f e r  a l so  t o  t h a t  proof f o r  comments. 

We define the  s e t  F of norms recursively a s  follows: 

DEFINITION 6.1. I . N E F  

I t i s c l e a r t h a t ; f o r . a , B  E F, a = B o r  a B = (d. 

The elementsof UF w i l l  be cal led norming functionals. For any norming func- 

t i ona l  f thenorm t o  which f belongs is denoted by f4. Moreover, we define 

the  projection operators: 

i f  f = n,  n E N then f *  = n,  

i f  f = rg ,nl ,  rg,nl  E a +  B then f '  = g and f *  = n. 

Let f be a norming functional,  m a natural  number. We define the  norming 

functional f + m a s  follows: 

DEFINITION 6 .2 .1 . I f f  E N ,  f = n then f + m = n + m. 

2.If f E a + 6, f = rg,nl  

then f + m = r[h E a 3 ( 4 1 > ~  + m) , n + m l .  

Thus f o r  f E a we have f + m E a and 

( f  + m)* = f *  + m , 

<h>(f + m ) '  = <h>fW + m i f  a = B -* y and h E B. 

Note t h a t  + extends addit ion on the  natural  numbers. 

a 
For a E F and n E N we define the norming functional cn E a. 



N 
DEFINITION 6.3. 1. C = n n 

Thus 

a a 
Note that c + m = c  n n+m' 

0 
NOW let a be a norm. We define a subset a0 of ci and a relation :< on a by a 

simultaneous inductive definition. 

0 
DEFINITION 6.4. 1. N = N ;  for f,g E N o ,  f < g iff f* < g* 

0 
for f,g E (B -, y) , f < g iff V (<h>fV < <h>gl) A f* < g* . 

~ E B O  

U 
We define G:= (a la  E F); the elements of G will be called monotonic functionals. 

0 
Note that < on IN is the order on the naturals. 

The following facts are easily proved: 

If f,g,h E aO, f < g and g < h then f < h. 

0 
If f,g E a , m F N then f + m E a0 and if f < g then f+rn < g+m. 

0 
If f E a , m,n E N and m < n then f+m < f+n. 

Moreover 

a a a 
c h0 and if m < n then cm < c . 
n n 

7. Strong normalization 

We will assign to certain terms u E A a functional in UF, which will be called 

1: 
the norming functional of u. In order to define it we need a sequence @ F (UF) ; 



@ may be thought of as an administration of the functionals assigned to the 

free variables of u. fn(u,@) will denote the norming functional of u. ~t 

may be the case that fn(u,@) is undefined. This will be denoted by fn(u,@) = 0. 

1: 
Terms u for which fn (up@) # 0 for some 6 E (UG) will be called normable. 

DEFINITION 7.1. 

if n I L(@) 

2. fn(n,@) = 

otherwise 

<fn(v,@)>fn(w,@)' if fn(v,@) # , 
3. fn(<v> w,@) = fn(w,Q) # and 

dom(fn(w,@) ' )  = fn(v,@) 4 

otherwise 

4. fn([v]w,@) = and fn(w,h&@) # 0 for h C a 

otherwise. 

It will be clear from Lemma 7.5, which will be proved presently, that for 

normable terms u fn(u,@)* is an uprerbound for the lengthsofthe reduction 

sequences of u. 

Note thatif fri(<u>[w]v,@) # othen fn(u,@)4 = fn(w,@)f. 

Our first lemma expresses that it only depends on the norms of the functionals 

in @ whether fn(u,@) is defined and, if so, what is the value of fn(u,@)f. 



* 
LTMMA 7.1. If @1,@2 E (UF) . L(@1) = L(@2) = n and <k>@l+ = <k>@2+ for k 5 n 

then either fn(u.01) = fn(u,@2) = 0, 

or fn(u,@l)+ = fn(u,@2)f . 

Proof: By induction on u. 

The following technical lemma is also proved by induction on u. 

* + 
LEMMA 7.2. If @ E (UF) . J, € N+ + 3-J and J, o @E(uF)* then 

fn($u,@) = fn(u,J, @ I .  

(Note that @ as well as J, is a function, hence J: O @ isafunction.) 

The following important lemma expresses that an upperbound for the lenghts 

u 
of the reduction sequences of rlv can be calculated from fn (u, 0 )  and 

fn(v,fn(u,@) & @ I  . 

