LAMBDA CALCULUS EXTENDED WITH SEGMENTS

LAMBDA CALCULUS
EXTENDED WITH SEGMENTS

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE

TECHNISCHE WETENSCHAPPEN AAN DE TECHNISCHE

HOGESCHOOL EINDHOVEN, OP GEZAG VAN DE RECTOR

MAGNIFICUS, PROF. DR. F.N. HOOGE, VOOR EEN

COMMISSIE AANGEWEZEN DOOR HET COLLEGE VAN

DEKANEN IN HET OPENBAAR TE VERDEDIGEN OP
DINSDAG 4 MAART 1986 TE 16.00 UUR.

DOOR

HARMANNUS BALSTERS

GEBOREN TE GRONINGEN

Druk: Dissertatiedrukkerij Wibro, Helmond

Dit proefschrift is goedgekeurd

door de promotoren

Prof.dr. N.G. de Bruijn

Prcf.dr. W. Peremans

CONTENTS

1.

Introduction

An informal introduction to the Aog-system
1.1.1. The system AV

1.1.2. Beta-reduction

1.1.3. Name-free notation

1.1.4. Segments and abbreviations

1.1.5. Segment variables and substitution
1.1.6. Name-free notation for segments and

segment variables

1.2. An introduction to the typed system ATO
1.3. Reduction and related properties
2. Basic notions and results
2.1. Seguences
2.2 Language definition of the formal system Ao
2.3 Reference mappings
2.4 Informal discussion of Definitions 2.9 and 2.10
2.5 Beta-reduction and substitution
2.6 The permutation condition (PC)
3. The Church-Rosser theorem for the type free Ag-calculus
3.1. Restricted reduction and the weak Church-Rosser
property
3.2. The strong normalization property for +B,
3.3. The Church-Rosser property for +8
4. The closure property for the typed system ATO
References

Index of Definitions

Samenvatting

Curriculum vitae

O 0 LW NN

19
34

40

40
41
44
47
51
66

73

73
93
111

116

125
126
128
129

1.

INTRODUCTION

The A-calculus is concerned with axiomatizing the mathematical concept
of function and the rules governing the application of functions to
values of their arguments. In the A-calculus a function is seen as a
rule for calculating values; this is a view which differs from the one
held in set theory, where a function is to be a set of ordered pairs
and is identified with its graph. In axiomatizing the concepts of func-
tion and application we define (i) a syntax, consisting of a set of
grammar rules, and (ii) inference rules. The A-calculus to be described
in this section, called Ao, is an extension of the ordinary type free
A-calculus (cf. Barendregt [81]) and was originally conceived by N.G.
de Bruijn (cf. de Bruijn[78b]). The main feature of Ao is the incor-
poration of a new class of terms called segments. These segments were
originally devised in order to provide for certain abbreviational fa-
cilities in the mathematical language AUTOMATH. AUTOMATH is a typed
A-calculus in which it is possible to code mathematical texts in such

a way that the correctness of each proof written in AUTOMATH can be
verified mechanically (i.e. by a computer). There is much to say about
the AUTOMATH system, much more than the topic of this thesis aims to
cover. We shall mainly treat Xc as an interesting extension of the -
calculus in its own right and not pay very much attention to connections
with AUTOMATH. This thesis will be a rather technical treatise of the
syntax and axiomatics of Ao-theory. For an introduction to the AUTOMATH
project we refer to de Bruijn [80] and Jutting [81]; the latter paper
offers an excellent introduction to a fundamental AUTOMATH-language
called AUT-68. For a detailed treatise of the language theory of the

AUTOMATH-languages we refer to van Daalen [80].

This introduction consists of three sub-sections. In Section 1.1 we
shall give an informal description of the Ao-system and pinpoint major
differences with ordinary type free A-calculus (for a very complete
and up-to-date description of type free A-calculus we refer to Baren-
dregt [81]). Section 1.2 contains an informal description of the ATo—
system (Ao extended with types). The types in XTO are an extension of
the types in Church's Theory of simple types (cf. Church [40]), the
extension being that simple types are constructed for segments and

segment variables. Section 1.3, titled "Reduction and related proper-

1.

1.

1.

1.

1.

ties", differs from Sections 1.1 and 1.2 in that it is completely for-
mal. We have included this formal section in our introduction because
it provides an abstract framework in which reduction can be discussed

for term-rewriting systems in general.

An informal introduction to the xo-systen

In this section we shall give an informal description of a system called
Ao. We shall offer some explanation for the motivation behind the system
and show in which way A¢c is an actual extension of ordinary type free

A-calculus. We start with a simple system called AV.

The system v

The system AV is the well-known type free i-calculus as described in
Barendregt [81], although there are some slight deviations in notation.

Type free A-calculus has formulas like

Xy (1)
Ayt XY (2)
XX '(Ay * xY) (3)
(A, -(Ay * xy)) (2) (4)

_he corresponding formulas in AV are written as

Syx 1"
Xx §/x (2")
Xx Ay Syx (3")
8z }\X /\y Syx (4")
In.AV functional abstraction is denoted by AX(...) (i.e. the function
that assigns (...) to the variable x, where x may occur in (...)), and

Jnctional application is denoted by 8AB (i.e. the function B applied
to its argument A, where A and B are AV-terms). Note that in AV argu-
—ents are written in front of functions, this in contrast with ordinary

cype free A-calculus where application of a function B to its argument

1.1.

2.

A is usually written as B(A). The syntax of V is very simple and is

given below.

Definition 1.1.1.

(1) Av-terms are words over the following alphabet

Vl'VZ'V3"" variables
A abstractor
§ applicator

(2) The set of AV-terms is the smallest set X satisfying

(i) x € X , for every variable x
(ii) A € X = XXA e X, for every variable x

(iii) A,B € X = 8AB € X a

As will be clear, AV-terms are written in prefix notation: each vari-
able has arity 0, each abstractor Ax has arity 1 and the applicator §
has arity 2. Each term can be represented as a rooted tree. As an

example we consider the term
§z A A Syx (4")
X Yy

which we write in tree form as

/Z /Y
5§ - AX - Ay -85 -x . (4™)

The correspondence between terms like (4') and trees like (4") is one-
to-one. It certainly helps to think of Av-terms as such trees, and in
particular to see operations on terms as operations on their corres-
ponding trees; especially when long terms are involved it is often use-

ful to consider tree representations of terms.

Beta-reduction

In A-calculus we have the fundamental notion of application. The appli-
cation of a function B to an argument A is written as 6AB. Apart from
functional application we have the notion of functional abstraction. As
said before, the intuitive meaning of Ax(...) is "the function that

assigns (...} to the variable x". This is illustrated in the following

example (not a AV-term by the way)
63X¢2-x+1)=2-3+1

i.e., we substitute the number 3 for the variable x in 2-x+ 1. A for-
mula of the form 61&AXB is called a redex. Substitution of A for the
free occurrences of x in B is denoted by ZX(A,B). The transition from
GAJx(B to ZX(A,B) is called B-reduction. We now proceed by giving a

more formal description of substitution.

We recall that an occurrence of a variable x in a term A is called
bound in A if this occurrence of x lies in the scope of some abstrac-
tor XX in A; otherwise this occurrence of x is called free in A. Note
that a variable can occur both free and bound in the same term; as an
example consider the two occurrences of the variable x in the following

term written in tree form

Definition 1.1.2.

If A is a term and x is a variable and y is a variable with y # x then

we define EX(A,B) inductively for terms B by

(1) Z (A,x) = A
X
i (AY) =y
X
(2) Z_(A, A C) = _C
X X X
Ay ZX(A,C) , 1f x does not occur free in C, or:
y does not occur free in A
A L (A,C'"), otherwise - where C' is obtained by
(3) Z (A, C) = z X
® Y renaming of all free occurrences of
y in C by some variable z which does
\ not occur free in A,C.
(4) L (A,8CD) = 8% (A,C) X (A,D) . 0
X X X)

Most of the four clauses in the definition given above are self-evident,
with the possible exception of clause (3). Clause (3) is necessary in
order to avoid that free occurrences of the variable y in A get bound

by the Xy of AyC: after substitution, which would otherwise lead to

1.3,

inconsistencies. This renaming of bound variables is known as o-reduc-
tZon. In our case it is said that AyC a-reduces to AZC'. Usually a-
reduction is considered unessential. If a-reduction transforms a term
A into A' then A and A' are considered to be equivalent in an infor-
mal way. This convention implies that the name of a bound variable is
unessential; the "meaning"” of a term is considered unaltered after per-—
forming an a-reduction on that term. Actually, in the definition of
substitution given above, clause (3) does not introduce a proper term

but rather an a-equivalence class of terms.

Name-free notation

Renaming of bound variables can sometimes be very cumbersome; proofs
involving a-reduction are notoriously tedious. But apart from this we
have our own intrinsic reasons to avoid a-reduction. Later on we shall
introduce the full lo-system, an extension of AV. The main feature of
Ao is the incorporation of a new class of terms called segments. Seg-
ments are discussed in Section 1.1.4. Substitution of segments for
their corresponding variables can give rise to a large number of a-
reductions, especially when the formulas are long. There is, however,
a very simple way to avoid a-reduction. In de Bruijn [72], N.G. de
Bruijn introduced the concept of nameless dwmmies; he invented a A-
calculus notation that makes a-reduction superfluous. The idea is that
we just write A instead of AX,Ay,... and every variable is replaced by
a term of the form £(n), where n is some positive integer. Each £(n) is
called a name-free variable and n is called a reference number. The
reference number n of a name-free variable £(n) determines the)X that
binds a specific occurrence of £(n) in some term. The procedure is as
follows. If the name-free variable £(n) occurs in some term t, we first
form the tree representation of t. We then descend from £(n) towards
the root of the tree and the n-th A encountered is the)\ that binds
£(n). As an example consider the following name-carrying term in tree

representation

/¥ /z
A - X =8 -X -8 -x -x

The name-free equivalent of this term is

1
/E(l) /E()
A=A -8 - A -8 -x - E(4)

Remark. If a reference number n is larger than the number of A's lying
on the path from an occurrence of £(n) to the root of the tree in which

it occurs then we can interpret that occurrence as being free.

The use of name-free notation has certain consequences for substitution
of Af{-terms (AV-terms written in name-free form), which we now shortly
describe. Substitution in a Af-term t results in the replacement of
free occurrences of a certain variable in t by some term u. We could
also describe this situation in terms of trees by saying that certain
end-points &(n) of the tree equivalent t of t have been replaced by
some'tree a. Consider the following example of such a substitution in

a Af-tree.
Let t be the Mf-term
AASSE(2) E(1) A A XE(D)
which has the following tree-representation t

/€(2)
/5 - £(1)
A - A =8 - X=X-A-E(3).

This tree contains a redex, namely

2
/E()
/ § - £(1)
§ - X - X - x - &(3)

and we can therefore performa 8-reduction on €. By 8-reducing £, the end-

point £(3) is a candidate for substitution of the sub-tree

/€(2)
S - &£(1)

Should we, however, simply replace £(3) by this sub-tree, as would have

been the case if t had been written in name-carrying form, then this

would result in the following tree t'

/ £(2)
A=- A - Xx-x-=-48-£&(1) .

It is immediately clear that the variables §(1) and £(2) in t' refer
to completely different A's than in t. This inconsistency is due to

the fact that

(i) £(1) and £(2) are external references in t (i.e., references to
A's to the left of the subterm § £(2) £(1));
(ii) after replacement, the variables £(1) and £(2) in t' have two

extra A's on their left.

There is, however, a simple way to resolve this inconsistency: by
raising the reference numbers 1 and 2 in £(1) and £(2) by 2 in t',
these variables refer to the same A's that they originally referred
to in t. This example demonstrates that certain measures have to be
taken in order to ensure that external references remain intact when
we substitute a Af-term. In Section 2, where we give a formal defini-
tion of substitution of name-free terms, we shall introduce so-called
reference mappings, which see to it that reference numbers are suita-
bly updated in order to avoid inconsistencies as described above. We
refrain from further discussion of these reference mappings here; they
shall be described extensively, both informally and formally, in Sec-

tion 2.

In the following sections of this chapter we shall first stick to
name-carrying notation of formulas. The major reason for this is to
point out that name-carrying notation can possibly be maintained in
rco-calculus (AV-calculus extended with segments and segment varia-
bles), but we also want to show how awkward things can get in Ao-calculus
by employing name-carrying notation. In the case of AV-calculus the
name~-free notation might seem exaggerated in preciseness, and we can
imagine reservations towards this notation as far as readability of
formulas is concerned. In the case of Ag-calculus we shall try to show
that the name-free notation has advantages over name-carrying notation,

both in preciseness and readability.

1.

1.4.

Segments and abbreviations

We may consider a variable as an abbreviation of a certain term if
this variable can be replaced by that term by means of some suitable
B-reduction. For example, consider the following term written in tree

form

A =8 =-x -8 -z . (5)

By B-reducing (5) we obtain the term

A= 6 - - x, (5")

i.e. a term in which the variable z has been replaced by the term Axx
and the redex has vanished. If we would have more occurrences of the
variable z, each bound by the XZ of the redex, then each of these

occurrences serves as a kind of abbreviation of the term Axx.

In Ao there are, however, still quite different things that we want to

abbreviate. One such thing is a so-called §-string like

/B /B /c

8 S 8 . (6)

If it occurs more than once in a certain term, we may wish to abbre-
viate it. Yet (6) is not a term, in the sense of a AV-term, but only
part of a term; it becomes a AV-term if we place an arbitrary AV-term
behind it. Such parts of AV-terms are called segments. Another example

of a segment is a so-called A-string like
A=A - A . ' (7)

In AUTOMATH we have many cases where we would like to abbreviate seg-
ments. In this respect we mention an interesting AUTOMATH-language,
namely Nederpelt's language A (cf. Nederpelt [73]). The original idea
of introducing such a language as A stems from N.G. de Bruijn who de-
vised a language called AUT-SL (from AUTOMATH-Single Line) in which
AUTOMATH texts can be represented as one single formula. The language

A was devised as a fundamental and simple AUTOMATH-language which is

very well suited for language-theoretical investigations. In typical

1.

