EINDHOVEN UNIVERSITY OF TECHNOLOGY

Department of Mathematics

and Computing Science

Memorandum 1985-02

THE LANGUAGE THEORY OF Am,

A TYPED A-CALCULUS WHERE TERMS ARE TYPES

by

L.S. van Benthem Jutting

Eindhoven University of Technology,
Department of Mathematics and
Computing Science,

P.O. Box 513,

5600 MB Eindhoven,

The Netherlands.

AUT 90

Ju 10

1.

THE LANGUAGE THEORY OF Aw,

A TYPED A-CALCULUS WHERE TERMS ARE TYPES
by

L.S. van Benthem Jutting

Introduction

In the present paper we present the theory of a system op typed A-calculus
Am, which is essentially the system introduced by Nederpelt in [6]. 1ts

characteristic feature is that any term of the system can serve as a type.
The main difference between the two systems is that our system only allows

for B-reduction, while Nederpelt's system has n-reduction as well.

The importance of A°° lies in the fact that it may be considered as basic to
the AUTOMATH languages. Therefore its theory can also be seen as basic to

the theory of AUTOMATH [2,3].

In our notation we will follow the habits of AUTOMATH, that is:
for terms u and v, types a and variables x we will denote
Axau by [x:alu
and
(uv) Dby <v>u .
The system consisting of such terms will be called A. The system A is the
oo}

subset of A to which a term <u>v belongs only if v is a function, and if the

domain of v and the type of u have a common (8-)reduct.

Our main theorems will be:
1. Church-~Rosser for A. This will be proved along the lines of well-known
proofs by Tait and Martin-Lof [5].

2. Strong normalization for a subsystem of "normable terms" in A.

Our proof will be along the lines of proofs by Gandy (41 and de Vrijer
[7] for strong mormaization in simple typed A-calculus.
3. Closure of A_ under (B-)reduction. For this we have a new direct proof,

though the theorem has been proved previously by van Daalen [3].

Moreover, we prove that the terms of A are "normable" in the sense intended
above; therefore those terms strongly normalize. This, together with correct-

ness of types, implies that A is decidable.

In our presentation we will use "nameless variables” as suggested by de
Bruijn [1]. That is, our variables will not be "letters from an alphabet"”
but "references to a binding A", or rather, because of our notational habits,
"references to a binding square brackets pair". In order to grasp the use

of nameless variables one should note that terms can be interpreted as trees.

Consider e.g. the term:

[x:a]<x>[y:B]<y>x .

The corresponding tree is

app

typ

Pp

X
type
In this tree the bindings may be indicated by ar:ows, omitting the names of

the variables :

and here, again the arrows may be replaced by numbers, indicating the depth
of the binding node to which the arrow points as seen from the node where

the arrow starts (only binding nodes, indicated by "o" , are counted!):

8 app

YP

This last tree can again be represented in a linear form:

[al<1>[B]1<1>2 .

Note that the same variable x in the first term (or tree) is represented in
the "nameless"” term (or tree) once by 1 and once by 2, whereas the same refer-
ence 1 in the "nameless" representation once denotes x and once y. Both the
name carrying and the nameless linear representation can be considered as

formalizations of the underlying intuitive notion of "tree with arrows”.

The presentation with nameless variables makes the notion of a-conversion
superfluous (and even meaningless). Thereby the definition of operations
where "clash of variables” might arise (e.g. substitution) becomes more
definite, and the proofs more formal. The drawbacks of this presentation
might be a loss of "readability" of the formulas, and the need of a number

of technical lemmas for updating references involved in certain formula

manipulations.

In our presentation frequent use will be made of inductive definitions (e.qg.
the definition of term, of substitution, of reduction and of A_). Subsequently
proofs are given with induction with repect to these definitions. This should
always be understood in the sense of "induction with respect to the number

of applications of a clause in the definition", or, in other words, "in-
duction with respect to the derivation tree". This concept is not formalized

here.

Preliminaries and notations

In our theory we will use some notions of intuitive set theory. N will denote

the set of natural numbers {0,1,2,3,....}, N7 the set of positive natural num-
a0

bers {1,2,3,...} , andIN =N U {=} the set N extended with infinity. The

(2]
predecessor function is extended to W by defining ® - 1l:= o .

+
For n € N we define N := {k €N |k £ n}, soN_ = @, the empty set.

0
Let A and B be sets, Then A x B denotes the cartesian product of A and B,
that is the set of pairs [a,b| where a € A and b € B; and A + B denotes the
set of functions with domain A and values in B. If £f € A > B and a € A then
<a>f will denote the value of f at a; and if for a € A we have b(a) € B then

[a € Alb(a) will denote the corresponding function, that is the set

{[a,pta)] € a xBla€n}.

As a consequence of our notation for the values of a function our notation
for the composition of functions will be a little unusual: if £ and g are

functions with domains Aand B respectively, then
£ og=[x € Cl<x>f>a ,where C = {x € A | «>f € B).

So <x>(fog) =<<x>f>g for x € C.
If A is a collection of sets then UA denotes the union of A.

(n)

If A is any set and n € N then A denotesiNn > A, i.e. the set of finite

sequences of elements of A with length n. In particular A(O) = {¢g} and ¢
X
is the empty sequence. A will denote U {A(n)ln € N} , that is the set of all
X
finite sequences of elements of A, If s € A then L(s) is the length of a;

and if s1 € A* and s2 € A* then s1&s2 denotes the concatenation of sl and s2.

*
In particular, @&s = s for s € A .

If a € A we will often confuse a with {fl,a]}, that is the element of A(l)

. . . X b
with value a. In particular, if a € A and s € A , then ag&s € A,
<i>(a&s) = a, and €n+1>(a&s) = <n>s for n £ L(s).

Where no confusion is expected we will often omit the symbol "&".

For the updating of references we will use the following functions and oper-

ations on functions:

For m € N (pm=[n EN'I(n + m)
For m € N Om = [n € I\I+]T (m,n) , where
n+ 1 ifn £ m
T™(m,n) = 1 if n = m+1

n if n > m+l.