LEMMA 7.3. Substitution lemma. 

If fn(u.@) # IJ then fn(lyv,@) = fn(v.fn(u,@)&@). 

Proof: By induction on v. 

The main case is: v = [vl]v2. 

U 
where a = fn (&vl , @ I  t . while by the induction hypothesis 

Moreover, we have by the induction hypothesis for h f a: 



Theref ore 

fn(lp .h&a) = fn(v2. B2 o(fn(u,@) &ha@) = fn(v2,h&fn(u1@) s@ ) . 

It follows that 

In order to formulate the next lemma we need the concept of a free variable. 

+ 
Therefore we define for u E A and k E N the proposition free(u,k), expressing 

(in the language of section 1) that the term u contains a reference (or an 

arrow) to the k-th binding node below u. 

DEFINITION 7.2. 1. not free(r,k) 

2. free(n,k) iff n = k - 
3. free (<v>w,k) iff free (v,k) or free(w,k) 

4. free([v]w,k) iff free(v,k) or free(w,k+l). 

LEMMA 7.4. Monotonicity lermna. 

If @ E (uG)* then fn(u,@) E (UG) LJ (0). 

* If @1,@2 E (UG) ,, L(@1) = L(@2) = n, <k>@l < <k>@2 

and for R. I n, R # k <b@l = cb@2 

then fn(u,@l) < fn(u,@2) or fn(u,@l) = fn(u,@2) = 0 if free(u,k) 

and fn(u,@l) = fn(u,@2) if not free(u,k). 

Proof: By induction on u. 

The main case is, again, u = [ul]u2. 

Suppose fn (u, 0 )  # 0. Then by the induction hypothesis fn (ul , 0 )  E UG. 



Let a denote fn(ul,@)+. Then also by the induction hypothesis for every 

a E a we have fn(u2,g&@) E UG. 

Now let g,h be elements of a such that g < h. 

Then either fn(u2 ,ga@) < fn (u2 ,ha@) or fn(u2,g&@) = fn(u2,h&@) , hence 

fn(u2,gsQ) +g*+fn(ul ,@) *+1 < fn(u2 ,ha@) +h*+fn(ul , @ I  *+I. 

It follows that fn(u,@) E UG. 

Now assume that free (u ,k) . Then for g E a we have : 

<g>fn(u,@l) ' = fn(u2,gaQl) +gf+fn(ul ,@I) *+1 

and 

<g>fn(u,@2) ' = fn(u2,g&@2) +g*+fn(ul,@2) *+1 

and therefore 

<g>fn(u,@l) ' < <g>fn(u,@2) ' . 
Moreover 

a 
fn((u,@l)* = fn(ul,@l)* +fn(u2,co&@l)* 

and 

a 
fn(u,@2) * = fn(ul,@2) *+fn(u2 ,c0&@2) * 

and therefore 

fn(u,@l)* < fn(u,@2)*. 

Hence if free(u,k) then fn(u,@l) < fn(u,@2). 

It is easily seen that if not free(u,k) then fn(u,@l) = fn(u,@2). 

LEMMA 7.5. Reduction lemma. 

~f @ E (uG)*, fn(u,@) # 0 then u > v implies fn(v,@) < fn(u,@). 

u 
Proof: By induction on u Z v. The case u = <ul>[u3]u2, v = 1 'u2 is covered 

1 

by Lemma 7.3. 



AS a corollary we have 

THEOREM 7.1. Strong normalization. 

If u is normable then u strongly normalizes. 

* 
If iP E (UG) , fn (u,iP) # then fn(u,iP) * is an upperbound for the lengths of 

reduction sequences of u. 

8. Contexts and types 

In Sections 8 and 9 we will define the system Am. In order to do so we 

must be able to calculate the type of an expression u f A. For assigning a - 
* 

type to u we need a sequence U E A . Such a sequence is called a context. 
It can be considered as administrating the types of the free variables 

in u. The type of u may be undefined which, again, will be denoted by the 

symbd "ow.  

DEFINITION 8.1. 

I n otherwise 

i otherwise 

[v]typ(w,v&U) if typ (w,v&U) # 0 

4. typ([vlw,u) = il otherwise 



In order to express the properties of the typing operator typ, we must 

extend the transformation operation, t h e  substitution operation and the reduc- 

tion relation to contexts. As far as transformation is concerned we restrict 

<k> 
ourselves to the functions Om . 