1.

5.

codings of AUTOMATH texts in A we encounter very many copies of certain
§-strings and A-strings, copies which we would like to abbreviate. As

a consequence, segments like §-strings and A-strings will be treated as
separate independent entities in Ao. In Ao we shall even take a broader
approach and allow for segments of a much more general form than §-
strings or A-strings alone. In the following section we shall give

examples of such segments of a more general form.

Segment variables and substitution

Segments are terms with a kind of open end on the extreme right. From
now on we shall use the symbol w to indicate the open end on the right.
So
A ,B ,C
VA4
§ -6 -6 -

w

is a segment as well as

As said before, segments are not AV-terms; a segment becomes a AV-term
if we replace the w by an arbitrary AV-term. According to this scheme

the following formulas can also be considered as segments:

By replacing the w in both of these formulas by some AV-term we obtain
a AV-term (provided, of course, that A and B are AV-terms). In Ao we
will go even one step further by allowing recursive nesting of segments,

and as a conseqguence w's can occur in other branches as well, like in

/Ax - w /z
§=-A =X -6 -w
y z

oxr

All these occurrences of w in the foregoing formulas act as a kind of
"holes", which - once replaced by a AV-term - yield again a AV-term.
All formulas having an w on the extreme right are called segments in
Ag. Along with segments we also add to our system a new kind of vari-
ables for which segments can be substituted. These variables are re-
presented by unary prefix symbols and are denoted, in name-carrying
form, by ¢,0',0",... . An example of a Ao-term containing a segment

and a segment variable is

y z

X
A, -0 - x . (8)

//A -A - A - w
§ -

This term is in redex form, where the segment variable o is bound by

the Ao of the redex. Performing a B-reduction on this redex results in
A=A - A - x (8")

i.e., the prefix symbol ¢ is replaced by the segment xxxy,xz (where

the w has been dropped). In Ao, segment variables can serve as a means
to abbreviate segments, Jjust like variables in AV can serve as a means
to abbreviate AV-terms. When using segment variables to abbreviate
segments we must be careful, though. Consider for example the lo-term
(8). The variable x in that term refers to the abstractor AX hidden
inside the segment variable g, as seen in (8') where x gets bound by

Ax after B-reduction of (8). This is an intended feature which we al-
ways have to take into account in Ao-calculus. If a segment variable

0 occurs in some Adg-term then after replacement of ¢ by the segment s
that o abbreviates in t, it can happen, as most often will be the case,
that certain variables occurring in t get captured by abstractors lying
on the main branch of the tree representation of s. This is to say that
each occurrence of a segment variable ¢ in a Ao-term t can contain ab-
stractors - Aidden inside o - which will capture certain variables in

t after performing a B-reduction in t resulting in the replacement of

0 by the segment that ¢ abbreviates in t.

10

We now wish to discuss a situation in which there are more occurrences
of the same segment variable ¢ in some Aco-term. Consider the following

Ao-term in tree representation

//Ax - Ay - w //x
- AO ~-0o-0g-8-vy. (9)

§

Performing a B-reduction on this term results in

L N S U i (°")

where both instances of 0 have been replaced by the segment Axky. The
variables x and y in {(9') are bound by the last two abstractors Ax and

Ay as indicated by the arrows in (9") shown below

A= A - Ax - Ay -8 -y . (9™

Suppose, however, that we would want x and y to be bound by other

occurrences of the abstractors Ax and Ay as indicated in

e e - — =

AT - XA =X - -6 - - 9w
X Y X Y /y ()

— —_

In Ao we want to have the freedom to allow for such deviations in pri-
ority of binding power of A's, which appear when we have more than one
occurrence of some segment variable ¢ in a Ao-term. One way of doing

this is by renaming the abstractors in (9') in a suitable way; consider

for example the following term

/,x
—_ X — - — — . 181}
Ay v)\Xl Ayl § -y (x # x;0 ¥y #y,) (9"
It is clear that the variables x and y are bound by the first two ab-
stractors Ax and Ay’ just as we intended them to be bound in (9"').
This renaming, however, is done after substitution has taken place;
i.e. the renaming has taken place after B-reduction of (9) to (9').
What we would like is that it can be seen beforehand (i.e. before B-

reduction takes place) how the abstractors inside segments shall be

11

renamed. We would like to have a means systematically indicating be-~
forehand how this renaming of bound variables shall take place, in-
stead of more or less arbitrarily renaming bound variables in segments
after B-reduction. One way of doing this is by replacing the first,
respectively the second, occurrence of ¢ in (9) by o(x,y), respectively
o(xl,yl). These parameter lists (x,y) and (Xl'yl) serve as instructions
indicating that the abstractors Ax and Ay are to be renamed by Ax'xy
and Axl,kyl in the first, respectively the second occurrence of ¢ in
(9) (actually only in the second occurrence of ¢ real renaming takes
place). In general if a segment has n (n =2 0))A's lying on the main
branch of its tree, say Axl,...,kxn, and ¢ is a segment variable re-
ferring to that segment then by adding a parameter list (yl,...,yn) to
o we have an instruction indicating that the n abstractors Axl,...,Axn
are to be renamed by Ayl,...,kyn and in that order. Also the occurrence
of the variables x res X in the segment which were bound by

1
Axl,...,kxn are to be renamed by Yyree-¥ - We note that it is impor-
tant that the parameter list added to a segment variable ¢ has as its
length: the number of A's lying on the main branch of the segment s

that o refers to (this number is called the weight of s).

By adding parameter lists to segment variables we have a means to bind
occurrences of variables referring to a A hidden inside a segment
exactly as we desire. There is still one problem, though, that we have
to resolve. When performing a B-reduction inside a segment we are some-
times dealing with redices which, in the substitutional process in-
volved, have an effect on the w on the extreme right of that segment.

Consider, for example, the following segment

X o =86 ~Xx - A - A -w. (10)

By B-reducing the redex 6I\A},AZ Awu) occurring in (10) we are faced
with evaluating Zy(A,AZAw4u). By the clauses given in Definition 1.1.1
we know how to "shift" the Zy—operator past the two abstractors Az
and Aw’ but then we arrive at the w and have to decide how to evalu-
ate Zy(A,w). We could simply define Zy(A,m) as w, but then certain
vital information would get lost; a situation which we now explain.

Suppose that (10) occurs as a segment in some term t and that (10)

12

is referred to by some segment variable O(YI'Y2’Y3’Y4) occurring in t.
Suppose also that there is an occurrence of the variable Y, in t which
refers to the abstractor AYZ hidden inside O(yl,yz,y3,y4). By B-reducing
(10) and defining Xy(A,w) as w, this occurrence of Y, is no longer a
candidate for substitution of the term A (which would have been the

case prior to this f-reduction of (10)), simply because the abstractor

A (or better: Ayz) has vanished. In order to avoid inconsistencies and
to keep this candidate-role of substitution for such occurrences of

variables y2 intact, we shall define such substitutions of a term A

at an end-point w of a segment by

/
T {Aaw =8 - A -uw
Y Y

In this way it remains possible to refer to the Ay of the original
redex in (10), and occurrences of variables which referred indirectly
to that lambda by means of a reference to a lambda hidden inside some
segment variable remain candidates for substitution of the term A.
There is still a problem, though, because the order of the A's in the
reduced segment is different from the order in which they appeared in

the original segment. In our example, B-reduction of (10) results in

A=A - A ~ 8- A - w (10")

where z and w have possibly been replaced by new variables z' and w',
this in case that free occurrences of z or w in A would otherwise have
been captured. The abstractors in (10) appear in the order Ax,ky,kz,kw
and in (10') the order is Ax,kz,,kw,,ky. This difference has conse-
quences when these segments are substituted for some occurrence of a

variable o(yl,yz,y3,y4). Consider, for example, the following two terms

in which the segments (10), respectively (10'), occur
A
/
/ Ay = 8 - Ay ~ Ay - Ay - w
§ - AG - 0(y11y21y3ly4) = y2 (11)

13

and

A
/
Sl " g e T 8- Ay mw
§ - xo - 0(y1,y2,y3,y4) Yy e (11"
These terms B-reduce to
Al
/
A, =8 -X_ =i - -y (12)
¥y Yo Y3 V4 2
and
AI
/
A=A = A =& -2x - (12"
Yq Yo Y3 vg 2

where A' is obtained from A by renaming all free occurrences of x by
yl' In (12) we see that A' can be substituted for y2 by performing one
more B-reduction; this is, however, not the case in (12'). So by
changing the order of the A's in some segment s by performing a B-
reduction inside s we can get the situation that occurrences of va-
riables that originally (i.e. prior to this B-reduction of s) referred
to a certain X hidden inside some parameter-listed segment variable,
afterwards refer to a completely different A. There is a way, however,
in which such inconsistencies can be resolved. By adding an extra pa-
rameter, called a Segment mapping (or segmap for short) to an w we can
safely B-reduce a segment prior to substitution of that segment. A
segmap is a permutation of some interval [1..n] of W (n20), and tells
us how to restore the original order of the A's occurring in a segment;

i.e. by adding a segmap to the w on the extreme right of a segment

we can determine the order in which the abstractors occurred before
B~reduction of the original segment. Instead of writing w we now write
w(YP), where Yy is some segmap. In our example we replace the w on the
extreme right of (11') by w(y), where ¢y is a permutation of [1..4]
defined by

v(1)
v (2)
v (3)
¥ (4)

1] It
N b W e

14

Let us denote this modification of (11') by (11"). If we rearrange the
order of the parameter list (yl,yz,y3,y4) in accordance to ¢ (i.e. the
first parameter remains first in the list, the second becomes the third, the
third becomes the fourth and - most importantly - the fourth parameter becomes

thesecondinthelist)thadweobtahxanewparameterlist(yl,y3,y4,y2).
3,y4) in (11') by this new parameter

list (yl,y3,y4,y2) we obtain the following modified version of (11")

Byreplacingthe;mrameterlist(y1,y2,y

A
/’Ax - Az' - Xw. -6 - Xy - w
§ - AO’ - 0(y1,Y3,Y4:Y2) - Y2 (11")
which f-reduces to
A'
/

A - A - A -8 - - (12"™)
Y1 Y3 Ygq Y2 72

and we see that all occurrences of variables in (12) and (12") refer

to the same A's, just as we wanted.

By adding parameter lists and segmaps we can take care of problems con-
cerning references to A's hidden inside segment variables in a suitable
way. We shall now attempt to give a more formal description of substi-

tution of a segment for a segment variable.

We shall present this definition in name-carrying form, this in order
to show that name-carrying notation can be maintained in principle but
that employment of name-free notation provides for a more natural (and
certainly more concise) means for dealing with substitution of seg-

ments for segment variables.

Definition 1.1.3.

Let Aw(y) be a segment with weightn (ne NU{0}), ¢ be a permutation of

[1..n] and B be a term. Substitution of Aw(y) for o(yl,...,yn) in
o(yl,...,yn)B is defined by
z A , PR = i
O (yyreenryy) (Aw(y) o(y1 yn)B) (1)
= Aw(id(n)),o(y!,...,y')B) = i3
Eotyysen,yyy (POUEAE, 00y) B) (i1)

15

1.1.6.

'
=A I (Aw(y),B) (i11)
o(yl,...,yn) v
where id (n) denotes the identity map on [1..n], (yi,...,yé) is the re-
sult of rearranging (yl,...,yn) as indicated by § and A' is the result

of suitable renaming of bound variables in A as indicated by

(yi,---,yé)- O

This definition is still rather vague since we have not defined

z (Aw(y),B), and also because such descriptions as "
O(yqr-e-s¥p)

arrangement of a parameter list as indicated by a segmap” and "suit-

re-

able renaming of bound variables in a term as indicated by a parameter
list" can hardly be considered as descriptions with formal status. The
transition from (ii) to (iii) is also a bit strange, since it is not
clear from (ii) alone how the segmap ¢ in (iii) suddenly turns up
again. Apparently, this is not a very good definition since it is too
vague; but, as mentioned before, this definition was only intended as
an attempt towards a formal definition. A precise formal definition

of substitution for segment variables can of course be given, but such
a definition would be rather involved. There is a more elegant and
shorter way to define substitution for segment variables, namely by
employing name-free notation for segments and segment variables. This

notation is described in the following section.

Name-free notation for segments and segment variables

There is another way of dealing with references to A's hidden inside
segment variables than attaching parameter lists to segment variables,
namely by employing name-free notation. What we shall do is the fol-
lowing. Segment variables are written in name-free form as o(n,m),
where n denotes the reference number of ¢ (which, like in £(n), de-
termines the A that some specific occurrence of o(n,m) refers to)

and m (m 2 0) denotes the number of A's lying on the main branch of
the tree representation of the segment that o(n,m) intends to abbre-
viate (the number m is also called the weight of o(n,m)). The number
m in o(n,m) is to play the role of a parameter list in name-carrying
notation; i.e. m indicates that there are m A's hidden inside o(n,m).

As an example of a term in name-free notation containing a segment

16

and a segment variable consider the following term written in tree form

1
/ﬁ()
Y S 5
A= 686 - Xx-0(1,3) — & - £(2)

In this term we see that o(l,3) abbreviates a segment with three A's
lying on the main branch of its tree; so when determining the X that
£(5) refers to we descend from & (5) towards the root of the tree, sub-
tract 3 from 5, subsequently subtract 1 and see that £(5) refers to
the first A (from the left) of the tree. The variable £(2) refers to
the second X (from the right) hidden inside o(1,3); &(2) is thus bound

by the second A (from the right) of the segment

/ £(1)
A -8 - A -2 -uw

By employing name-free notation we get a concise way of denoting seg-
ment variables and can do without attaching (potentially long) para-
meter lists to these variables. There is still one problem, though; a
problem which we discussed earlier on in the name-carrying version of
Ao-calculus, which dealt with the performance of certain R-reductions
inside segments prior to substitution of those segments for their re-
spective segment variables. By performing a R-reduction inside a seg-
ment, the order in which certain A's originally occurred in that seg-
ment can be disturbed and, as we have seen earlier, this can lead to
problems when we substitute the reduced segment foxr certain occurrences
of segment variables in a term in which that segment occurs. We solved
those problems by adding segmaps to the w's on the extreme right of

the segments involved and we shall do so again in the name-free version

of Ao.