+ +
For m € W and y € N > N

v™ = n e lv(y,mn)

where
n ifnsm
Y(y,m,n) =
m+ <n-m>Y if n > m ,
It follows that wO = OO = In € N1, the identity on N', and that for

<0>
y € N> N+we have ¥ 0 = Y. Note that Qm and Om are injective, and that

R . . , <m>
if ¥y is injective then so is V¥ .

Simple computation shows that the following lemmas hold:

LEMMA 2.1, If k,m € N then

. wk ° wm - wk+m .
. . <m> _
ii. Gk ° Om = ok+m .
es <1> _ R
iii. @k ° wm = wm ek+m .

LEMMA 2.2. If k,m € Nand ¢ € N'> N then

<k> <m> <k+m>
i W)™ =y "
L. © <k> 0
o = © .
ii. X /] Y "
<k> _ , <k>
iii. Oy o ¥ = ° O_1-

LEMMA 2.3. If k € N and y1,02 €N + NN then

¢1<k> o w2<k> _ (Wl o w2)<k> .

+
LEMMA 2.4. If k,m €N and n € N then

3
a
3
A
=

<k>
<n>
m

n+m if n > k .

LEMMA 2.5. If k,%,m €N then

0] if k £ 2
<k> *
LQ ° Im]
< g if k > ¢
[
() wz i .

3. Terms, transformation and substitution

We define the set of terms A inductively as follows:

DEFINITION 3.,1.

1. TEAN

2. if n €N then n € A

3. if u,v € A then <u>v € A
4. if u,v € A then [u]v € A

Transformation, i.e. adaptation of the references in terms by means of a

function ¢ is defined as follows:

+ +
DEFINITION 3.2. Let y € N - N . Then y is defined by

1. YT = T
2. yn = <n>y
3 P<u>y =<yu>yv

>
<
~—
ot
aad
<
I
—
<-
c
Canad
<
<

Clearly if u € A then Yu € A. Moreover

Yu = T iff u=rT,
Yu =m iff u=nand <n> =m,
Yu = <vl>v2iffu=u2, Yul = vl and Yu2 = v2 ,

<
vl and ¢ 1>u2 =v2 .

<
c
i

[vilv2 iffn = [ullu2, yul

It follows that for injective ¢, Yu = Qv implies u = v.

LEMMA 3.1. If g1, y2 €N +IN', u € A then

¥1 y2u = y2 o ylu .

Proof: By induction on u.

+ - U
For u,v € A, k € N we define substitution ©f u in v at k, denoted by Zkv

as follows:

DESINITION 3.3. 1.] T = T
n if n <
1)
o = i =k
2. Zk n wk—lu if n
(n—l if n > k

3. Zz <vl>v2 = <ZE vi> ZE v2

4. I, Ivilvz = [} 1] Leiiv2 -

u
Clearly, again, if u,v € A then Xk v € A,
Now we have the following technical lemmas:

O 1@

Lema 3.2, Jlv= JF5 e v

Proof: By induction on v.

u _ tYu <1>
LEMMA 3.3. v z1 V= z1 ¥ v

Proof: By induction on v.

LEMMA 3.4. If m <k then [Qv =0] v

Proof: By Lemma 3.2 and Lemma 2.1.

LEMMA 3.5. If m+% 2 k > £ then ZE m;1>v = w;f;v

Proof: By induction on v.

COROLLARY 3.5. If m 2 k then X; oy =90,4v -

These lemmas are used to prove the following theorem:

THEOREM 3.1 Substitution theorem.

u
m--k+1V Eu

. z
If m 2 k then z: ZZ w = z X 1

Proof: By induction on w.

The relevant case is when w = n

If n= k then

1 Vv u 11
by L W= L9 v =9y LoV by Lemma

3.4

- 10 -

and on the other hand

u u

z v T v
m-k+1 ¢u m-k+1
zk zm+1w - zk

u
=0 zm-k+1V .

I~

If n = m+1 then

Z;z;{lw=z;m=w u

and
u u

z v z v
m-k+1 ¢u _ v m-k+1 _
I oer™ = Iy S T O

u by Lemma 3.5.

For other values of n the proof is straightforward.

. Reduction

We define on A the relation >, called one step reduction.

DEFINITION 4.1. 1. <u>[w]v > 2111 v

If u > v then
2. <u>w > <v>w
3. <w>u > <w>v
4. [ulw >[v]w

5. [wlu > [w]v .

The relation » on A is the reflexive and transitive closure of >, defined by

DEFIMNITION 4.2. 1. u»u

2. If u>» v and v > w then u » w.

- 11 -

It is easily seen that the relation » is transitive and monotonic. By induc-

tion on u > v, respectively Yu > yv the following technical lemma is proved:

LEMMA 4.1. If u > v then for any ¥y VYu > yv;

if ¥y is injective then Yu > Yv implies u > v.

Another technical lemma:

LEMMA 4.2. If Yu > v then for some w Vv = ?w and u > w.

Proof: By induction on yu > v.

Finally is is easily.shown that if [ul]u2 » v the v = [vi]v2 ,

ul » vl and u2 » v2.

The Church-Rosser theorem

We define on A the relation D called nested one step reduction.

DEFINITION 5.1. 1. u>u

If u o> ul and v o vl then
2. <u>[wlv D 2?1 vl
3. <u>v D vl

4. [ulv 2 [ullvl .

> denotes the transitive (and ~ of course - reflexive) closure of D.By an easy
inductive argument it is seen that u > viffu > v.

The following technical lemma is proved by induction on u D v.

LEMMA 5.1. If u 2 v then for any ¥ yu o Qv.

Now we are able to prove two lemmas on substitution.

LEMMA 5.2. If u > ul then EEV = z;lv.

Proof: By induction on v it is proved that for any kz EV > ZEIV-

1.EMMA 5.3. Substitutﬂn[£§mma for O.

ul
If u D ul and v 2 vl then EEV =] ZE vi.

Proof: By induction on v D vl it is proved that for any k z;v =] z;lvl.

Lemma 5.2 and Theorem 3.1 are used.