DEFINITION 8.2. Let U be a context, L(U) = n. 

Then 

<k'U E A* with L((p<k'U) = n is defined by 'p, m 

The following lemmas are easily seen to hold: 

LEMMA 8.2. If L(U1) = k then $'(uIw~) = ($>~1)&~2. 
- 

We prove. a technical lemma by induction on u: 

LEMMA 8.3. If L(U0) = k, L(U1) = m and U = UO&Ul&U2 

This gives as a consequence: 

COROLLARY 8.3. If L(U1) = m, then either 



Now in order to investigate the relation between substitution and typing 

we define substitution in contexts: 

DEFINITION 8.3. Let U be a context, L(U) = n, and 1 S k 5 n. 

* 
Then 1:~ E A with L(IUu) = n-1 is defined by 

k 

We have the following easy lemmas on substitution 

n. 

in contex 

The next lemma describes the relation between substitution and typing: 

LEMMA 8.6. Substitution lemma for typ. 

If typ(cpku,U) > w and cpk<k>U 3 w - - 
'U 'U 

then either typ(lkv,lk~) = typ (v,U) = 0 

or 

r>) >wO and lUtyp (v,~) > wO for some wO E A. 
k 

Proof: By induction on v, The main case is v = k. - 



Because k 5 L ( U )  we have U = U l & U 2 ,  where L(U1) = k. 

U ' U  
Therefore t y p ( ~ k v , ~ k ~ )  = typ(Ok - lu. ( 1 2 1 )  &U2) where L ( 1 2 1 )  = k-1 . - 
Hence, by Corollaly 8.3 : t y p ( ~ > , ~ ~ )  = (Pk-lt~p(uIU2) I - 
so,  again by Corollary 8.3 : 

On the  other hand 

E>yp(v.~) = E:P('P~*>U = ek - l < k > ~  by corol lary  3.5. - - 

This gives us 

By Lemma 4.2 it follows t h a t  w = cP wO and t h a t  
1 - 

COROLLARY 8.6. If typ(uIV) >* w and v l  > w 

then e i t he r  

t y p ( p . v )  = typ(v.vl&v) = 

o r  

typ(ZyvIv) > wO and ~ U t y p ( v , v l & ~ )  > wO f o r  some wO E A .  
1 

Proof: Take k = 1 and U = vl&V in  Lemma 8.6. 

Final ly ,  i n  order t o  describe a re la t ion  between typing and reduction we de- 

f i n e  the concept of reduction on contexts. 



DEFINITION 8.4.  Let  u and v be terms, U and V contexts .  

1. i f  u > v then u&U > v&U 

2. i f  U > V then u&U > u&V . 

We have the following lemma: 

LEMMA 8.7.  I f  U > V then L ( U )  = L (V) = n > 0 and t h e r e  is  j u s t  one k 5 n 

such t h a t  

&>U > <k>V and <R>U = <R>V f o r  R 5 n ,  R # k.  

Proof: By induction on U > V. 

Moreover we have 

LEMMA 8.8. I f  U > V then e 

Proof: By induction on u. 

COROLLARY 8 -8. I f  v > w then e i t h e r  t y p  (u ,v&U) > typ(u,w&U) 

o r  typ  (u ,v&U) = t yp  (u ,w&U) . 
The re la t iom > between contexts  i s  the re f l ex ive  and t r a n s i t i v e  cl-osure of 

> . I f  u v and U > V then c l e a r l y  u&U > v&V. 

9. The system A, 

We w i l l  de f ine  by simultaneous induction t h e  s e t  T, c A* which i s  t h e  s e t  

* 
of c o r r e c t  contexts ,  and t h e  s e t  Am c A X A . (it w i l l  t u rn  o u t  even 

A m c  A x rm). I f  r u , ~ l  E " u w i l l  be c a l l e d  a c o r r e c t  term on context  U. 