We now shortly describe substitution of segments for segment variables
and we shall give this description in an informal manner in terms of
trees. The tree representation of a segment has an w(y) - where y is
some segmap — on the extreme right of its main branch. When we sub-
stitute a segment we remove the w(y) and put the remaining tree frag-
ment in the place of some occurrence of a segment variable in a Ac-

tree. Segment variables occur in Ao-trees as unary nodes and substi-

17

tution of segments for segment variables thus gives rise to replace-
ments at unary ncdes inside a Aog-tree (which differs completely from
Af-substitutions, where we could only perform replacements at end-
nodes of trees). When such a substitution is performed, we again -~ as
in the case of Af-substitutions - have to be careful and update exter-
nal references in segments in order to ensure that these references
remain intact after substitution. But not only do we have to update
external references when we substitute a segment for a corresponding
segment variable, we also have to take into account the effect of the
segmap Y attached to the end-point w of the segment involved, since
such a segmap reallocates references to A's lying on the main branch
of the segment which we want to substitute. We now give an example

to demonstrate both of these features. Consider the following example

of a Ao-tree containing a segment and a segment variable

/E(3)
/k -2 -8 - wiy)
A -8 - X~ X - X -0(3,2) - E(1)

where § is the permutation of [1..2] defined by $(1) = 2 and ¢ (2) = 1.

This tree, which we shall refer to as E, contains a redex, namely

. 3
/ £(3)
/,X - A -8 - wy)
§ - XA - A~ X =-0(3,2) - £(1)

and we can therefore perform a B-reduction on t. By B-reducing t, the

unary node g(3,2) is a candidate for substitution of the sub-tree

/ £(3)
A=A =08~ wly

Should we simply replace ¢ (3,2) by the tree fragment

/ £(3)
A - -8

then this would result in the following tree t'

3
/ £(3)
X=X - A= Xx-x-=-8-E&E(D

18

1.2.

Tt is immediately clear that the variables £(1) and £(3) refer to
different A's than they originally referred to in £. The variable E(3)
is an external reference in t and, as in the case of XE-substitutions,
has to be suitably updated whenever the segment in which £(3) occurs

is substituted for some segment variable. The variable £(1) in t refers
to one of the two A's hidden inside ¢(2,3); it seems to refer to the
first A (from the right) lying on the main branch of the segment in-
volved, but the segmap ¢ reallocates this reference to the second A
(from the right). This means that correct B-reduction of t would re-

sult in the following tree g"

S E(5)
A A= A= A= X-8-E(2) .

In Section 2 we shall give a formal definition of substitution of Xo-
terms. In this definition we shall uée so-called reference mappings
which see to it that reference numbers are suitably updated, like in
our example in the transition from £ to t". These reference mappings
(or refmaps for short) and their interaction with Ao-terms are de-
scribed extensively in Section 2, and we refrain from further dis-

cussion of refmaps here.

The employment of name-free notation and segmaps makes it possible to
give a formal definition of substitution of segments for segment va-
riables in a very concise way, as we shall see in Section 2. In pre-
vious examples describing how substitution of segments for segment
variables can take place we have restricted ourselves to rather simple
situations. Our formal treatment of such substitutions, however, will
take much more involved situations into account. Our formal definition
of substitution will take into consideration certain accumulative ef-
fects which can occur when segments contain references to other seg-

ments, or even A's which bind segment variables.

An introduction to the typed system ATg

In this section we shall give a description of the lo-system extended
with types for terms. The types in ATO are a generalization of the

types described in Church's Theory of simple types (cf. Church [40]),

19

the extension being that simple types are constructed for segments and
that the description is given in name-free notation. The basic ideas for
our description are taken from de Bruijn [78b]. we shall start from a
name-carrying calculus without segments - which, basically, is Church's
system of simple types - called AT\L We then gradually move on to a
system in which operations on types are made more explicit and in
which the name-free notation is incorporated. Finally, we shall de-
scribe the full XTo—system by offering, in name-free notation, a
typing of segments. The definitions offered in this section will be

followed by explanatory remarks.

Definition 1.2.1 (ATV).

(1) Type symbols (T)
The set of type symbols T is the smallest set X such that

(i) e,® ¢ X ;

(ii) o,8 € x\{®} = (af) e X

(2) Primitive symbols

The set of primitive symbols consists of

(i) variables: X ,Y +Z ,... a e T\{e} ;
a'“a’ o
(i1) the symbols A (abstractor)

and § (applicator)
(3) Terms (XTV)
The set of terms &TV is the smallest set X such that

(1) Xa € X, for every variable xa ;
(ii) t e X = X:&xt e X, for every variable xa ;

(iii) u,v € X = Suv € X

(4) Types of terms

The function typ on XT\] is defined inductively for terms t by

(1) typ(xa) =aqa ;

(aB) , if typ(u) = B # @
(L) typ()\xau) = 4

® , otherwise

8 , if typ(u) = a # ® and typ(v) = (oB)
‘iii) typ{Suv) =

® , otherwise

(5) The set of correct terms (APV)

AoV o= e e 2 v | typ(t) # @} . 0

Remarks.

(1) e is some ground type, ® is to be interpreted as the type of terms

which are "incorrectly" typed.

(2) (aB) is to be interpreted as the type of those terms which map

terms of type a to terms of type §.

(3) If typ(t) = o then o is generally of the form

(al(az(a e (a_a) «+..))), where da,,..,a are types. Speaking

3 n n+l 1 nt+l
in terms of trees, this means that there are n abstractors
Axal,...,kxan lying on the main branch of the tree representation
t of t (and in that order) that cannot be removed by some B-re-
duction in t; i.e. for each abstractor Axai there is no matching
§ (or rather: 6Ai) such that this §A-pair can be removed by means

of a suitable sequence of B-reductions.

Before giving the next definition we introduce some notation concerning
sequences. For an elaborate treatment of sequences we refer to Section
2.1. At this stage it is only important to know that a sequence is seen
as a function with some interval [1..n] of N (n = 0) as its domain,

where n will be the length of the sequence in question.
Notation. Let C be some non-empty set (called an alphabet).

*
C denotes the set of sequences over C (including the empty se-

quence denoted by § (the empty set)).

- 1f ¢ ¢ C then <c> denotes the sequence of length 1 consisting of
the "symbol” c.

- if F,G € C* then F & G denotes the concatenation of the sequences
F and G, in particular if F is a sequence of length n (n 2 0) then
F=<F(1)> & <F(2)> & ... & <F(n)> .

- 1if F € C* then F denotes the reversed sequence of F, i.e. if
F = <F(1)> & <F(2)> & ... & <F(n)> then

F

1]

<F(n)> & ... & <F(2)> & <F{1)>.

21

In the following definition we offer an alternative version of AT\I in

which operations on types are made more explicit.

Definition 1.2.2 (A_ V).
Ty

(1) Types (Ty)
The set of types Ty is the smallest set X such that

(1) ® ¢ X ;

*
(ii) F e (X\{®}) = y(F) ¢ X

(2) Primitive symbols

The set of primitive symbols consists of

(1) variables: xf,yf,zf,... f e Ty\{®} ;
(ii) the symbols A (abstractor)

and § (applicator)

(3) Terms (ATYV)

The set ATY\I is the smallest set X such that

(i) xf e X, for every variable xf ;

(ii) t e X = Axf't € X, for every variable x

(iii) u,v € X = 8uv ¢ X

£ i

(4) Types of terms

The function y-typ on ATY\I is defined inductively for terms t by

(1) Y—typ(xf) = f ;
Y(<£>&G) , if y-typ(u) = y(G) ,

1l

(i1) y-typ(Ax_ for some G ¢ (Ty\{ehH™ ;
® , otherwise
Y (G) ’ if y-typ(u) = £ and

y-typ(v) = y(<£>&G) ,

it
s

(iii) y-typ (Suv) for some £ ¢ Ty\{®} and
G e (Ty\{ehH”

® , otherwise

(5) The set of correct terms (ATYV)

ATYv = {t e ATyv | y-typ(t) # ®} . 0

22

Remarks.

(1) We note that the symbol y is of no particular interest in itself,
and the reason for introducing it is basically historical in na-
ture. In de Bruijn [78,b] types of ATY-terms (i.e. non-segments)
were called "green" types, whereas types of segments were called
"red" types. The symbol y has been chosen for the construction of
the type of a ATyv—term purely for mnemonic reasons. In Defini-
tion 1.1.5 (AT(ﬂ we shall construct types of segments, and these
types will be of the form p(F,G,H). Here the symbol p is used in
the construction of types of segments, again, purely for mnemonic

reasons.
(2) y(@) is the analogue of the ground type e in Definition 1.2.1.

(3) y(<f>&G) is the type of those terms which map terms of type f to

terms of type y(G) (cf. clause (4) (ii) above).

(4) In terms of trees, if y-typ(t) = Y(<f1>& e & <fn>)' then this
means that there are n abstractors Axfl,...,Axfn lying on the main
branch of the tree representation t of t that cannot be removed
by means of a suitable sequence of B-reductions in t (cf. comment

(3) in the remarks on Definition 1.2.1).

In the following definition we go one step further and introduce a
new type-constructor m which takes two arguments, both sequences of
types. We recall that y(F) denotes the type of those terms with n ab-
stractors lying on the main branch of their corresponding trees (we
assume that F is a sequence <f1> & ... & <fn> of length n) that can-
not be removed by suitable g-reductions. In the case of segments, how-
ever, we can also have terms with applicators lying on the main branch
of their tree representations which cannot be removed by means of
suitable B-reductions. When we write m(F,G), where F and G are se-
quences of types <f1> & ... & <fn> and <g1> & ... &'<gm>, respectively,
then F denotes the sequence of n non-removable abstractors and G de-
notes the sequence of m non-removable applicators. We also introduce

a product operation "x" between m-types and y-types with which we can
calculate types of terms. We note that terms in the system ATny\]' de-

fined below, are never typed as m-types; mn-types in ATTT V are only

used as intermediate constructs for calculating the eventual type (a

23

v—-type) of a term. When we calculate the type of a ATHY-term t we first
calculate the type of a beginning part of that term (such a beginning
part is a segment and will thus have a n-type as its type), say that
this results in the n-type w(F,G). Then we calculate the type of the
remaining part of t (which is not a segment and thus has a y-type as
its result type), say that this remaining part of t has type y(H). The
product m(F,G) * y(H) will result in the eventual type of t. With the
interpretation of w(F,G) as the type of a beginning part of a term with
F as the sequence of non-removable A's and G as the sequence of non-
removable &8's, Definition 1.2.3 should not be too hard to understand.
After this definition we shall give an example of calculating the type

of a A V-term.
Ty

Definition 1.2.3 (A V).
Tny

(1) Quasi-types (T“)

The set of quasi-types TTT is defined as
{n(F,G) | F,G ¢ (Ty\{e})*} .

(2) Products of quasi-types and types (%)

*
Let F, G and H be elements of (Ty\{®}) . The product of a quasi-

type and a type is defined as follows

T(F,G) » ® =®

Yy(F&1I), if H = G& I for some

I e (Ty\{eh)”

m(F,G) % y(H)

R otherwise

(3) Terms ()\TTr V)

(4) Types of terms

The function 7Ty-typ on ATﬂY\I is defined inductively for texms t by
(1) wy—typ(xf) = f ;

(ii) wy-typ(A xfll) = w(<f>,d) * gy-typ(u) ;

(iii) wy-typ(Suv) = w(@,<my-typ(u)>) * my-typ(v)

(5) The set of correct terms (A V)
Ty

= - ® .
ATnyv {t e XT“YV | my-typ(t) # ®} 3]

A simple example of calculating the my-type of a ATmy-V term

Consider the following term t

>\xf§xg)\xg)ﬁ1
and assume that h = y(H), where H is some element of (Ty\{®})*. Accor-

ding to the rules given in Definition 1.2.3, the type of t is calcu-

lated as follows

ny—-typ (A Xe 8 xg X xg xh)

m(<E>,8) * mwy-typ($ xgkxgxh) =

= m(<£>,8) * w(P,<g>) * my-typ(A xgxh)

= w(<E£>,@) * (P, <g>) * w(<g>,@) * nY—typ(xh) =
= Tr(<f>l¢) * 7T(¢l<g>) * 7T(<g>,¢) * Y(H) =

= w(<£>,8) * w(P,<g>) * y(<g>&H) =

*

= 7w (<f>,d) y(H) =

vy (<f> & H)

and this result is indeed as expected: as mentioned earlier in comment
(3) by Definition 1.2.2, y(<f> &H) is to be interpreted as the type of
those terms which map terms of type f to terms of type y(H), and
clearly t is a term of that type. Also note that t B-reduces to the

term A X g xy(H) which, as expected, also has type y(<f> & H).

The systems A_V, A V and A V are, though different in their re-
T Ty Tny

spective descriptions, essentially equivalent in the sense that the
expressive power of each of these systems is exactly the same. The
reason for deviating from the notations and constructs employed in

the original system ATV is that we eventually want to give a descrip-
tion of a typing mechanism for ATG, a simple-typed version of the
name-free system Ag. In XTO we shall construct a completely new kind

of types, called p-types, for segments. What will be shown is that

25

the employment of m-types, y-types and the *-operation provides for not

only an exact but also a concise description of a typing mechanism for

segments and segment variables written in name-free notation.

We now proceed by defining a typed version ATE of the name-free system

AE.