Using these lemmas we can prove the diamond property for o.

LEMMA 5.4, Diamond lemma for O.

If u o ul and u D u2 then there exists a term v such that ul D> v and u2 o v.

Proof: By inductiononu > ul and u D u2, using Lemma 5.3.

As a corollary we have:

THEOREM 5.1. Church-Rosser theorem for >.

If u > ul and u » u2 then there exists a term v such that ul > v and u2 > v.

Norms, norming functionals and monotonic functionals

A term u € A is called normal if u » v implies u = v. A reduction sequence

such that u. = u and

of u is a finite or infinite sequence u YRR 0

0’ 1-11; u

+
Uy > u for n € N . We say that u strongly normalizes if all reduction

sequences of u are finite. This is the case, by Kénig's lemma, iff there is

a uniform upperbound to the lengths of the reduction sequences of u.

- 13 -~

We will prove strong normalization for a subset of A, the set of normable
terms. Our proof extends proofs of Gandy [4] and the vrijer [7] for strong
normalization in simple type theory. It is based mainly on de Vrijer's
"quick proof" ; we refer also to that proof for comments.

We define the set F of norms recursively as follows:

DEFINITION 6.1. 1. N €F

2. if a,B € F then o = B:= (a = B) x W € F,.

Itis clear that, for a,B € F, o« = Bor a N B = ¢@.

The elementsof UF will be called norming functionals. For any norming func-

tional fthe norm to which f belongs is denoted by ft. Moreover, we define
the projection operators:

if f

n, n € N then £* = n,

if £ [g,n], fg,n] € o » B8 then f' = g and f* = n.

Let £ be a norming functional, m a natural number. We define the norming

functional f + m as follows:

DEFINITION 6.2. 1.Iff € N, £f = n then f +m = n + m.

2.I1f f€a->8, £=[g.,m]

then £ + m = [[h € ad(<h>g + m), n + m].

Thus for £ € o we have £ + m € o and
(f +m* = £* + m ,

<h>(f + m)' = <h>f' +m if o = B -y and h € B.

Note that + extends addition on the natural numbers.

For a € Fand n € N we define the norming functional cz € a.

- 14 -~

N
DEFINITION 6.3. 1. cn =n

2. cs'"= [lh € BIcY,. ,n]

h*+n'

Thus

X = n,

n
By, _ Y

<h> (¢)!' = Ch*+n if h € B.
Note that ca + m = cu

n n+m

0 . 0
Now let o be a norm. We define a subset o of o and a relation < on a by a

simultaneous inductive definition.

DEFINITION 6.4. 1.]\10 = N; for f,g € 1\10 , £ < g iff £* < g*

2. (B - Y)O = {f€B - Yl v O(<g>f' € YO) AY (g<h = <g>f'<<h>f') };

0

for £f,9 £ (B » Y)O, f < g iff Vv
h€éB

O(<h>f‘ < <h>g') A £* < g* |

We define G:= {ao\a £ F}; the elements of G will be called monotonic functionals.

Note that < on IJ) is the order on the naturals.

The following facts are easily proved:

if £,9,h € ao, f < gand g < h then £ < h.

if £,9 € ao, m€ N then £ + m € ao and if £ < g then f+m < g+m.
Iff€(p,mJ1€Namim<rlﬂmnfﬂ1<fm.

Moreover

o 0 , o o
c £ a and if m < n then ¢c_ < ¢
n m n

Strong normalization

We will assign to certain terms u € A a functional in UF, which will be called

, , X
the norming functional of u. In order to define it we need a sequence ¢ € (UF) ;

- 15 -

% may be thought of as an administration of the functionals assigned to the
free variables of u. fn(u,?) will denote the norming functional of u. It
may be the case that fn(u,?) is undefined. This will be denoted by fn(u,$) =0.

4 X
Terms u for which fn(u,®) # D for some ¢ € (UG) will be called normable.

DEFINITION 7.1.

1. £n(t,9) =0

<n>9d if n £ L(9)
2. fn(n,?%) =
o otherwise
[<fn(v,8)>fn(w,d)' if fn(v,d) # O,
3. fn(<v> w,d) =] fn(w,®) # 0O and
dom(fn(w,d) ")= £n(v,%) 4
L m] otherwise
[[[h € alfn(w,had) +h*+£n(v,9) *+1,£n (v,) *+£n (w,c &) *]
if fn(v,®) # 0, fn(v,®) 4+ = o
4, £fn([vlw,9d) = J and fn(w,h&d) # O for h € o

o otherwise.

It will be clear from Lemma 7.5, which will be proved presently, that for
normable terms u fn(u,®)* is an upperbound for the lengths of the reduction
sequences of u.

Note thatif fn{<u>[w]v,®) # Othen fn(u,d)+ = fn(w,d)+.

Our first lemma expresses that it only depends on the norms of the functionals

in ¢ whether fn(u,?¢) is defined and, if so, what is the value of fn(u,d)+.

- 16 -

X
L"MMA 7.1. If ¢1,¢2 € (UF) , L(®1) = L(%2) = n and <k>P14 = <k>P24 for k £ n
then either fn(u,%1) = fn(u,®2) = 0O,

or fn(u,®1)4 = fn(u,92)+ .

Proof: By induction on u.

The following technical lemma is also proved by induction on u.

b 4 X
LEMMA 7.2. If 0 € (UF) , ¥ € N° > N and ¢ o ¢€ (UF) then

fn(Yu,d) = fn(u,y o @),

(Note that ¢ as well as ¥ is a function, hence ¢ ° ® isa function.)

The following important lemma expresses that an upperbound for the lenghts
of the reduction sequences of Z?V can be calculated from fn(u,?) and

fn(v,fn(u,®)&d).

LEMMA 7.3. Substitution lemma.