Here correc tness  should be understood a s  follows: 



I f  <u>v i s  c o r r e c t  on context  U then v "is a function" and moreover typ(u,U) 

andWthedomain of v" have a common reduct .  In  f a c t ,  we  have no t  formalized 

what it means f o r  v t o  "be a function" and, i f  it is, what " the  domain o f v "  

is. The requirements described above appear however in clause  4 of our de- 

f i n i t i o n  and - i m p l i c i t l y  - a l s o  i n  c lause  6. 

Together with rm and Am we w i l l  def ine  t h e  s e t s  r and A .  f o r  i E N .  They 
i 3. 

a r e  introduced only f o r  t h e  purpose of induction i n  the  proof of Lemma 10.3. 

I f  [ u , u ~  E A .  then u w i l l  be c a l l e d  i -correc t .  The systems a r e  connected 
1 

with t h e  notion of degree i n  [2] and [3 ]  i n  t h e  sense t h a t  any i - co r rec t  

term w i l l  have degree a t  most i. (The converse however does no t  hold.) 

m 
In  t h e  following discussion it i s  always assumed t h a t  i F N . For i = m 

t h e  d e f i n i t i o n s  and lemmas contain t h e  theory of Am. 

DEFINITION 9.1. 0. r0 = AO = @ 

I f  i > 0 then 

2. i f  [ u . u ~  E A, then u&U F ri  

3. i f  U E ri then [ T , u ~  E Ai 

typ(u,U) > v l  and v > [vl]v2 

5. i f  t y p ( [ u ] v . ~ )  = and [ v , u & u ~  F hi 

6. i f  [ t y p ( u . ~ ) , ~ l  E A i- 1 then r u . ~ 1  E Ai. 

Clearly i f  [ u , ~ ]  E Ai then U E Ti and i f  UlaU2 E ri then U2 E Ti. It i s  

a l s o  c l e a r  (by induction on i) t h a t  Ai c f o r  i E N and it i s  easy 



to check that A- = lJ{nili E N 1 .  

We have the following technical lemma: 

LEMMA 9.1. If L(U0) = k, L(U1) = m, U = UO&Ul&U2 and U1&U2 E Ti then 

Proof: By induction. respectively on [u .UO&U~~ E Ai and on [lp<k>u m .V<k'~l m C Ail - - 
where frequent use is made of Lemma 8.3. 

The lemma has some nice corollaries: 

COROLLARY 9.1.1. Weakening and strengtheninq lemma . 

IfL(U1) =m,Ul&U2 E r i ' then [qmu,u1&U21 € A i  iff ruIu21 €Ai. 
- 

COROLLARY 9.1.2. 1f u E ri, k < L (u) then [wk*>u.u1 6 A ~ .  - 

The next lemma partially expresses our assertions about correctness of terms. 

LEMMA 9.2. Soundness of application . 

If [<U>[W]V.U~ E Ai then typ(u,U) > wO and w > wO for some wO E A. 

Proof: By induction on [<U>[W]V.U~ F Ai. 

Types of correct terms are, in a sense, preserved under reduction. 

LEMMA 9.3. Preservation of types. 

If ru.ul E Air u > v then either typ(u.U) = typ(v.U) = 0 

or typ(u,U) > w and typ(v,U) > w for some w E A. 



Proof: By induction on u > v. 

We w i l l  consider  t h e  case u = < u l > [ u 3 ] ~ 2 ,  v = xy1u2. 

By the previous lemma typ(u1,U) > wO and u3 > wO. 

u 1 
Now typ(u,U) = <ul>[u3]typ(u2 . u 3 & ~ )  > ll typ(u2 .u3&U) 

and t y p  (v.U) = t y p  (EU1u2 ,U) . Apply Corollary 8 -6. 
1 

The following lemmas a r e  easy t o  prove. The f i r s t  conta ins  t h e  converse 

of c lause  6 i n  Def in i t ion  9.1. 

LEMMA 9.4. Correctness of types. 

It typ(u ,u)  # 0 then r u . ~ ]  E Ai i f f  r t y p ( u . ~ )  .u] E Ai - I .  

The s e c o n d t ~ l l s  us t h a t  i f  ail appl ica t ion  of a function t o  an argument i s  cor- 

r e c t ,  then both t h e  function and t h e  argument a r e  co r rec t .  

LEMMA 9.5. Correctness of funct ions  and arguments. 

I f  [<u>v.ul E A, then [u.ul E Ai and rv.u1 E Ai. 