Types in AT‘E are elements of Ty. In order to calculate a type of

a name-free term in AT‘g we introduce the concept of a &-context, de-

noted by 1, which is a sequence of elements of Ty\{®}.

Definition 1.2.4 (ATE)

(1)

(4)

26

Terms (kTE)

The set of terms AT‘E is the smallest set X satisfying

(i) E(n) € X, for every n € N ;
(1) t e X=2 .t e X, for every £ e Ty\({e} ;
(iii) u,v € X = Suv ¢ X

E-Type contexts (T)

A E-context T is an element of (Ty\{&})*.
(Note that a type context 1 is a function of the form

1:[1..length(1)] > T\{®}.)

The typing function E-typ

Let 1 be a £-type context. The function g£-typ is defined induc-
tively for ATg—terms t by
T(n) , if n € dom(rT)

(1) E-typ(&(n), 1) ;
® , otherwise

If

(ii) g—typ(kfu,T) m(<£>,8) * E-typ(u,<f>& 1) ;

(iii) &-typ(duv,T) m(@,<g-typlu,1)>) * E-typ(v,T1)

The set of correct terms

Let 1 be a E£-type context. The set of correct ATlg—terms with

respect to 1 is

{t e r,g | g-typ(t,7) # o} . D

Remarks.

(1) In NTE we just write A Ag,Ah,... instead of A.xf,l xg,A xh,...

’
(the names of variablesfare dropped) .

(2) The type of an occurrence of a variable £(n) in a AT‘E—term t is
found as follows. First we form the tree representation t of t,
then we descend from that occurrence of £(n) in t towards the root
of the tree and the n-th lambda, say Af, is the lambda that binds
this occurrence of &£(n) and the type f attached to this lambda is
the type of £(n). (If the total number of A's encountered on the
root path of this occurrence of £(n) is less than n (implying that
this occurrence of £(n) is free) then the type context will see

to it that this occurrence of £(n) is suitably typed.)

(3) The correspondence between name-carrying terms in ATn' V and name-
Y
free terms in krg is as follows. If t is a ATTT V-term not con-
Y
taining free occurrences of variables then we have the following

correspondence
Ty-typ(t) = E-typ(t,d) ,

where t denotes the name-free equivalent of t. If t contains free

occurrences of variables then we have the correspondence
Ty-typ(t) = E-typ(t,1) ,

where the £-context T is such that it is of sufficient length and
sees to it that all free occurrences of variables in t are typed

in the same way as they were typed in t.

We now move on to the definition of the full Aq‘c—system by construct-
ing types for segments. In order to do so we introduce a new kind of
types, called p-types, for segments. A p-type has three parameters

and is written as p(F,G,H), where F, G and H are seQuences of y- and,
possibly, p-types. The extra parameter H has a purely administrative
function; intuitively H is the seguence of qll types attached to the
A's, including those hidden inside segment variables, lying on the
main branch of the tree representation of the segment in question.

The sequences F and G have the same meaning as before in the case of

the quasi-type w(F,G), namely the sequence of non-removable A's and

27

the sequence of non-removable 8's, respectively. We need such an extra
parameter H in p(F,G,H) in order to determine the type of those vari-
ables which refer to a X hidden in a segment variable, a situation
which we now explain. Suppose that we have a ATo-term t in which we
have a segment sw(y) and an occurrence of a segment variable ¢(n,m)
which abbreviates sw(y) in t. From o(n,m) we see that sw(y) has m

(m 2 0) A's lying on the main branch of its tree representation: these
m A's are hidden inside o(n,m) and they can be referred to by vari-
ables in t occurring to the right of ¢g(n,m). In order to be able to
type those variables which refer to one of the A's hidden inside
o(n,m) we inspect the third parameter H of the type, say p(F,G,H), of
sw(y). Suppose that the m A's lying on the main branch of the tree
representation of sw(y) occur in the oxder Ahl,...,khm_l,khm, then

H shall be the sequence <hm> & <hm_1> & ... & <h1>. I1f a variable in

t refers to the i~-th (0 < i < m) A (from the right) hidden inside
o(n,m) then it will be typed by the i-th member hi of H. Our defini-
tion of ATJ) will also take into account the reallocational effects

that segmaps ¢ have on references to A's lying on the main branch of

the segments in question.

We now give our definition, which at first sight might be a bit hard
to understand. We shall give an example of calculating the type of

a XT‘O—term which should help clarify the rules stated in Definition
1.2.5. We note that the construct w(F,G), given below, is the same

construct 7(F,G) as in Definition 1.2.3: it is an intermediate con-
struct used for evaluating the product of a number of types in order
to evaluate the eventual type of a term (including segments), which

is either a y~type or a p-type {(but never a m-type).

Definition 1.2.5 (ATG) .

(1) Types (T)
Tne set of types T is the smallest set X satisfying

(1) ® ¢ X ;
(11) VF e (x\{8H" : y(F) € X ;
(iii) VF,G,H ¢ (x\{a})* : p(F,G,H) ¢ X .

“Jote that y(@) ¢ X and p(8,8,0) ¢ X.)

28

(2) Quasi-types (Tﬂ)

The set of quasi-types TTT is defined as
{r(F,6) | F,G e (T\{8})*}

(3) Products of quasi-types and types (%)

Let F, G, H, I and J be elements of (T\{®})*. The product of a

gquasi-type and a type is defined as follows

T(F,G) * ® =®
Y(F&I), if H=G & I for some I ¢ (T\{®})*
n(F,G) * y(H) =
® , otherwise
0(F&K,I,J), 4if H= G & K for some
K e (T\{®h*
T(F,G) * p(H,I,J) =<{ p(F,K&I,J), if G = K & H for some .
K e (T\{eh*
® , otherwise

(4) Terms (ATO)

The set of kro-terms is the smallest set X satisfying

(1) E{n) € X, for every n € N ;

(ii) if ¢ is a segmap then w(Pp) € X ;

(iii) if u € X and f ¢ T\{®} then Afu € X ;

(iv) if u ¢ X then o(n,m)u ¢ X, for every n ¢ N and
me WU {0} ;

(v) if u,v € X then duv € X

(5) Type contexts

A type context is an element of (T\{®})".

(6) The typing function (typ)

Let T be a type context. The function typ is defined inductively

for ATo—terms t by

T{n) , if n € dom(t) and t(n) is a y-type
(1) typ(gin),T1)

® , otherwise
p(B,B,To¥), 1if rge(y) < dom(t)

(11) typlw(y),T) = ;
® R otherwise

29

(iii) typ(kfu,T) = w(<£>,8) * typ(u,<f>&1) ;
(iv) typ(o(n,m)u,T) =

m(F,G) * typ(u,H& T) , if nedom(t) and 1(n) is a p-type of
the form p(F,G,H), where H is a sequence of length m ;

@ , otherwise

(v) typ (Suv, 1) = 7(@,<typ(u,1)>) * typ(v,T) ;

(vi) The set of correct terms

Let T be a type context. The set of correct ATo—terms with

respect to T is

{t e r,0 | typ(t,1) # ®} .

We now give a further explanation of the rules stated in Definition
1.2.5, and we shall do so by means of a non-trivial example in which
all of the features for calculating y- and p-types are incorporated.
In this example we shall employ the following notaticnal conventions
B £ = . .

f1 * * fn—l * n (fl* (fz* * (fn_2* (fn—l*fn)))

{association to the right)

reeor = <f een .
2 fn> < 1> & <f2> & & <fn>

Consider the following term t written in tree form

2 1
,8(2) SE
e R T 1)

A T 87y - ol1,3) - E((t7)

where £, g, h, i and j are certain elements of T\{®} and y is a per-
mutation of the interval [1..3] defined by ¢ (1) = 2, ¢(2) = 3 and

Y(3) = 1. According to the rules given in Definition 1.2.5, the type
of t with respect to the empty context @ is calculated, step by step,

as follows

typ (A, 6 Ag(S E(2) A A, S E(D) w(¥) xjc(1,3) g, =

m(<f>,8) * typ($ Xg § £(2) Ah Kid £(1) w(w)kj o(1,3) £E(1),<f>) =

m(<£>,8) * W(P,<typ(u,<£>)>) * tYP(Aj0(1r3) £(1),<£>)

30

where u is the segment Xg<56(2) Ah Aié £(1) w(yp), or in tree form

/5(2) /E(l)
Ag -6 - Ah - Ai -8 - w(y) . (u™)

First we calculate typ(u,<f>):

typ(>\g S £(2))‘h Ay S E() wlw),<£2) =
= m(<g>,@) * typ(S£(2) Ah Aiéﬁ(l) w(y),<g,f>) =
= m(<g>,@) » w(B,<typ(£(2),<g,£>)>) * tYPU\h Aiﬁi(l) w(y) ,<g,f>) =
= 7{<g>,B) * W(P,<f>) tYPU\h >\i 6 E(1) w(yP),<g,£>) =
(if £ is a y-type, otherwise the product is equal to ®)
= m(<g>,@) * w(B,<E>) * m(<h>,@B) * w(<i>,P) *
* typ(8 £(1) w(y),<i,h,qg,£>) =
= m(<g>,@) * w{@,<E>) * w(<h>,@) * mw({<i>, @) *
* m(@,<typ(E£(1),<i,h,g,£>)>) * typlw(y),<ih,g,£>) =
= m(<g>,@) * w(P,<f>) * mw(<h>,@B) * w(<i>,P) * nw(P,<i>) *
* typl(w(y),<i,h,qg,£>) =
(if 1 is a y-type, otherwise the product is equal to @)
= m(<g>,@) * (P, <£>) * w(<h>,B) * w(<i>,@) * W(B,<i>) =*
* p(®,8,<h,g,i>) =

(note that the composition of the sequence <i,h,g,f> with the seg-
map P yilelds not only a permuted but also reduced sequence <h,qg,i>

of <i,h,qg,£f>)
= 1(<g>,@) * m(B,<E>) x m(<h>,B) * mw(<i>, @) * p(B,<i>,<h,g,i>) =

= m(<g>,@) * w(@,<£>) * w(<h>,B) * p(<i>,<i>,<h,qg,i>) =

31

= 1(<g>,P) * ©(P,<£>) * p(<h,i>,<i>,<h,qg,i>) =
= W(<g>,¢) * O(<i>:<i>:<hrgri>) =
(if £ = h, otherwise the product is equal to ®)

= O(<g,i>,<i>,<hrgli>)

and this is indeed as expected: the segment u has two non-removable
abstractors (Ag and Ai) lying on the main branch of its tree; it has
one non-removable applicator with i as the type of its argument; it
has a total number of three abstractors lying on the main branch of
its tree, which, due to the reallocational effect of the segmap vy,

are referred to in the order Ah, Ag and Ai (from the right).

Now that we have evaluated typ{(u,<f>) we can proceed with calculating

typ(t,9) :

typ(t,8)

i

m(<E£>,8) * m(B,<p(<g,i>,<i>,<h,qg,i>)>) = typ(kjo(1,3) (1) ,<f>) =
= "(<f>r¢) * W(¢:<D(<g,i>:<i>p<h,g,i>)>) * “(<j>:¢) *

* typ(o(1,3) £(1),<],£>) = (1)

*

= m{<f>,Q) W(¢:<O(<g:i>r<i>/<h/9/i>)>) * n(<j>/¢) * w(F,G) *

* typ(§(1),<h ,h,,h_,3j,£>) =

177273

(where j = p(F,G,<h ,h2,h3>) for some F,G ¢ (T\{®})* and

1

h1'h2'h3 € T\{®} (cf. clause (6)(iv)), otherwise the product if

equal to @)

= 1 (<f>,8) * w(P,<p(<g,i>,<i>, <h,g,i>)>) * ©w(<3>,B) * nw(F,G) * h1 =

(if h, is a y-type, otherwise the product is equal to ®)

1
= m(<f>,8) * w(B,<p(<g,i>,<i>,<h,qg,i>}>) * w(<j>,H) * Y(F&Hl) =

(where h, L € (T\{®})* (cf. clause (3) (ii)),

otherwise the product is egual to ®)

= y(a&Hl) for some H

32

= Tf(<f>,¢) * ‘n(¢l<p(<gli>l<i>l<hlgli>)>) * Y(<j>&F&H1) =

= m(<£f>,@) * y(F&Hl) =

(if j = O(F,G,<h1,h2,h3>) = O(<g:i>r<i>,<h:g/i>): i.e. if F = <9:i>,
G = <i>, h1 = h, h2 = g, h3 = i, otherwise the product is equal to
®)

= y(<£> &F&Hl) =
= y(<f,qg,1> &Hl)

(by definition of j)

and this is indeed the expected result: t is a non-segment and there-
fore its type is a y-type; if we assume that H = <i> & H1 = <i> &

& <h,,...,h > for certain h .,hn e T\{®}, then the non-removable
n

1 Ex

abstractors lying on the main branch of the tree representation of t

occur in the order A_,A _,A.,A, ,...,Ay , since the non-removable ab-
£7g"71""hy n

stractors hidden in o(1,3) are Ag and Ai, and the first type i in the

sequence <i,h "'hn> is removed because the type of the argument .

1
£(1) of the last applicator occurring in the segment

/ £(2) / £(1)
Ag -3 - Xh - Ai -8 - uwly) (u™)

is equal to i (remember that the last variable £(1) occurrxing in t has

type v(<i,h .,hn>) which means that the first non-removable ab-

R
stractor of the term that this occurrence of £(1) intends to abbreviate
would be Ai, and that this Ai matches the § £(1)-part in the segment

u) .
Note also that t f-reduces to the following term written in tree form

2
/ £(2) / £(1)

Af - Ag -6 - Xh - Ai -8 - &(2) ,

wher e we have substituted the segment u for o(1,3) (the reference
numbexr 1 in the last variable £(1) in t has been changed to 2 because
of the reallocational effect of the segmap y). This new term can be

B-reduced once more, resulting in

33

L.

3.