If £n(u,9) # O then £n(],v,®) = £n(v,fn(u,$)ad).
Proof: By induction on v.
The main case is: v = [v1]v2.

u

fn(??v,¢) = [[n € a]fn(Z2

v2,h&¢)+h*+fn(2?v1,¢)*+1, fn(E?vl,@)*+fn(2;v2,cg&®)*]

where a = fn(X?v1,¢)T , while by the induction hypothesis
u
£n(),v1,9)4 = £n(vl,fn(u,®) &d) 4

Moreover, we have by the induction hypothesis for h € o:

P.u
1
fn(Egv2:h&a) = fn(EI— 0,v2,h&?) = fn(o,v +£n (0, u,h&d) shad) .

2

- 17 -

Therefore

fn(Z;VZ'h&a) = fn(VZ,Ozo(fn(u,®)&h&(I>)) = fn(VZ,h&fn(u,(b) &¢) .
It follows that
u
fn(),v,¢) = fn(v,fn(u,8)&s).

In order to formulate the next lemma we need the concept of a free variable.

+
Therefore we define for u € A and k € N the proposition free(u,k), expressing
(in the language of section 1) that the term u contains a reference (or an

arrow) to the k-th binding node below u.

DEFINITION 7.2. 1. not free(t,k)

2. free(g,k) iff n = %k
3. free(<v>w,k) iff free(v,k) or free(w,k)

4. free([v]w,k) iff free(v,k) or free(w,k+1).

LEMMA 7.4. Monotonicity lemma.

1f ¢ € (UG)* then fn(u,s) € (UG) U {O}.

If 01,02 € (UG)¥, L(01) = L(82) = n, <k>01 < <k>02

and for 2 £ n, & #k <%0l = <i>02

then fn(u,®1) < fn(u,?92) or fn(u,dl) = fn(u,d2) = 0 if free(u,k)
and fn(u,%1) = fn(u,9$2) if not free(u,k).

Proof: By induction on u.

The main case is, again, u = [ullu2.

Suppose fn(u,?®) # O. Then by the induction hypothesis fn(ul,®) € UG.

- 18 -

Let o denote fn(ul,$)4. Then also by the induction hypothesis for every
g € o we have fn(u2,g&d) € UG.

Now let g,h be elements of a such that g < h.

Then either fn(u2,g&d) < £n(u2,hed) or fn(u2,g&?d) = fn(u2,h&d), hence
fn(u2,g&®)+g*+fn(ul,d)*+1 < £n(u2,h&d)+h*+fn(ul,d) *+1,

It follows that fn(u,d) € UG.

Now assume that free(u,k). Then for g € o we have:

<g>fn(u, 1)’ fn(u2,g&dl) +g*+£fn(ul , 1) *+1
and

<g>fn(u,2) ' = f£n(u2,g&d2) +g*+£n(ul,d2) *+1
and therefore

<g>fn(u,%1)' < <g>fn(u,%2)’ .
Moreover

£n((u,81)* = £n(ul,01)* +£n(u2,coadl)*
and

£n(u,02)* = £n(ul,02) *+£n(u2,c &02) *
and therefore

fn(u,%1)* < fn(u,d2)*.
Hence if free(u,k) then fn(u,%1) < fn(u,®2).

It is easily seen that if not free(u,k) then fn(u,®1) = fn(u,%2).

LEMMA 7.5. Reduction lemma.

If & € (U, fn(u,d) # O then u > v implies £n(v,) < £n(u,d).

u
Proof: By induction on u > v. The case u = [u3]u2, v = leuZ is covered

by Lemma 7.3.

- 19 -

As a corollary we have

THEOREM 7.1. Strong normalization,

If u is normable then u strongly normalizes.
If ¢ € (UG)*, fn(u,?) # @ then fn(u,?%)* is an upperbound for the lengths of

reduction sequences of u.

. Contexts and types

In Sections 8 and 9 we will define the system A_. In order to do so we

must be able to calculate the type of an expression u € A. For assigning a

%
type to u we need a sequence U £ A . Such a sequence is called a context.
It can be considered as administrating the types of the free variables
in u. The type of u may be undefined which, again, will be denoted by the

Symbd. llD" .

DEFINITION 8.1,

1. typlt,U) =D

@ <n>U if n £ L(V)
2. typ(n,U) =
D otherwise
(<v>typ(w,U) if typ(w,U) # O
3. typ(<v>w,U) =«
o otherwise

\

([v]typ(w,v&U) if typ(w,v&U) # O

4. typ([vlw,u)
o otherwise

- 20 -

In order to express the properties of the typing operator typ, we must
extend the transformation operation, the substitution operation and the reduc-
tion relation to contexts. As far as transformation is concerned we restrict

. <k>
ourselves to the functions @m .

DEFINITION 8.2. Let U be a context, L(U) = n.

Then

<k > <k>
wmk u € 2¥ witn L(cpmk U) = n is defined by

<k-2>
wmk <4>U if 1<k, 2<n
. . m
<> ‘U = |
<i>U ifk < £ 5n

The following lemmas are easily seen to hold:

> < - > <
LEMMA 8.1. w;O U= U; wmk+1 (ueU) = o;k u s 0y

LEMMA 8.2. If L(U1) = k then ¢;k>(01&U2) = (w;k>ul)&U2.

We prove a technical lemma by induction on u:

LEMMA 8.3. If L(UO) = k, L(Ul) = m and U = U0&U1&U2

then either typ(w;k>u,w;k>u) = typ(u,U00&U2) = O

<k>

<k> k>
or typ(wm u,wm U) = w; typ(u,U008&U2) .

This gives as a consequence:

COROLLARY 8.3. If L(Ul) = m, then either

typ(@mu,01&02) = typ(u,U2) = 0O

or

typ(® u,U1802) = ¢_typ(u,U2)

- 21 -

Now in order to investigate the relation between substitution and typing

we define substitution in contexts:

DEFINITION 8.3. Let U be a context, L(U) = n, and 1 £ k £ n.

X
Then ZEU € A with L(Z;U) = n-1 is defined by

S\
<> i <
k-2 L>0 if 2 k

<i> ZEU =

<+ 1>U if k £ 2 < n,
We have the following easy lemmas on substitution in contexts:

LEMMA 8.4. Z?(v&u) = U; X;+1(v&u) = sz & XEU .