We prove two lemmas which a r e ,  i n  a sense,  converses of Lemma 9.5. 

L E m 9 . 6 .  I f  r < u > v l . ~ 1  E A,. b2,ul 6 A,, v l  > w a n d v 2 > w  

then [ c u > v ~ . u ~  E A,. 

Proof: By induction on [ < u > v l . ~ l  E hi. 

W e  consider t h e  case of c lause  4: 

We know t h a t  t y p  ( v l  ,U)  = 0 ,  hence, by Lemma 9.3 typ  (w,U) = o and a l s o  

typ(v2,U) = 0. Therefore typ(<u>v2,U) = 0 .  



Moreover, by the Church-Rosser theorem we have, for some w2 A :  

w > w2 and [w~]wl > w2, hence w2 = [w~*]wl* for some wO* and wl*. 

Therefore typ (u,U) > wO > wO* and v2 > w > [w~*]wl*, so, by clause 4, 

r<u>v2,u1 C A,. 

LEMMA 9.7. ~f ~<uI>v.u] F A,. ru2.1~1 E A, and ul > u2 then [<UZ>V.U~ F A . 
i 

proof: By induction kul*,Ul E Ai . 

We consider again the case of clause 4: 

First we have typ(v,U) = 0, hence typ(<u2>vIu) = 0. 

By Lemma .9.3 we have for some wO typ (ul ,U) > wO and typ(u2 ,U) > wO . 
Hence, by the Church-Rosser theorem: wO > vl and wl > vl for some vl. 

Therefore typ(u2 ,U) > wO > vl and v > [wl]w2 > [vl]w2, so, by clause 4, 

[<uz>v,u~ E A,. 

Finally we state a lemma on correct abstraction: 

LEMMA 9.8. ~[u]v,u~ E Ai iff ~v,u&u~ 6 Ai. 

Proof: By induction. respectively on [ [u]v. ~1 FAi and on rv,u&LJ] F Ai. 

10. Closure for A, 

For the proof that Am is closed under reduction we need Lemma 10.2 which 

tells us that correctness is preserved under correct substitution. In 

order to prove this lemma we give a slightly different definition of hi, 



which we will prove to be equivalent to the first definition. Induction on 

this alternative definition will be used in the proof of Lemma 10.2. 

00 

We define for i E N the sets C. and L. by a simultaneous inductive defi- 
1 1 

nition as follows: 

DEFINITION 10.1. 

If i > 0 then 

2. 1f [u,ul E L~ then U ~ U  E ci 

3 .  if U E Ci then [r.Ul E Li 

typ (u.U) > vl and v > [vl]v2 then [<U>V.U~ E Li 

5. if typ([ulv.U) = and [v.u&u~ E Li then [[ulv.~] F L~ 

The clauses 0 to 5 are the same as the corresponding clauses of Definitioc 

9.1, but clause 6 of that defintion has been split up into three clauses. 

We easily verify that L i-l C Li and that La = U(L~ 1 i C N 1 . In order 
to show that C = r .  and L = A .  we first prove the following lemma: 

i 1 i 1 



Proof: By induction on [ typ(u  ,u] E L i-1'  

We consider t h e  case of c lause  4:  typ(u,U) = <ul>v,  typ(<ul>v,U) = D I  

[u l  .u] E Li-l' [v,ul  € L f typ(u1 f U )  > 1 I v > rw11w2. 

Now e i t h e r  u = n o r  u = <ul>u2 and typ(u2,U) = v. - 
I f  u = n - then [ u . u ~  E Li by c lause  6.1. 

I f  u = <ul>u2, typ(u2,U) = v then we have by the  induction hypothesis 

[u2 .u1 E L. and the re fo re  [ u . u ~  E Li by c lause  6.2. 
1 

A s  another case we consider c lause  6.3: typ(u  ,U) = [ u l l v ,  

I ~ Y P  ( [ ~ I I v . ~ )  .u1 E L ~ - ~  and [v,umu1 E L ~ - ~  . 
Again we e i t h e r  have u = n - o r  u = [ul]u2 and typ(u2,  ul&U) = v. 

I f  u = n - then again c l ause  6.1 appl ies .  