/ £(1)

Af—Ag-Al_d_E(3)’

wherewe have substituted an updated version of the first occurrence
of the variable £(2) for the second occurrence of £(2) (which was
bound by the abstractor Xh of the redex). The variable £(1) in this
term has type i, and the variable £(3) has type

£ =h = y(<i,h ,...,hn>); therefore the type of the whole term is

1

equal to y(<f,g,i> & <h ""'hn>)' which is the same type as we have

calculated for t: an ex;ected result. In general, one would expect the
type of a term and its B-reduct to be the same. This property of e-
quality of types for terms and their B-reducts with respect to a cer-
tain context is called the closure property. A proof of the closure
property for AT(J is given in Chapter 4. We note that in Chapter 4 we
shall also define the product of two quasi-types and furthermore show
that this extended version of the *-operation is associative, i.e.
(E*g) * h = f x (gxh) for all quasi-types f,g and quasi-types and
types h. Products of gquasi-types and the associativity of the x-opera-
tion will prove to be useful for facilitating the calculations of

types of ATo—terms.

Reduction and related properties

The language theory of A-calculus is concerned with the syntactical
structure of terms and properties of reduction relations. The study
of the f-reduction rule is of particular interest in this respect.
This rule tells us how to compute the value that a function takes
when applied to a certain argument. In this section we shall define
basic relations on some abstract set X by starting from an abstract
reduction relation on X denoted by +R. Such a structure <X,+R> pro-
vides an abstract framework in which reduction relations can be dis-

cussed for term-rewriting systems in general.

Notions of reduction

The following definitions are taken from Barendregt [81,pp. 50 - 58].

34

Definition 1.3.1.

a notion of reduction on a set X is a binary relation on X. O

Definition 1.3.2.

Let +R be a notion of reduction on X and t,u,v € X.

*
(i) +R is the transitive reflexive closure of +R defined by
1 - =ti
(1) t R u R u ;
2) t 3>t
- .
(2) £t
3 €3 L ¢
(3) R u, u R v R v .
*
(ii) “r is the equivalence relation generated by +R defined by
1) ¢ > t
-> = = H
(1) t R Y R u
= = = t;
(2) t R u u R
(3) t =R u, u =R v =t =R v .
* , * *
(iii) t +R u iff Iv: ¢t +R v AU Vv,

(iv) The basic relations derived from +R are pronounced as follows:

t > u : t R-reduces to u or u 18 an R-reduct of t ;

R
Erpuct R-reduces to u in one step ;
t=pu:t 18 R-convertible to u ;
t +; u : t and u have a common R-reduct . O

The relations :R and "R have been introduced inductively. Therefore
properties about these relations can be proved inductively. Such in-
ductive proofs are called proofs by induction on the generation of
these relations.

For the remainder of this section let X denote some set and let +R
be a notion of reduction on X. We shall use the meta-symbols

t,u,v,w,... to range over elements of X (called terms).

Definition 1.3.3.

(1) A term t is called an R-normal form (R-nf) if

T 3u o t>_u .
R

35

(ii) A term u 28 an R-nf of t (or t has the R-nf u) if u is an R-nf
*
and t > u. 0

Definition 1.3.4.

(i) Let > be a binary relation on X. Then > satisfies the dZamond

property if

Ye,u,v (£t > u A t> v=>3Iw:u > WAV > w

see Figure 1.3.1.

t
- >
u e s VvV
\\ y
N e
/
> . 7 >
’
N/
w
FIG., 1.3.1.

*
(ii) A notion of reduction R is said to be Church—-Rosser (CR) if =

satisfies the diamond property. a

Theorem 1.3.1.

If +R is CR then a term t can have at most one R-nf.

Proof: Suppose that u,,u, are both R-nf's of t. From +R being CR it

172

* *
follows that there exists a term v such that u1 +R v and u2 +R v. But

*
since +R is the transitive reflexive closure of +R it holds for all
*
R-nf's w that if w +R w' then w = w', and therefore u1 = v = uz. a

Theorem 1.3.2.

If +R is CR then

* *
t=_u=3dv:t > v Au-> V.,
R R R

Proof: By induction on the generation of =_. 0

36

Definition 1.3.5.

An R-reduction path is a finite or infinite sequence tyrtyrtyre-.
t, 2> e
such that t, > t, > t, > O

Conventions.

(i} The meta-symbol V ranges over reduction paths.
(ii) The reduction path in Definition 1.3.5 starts with tO. If there is

a last term tn in v, then Vv ends with tn. In that case we say

that v is a reduction path from ty to t . 0
Definition 1.3.6.
Let t € X.
(i) t R-normalizes (R-N(t)) if t has an R-nf.

(ii) t R-strongly normalizes (R-SN(t)) if there is no infinite R-

reduction path starting with t.
(iii) t is R-Infinite (R-«(t)) if not R-SN(t).
(iv) *a is normalizing (N) if Yte X : R-N(t).

(v) =y is strongly normalizing (SN) if Vte X : R-SN(t) . 0

Definition 1.3.7.

A notion of reduction > on X is said to be weakly Church-Rosser

(WCR) if

* *
> U At vadwiu->r WAV W .
Vt,u,v (t R N 3 R R) J

Theorem 1.3.3 (Newman [42]).

For notions of reduction +R one has

SN A WCR = CR

Proof: The following elegant proof is taken from Barendregt [81], p.
58.

By SN each term R-reduces to an R-nf. It suffices to show that this
R-nf is unique. Call a term t ambiguous if t R-reduces to two distinct
R-nf's, say t, and t,. If t is ambiguous then there exists a term u

1 2
such that t +R u and u ambiguous, which we now show. The following

two figures suggest how t can reduce to t1 and t2.

.t t
R R/\R
<t .
t" . t"
*
R =
\ * *
* *
R
1 2 t *
1
t
FIG. 1.3.2. FIG. 1.3.3.

In the case of Figure 1.3.2 it is immediately clear that the ambiguous
term u exists by taking t' for u. In the case of Figure 1.3.3 it fol-
lows from WCR that t' and t" have a common reduct t'' and, by SN, t'

has an R-nf t3 as indicated in the figure below.

FIG 1.3.4.

From t1 # t, it follows that either t3 # t1 or t3 # t If t3 # t1

2 2°
then we can take t' for u, and if t3 # t2 then we can take t" for u.
Since all ambiguous terms R-reduce in one step to another ambiguous
term, we have obtained a contradiction with SN, hence ambiguous terms

do not exist. 0

Theorem 1.3.4.

Let +R be a notion of reduction that is both CR and N and let t,u € X.
Then

t R u & R-nf(t) = R-nf(u)

where R-nf(t) and R-nf (u) denote the R-nf's of t and u.

Proof: First note that t and u have unique R-nf's by CR, N and Theorem

1.3.1.

(1) =: if t =z U then by Theorem 1.3.2 there exists a term v such
* *
that t +R v and u +R v. This term v also has a unique R-nf, say

*

*
and since t »-_ v, and u +_ v_ it follows immediately that

Yo! R V0 R V0

R-nf(t) = vO = R-nf (u)

(ii) <: trivial.
Remark. A consequence of Theorem 1.3.4 is the following decidability
result: if one has an effective procedure for computing R-nf's of

terms then one also has an effective procedure for determining whether

t =R u holds or not, for all terms t,u.

39

2.

1.

BASIC NOTIONS AND RESULTS

The usual set-theoretic notation will be used in the metalanguage, in-
cluding the abbreviations V (for all), 3 (there exists), = (if... then
e.o), ® (if and only if), A (and), Vv (or) and 71 (not). We shall adopt

the following conventions concerning the natural numbers

N = {1,2,3,...}
M = N U {0}
N, = {ne N|n <k}, for every k ¢ M. Hence,.No =@.

The set of mappings from the set A to the set B is denoted by [A - BJ.
Domain and range of a function f are denoted by dom(f) and rge(f),
respectively. If £ and g are functions then the composition £ o g of

f and g is the function with domain {x ¢ dom(g) | g(x) € dom(f)} and,
for every X € dom{(f o g), fog(x) = £(g(x)).

The set of permutations of N, is denoted by Perm(k) and id(k) denotes

k

the identity map on N The set U{perm(k)l k € M} is denoted by

K
Perm. Furthermore, for every function f with rge(f) € N, we have the

function £ -1 defined by

dom(f - 1) = dom(f)
and
Vxedom(f) : £ - 1(x) = f(x) - 1

Sequences

Definition 2.1.

An alphabet is a non-empty set C.

C*

U{[Nk->c]|kem};

+

C c*\{g} .

c* is called the set of C-sequences and c’ is called the set of non-
empty C-sequences. If £ is a C-sequence and dom(f) = 1%{ then k is

called the length of £ and is denoted by L(f). Elements of [Nl + C]
aré called C-symbols. If £ is a C-sequence of length k 2 1, then the
first symbol of f, denoted by FS(f), is defined as f(1) and the last
symbol of £, denoted by LS(f), is defined as f (k).]

40

2.2.

Definition 2.2.

If f is a C-sequence of length k then f is the C-sequence of length k
defined by

Viemk:fu>= flk-i+1)

f is called the reversed sequence of f. 0

Definition 2.3.

If f and g are C-sequences and L(f) = k and L(g) = m, then the C-

sequence f & g of length k+m is defined by

£(1) , 1f i e N

k
f & g(i) = .
gli-ky, if i €]Nk+m\]Nk
f & g is called the concatenation of the C-sequences f and g. D

Note that concatenation is an associative operation on C-sequences;
i.e. (f&g) & h = f & (g&h), for every f, g and h. We shall make
frequent use of this property of concatenation since we can omit pa-

rentheses and write £ & g & h without fearing ambiguities.

Remark. Whenever it is clear which C-sequences f and g are being con-
catenated, we shall write fg instead of explicitly writing f & g.
Furthermore, if it is clear which alphabet C is being used to form
C-sequences, we shall often drop the C and tacitly speak about se-

quences instead of C-sequences. O

Language definition of the formal system Xo

Definition 2.4.

Let C be a countable set and let C1 denote the set of C-symbols. We

introduce a set of mappings which are considered fixed from now on.

(1) £ is an injection from N into C1 ;

(ii) w is an injection from Perm into C1 ;

(iii) A is an element of C1 ;

(iv) o0 is an injection from N X M into C1 ;

41

(v) § is an element of C1 ;

(vi) rge(£), rge(w), {A}, rge(o) and {8} are mutually disjoint sub-
sets of C. 0

Defi-ition 2.5.

A is the smallest set X satisfying

(1) E(n) € X, for evexry n € I ;

(ii) w(yY) € X, for every Y € Perm ;

(iii) if t € X then A & t ¢ X ;

(iv) if t € X then o(p) & t € X, for evexy p € W x M ;

(v) if t,u € X then § & £t & u € X . 0

Elements of A are called Ao-terms (or terms, for short). Elements of
rge () U rge(o) are called variables; elements of rge(f) are called
f-vaviables and elements of rge(g) are called g-variables. We shall
use the meta-symbols n,n',n",... to range over variables. For every
g-variable n there is exactly one n ¢ W such that n = £(n), and for
every o-variablen there is exactly one pair (n,m) € N x M such that
n = o(n,m). In both cases the number n is called the reference number
of n. These reference numbers determine the A, if any, that binds an
occurrence of a variable in a term. Terms with last symbol w(y), for
some y € Perm, are called segments. Elements of Perm are called segment
mappings (or segmaps, for short). Note that terms are written in pre-
fix-notation: each £(n) and w(y) has arity O0; A and each o(p) has

ariry 1; 6 has arity 2.

For an informal description of lo-terms we refer to the introduction.
Furthermore, we note that frequent use will be made of the 1-1 corres-
pondence between Ao-terms and their tree representations. The reason
for this is that tree representations of Ao-terms, as described in

the introduction, facilitate the reading (parsing) of these terms. We
now proceed by introducing some important concepts concerning vari-

ahles.

42

Definition 2.6.

vVar(t) is defined inductively for terms t by

(i) var(g(n)) ={gm)} ;
(ii) Vvar(w(@)) =9 ;
(iii) Var(iu) = Var(u) ;

{o(p)} U var(u) ;

(iv) Var (o (p)u)

(v) Var (Suv) var (u) U var (v) . g

Var(t) is called the set of variables of t. If n € Var(t) then we say

that the variable n occurs in t.

Remark. If a variable n occurs in a term t then it can occur in t at
different places. Sometimes we would like to speak only of some spe-
cific occurrence of n in t; i.e. we would like to speak of the vari-
able n occurring in t at a specific place. We shall reserve the in-
formal term "an occurrence of n im t" when we wish to refer to a va-
riable n occurring in t at a specific place. Following this terminolo-
gy we can say that a variable n can occur in a term t, but, at the

same time, there may also be different occurrences of n in t.

Definition 2.7.

Let n be a variable.
The set D(n,t) is defined inductively for terms t by
{n}, if n = £&(n)

(1) D(n,&(n)) ;
@ , if n # £(n)

(ii) D(n,w(y)) =@ ;

(iii) D(n,2u) ={k-1]k € D(n,u)} ;

{n} U{k-m|k e D(n,w}, ifn =o(n,m)

(iv) D(n,o(n,m)u) = ;
{k-m|Xk € D(n,u)} ; if n # o(n,m)

(v) D(n,8uv) = D(n,u) U D(n,v) . 0

Note that D(n,t) € Z.
If kx € D(n,t) then we say that n occurs at reference depth k in t. If
n occurs at some reference depth in t then it occurs in t in the sense

defined above. Formally:
43

2.3.

If n £ vVar(t) then D(n,t) =¢ .

This statement can easily be proved by induction on L(t).

pefinition 2.8.