LEMMA 8.5. If L(U1) = k then XE(UI&UZ) = (2EUI)&U2

The next lemma describes the relation between substitution and typing:

LEMMA 8.6. Substitution lemma for typ.

If typ(wku,U) > w and ®k<k>U W

then either typ(;;v,ZEU) = typ(v,U) = O
or

typ(ZEv,XEU):th and Eityp(v,u) > w0 for some wO € A.

Proof: By induction on v, The main case is v = k.

- 22 -

Because k £ L(U) we have U = Ul&U2, where L (Ul) = k.

Therefore typ(fiv,z;U) = typ(wk_ u,(z;Ul)&U2) where L(ZEUI) = k~1.

1

Hence, by Corollary 8.3 : typ(Ziv,z;U) = wk_ltyp(u,U2),

so, again by Corollary 8.3:

u_ yu _ _
O EYP(L Vi ®) = O typ(u,02) = typ(Qu,0) > w.

On the other hand

“ C _ .
Y typ(v,0) = cho_k<k>u ¢,_,<k>U by Corollary 3.5.

This gives us

k

0, ZEtYP(V,U) = @ <k>U > w
By Lemma 4.2 it follows that w = wl w0 and that

typ(ZEv, ZEU) >~ w0 and ZEtyp(v,U) > w0.

COROLLARY 8.6. If typ(u,V) 3> w and vl » w

then either
>0
typ() ,v,V) = typ(v,vieV) = O
or

typ(i?v,v) > w0 and ZTtyp(v,vl&V) > w0 for some wO € A.

Proof: Take k = 1 and U = vigV in Lemma 8.6.

Finally, in order to describe a relation between typing and reduction we de-

fine the concept of reduction on contexts.

- 23 -

DEFINITION 8.4. Let u and v be terms, U and V contexts.

1. if u > v then u&U > v&U

2. if U > V then u&U > u&vV .

We have the following lemma:

LEMMA 8.7. If U >V then L(U) = L(V) = n > 0 and there is just one k £ n

such that
<k>U > <k>V and <>U = <>V for £ £ n, 2 # k.

Proof: By induction on U > V.

Moreover we have
LEMMA 8.8. If U > V then either typ(u,U) > typ(u,V)
or typ(u,U) = typ(u,V)

Proof: By induction on u.

COROLLARY 8.8. If v > w then either typ(u,v&U) > typ(u,w&U)

or typ(u,veU) = typ(u,wsU).
The relatiom » between contexts is the reflexive and transitive closure of

> . If u>» v and U » V then clearly u&U » V&V.

The system A,

We will define by simultaneous induction the set Foo c A* which is the set

b 3 . .
of correct contexts, and the set AOD c A X A, (it will turn out even

AOo c A X Fm). If fu,U] € Aco u will be called a correct term on context U.

Here correctness should be understood as follows:

- 24 -

If <u>v is correct on context U then v "is a function"” and moreover typ(u,U)
and "the domain of v" have a common reduct. In fact, we have not formalized
what it means for v to "be a function” and, if it is, what "the domain of v"
is. The requirements described above appear however in clause 4 of our de-
finition and ~ implicitly - also in clause 6.

Together with T_ and Aoo we will define the sets Fi and Ai for i € N . They
are introduced only for the purpose of induction in the proof of Lemma 10.3.
1f [u,u] € Ai then u will be called i-correct. The systems are connected
with the notion of degree in [2] and [3] in the sense that any i-correct

term will have degree at most i. (The converse however does not hold.)

o0
In the following discussion it is always assumed that i # N ., For i = «

the definitions and lemmas contain the theory of Aw.

DEFINITION 9.1. 0. T.=A.=¢

If i > 0 then
1. 8 €T,
1
2. if [u,u] € A, then wgU € T,
3. if U € T, then [t,u] € Ay
4. if typ(<u>v,U0) = o, [u,u] € Ay [v,u] € Ay
typ(u,U) > vl and v > [v1]v2

then [<u>v,U] € Ay
5. if typ([ulv,U) =@ and [v,usu] € Ai
then [[ulv,u] € A

6. if [typ(u,U)Jﬂ € Ai- then [u,U] € Ai.

1
Clearly if [u,u] € Ai then U € Fi and if Ulgu2 € Fi then U2 € r,. It is

also clear (by induction on i) that Ai c Ai+ for i € N and it is easy

1

- 25 -

to check that A_ = U{Aili € N}.

We have the following technical lemma:

LEMMA 9.1. If L(UO) = k, L(U1l) = m, U = U0&U1&U2 and UiaU2 € Ti then

<k> <k> .
[wm u,Q U]EﬁAi iff [u,v0su2] € A, -

<k> <k>
Proof: By induction, respectively on fu,UO&UZ] € Ai and on rwm u,wm U1 e Ai'

—_—

where frequent use is made of Lemma 8.3.

The lemma has some nice corollaries:

COROLLARY 9.1.1. Weakeningand strengthening lemma .

If L(Ul) = m, UlaU2 € T, then [@mu,u1&02] € A, iff [u,02] € A

COROLLARY 9.1.2. If U € T, k <L(U) then [wk<k>U,U] €A,

COROLLARY 9.1.3. [n,U] € A_ iff UE T _and n £L(U).

The next lemma partially expresses our assertions about correctness of terms.

LEMMA 9.2. Soundness of application .

If [<u>[w]v,U] € A then typ(u,U) > w0 and w > w0 for some w0 € A.

Proof: By induction on [<u>[w]v,U] € Ai'

Types of correct terms are, in a sense, preserved under reduction.

LEMMA 9.3. Preservation of types.

If [u,U] € Ai' u > v then either typ(u,U) = typ(v,U) =0

or typ(u,U) » w and typ(v,U) » w for some w € A.

- 26 -

Proof: By induction on u > v.

~ul
We will consider the case u = [u3}u2, v = ZT u2.

By the previous lemma typ(ul,U) » wO and u3 » wO.

Now typ (u,U) [u3]typ(u2,u3su) > ZTItyp(uZ,u3&U)

and typ(v,U) typ(2?1u2,U). Apply Corollary 8.6.