And i f  u = [ul]u2,  typ(u2,ul&U) = v then by t h e  induction kypothesis  

ru2,ulaul  E L. and the re fo re  [ U , U ~  E L. by c lause  6.3. 
1 1 

COROLLARY 10.1. Ci = r .  and Li = Ai. 
1 

Proof: L. c A .  i s  t r i v i a l ,  A .  c L. i s  proved by using Lemma 10.1. 
1 1 1 1 

Now we a r e  a b l e  t o  prove t h e  following important s u b s t i t u t i o n  lemma. 

LEMMA 10.2. Subs t i tu t ion  lemma f o r  Li. 

If [OkuIul E li, [ v . u ~  E Li, t y p ( ~ ~ u . 0 )  > w and Ok<k>u > w then - - - 

Proof: By induction on r v , ~ 1  E L f r e e l y  using Corollary 10.1. 
if  

We consider some of t h e  c lauses :  

u 
Clause 3. v = r .  W e  have t o  prove t h e  Iku E Ci. 



I f  k = 1 t h i s  is  c l e a r  by Lemma 8.4. 

u u u 
I f  k > 1 then U = w&V and Iku = l k w  & I V. a l s o  by Lemma 8.4. k 

u u 
Now we have r w . ~ ]  E Lit hence by t h e  induction hypothesis  [ ~ k ~ . ~ k ~ l  Li 

and the re fo re  U E C .  by c lause  2. 1; 1 

Clause 4 :  v = <vi>v2 . 
We know t h a t  typ(v,U) = or [v l  . T J ~  6 L ~ .  [ V Z . U ~  E L~~ 

typ  ( v l  , U )  > w l  and v2 > [wl lw2. 

BY Lemma 8.6 we have: typ( l> . I>)  = 

The induction hypothesis g ives  us:  

[QiIl:u1 E ti and Q 7 2 J 3 1  E L~ 

~ l s o  by Lemma 8.6 we see  that 

t y p ( ~ ~ l l ~ U ~ )  > wO and lutyp(vl.U) f o r  some wO. 
k k 

Now by Lemma 5.3 it follows t h a t  

hence by t h e  Church-Rosser theorem 

wO > w and I U w l  > w f o r  some w. k 

Therefore we have: 

u 
tYP ( lk VI .I>) > wO > w and I;v2 > [ 1>11 I:+ 1 ~ 2  > [w] I;+ lw2 (iii) . 



From (i) , (ii) and (iii) we conclude by clause 4 that 

Clause 6.1 : v = n. - We know that [typ(v.U) .u] = [Q,<~>u.u~ C Li-l. 
- 

We discern two cases: n = k and n # k. 

Suppose n = k. As L(U) L k we may put U = UlaU2 with L(U1) = k. 

u u 
men lku = (lku1)&u2 by Lemma 8.5 and ~ ( 1 2 1 )  = k-1. 

Moreover it can be shown. just as under clause 3. that 12 E C . i 

Hence by Corollary 9.1.1 we have [u ,~21 E L . and by the same corollary 
1 

u NOW suppose n # k. lkv either equals n (if n < k) or @ (if n > k). - 
Using Lemma 3.4 (for n < k) or Corollary 3.5 (for n > k) we see that 

'U 
By the induction hypothesis we have [Iuqn<nXJ.lk~1 E Li-l and therefore 

u 
by clause 6.1 [Ikv.l21 E Li. 

Clause 6 . 2 : ~  = <vl>v2. 

We know that <vl>typ (v2 .u).u] E Li-l and that rv2 ,u] E Li. 

By the induction hypothesis it follows that 

and 

By Lemma 8.6 it is known that for some wO E A 

(ii) 



And from (*)  we conclude by Lemma 9.4 t h a t  

From (i) , (ii) and (iii) it follows by Lemma 9.6 t h a t  

and t h i s ,  together  w i t h  (*)  gives  us  by c lause  6.1: 

We leave t h e  o ther  c lauses  t o  t h e  reader.  

COROLLARY 10.2. ~f ru.v1 E Lip r v , v l & ~ ]  € Lit typ(u.V) > w and v l  > w 

Proof: Take k = 1 and U = vl&V i n  Lemma 10.2. 

Our next  lemma implies t h a t  f o r  i E N Ai is closed under reduction.  In  

order  t o  word it we use t h e  r e l a t i o n  > between contexts ,  which has been 

defined i n  sec t ion  8. 