Let t be a term and let n be a variable. We say that n has an external
reference occurrence in t if there exists a k > 0 such that k € D(n,t),
and we say that n has an internal reference occurrence in t if there

exists a k £ 0 such that k € D(n,t). 0

Example. Consider the following term t

/)\ - 5(6)
A-A-68-Xx-0(3,1) - £(2)

The variables £(6), 0(3,1) and £(2) occur at reference depths 3, 0 and
-2 respectively. Furthermore, £(6) has an external reference (i.e.
£(6) is bound by a A outside of t) and the variables ¢(3,1) and £(2)
have internal references in t (i.e. both variables are bound by a A
inside of t). Note that if a variable £(n) or o(n,m) occurs at re-
ference depth k in a term t, then the reference number n will usually

not be equal to k.

Remark. If a variable n occurs at different places in some term t
then it can well be the case that n occurs at two different reference
depths k, k' in t. It can even be the case that n has both an external
as well as an internal reference in t. Each specific occurrence of n
in t, though, has exactly one corresponding reference depth k in t.

In informal discussions we will often speak of "the reference depth

k of an occurrence of n in t", such to focus our attention on a spe-
cific occurrence of n in t instead of taking all occurrences of n in

t into account. In the same way we shall speak of "an external (in-

ternal) reference occurrence of n in t".

Retci'ence mappings

Reference mappings were introduced by N.G. de Bruijn in his paper de

Bruijn [78,al in order to describe the possible effects that a B-

24

reduction of a name-free term t can have on the variables occurring
in t; more specifically: reference mappings see to it that a suvitable
updating of reference numbers of variables takes place after having
performed some B-reduction on t. Reference mappings (or refmaps for
short) are elements of [N -+ W], and for each refmap u we also have

a mapping p which works on terms. The effect that a mapping p has on

a term t can be described as follows. Let n be a variable occurring

in t. If a specific occurrence of n in t has reference depth k > 0O

in t then that occurrence of n will be replaced by a variable n' which
has reference depth p(k) in HE. Internal reference occurrencesofn in

t are not effected by u.
For example, if we have the tree

SA - e
A= A=A - ps - a(2,1) - £(2)

and if u(1) = 2, p(2) =1, p(3) = 3 and p(n) = n, for n 2 3, then £(2)
is bound by the second X (from the left), o¢(2,1) is bound by the third
A (from the left) and £(4) is bound by the first A (from the left).

This means that

//X - £(4)
ué - o(2,1) - £(2)

is equal to

A - 4
/ £(4)
§ - o(l,1) - g(3)

We now introduce four important classes of refmaps (Definition 9) and
give a formal definition of applying a mapping i, for each refmap u,
to a term t (Definition 10). An informal explanation of Definition 9

and 10 is given in Section 2.4.

Definition 2.9.

Let m be an element of M and n be an element of N. We define the

following mappings, all elements of [N > IN].

(1) @m(n) =n+m ;

45

n+1, if n<m
(ii) %m(n) = 1 ’ ifn=m+1 ;
n , ifn>m+1

(iii) if Y € Perm then

y(n) , if n ¢ dom(y)

¥~ (n) = ;
n , 1if n ¢ dom(y)
(iv) if pu ¢ [N = IN] then
n ’ ifn<m
<m>
H (n) = .
m+ py(n-m , ifn>m

Lemma 2.1.
(1) Qko wm = wk+m g

<m>
(2) %mo ak h %k+m !

<k> <m> <k+m>

3) W T =TT

< <m> <m>
@) (wow) ™ = ™oy
Froof. A straightforward check of Definition 2.9.
Definition 2.10.
If y is a refmap then p(t) is defined inductively for terms t by
(1) u(gn}) = £Quin)) ;
(ii) plo®)) =wlued) ;

. <i>
(iii) p(Au) =2y (0} ;
<m>

(iv) plo(n,mlu) = o(u(n),m p (u) ;
(v) pduv = Spfu) ulv) . O

Remark. p(t) is a Ao-term (easily proved by induction on L(t)). Fur-
thermore, from now on we shall write Ut instead of E(t) in order to

economize on the use of parentheses.

46

2.4,

Informal discussion of Definitions 2.9 and 2.10

In this section we will give an informal description of the effect

<m>
that the mappings L 9 , ¥y and u ™ have on an arbitrary term t.

(i)

(i1)

m

¢ t: Let n be a variable occurring in t. The effect of ¢, on t
m

will be that the reference number, say n, inside an external
reference occurrence of n in t will be raised by m and thus

change to n+m.

%m1:: In order to understand the effect of %m on a term t con-
‘sider the following two specific examples of terms written in

tree fashion

/,A /,g(j)
§-A-XA - ...-A-68-Em+1) ; (1)
——
mA's
oy B ;
A= .. XA =8 -2 - %mS - &(m+1) . (")
[S ——
mA's -

What we shall try to show is that the terms (1) and (1') are,
in a sense, equivalent. The claim is that all references to

A's in (1) and (1') are the same; i.e. each specific occurrence
of a variable in (1) will refer to exactly the same A after
it has (possibly) been reallocated in (1'). The mapping o
placed in front of A in (1') has the effect that all external
reference occurrences in A skip the block of m preceding A's

by raising their respective reference numbers by m and thus en-
suring that they remain bound by their original A's (i.e. by
the same A's as in (1)). Furthermore, the mapping %m, placed

in front of §&(j) E(m+ 1), ensures that both £(3j) and £(m+ 1)
remain bound by their original A. By doing so we achieve that
£(m+ 1) is bound by its original A (%m(m-kl) = 1) and by apply-
ing %m to j we see that if £(j) was originally bound by a A
occurring in the preceding block of m A's in (1), then by rais-
ing j by 1 (em(j) = j+1, if 1 £ j £ m) we achieve that & (J)
remains bound by that same A in (1'). If j > m+ 1 then %m has

no effect on £(j), so also in this case we see that E(jT_is

47

48

bound by the same A in both (1) and (1'). The purpose of this
example is to show that one can reallocate a §AA-part in a term
t to some other place in t and, by introducing suitable refmaps
O and em, can still preserve references to original A's (i.e.
r »ferences to A's prior to this reallocation). As pointed out
earlier in the introduction (Section 1.1.5). such reallocations
of SAA-partswill occur often after performing certain B-reduc-
tions inside segments. By B-reducing certain redices inside a
segment we sometimes get the situation that the "§AM-part" of
the redex reappears and is placed directly in front of the end-
point, say w(y), of the segment. In order to ensure that all of
the original references to A's (i.e. references to A's as they
appeared in the segment before the B-reduction was performed)
remain intact we introduce suitable mappings ®n and em; the
mapping L is placed in front of the term A and %m is placed

in front of w(y), thus obtaining 6¢HIAAA%nw(w) at the end of
the reduced segment. This way variables which are bound by a A
hidden inside a o-variable abbreviating the segment just dis-
cussed, remain bound by the same) after performing a B-reduc-
tion inside that segment (see also clause (iii) below). A for-
mal description of how mappings %m are introduced in terms is

given in Definition 2.11 (substitution).

Yy~ t: If § is a segmap (i.e., an element of Perm) then ¢~ extends
the domain of ¥ to W by defining ¢~ (n) as n for each

n € N\dom(y). Since ¥~ is an element of [N + N] we have ex-
tended the segmap ¥ to a refmap ¢~. Such refmaps ¢~ are called
upon when segments are substituted for segment variables. As
described earlier in the introduction, the segmaps y occurring
at end-points of segments reallocate references to A's lying on
the main branch of such segments. When we substitute a segment
for some segment variable n we will introduce a refmap ¥~ which
will have the intended reallocational effect on those variables
which refer to a A hidden inside n. As an example consider the

following term

Vi /B
//6 -A =8 - X - wy) //5(5)
A=-Xx -8 -Xx-0(1,2) ——— § - E(1) (2)

(iv)

where Y is the mapping with domain {1,2} and ¢ (1) = 2 and

$(2) = 1. In (2) we see that o(1,2) abbreviates the segment
S§AASBAw(Y) and that £(1) - apparently - is bound by the first
A (from the right) hidden inside ¢(1,2). Although the reference
number 1 in £(1) apparently indicates that £(1) is bound by the
first A hidden inside o (1,2), the segmap Y reallocates this re-
ference to the second A hidden inside o(1,2) since P(1) = 2. By

performing a B-reduction in (2) we get

A

/ /B VAR
A—)\-G—X—G-)\——Q‘d—g(l). (2')

Substituticon of the segment A X SBA w(yY) for o(1,2) has lead
not only to the introduction of a mapping ¥~ in (2'), but also
to the replacement of the variable §(5) by £(4). The reason for
replacing £(5) by £(4) is that by BR-reducing (2) the A of the
redex that has been B-reduced has disappeared, and since this

A lies on theroot path of £(5) in (2) we have lowered the re-
ference number 5 with 1 in order to keep this variable bound by
its original A (i.e., the same X it was bound by in (2)). The
mapping y~ introduced in (2') has the intended effect on the
variables £(4) and £(1): v~ (4) = 4 and Y~ (1) = 2, so £(4) and
£(1) refer to the same A's in (2') as £(5) and £(1) refer to

in (2). A formal description of how refmaps §~ are introduced
is given in Definition 2.11 (substitution).

<m>
u m t: When we evaluate the effect that a refmap u has on a

term t then we shift the mapping y through the tree represen-
tation of t, as seen from Definition 2.10, until we reach an
end-point, where the (possibly altered) refmap u is either
applied to a reference number occurring in a g-variable or is
composed with a segmap y occurring in some w(y). In this
shifting process we may encounter a A and have to evaluate an
expression like u Au. We define M Au as Agjii_u, for in this
way the specific reference depths of all variables occurring in
pAu and Aﬁiiiu are exactly the same. If an occurrence of a
variable n has reference depth O in Au then this occurrence
also has reference depth 0O in pAu; i.e. the mapping p has no

influence on this occurrence of n. This same occurrence of n

49

<i>
has reference depth 1 in u as it should also have in yu ! u,

>
! (1) is defined as 1. If an occurrence of a va-

this is why u<
riable n has reference depth j > 0 in Au then it has reference
depth u(j) in uy Au. This occurrence of n has reference depth j+1
in u, so in order to ensure that this occurrence has the same
reference depth in both yiu and kgiiiu we define u<1>(j +1)
as u(j) + 1 or, in general, u<1>(k) is defined as u(k-1) + 1,
for all k > 1. When we proceed in evaluating BjiijJ other map-
pings E:Ei (m > 1) will often arise. Say that u is of the form
Av then according to the definition of u<1>Av we get

<1> <1> <1> <1> <l+1> <2>
A (u !) 1 v. Lemma 2.1 says that (u) L =y 1+1 =1

1> <2> . .
i.e. u Av = A | v. In general, if a mapping u is applied

i

to a term t = X ... Av beginning with a block of m A's (m 2 0)
then this results in yt =2 ... Aiiifiv. This is also the case
when y is applied to a term t of the form o(j,m)v. The variable
o(j,m) in o(j,m)u has reference depth j in t and the number m
in o(j,m) indicates that there is a block of m A's hidden in-
side 0(j,m). Therefore, u is applied to the reference number j

<m>
and once past o(j,m), the mapping u is changed to u m
<m>

; i.e.

ut = o(u(j),m v.

L

We shall now give an example of evaluating the application of a map-

ning y to a term t. Let p be the refmap P57 which raises the refer-

ence numbers of all external references in t by 6, and let t be the

term

/ &(9)
A - X-0(3,5) -8 - &4

Now application of P to t results in

50

9. 11 0(3,5) §E(9) £(4) =

1
=)\cp; " A0(3,5) §E(9) E(4) =

<]><1>

)\Aq>6 0(3,5) 8§ £(9) £(4) =

2

uq,; 7 0(3,5) §E(9) £(4) =

AN (0.2 (3),5) q>;2><5> 5§ £(9) £(4) =

6

<7>
= 2AA 0(24-¢6(3- 2),5)¢6 §E(9) £(4) =

7 £(a)

Aho(2+7,5) So; £(9) o

7

A2 (2,5) 6 £l (9) E(cp;7>(4))

1l

AXo(9,5) 65(7+<p6(9—7)) £(4) =

AAo(9,5) § £(15) £(4)

This is indeed the expected result; the reference numbers in the ex-
ternal reference occurrences o(3,5) and £(9) have both been raised by
6 and the internal reference occurrence ¢(4) remains unaltered. As
mentioned earlier, refmaps u and mappings p have been introduced in
order to describe the effect that B-reduction of a term can have on
the variables occurring in t. In the next section we will give a for-
mal definition of substitution and describe how B-reduction of a term

invokes the introduction of refmaps.

Beta-reduction and substitution

If a term is of the form § AXAB then we call it a redex. We can read
such a redex as "the function AB applied to the argument A". Should
we evaluate the application of the "function part" AB to the "argu-
ment part" A then we say that this redex is B-reduced (or contrccted),
thus resulting in the substitution of A for all occurrences of vari-
ables in B with reference depth 1 in B. This substitution is denoted
by £(aA,B,1). In general, the meta-symbol I (denoting substitution)
takes three arguments and is of the form I(A,B,k). The expressicn
L{(A,B,k) is to be read as the substitution of the term A for all
occurrences of variables in B with reference depth k in B. In this
section we will start by giving a formal definition of I(A,B,k). This
definition is then followed by a discussion of each of the clauses

involved.

Definition 2.11 (substitution).

Let u be a term and k be an element of WN. I(u,v,k) is defined in-

ductively for terms v by

51

u , if n = k and LS(u) € rge(£)

(1) v = &(n) : Z(u,&{(n),k) £(n) , ifn <k
En-1), ifn >k

6¢k_1u)\%k_1w(d)) , 1if k € rge(y)

(ii) v = w(yP) : T(u,wly),k) = —_— ;
w(d oy —1) , 1f k ¢ rge(y)
k-1
(1ii) v = Aw : Z(u,Aw,k) = AL (u,w,k+1) ;
(iv) v = o(n,mw:
sy~ L(u,w,k+m), ifn=%k, W) = m*),
LS(u) € rge(w), ¢k—1 u = sw(y)
Z(u,0(n,m)w,k) = and rge (y) < N ;
o(n,m) Z(u,w,k +m) , if n < k
(on-1,m) Z(u,w,k+m) , if n > k
(v) v = 6w1w2 :Z(u,Gwlwz,k) = GZ(u,wl,k) Z(u,wz,k) . 0

We now proceed with a discussion of each of the five clauses given in

Definition 2.11.