The following lemmas are easy to prove. The first contains the converse

of clause 6 in Definition 9.1.

LEMMA 9.4. Correctness of types.

It typ(u,U) # O then [u,U] € A, iff [typ(u,u),u] € A _

1

The second tells us that if an application of a function to an argument is cor-

rect, then both the function and the argument are correct.

LEMMA 9.5. Correctness of functions and arguments .

If [<usv,u] € Ay then [u,u] € A, and [v,u] € Ay -
We prove two lemmas which are, in a sense, converses of Lemma 9.5.

LEMMA 9.6. If [<u>v1,U] € A, [v2,U0] € A,, VI > w and v2 > w
—_— 1 1

then [<usv2,u] € Ai'

Proof: By induction on [<u>vi,u] € A, -
We consider the case of clause 4:

typ(<uw>v1,v) = o, [u,u] € A, [vi,U] € Ay» typ(u,U0) > w0 and vl > [wO]wl.

We know that typ(vl,U) = 0, hence, by Lemma 9.3 typ(w,U) = O and also

typ(v2,U) = o. Therefore typ(<u>v2,U) = O.

- 27 -

Moreover, by the Church-Rosser theorem we have, for some w2 € A:

w > w2 and [wOlwl » w2, hence w2 = [wO*]wl* for some wO* and wi¥*.

Therefore typ(u,U) » w0 > wO* and v2 » w > [wO*]wl*, so, by clause 4,

[<u>v2,ul € Ay

LEMMA 9.7. If [v,u] € Mg [u2,u] € A; and ul > u2 then [<u2>v,u] € A

Proof: By induction [v,u] € Ai

We consider again the case of clause 4:

typ(v,U) = 0O, [ul,U] 5 Ai, [v,U] € Ai' typ(ul,U) > wl and v > [wilw2.
First we have typ(v,U) = 0O, hence typ(<u2>v,U) = O.

By Lemma 9. 3 we have for some w0 typ(ul,U) » wOand typ(u2,U) » w0.

Hence, by the Church-Rosser theorem: w0 » vl and wl » vl for some vli.
Therefore typ(u2,U) » w0 > vl and v > [wi1]w2 > [vilw2, so, by clause 4,

[<u2>v,u] € A, -

Finally we state a lemma on correct abstraction:

LEMMA 9.8. [[ulv,U] € A, iff [v,uaU] € A,.

Proof: By induction, respectively on [[u]v, U] €A, and on [v,usu] € Ay

Closure for Ae

For the proof that Aoo is closed under reduction we need Lemma 10.2 which
tells us that correctness is preserved under correct substitution. In

order to prove this lemma we give a slightly different definition of Ai’

- 28 -

which we will prove to be equivalent to the first definition. Induction on
this alternative definition will be used in the proof of Lemma 10.2.
We define for i € lfj the sets Ci and Li by a simultaneous inductive defi-

nition as follows:

DEFINITION 10.1.

If i > 0 then

2. 1f [u,u] € L, then uau £ C;
3. if U € C, then [t.u] €L,
4. if typ(<w>v,U) = o, [u,U] €L, [v,u] € LI
typ(u,U) » vl and v » [v1]v2 then f<u>v,U] € Li
5. if typ([ulv,U) = O and [v,usU] € L, then [[ulv,u] € L,

6.1. if [typ(n,0),U]€L, | then [n,u] € L,

1

6.2 if [typ(<u>v,U),U] € Li— and rv,U] € Li then [<u>v,U] € Li

1

6.3. if [typ([ulv,u),u] € L,_, and [v,uau] € L, then [[ulv,u] € L, .

1

The clauses 0 to 5 are the same as the corresponding clauses of Definition
9.1, but clause 6 of that defintion has been split up into three clauses.

We easily verify that Li— c Li and that L, = U{Lili £ N} . In order

1

to show that Ci = Ti and Li = Ai we first prove the following lemma:

LEMMA 10.1. If [typ(u,0),u] € L,

i1 then [u,U] £ Li.

- 29 -

Proof: By induction on ftyp(u,U] € Li-l'

We consider the case of clause 4: typ(u,U) = v, typ(v,U) =0,

typ(ul,u) > wil, v > [wilw2.

[u1,u] € Ly [v,u] € Ly

Now either u = n or u = u2 and typ(u2,U) v.

If u n then [u,U] € Li by clause 6.1.
If u = u2, typ(u2,U) = v then we have by the induction hypothesis
fuz2,u] € L. and therefore [u,U] € L, by clause 6.2.

As another case we consider clause 6.3: typ(u,U) = [uilv,

[typ((ullv,U0),U] € L. . and [v,ulaU] € L, . .
i-2 i-1

Again we either have u = n or u = [uiju2 and typ(u2, ulsu) = v.

If u = n then again clause 6.1 applies.

And if u = [ull]u2, typ(u2,ulgU) = v then by the induction Lypothesis

[u2,u1&U] € Li and therefore [u,U] € Li by clause 6.3.

COROLLARY 10.1. C, =T, and L, = A,.
1 1l 1 1

Proof : Li c Ai is trivial, Ai c Li is proved by using Lemma 10.1.

Now we are able to prove the following important substitution lemma.

LEMMA 10.2. Substitution lemma for Li'

If rwku,U] €L, [v.,u] € L,, typ(Qu,U) > w and @ <k>U >w then
u u
€ .
I-Ekv'zku.] - Li
Proof: By induction on fv,U] € Li' freely using Corollary 10.1.
We consider some of the clauses:

Clause 3. v = 1. We have to prove the ZEU F Ci'

- 30 -

If k = 1 this is clear by Lemma 8.4.
If X > 1 then U = w&V and ZEU = Ziw & ZEV, also by Lemma 8.4.
u
Now we have rw,V] € Li’ hence by the induction hypothesis fz;w,zkv] £ Li
and therefore ZEU € C; by clause 2.
Clause 4: v = <vi>v2 .
We know that typ(v,U) = 0O, rvl,U] € Li' fv2,ul € L+
typ(v1,U) > wl and v2 > [wilw2.
By Lemma 8.6 we have: typ(ZEv,ZEU) = @ (i) .