I n  order  t o  prove t h e  lemma we ass ign  to every context  U khe number M ( U )  

which i s  the  sum of t h e  lengthsof  t h e  terms i n  U :  

i f  L ( U )  = n then M ( U )  = L ( < l > U )  + L (<2>U)  + . . . + L ( < I O U )  . 

LEMMA 10.3. I f  i E N ,  u&U>v&V and [ u . u ~  F Aithen[v,v1 E Ai. 

Proof: induction on i. 

I f  i = 0 then A = fd, so  t h e  lemma holds. 
i 

Suppose i > 0. We prove the  following: 



PROPOSITION: If u&U > v&V and [u.u~ E Ai then rv,vl 5 Ai. 

Proof : By induction on M (u&U) . 
If M(u&U) = 1 then u&U > v&V is impossible, so the proposition holds. 

Now suppose M(u&U) > 1. 

As u&U > v&V we have either u > v  and U = V or u = v and U > V. 

Suppose u > v and U = V. We inspect the clauses for u > v. 
u 1 

1. u = <ul>[u31u2, v = 1, u2. 
By Lemma 9.2 we 

~[U~IUZ.U~ E ni 

Apply Corollary 

2. u = <ul>u2, 

By Lemma 9.5 we 

Moreover ul&U > 

A 

have typ (ul ,U) > w and u3 > w for some w, and by Lemma 9.5 

so ru2 ,u3&ul F Ai by Lemma 9.8. 

ul > vl, v = <vl>u2 . 
have rU1 ,u1 E ni. 

vl&U and M(ul&U) < M(u&U) . 
Theref ore by our induction hyothesis we have rvl .u] E A. and hence [v,u~ f Ai 

1 

by Lemma 9.7. 

[v,~] E 5 by a similar argument. where Lemma 9.6 is used instead of 
Lemma 9.7. 

4. u = [ullu2 , ul > vl , v = [vllu2 . 
By Lemma 9.8 we have [u2,ul&~1 E Ai. 

Moreover u2&ul&U > u2&vl&U and M(u~&u~&u) < M(u&u); 

in fact M(u&U) = M(u2&ul&U) + 2. 

Therefore our induction hypothesis gives us [u2,vl&~] E hi and it follows 

that rv.~] E A, by Lemma 9.8. 

5. u = [ullu2, u2 > v2, v = [ullv2. 

rv,~] E A. by a similar argument as under 4. 
1 



NOW suppose u = v and U > V. We inspect  t h e  c l auses  f o r  [ u . ~ ]  E Ai .  

3. u = T. We have t o  prove t h a t  V E r i ' 
AS U > V it is impossible t h a t  U = (d, so  we may p u t  U = ul&U1 and V = vl&Vl. 

AS U 5 Ti we have r u l , ~ l ]  C Ai and a l s o  M ( U )  < M(u&U) . 
Therefore we have by our induction hypothesis [ v l , ~ l ]  C: Ai,  hence V C r i ' 
4. u = < u I > u ~ ,  typ(uIU) = 0. [uI ,u] E Ai. ru2 .u] E n i t  

typ(u1,U) > v l  and u2 > [vl]v2.  

By Lemma 8.7 we know typ(u,V) = 0. Moreover, we have ul&U > ul&V and 

M(ul&U) < M(u&U) so  by our induction hypothesis [u l  ,v] E Ai. and by a s imi lar  

argument w e  see  t h a t  [u2 ,v] E A . 
i 

Also by Lemma 8.7 it i s  seen t h a t  typ(u1,U) > typ(u1,V) so  by t h e  Church- 

Rosser theorem we have: 

v l  > w and typ(u1,V) > w f o r  some w. 

It follows t h a t  u2 > [vl]v2 > [wlv2, hence r u , ~ ]  F Ai by clause 4 .  

5. u = [u l lu2 ,  typ(u.U) = 0. [ u 2 , u l & ~ ]  F A,. 

We know t h a t  u2&ul&U >u2&ul&V and t h a t  M(u2&ul&U) < M(u&U). It follows 

t h a t  [u2,ul&v] E A,. hence [ u , v ~  E hi by Lemma 9.8. 

6. [ typ(u.u)  ,u]  E Ai - I .  

By Lemma 8.7 we have typ  (u,U) > t yp  ( u , ~ )  , hence typ  (u&U) &U > typ  (u&V) &V. 