(i) v = &(n) : If n =k then we know that this occurrence of £ (k)
has reference depth k in v and, thus, that u can be substituted
for £(k). We cannot, however, simply replace £(k) by the term
u, since external reference occurrences in u will then possibly
get bound by the wrong A's. This situation is clarified by the

following diagrams

£ (x) ST
(o) e A
' : k-1 A's .
k A's e)\ ° X
e X (the X of the redex) . 2
u
o X LI

*) W(u), the weight of u, is formally defined in Definition 2.12.

(ii)

The variable £(k) is to be interpreted on an underlying "context"
of k A's, while the term u is to be interpreted on a context of
A's just below the context of £(k). In order to ensure that the
external reference occurrences in u remain bound by their ori-
ginal A's after substitution of u for £(k), the first k-1 A's
have tc be skipped when determining the A's that bind these re-
ference occurrences. The reason for this is that the end-stage
of a substitution, resulting in an expression like Z(u,E (k) , k),
was the result of a f-reduction of some redex. This redex will
be of the form Su)l B, where £(K) occurs somewhere in the term

B and £(k) is bound by the X of that redex. In the transition
from SulB to Z(u,B,1l), the A of the redex is dropped and all
original references to that XA - like £(k) - are replaced by u.
After replacing £(k) by u the term u is interxrpreted on a con-
text of k-1 extra \'s. By substituting ®p_q u - instead of u -
for £(k) we ensure that the k-1 extra A's are skipped, with

the effect that external reference occurrences in u remain bound
by their original A's. If n > k then after reduction of the
redex which give rise to I (u,£(n),k) we have the situation that
the A of that redex has disappeared and since this)\ occurred

on the root path of £(n) we lower the reference number n in £(n)
by 1 in order to maintain that this variable remains bound by
its original A. If n < k then removal of this X has no effect

on £(n) and we can let £ (n) remain unaltered. Note that we have
only allowed substitution of the term u for £(k) if the last
symbol of u is a &-variable. This way we exclude substitution

of segments for £(k).

v = w(P) : As indicated earlier in the introduction (Section
1.1.5) we have to be careful when we evaluate expressions like
L(u,w(y),k). The reason for this is that Z(u,w(y),k) may have
been the result of some internal B-reduction of a segment end-
ing in w(y). In that case we have to ensure that possible re-
ferences to the XA of the redex which has been contracted remain
intact. Should we, for example, simply define I (u,w(y),k) as
w(Y) then references to the A of this redex are no longer possi-
ble, and this can lead to inconsistencies. If, for example, the

segment in question is substituted for some segment variable

53

c4

6(j,m) and there is a reference to the X of this redex (one of
the A's of the block of m A's hidden inside o(j,m)) then after
B-reduction this A will have disappeared. As a consequence the
argument u of this redex can no longer be substituted for those
variables which originally, i.e. prior to B-reduction, referred
to this now vanished X. As an example consider the following
term
/11
//A -8 - A-X-=- A - w(id4)
§ - X - 0(1,4) - £(3) . (3)

As we can see the variable ¢(1,4) abbreviates the segment
ASuiAl w(id4) and £(3) refers to the third A (from the right)
lying on the main branch of this segment; i.e. £(3) refers to
the A of the redex Sulil Aw(id4) occurring in the segment
AduA Ak(u(id4). Should we B-reduce this redex and apply the
rule that Z(u,w(id4),3) results in w(id4), then the segment
reduces to A X Aw(id4); i.,e. the term (3) B-reduces to the term
A= X - A - w(id4)

/
6§ - X - 0(1,4) - £(3) . (3")

In (3') two things are to be noticed: first, the variable o (1,4)
now apparently abbreviates a segment with three A's lying on the
main branch of its tree, while four A's are expected; second,
the variable £(3) now refers to a A different from the A it
originally referred to in (3). From this we can conclude that
not only is (3') ill-formed, it also contains references to A's
different from those in the original term. In order to remedy
this situation we will have to come up with a different defini-
tion of X(u,w(y),k). In the case of our example we shall define

Z(u,w(id4),3) as

¢o u

§ - X = 32 w(id4) .

Following this definition, (3) B-~reduces to

(1iii)

(iv)

pp U
/==
/,X - A - A -6 -Xx - %2 w(1d4)

§ - A - o(1,4) - £(3) . (3")

..le mapping Py ensures that all external reference occurrences
in u remain bound by the same A's as in (3), and the mapping %2
ensures that £(3) remains bound by its original A as well
{91(3) = 1), with the effect that u (or rather: wztn can still
be substituted for £ (3) (as originally intended in (3)) after
performing suitable B-reductions (see also clause (iv)). In ge-
neral, if k € rge(y) then Z(u,w(yP),k) is defined as
%
§ - A - %k—l

w ()

with the effect that references to the A of the redex that has
b.en contracted inside some segment remain possible for all
those variables indirectly bound by that A from the outside —
variables originally bound by this A by means of an indirect
reference to a corresponding A hidden inside some segment vari-
able ¢ (n,m) prior to reduction of the redex in question. If

k 7 rge(y) then the reference number k is not a customer for
reallocation of references to A's among the A's lying on the
main branch of the segment involved and in that case we could
also define Z(u,w(y),k) as 6¢k_1tlk%k_1m(w). But if k ¢ rge(y)

then 1 ¢ rge(%k_1 o y). In other words 9 oy will never re-

k-1
allocate a reference to the X in § wk_lllk w(%k_lo P). In that
case we can just as well discard the whole ka_lllk—part and

simply write w(9 - 1) (we have subtracted 1 because the A

xk-1°Y
of the redex has disappeared).

L{u,Aw,k) : If an occurrence of a variable n has reference depth
kK in Aw then n has reference depth k+ 1 in w; therefore

Z(u,Aw,k) = AZL(u,w,k+1).

Z(u,o0(n,m)w,k) : If n =k then o(n,m) has reference depth k in
the term o(n,m)w and u can be subsituted for o(n,m). Certain
conditions have to be met, though, if this substitution is to

make sense. First of all, u has to be a segment; i.e. u is a

55

term ending in w(y), for some Y € Perm. Terms ending in a g-vari-
able cannot be substituted for og-variables; this would make no
sense at all. Second, the weight of the term u (= the number of
A's lying on the main branch of u) has to be equal to the number
m in o(n,m) (= the number of "hidden" X's in o{(n,m)). When these
two conditions have been fulfilled we can substitute u for
g(n,m). Again, in order to maintain that external reference
occurrences inu remain bound by their original A's, we apply

the mapping Py to u and replace g(n,m) by wk—l‘“ or more pre-
cisely:c(n,mhnisreplacedbysgk‘Z(u,w,k-km), where @k_lu = sw(p).
If an occurrence of a variable n in w has reference depth k in
o(n,m)w then it has reference depth k+m in w; this explains
the part I(u,w,k+m) in sy~ Z(u,w,k+m). The mapping y~ is
placed in front of Z{(u,w,k+m) in order to ensure that the re-
ferences of variables in I (u,w,k+m) to a A occurring in s get
reallocated to their proper A's as indicated by the segmap .
If n # k then we have a situation analogous to the case n # k
in clause (i). The variable ¢(n,m) either remains o(n,m) or is

changed to o(n-1,m), depending on whether n < k or n > k.

(v) Z(u,éwlwz,k) : If an occurrence of a variable n has reference

depth k in éwl then it either has reference depth k in w, or

Y2 1

depending on whether n occurs in w, or w,. This obviously

k)y = 6Z(u,w1,k) Z(u,wz,k).

in w2,

leads to the definition Z(u,6w1w2,
We now proceed by stating some technical lemmas and theorems concern-—

ing refmaps and relations between refmaps and substitution.

Lemma 2.2.

Ifk,2,m € M and y is a refmap then

1y
o = o H
1 U (pk (Pk H o

.. <k> <k>
(i} ° Y 4 = Vg °H ;
<k> ¢m+2 , if k £ %
(iii) o o = ;
m 2 <k-8> .
2 ° wm R if k > 2
(iv) ifm < ¢ then o 1 o9 3
[= [=) H
en o -m—-1 g-1" %n 7

56

. _ <1>
(v) if m 2 & then %m<>%2_1 = 82_10 Sm .

Proof. Simple computation. o

Lemma 2.3.

For all refmaps u and terms u, L(pu) = L(u) .
Proof. By induction on the length of u and Lemma 2.1,]

Lemma 2.4.

For all refmaps ¥, ¢ and term u, (po glu = p(gu) .

Proof. By induction on the length of u and Lemma 2.1. 0

Definition 2.12.

W(u) is defined inductively for terms t by

(1) W(&(n)) 0 ;

(11) wWlw(y)) 0 ;

(1ii) W(Au) =1 + W(u) ;
(iv) W(o(n,m)u) = m + W(u) ;

(v) W(Suv) = Wiv) . 0

W(t) is called the weight of the term t. Informally, W(t) represents
the number of all A's (also those A's hidden inside segment variables)
lying on the mair branch of the tree representation of t. For example,
if t is the term § A A S8 £(1) Akw(id4) AXo(2,4) A £(3) then the tree equi-

valent of t is

/ £(1)
/A A -8 - -2
§ - X - X -0(2,4) - X - £(3)

w(id4)

and its weight is 1+1+4+1 7.

Lemma 2.5.
If sw(yP) is a segment and W(sw(yY)) = m, then for all terms t and ref-
maps u

p{s&t) = s' &y t .,

where usw(y) = s'w(y') .

57

rroof. By induction on L(s) and Lemma 2.1.]

Corollary.
If L5(u) = w(yY), W(u) = m and rge(y) <= I%l then LS (uu) = w(y) .

Informally, the following theorem shows how to interpret substitutions
for variables occurring at reference depth k (k > 1) as substitutions

for variables occurring at reference depth 1.

Theorem 2.1.
Let u and v be terms and let k be an element of W. If (u,v,k) €

€ dom(Z) or (wk—l u,ek_l v,1) € dom(X), then

Z(u,v,k) = Z((pk_l u,%k_l v,1)

Proof. By induction on L{v):

(1) v = £(n):
Qg v if n =k
A = L(u,g(n),k) = £(n) , if n < k ;
E(n-1) , ifn >k
B = Z(tpk_1 u,%k_l E(n),1) =
(pk—lu ’ if %k-l(n) =1

1t

E(‘Pk_lulg(ek_l (n))ll) = e =

£ -1, if (@ > 1

Conclusion: A = B,

(1i) v = w(y):
So, ,ulw(d _.o¥), if k € rge(yd)

£ (u,0($),k) = k-1 k-1 ;
w(d o p-1) ;, 1f k £ rge(y)

>
il

58

B = I(p_,uwd o),1) =T uel®

1°¢),1) =

6(pk_1uz\w(%k_1otp) ’ if 1 ¢ rge(%k_1 o)

w(%k_low—l) , if 1 ¢ rge(%k_low)

Since 1 is an element of the range of %k-l ey if and only if k

is an element of the range of Yy we can conclude that A = B.
(iii) v = Aw:

A = Z(u,Aw,k) = AI(u,w,k+ 1) and from the induction hypothesis

it follows that A = AZ((pk u,%kw,l) .

B = Z((pk_1 u'%k—l Aw, 1) =

= Tle, . uAd w1y =
S S 'S Uk

<1i>
,%k__lw,

= AL(2) .

Pp-1

From the induction hypothesis and Lemmas 2.1 and 2.4 we conclude

<1>
B = >\Z:((Pl (CPk_l u)l‘sl (%k_l w)ll)
<1>
= A(p, o9 ,u/d 09 w1 =

and thus A = B.

(iv) v =o(n,m)w: et A = Z{(u,c(n,mw,k) and B =

= Z((Pk—l u,%k_l o(n,m)w,1). By the induction hypothesis one of

the following three cases holds for A or B

A: n=k and A=sy“2(u,w,k+m)=sy‘2(w,1)

Pxm-1 2" Pk 4m-1

n<k and A=¢g(n,m) Z(u,w,k+m) =o(n,m) Z((pk+m_1u,% w,1)

k+m-1

n>k and A=¢0(n-1,m) Z(u,w,k+m) =

=0g(n-1,m I{ 1) .

Mrm-1 % rmo1

59

<m->
H = X ’ ’ = ’ ’
B: B (qu_1 u %k—l g(n,m)w,1) Z((pk_lu o(%)k_l(n) m)%k_1 w,1)

R <m>
(1) n = k and B = sy Z(q)k_1 u,ek_l w,m+ 1) =

= sy Bleley g w9, (0.7 w1 -
= sy I(9 o9 ™y) = (L 2.4)
=sy 0 ° O g urd o9 yw, 1) = emma 2.
= SYTI(Q g g WO g W) (Lemma 2.1)
- <k and B = I (n+1,m 9. w,1) =
() n an = ((Pk—l u,o(n ,m k_1w,) =
= % %<m> +1) =
= o(n, ., (q)k_1 u, k_1w,m) =
= onm 20y g Wi oY)
3) n >k and B = I((n,m) 5. w,1) =
(n an = Zlg,_q w,0(n,m) o W,) =
= o(n-1,m I(5™ wom+ 1) =
B s T Rt ot L

= g(n-1,m) Z(g 1)

mk-1 2 Fmak-1 V7

Conclusion: A = B.
= Sw_w_ :
v 172

A = Z(u,éwlwz,k) = GZ(u,wl,k) Z(u,wz,k) and from the induction

hypothesis it follows that

A = 6Z(tpk_1 u'%k—l wl,l) Z((pk_lu,

%k_lwz,l)

u, 9 Sw,w_,1) =

Furthermore, B = k=1 K1 1"

{
™~
S

1) =

6Z(q)k_1 u,%k_l wl,l) Z(q)k_1 u,%k_l w2,1)

and again we see that A = B, which completes the proof.]