The induction hypothesis gives us:
u u u u
: € ii) .
[kal,ZkU] € Li and rZKV2'EkU] Li (ii)
Also by Lemma 8.6 we see that
typ(?ivl,IiU) > w0 and ZEtyp(vl,U) » w0 for some wO.
Now by Lemma 5.3 it follows that

u u
Zktyp(vl,U) > zkwl

and also

Z;v2 > Zi[wl]wZ = [Z:wl]zi+1w2 ’

hence by the Church-Rosser theorem

w0 > w and z;wl > w for some w.

Therefore we have:

typ(z;vl,EEU) > w0 > w and ZEV2 > [Eiwl] ZE+1w2 > [w] z;+1w2 (iii) .

- 3] -

From (i), (ii) and (iii) we conclude by clause 4 that

[z;v,z;:U] €L.

Clause 6.1: v = n. We know that rtyp(v,U),U] = [wn<n>U,U] < Li—l'
We discern two cases: n = k and n # k.
Suppose n = k. As L(U) 2 k we may put U = U1&U2 with L(U1) = k.
u u u
Then ZkU = (kul)&U2 by Lemma 8.5 and L(kul) = k-1.

Moreover it can be shown, just as under clause 3, that z;U € Ci'

Hence by Corollary 9.1.1 we have ru,UZ] € Li and by the same corollary
u
also [Zkv,iiu] = [wk—lu' ZEU] € Li'

Now suppose n # k. z;v either equals n (if n < k) or n-1 (if n > k).

Using Lemma 3.4 (for n < k) or Corollary 3.5 (for n > k) we see that
u u u
typ(zkv,EkU) = zkwn<n>u,

By the induction hypothesis we have [zuwn<n>U,Z;U] € Li—1 and therefore

by clause 6.1 [ZEV,ZEU] € Li'

Clause 6.2:v = <vi>v2.

We know that [<vi>typ(v2,U0)U] € L,_, and that [v2,u] € L.

1
By the induction hypothesis it follows that

[<z;v1>ZEtyp(v2,U),ZEU] € L 4 (i)

and

u u
T2, Mol ez, . (*)
By Lemma 8.6 it is known that for some wO € A

ZEtyp(vZ,U) > w0 and typ(ZEv2,X§U) > w0. (ii)

- 32 -

And from (*) we conclude by Lemma 9.4 that
u u u s
rtyp(szZ,XkU) ,ku-’ € Li_l. (iii)
From (i), (ii) and (iii) it follows by ILemma 2.6 that
u_ ru u
[typ(Q v,)l 0. Lul €L,
and this, together with (*) gives us by clause 6.1:
u_ tu
[Zkv,fku] €L..

We leave the other clauses to the reader.

COROLLARY 10.2. If [u,V]| € L. [v,viev] € L, typ(u,V) > w and vl > w

then rZTV,V] € Li.

Proof: Take k = 1 and U = v1&V in Lemma 10.2.

Our next lemma implies that for i € N Ai is closed under reduction. In
order to word it we use the relation » between contexts, which has been
defined in section 8.

In order to prove the lemma we assign to every context U the number M(U)
which is the sum of the lengths of the terms in U:

if L(U) = n then M(U) = L(<i>U) +L(<2>U) + ... + L{<n>0).

LEMMA 10.3. If i € N, ugU » v&V and [u,U] € A, then[v,V] € A -

Proof: By induction on i.
If i = 0 then Ai = @, so the lemma holds.

Suppose i > 0. We prove the following:

- 33 -

PROPOSITION: If u&U > v&V and |[u,U] € A, then [v,v] € A,

Proof: By induction on M(ug&U).

If M(ugU) = 1 then ug&U > v&V is impossible, so the proposition holds.

Now suppose M(ug&U) > 1.

As u&U > v&V we have either u >Vv and U=V or u = v and U > V.

Suppose u > v and U = V., We inspect the clauses for u > v.

1. u = [u3lu2, v = XgluZ.

By Lemma 9.2 we have typ(ul,U) » w and u3 » w for some w, and by Lemma 3.5
f[u3]u2,U] € Ai so fu2,u3&U] € Ai by Lemma 9.8.

Apply Corollary 10.2.

2. u = <ui>2, ul > vl1l, v = <vi>u2 .

By Lemma 9.5 we have rul,U] € Ai.

Moreover ulgU > v1&U and M(ulgU) < M(uaU).

Therefore by our induction hyothesis we have rvl,U] € Ai and hence rv,U1F?Ai
by Lemma 9.7.

3. u = u2, u2 > v2, v = v2,

fv,U] € Ai by a similar argument, where Lemma 9.6 is used instead of
Lemma 9.7.

4. u = [utlu2z , ut >vi, v = [vilu

By Lemma 9.8 we have [u2,u1&U1 € Ai.

Moreover u2&ulg&U > u2&v1&U and M{(u2&ulg&U) < M(u&U);

in fact M(u&U) = M(u2&ulgyu) + 2.

Therefore our induction hypothesis gives us [u2,v1&U] € Ai and it follows
that fv,U] € Ai by Lémma 9.8.

5. u = [ulJu2, uz > v2, v = [ullv2.

fv,U] € Ai by a similar argument as under 4.

- 34 -

Now suppose u = v and U > V. We inspect the clauses for fu,U] € Ai.
3. u = 1. We have to prove that V € Ti.
As U > V it is impossible that U = @, so we may put U = ulaUl and vV = vigvl.
As U < Ti we have [u1l,u1] & Ai and also M(U) < M(u&U).
Therefore we have by our induction hypothesis [vi,Vl] € Ai' hence V £ Fi.
4. u = u2, typ(u,U) =0, [ul,u]€ LY [u2,u] € A
typ(ul,U) > vl and u2 > [vi]lv2.