Now by our induction hypothesis on i it follows t h a t  [typ ( u , ~ )  ,v] F A i- 1 

and the re fo re  [u ,v] E A by c lause  6. 
i 

So our proposi t ion i s  proved,anditfollowsimmediately t h a t  

u&U > v&V, [ u , ~ ]  E A, imply [ v , v ~  E A,. This proves our lemma. 

COROLLARY 10.3. Closure f o r  A 
i ' 

I f  i E N ,  ruIu]EAi and u > v then [ v , ~ ]  F A 
i ' 



As a consequence we have: 

THEOREM 10.1. Closure for Am . 

If [u,u~ E Am and u > v then rv,ul C: Am . 

11. Normability for Am. 

In this section we will prove that ru,~] F Am implies that u is normable. 

It then follows from Theorem 7.1 that u strongly normalizes. In order to 

* 
prove that u is normable we will assign to certain sequences U rz A a 

* 
sequence s(U) f (UG) . If the assignment is not possible then we will write 
as before, s(U) = U. 

DEFINITION 11.1. 1. s(@) = 0. 

ca&s(u) if S(U) # U, fn(u,s(u)) # n 

2. s (uaU) = I and fn(u,s(U))+ = a. 

( otherwise 

LEMMA 11.1. 1f s(u) # q then L(s(U)) = L(U) = n 

and fn(W <k>U, s(U))+ = <k>s(U)+ for k i n. 
k 

Proof: By induction on U. 

Our second lemma gives a relation between norms and typing. 

* LENMA 11.2. If U f A , s(u) # q and typ(u,U) # q then either - 

fn(typ(u,U), s(U)) = fn(u,s(U)) = q or fn(typ(u,u) ,S(U))+ = fn(u,s(~))+ . 
proof: By induction on u. 



We consider the case that u = [ul]u2. 

Then typ(u,U) = [ulltyp(u2 ,ul&~) and typ(u2,ulau) # 0. 

~f fn(ul,s(U)) = 0 then fn(typ(u,U) ,s(U)) = fn(u,s(U)) = 0 .  

NOW assume that fn(u1 ,s (U) # and put fn(u1 ,s (u) + = a. Then it follows 

a 
that s (ul&U) = co&s (U) # 0 .  

If fn(typ(u2,ul&U) ,s(ul&U) = then also fn(u2,s(ul&U) 1 = 0 by the induc- 

tion hypothesis, and therefore fn(typ(u,U) ,U) = fn(u,U) = 0 .  

So let us assume fn(ty~(u2,ul&U) ,s(ul&~)) # 0. 

Putting fnltyp(u2 ,ul&U) ,s (ul&U) ) 4 = B we have by the induction hypothesis 

fn(u2,s(ul&U))f = B and also fn(u2,g&s(U))+ = f3 for g E a. Hence 

fn(typ(u,U) ,s(U))+ = fn(u,s(U))+ = a + B . 

LEMMA 11.3. If [u,u~ C A, then s(U) # 0 and fn(u,s(U)) # 0. 

Proof: By induction on ru ,u] E Ai. 

We consider clause 3: u = T. We only have to show that s(U) # 0 .  If U = 0 

then S(U) = 0, and if U = v&V then we have [v,v~ Air so by the induction 

hypothesis s (V) # 0 and fn(v,s ( V )  ) # 0 and therefore s (U) # 0- 

We will also consider clause 4: u = <ul>u2. 

We have typ(u,U) = 0. rul ,u] F Air [UZ ,u] E nit 

typ(u1,u) > vl and u2 > [vl]v2. 

By the induction hypothesis fn(ul,s(U)) # o and fn(u2,s(U)) # o. 

Putting fn(ul,s(U))+ = a we have fn(typ(ul,U),s(U))+ = a by Lemma 11.2 

and fn(vl,s(U))+ = a by Lemma 7.5. 

Also by Lemma 7.5 fn(u2,s(U))+ = fn([vl]v2,s(u))+ = a + B for some @,hence 

fn(u,s(U)) # o. 

We leave the other cases to the reader. 



A s  a consequence we have 

THEOREM 11.1. Strong normalization f o r  h- 

I f  [ u , u ~  E Am then u s t rongly  normalizes. 
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