By Lemma 8.7 we know typ(u,V) = O, Moreover, we have ul&U > ul&V and
M(ulgU) < M(u&U) so by our induction hypothesis [ul,V] € Ai' and by a similar
argument we see that [u2,V] € Ai.
Also by Lemma 8.7 it is seen that typ(ul,U) » typ(ul,V) so by the Church-
Rosser theorem we have:

vl > w and typ(ul,V) » w for some w.
It follows that u2 > [vilv2 > [wlv2, hence [u,V] ¢ Ai by clause 4.
5. u = [ullu2, typ(u,u) = o, [u2,utev] € A, .
We know that u2&ul&U > u2&ul&V and that M(u2&ul&U) < M(ugkU). It follows
that [u2,ulsv] € Ai' hence [u,v] € Ai by Lemma 9.8.
6. [typ,u),u] € A, _,.
By Lemma 8.7 we have typ(u,U) » typ(u,V), hence typ(uaU)&U > typ(u&V)&v.
Now by our induction hypothesis on i it follows that .['typ(u,v),V-]F:_Ai_1
and therefore ru,V]EAAi by clause 6.

So our proposition is proved, and it follews immediately that

u&U > vav, [u,U] € /\,l imply [V,V] € Ai' This proves our lemma.

COROLLARY 10.3. Closure for Ai.

1f i € N, [u,u]e Ai and u > v then [v,u] € Ai.

- 35 -

As a consequence we have:

THEOREM 10.1. Closure for Am .

1f [u,u] € A_ and u > v then [v,u] € A -

Normability for A_.

In this section we will prove that [u,U] £ AOo implies that u is normable.
It then follows from Theorem 7.1 that u strongly normalizes. In order to
prove that u is normable we will assign to certain sequences U ¢ A* a
sequence s(U) € (UG)*. If the assignment is not possible then we will write

as before, s(U) = 0O,

DEFINITION 11.1. 1. s(@) = @.

cg&s(U) if s(U) # 0, fn(u,s(U)) # 0O
2. s(ugl) = and fn(u,s(U))4+ = a.

a otherwise

LEMMA 11.1. If s(U) # O then L(s(U)) = L(U) = n
and fn(wk<k>U, s(U))4 = <k>s(U)4 for k £ n.

Proof: By induction on U.
Our second lemma gives a relation between norms and typing.
*
LEMMA 11.2. If U € A, s(U) # 0 and typ(u,U) # o then either

fn(typ(u,U0), s(U)) = fn(u,s(U)) = O or fn(typ(u,U),s(U))+ = fn(u,s(U))+*

Proof: By induction on u.

- 36 -

We consider the case that u = [u1lu2.

Then typ(u,U)= [ulltyp(u2,ulgl) and typ(u2,ulgl) # O.

If fn(ul,s(U)) = O then fn(typ(u,U),s(U)) = £n(u,s(U)) = B,

Now assume that fn(ul,s(U)) # @ and put fn(ul,s(U))+ = a. Then it follows
that s(ulal) = c.&s(U) # O,

0
If fn(typ(u2,ulsl),s(ulal)) = @ then also fn{u2,s(utay))

0 by the induc-

tion hypothesis, and therefore fn(typ(u,U),U) = £fn(u,U) = O.

So let us assume fn(typ(u2,ulsgl),s(ulgl)) # O.

Putting fn(typ(u2,ulsv),s(ulgv))+ = 8 we have by the induction hypothesis
fn(u2,s(ulgU))t = B and also fn{u2,g&s(U))+* = B for g € a. Hence

fn(typ(u,U),s(U))t = fn(u,s(U))t =a » B .

LEMMA 11.3. If [u,u] € A, then s(U) # O and fn(u,s(U)) # O.

Proof: By induction on [u,U]EﬁAi.

We consider clause 3: u = T. We only have to show that s(U) # 0. If U = ¢
then s(U) = ¢, and if U = v&V then we have [v,v] € Ai' so by the induction
hypothesis s(V) # O and fn(v,s(V)) # O and therefore s(U) # O.
We will also consider clause 4: u = u2.
We have typ(u,U) = o, [ul,u] € Ai' [u2,u] € Ai'
typ(ul,U) > vl and u2 » [vilv2.
By the induction hypothesis fn(ul,s(U)) # D0 and fn(u2,s(U)) # O.
Putting fn(ul,s(U))4 = a we have fn(typ(ul,U),s(U))4 = a by Lemma 11.2
and fn(vl,s(U))4 = o by Lemma 7.5.
Also by Lemma 7.5 fn(u2,s(U))4 = fn([v1lv2,s(U))4 = ¢ = B for some B,hence
fn(u,s(U)) # D.

We leave the other cases to the reader.

As

- 37 -

a consequence we have

THEOREM 11.1. Strong normalization for A_

1f [u,u] € A_ then u strongly normalizes.

ACKNOWLEDGEMENT

I want to express my gratitude to R. Nederpelt for his encouragement and

his careful reading of the original text, where he suggested some improve-

ments and detected a serious error.

REFERENCES

[1]

[21

[31]

[41

de Bruijn,

de Bruijn,

van Daalen,

Gandy, R.O.

N.G. Lambda calculus notation with nameless dummies,

a tool for automatic formula manipulation, with
application to the Church-Rosser theorem. Kon. Ned.

Akad. Wetensch. Proceedings Ser. A,75 (= Indag. Math. 34),

381-392 (1972).

N.G. A survey of the Project AUTOMATH.
To H.B. Curry: Essays on Combinatory Logic, Lambda

Calculus and Formalism, 579-606, Academic Press (1980).

D.T. The language theory of AUTOMATH.
Thesis. Eindhoven University of Technology, Dept. of

Mathematics (1980).

Proofs of Strong Normalization.
To H.B. Curry: Essays on Combinatory Logic, Lambda

Calculus and Formalism, 457-477. Academic Press (1980).

- 38 -

[s5] Martin-Lof, P. An intuitionistic Theory of Types. Report. University

of Stockholm, Mathematical Inst. (1972).

[6] Nederpelt,R.P. Strong Normalization in a typed lambda calculus
with lambda structured types.
Thesis. Eindhoven University of Technology, Dept. of

Mathematics (1973).

£71 de Vrijer, R. Exactly estimating functionals and strong normaliza-

tion. Preprint (1983).