Informally, the following theorem shows how refmaps interact with
substitutions for variables occurring at reference depth 1 (Theorem
2.1 sees to it that all substitutions can be brought back to substi-

tutions for variables occurring at this reference depth).

Theorem 2.2.

Letu and v be terms and u be a refmap.

<1>
If (u,v,1) € dom(Z) or (Eu,u v,1) € dom(I), then

pI(u,v,1) = Z(l_iu,u<1> v,1)

Proof. By induction on L(v):

(1) v = &(n) :
<i>
(1) n=1: EZ(u,v,l) = yu, and furthermore u (1) = 1 from
which it follows that T (uu,u ' v,1) = pu.

(2) n > 1: pifu,v,1) =y E(n—-1) = £(u(n-1)), and furthermore
<1>
u (n)

= Z(pu,E(t + u(n-1)),1) = E(u(n-1)) .

Il

<1>
1 + u(n-1) > 1; hence I(uu,u v,l) =

(ii) v = w(y) :

(1) 1 € rge(y) : uZ(u,v,1l) = BG(pOuX%Ow(lb) =uduiw) =

<1> <1>
=Spuiy w(p) =Spuirw(u ! oY), and furthermore

<i> <1> <1>
1 € rge(p o ¥); hence Z(pu,yu v,1) = Z(uu,w(u o P),1) =

<]1>
5Eu)\w(u o).

(2) 1 ¢ xrge(P) : pZ(u,v,1) = pw{@-1) = w(uo (y=-1)), and fur-

<1i>

<1>
thermore 1 ¢ rge(u °y); hence I (uu,y v,1) =

<i>
Z(pu,w(u °oy),1) = L(pu,w(l + po (y-1)),1) =

w((50°(1 + e (W-1))-1) = w1l +yue (P-1))-1) =

w(ue (p-1)) .

61

(iii?

v = Aw :
uZiu,v,1) =
= yAL(u,w,2) =
=AY s, 2) =
<1>
= Ay Z(Lplu,%l w,1l) = (Theorem 2.1)
<1> <1> <1>
= AZ(u (cp1 u), (u) (%1 w),l) = (induction hypo-
— — thesis)
<1> <2>
= AZ(u ° g, U o%lw,l) = (Lemmas 2.1 and 2.4)
<2>
= AE((plouu,%lou w,l) = (Lemma 2.2)
<2>
= XZ(qu (Eu),%l (u w),1) = (Lemma 2.4)
<2>
= AI{pu,y w,2) = (Theorem 2.1)
<2>
= I(pu,Ay w,1) =
<1>
= Z(ygu,p Aw,l)
v = 0(n,mw
(1) n =1
pIZ(uw,0(l,mw,l) = usy” Z(u,w,m+1), where u = sw(y),
W(u) = m and rge (y) <]Nm.
Furthermore
Esﬁi(u,w,m+1) =

<m>

=s'y (¢~ I(u,wym+1)) = (Lemma 2.5)

, <m> R
=s'yu o " E(u,w,m+ 1)

(Lemma 2.4)

' N <m>
s' Y oy T(u,w,m+ 1)

(rge(y) € W)

=s'y” (u<m>2(u,w,m+ 1) = (Lemma 2.4)
=s' " (W™ 5(p u,d w,1) = (Theorem 2.1)
- _mn o m
=s'y” Z(u<m> (@ _u) ,u<m+1> 9 w),1) = (induction hypo-
4 —''m — ""m .
— — thesis)
<
sy (e e ™y, = (Lemmas 2.2 and
Y m 'k m —
— —— 2.4)
=g’ y‘ Z(Eu,u<m+1>w,m+1) = (Theorem 2.1)
+
= L(pu,0(1,m) TR 1>w,1) =
<1>
= I(uy, o(1,mw,1)
n> 1
pI(u,0(n,mw,l) =
= Ho(n— 1,m) Z(u,w,m+ 1) =
<
= o(un-1,mp " S(u,wmt1) =
<m>
= g(u(n~1),m) p Z((pmu,%mw,l) = (Theorem 2.1)
<m+1
= oun-1,m 2" (o w,u 7 (8 w),1) = (induction
— ''m ——""m .
—_ — hypothesis)
<m+1>
= o(un-1),m (p_ (uu),8_ (" w,1) = (Lemmas 2.2
m - m ——
_— — and 2.4)
<m+1>
= o(u(n-1),m) Z(yu,u w,m+ 1) . (Theorem 2.1)
<1>
If n > 1 then u (n) =1+ yu(n-1), from which it follows
that
<1>
Z(uu, o(n,m)w,1l) =
<m+1>
= T(pu,o(1 + u(n-1),m) u " P =
=0o(u(n-1),m) Z(gu,u<m+1> w,m+ 1)

63

172°

EZ(u,Gwlwz,l) =

=\ 6Z(u,wl,1) Z(u,w2,1) =

= 6E Z(u,wl,l)E Z(u,wz,l) =

<1> <1> . . .
= §Z(pu,p wl,l) Z(uu,p w2,1) = (induction hypothesis)
<
= E(uu,6u<1>w U 1y (1) =
- —_— 11— 2
<1>

= I(pu,p " dwowo,1) . a
Corollary.
If m < £ then ¢ Z(u,v,t-m) = X(u,p Vv, .

_n _m

Proof.

(p_mZ(u,v,SL—m) =

= ’ ’ = Th 2.1

fﬂz(wl-m—lu eﬁ-m—lv 1) (Theorem)

= Z(g_ () <1 (9 v),1) = (Theorem 2.2)

- n Peom-1 " 'fg_ L-m-1 ! - € me-

= Z(wl—lu’el—l(fmv)’l) = (Lemmas 2.2 and 2.4)

= Z(u,g v, 2) 0

Informally, the following theorem shows that in some cases it is

possible to short-cut the evaluation of a substitution.

Thecrem 2.3,

Let k be an element of N and m an element of M. If k+m =2 £ > m

<m> <m> <m>
and (u,EE. v,%) € dom(Z) then Z(u,SE_ v,L) = ¢k—1 v .
Proof. By induction on L(v):
. <m> n R if1 <n<nmnm
(1) v = §&(n) : L (n) = .
n+k, ifn>m

64

<m>
If k+m 2 £ > m then (pkm (n) # 2.

<m> £(n) , 1if 1 <n<m

I(u, £(n),8) = -
— E(n+k-1), ifn>m

<m>
= O g &)

Y (n) ’ if 1 <€ Y(n) €£m

Y(n) +k, if y(n) > m

<m>
If k+m22>mthen2¢rge(q>k oY) .

<m>

Z(u,i’pw(w)) =, e oy-1)

<m> Y (n) , 1if 1<y¥(n)<m
Furthermore \")2_1 ° P © Yy - 1(n) = =
Y(n) +k~1, if Y(n) > m
<m>
= Qg o vin)
<m> <m>
Conclusion: Z(u,¢ w(yP),L) =9 w(yP)
Tx k-1
(1ii) v = Aw :
<m>
L{uso w,) =
<m+
= Z(u,Ap " 1>v,2) =
x
+1>
=)\Z(U,Q;m 1 v,L+1) =
= A (p;llﬁl-l) v = (induction hypothesis)
<m>

= cpk_1 Av

(iv) v =o(n,p)w:
<m> <m+p>

(n),p) wk w, i)

<m>
S = Z(u,tpk g(n,p)w,R) = Z(u,O((pk

. . . <m>
As seen earlier in i) 2 ¢ rge((pk)}, therefore S =

<m+p>

a) 1 <n<m: O(n.p)Z(u.fpk

w,2+p) =

65

2.6.

<m+P>

= d(n,p) ¢ w = (induction hypo-
k-1 .
— thesis)
_ <m>
= ¢k_10(n,p)w ;

<m+p>
b) n>m : o(n+k—1,p)Z(u,(pkmp w,L+p) =
= og{n+k-1,p) ¢<m+p> w = (induction hypo-
k-1 .
—— thesis)
<m>
= @k_lo(n,p)w
(v) v = 0tw
<m>
Z(u,wk v, k) =
<m> <m>
= 5Z(u,¢k t,) Z(u,wk w,%) =
<m> <m>
=8¢ m t o o (induction hypothesis)
k-1 k-1
<m>
= wk_létw
Corollary.
Z(Ll,(D Vll) =vV.

1

The permutation condition (PC)

With the definition of lo-terms as it stands if is possible to con-

struct terms that have undesirable properties. Consider as an example

the following term represented in tree form by

A

/
AT A= S h - w)
A-A-8-X-0(1,3) -B ,

where ¥ is a segmap containing a number larger than 3 in its range.
Such a segmap Y also reallocates references to A's that do not lie

on the main branch of its segment. Should we substitute the segment

66

/A
A=A -8 - A - w(y)

for o(1,3) then this results in

A
/
A-X-XA-XA-8-X2-4y" -B

and wesee that variables in B which are bound by a A in front of the
segment are now influenced by y. This is not the intention, though.
Such external reference occurrences in B should not be influenced by
Y; the sole role of a segmap is the reallocation of references to A's
which occur inside its corresponding segment (variables in B which
are bound by A's in front of the segment can refer directly to these
A's anyway, instead of indirectly by means of a segmap {Y). We there-
fore require that a segment t with LS(t) = w(y) satisfies the condi-
tion ¢ € Perm(m), where m = W(t). That way the segmap ¢ will only in-
fluence references to A's occurring in the segment t. This condition
is taken care of by the so-called permutation condition (PC) described

below.

Definition 2.13 (PC).

Let k be an element of M.

PC(t,k) is defined inductively for terms t by
(1) PC(§(n),k) ,

(ii) PC(w(y),k) @ ¢y € Perm(k) ;

(iii) PC(Au,k) & PC(u,k+1) ;

(iv}) PC{(o(n,m)u,k) & PC(u,k +m) ;

(v) PC(8uv,k) & PC(u,0) A PC(v,k) .]

Informally, the number k indicates the number of A's encountered in
the process of "recursively shifting" PC through the tree of t. Given
a termtwe will require PC(t,0), and if PC(t,0) holds we say that t

satisfies the permutation condition.

We now give an example of a term which satisfies the permutation con-

dition. Consider the following term t

67

ASASXAE(2) AAw(yP) A Aa(2,3) Awle) (4)
where Y € Perm(3) and ¢ € Perm(7). The tree representation of (4) is

/K - £(2)
/,A -8 - A =X~ wy)
A= 38 - A - X -0(2,3) -2~ wlp) . (4")

From (4') we see that PC(t,0) holds if PC(£(2),1), PC(w(¥),3) and
PC(w(@),7) hold. The first condition is trivial, and since

Y € Perm(3) and ¢ € Perm(7) we also have PC(w(y),3) and PC(w(gp),7).
We now proceed by stating some properties concerning the permutation

condition which will be used later on.

The following four lemmas are easily proved by induction on L(t).

Lemma 2.6.
Let m be an element of M.

If £ = sw(idm) and u are terms and W(t) = m then

PC(s & u,k) ® PC(t,0) A PC(u,k +m)

Lemma 2.7.
L2t t be a term and k,%4 be elements of M.
I1f £ 2 k then, for all refmaps u

<>
PC(t,k) & PC(u t, k)

Corollary.

PC(t,0) « PC(ut,0)

Lemma 2.8.
Let t be a term and k be an element of M.

If ¢ € Perm(m) and m < k then

PC(y~ t,k) & PC(t,k)

Lemma 2.9,

Let t be a term and k,m be elements of M.

o8

If LS(t) € rge(&) then

PC(t,k) «® PC(t,m) .

Theorem 2.4.

Let t and u be terms and k,{ be elements of M.

If PC(t,k), PC(u,0), & > k and (u,t,2) € dom(Z) then PC(IZ(u,t,2),k).

Proof. By induction on L(t):

(1)

(ii)

(1ii)

(iv)

Po-1

t=¢&(n): I(u,t,2) =4 &(n) ; if n <

E(n—-1) , ifn> ¢

If n # 2 then, by Lemma 2.9, it follows that PC(Z(u,E(n),2),k).

If n = % then I(u,£(n),L) = u and LS(u) € rge(£). From the

¢
-1
corollary to Lemma 2.7 and PC(u,0) it follows that PC((pQI_1 u,0).

Furthermore, if LS(u) € rge(§) then LS((Dz_i u) € rge(f). From

Lemma 2.9 and I?C((pk__1 u,0) it follows that PC{ u,k).

Po-1

t = w(y) : From PC(w(y),k) it follows that § ¢ Perm(k), and
therefore that £ ¢ rge(y). If £ ¢ rge(y) then I(u,w(y),) =

= m(%SL_1 oy=-1). Furthermore, if ¢ > k, %9'_1 oy ~1 = yY. There-
fore L{u,w(y),L) = w(y) and, thus, PC(I(u,w(y),L),k).

t = Av: If PC(t,k) then PC(v,k+1). The induction hypothesis
gives PC(E(u,v,2+1),k+ 1) and therefore we have

PC(Z (u,Av,2),k).
t =o0(n,mv:
(sY” L(u,v,L+m) , 1if n = 2; where

Py U= sw(P) and W(u) = m

Z(u,0(n,m)v,L) = 1
o(n,m) Z(u,v,2+m) , 1f n < ¢

ton-1,m Z(u,v,8+m), if n > 2

a) n # £: From PC(o(n,m)v,k) it follows that PC{(v,k +m). From

the induction hypothesis it follows that PC(Z(u,v,2 +m),k +m)
and therefore both PC(og(n,m) L(u,v,2 +m),k) and

PC(o(n-1,m) Z(u,v,% +m),k).

69

b) n = £: From PC(u,0) and the corollary to Lemma 2.7 it
follows that PC(¢2_1UIO)- From the corollary to Lemma 2.5
we see that if Doy u = sw(yP) then LS(u) = w(y). Furthermore

PC(u,0) A PC(o(L,m)v,k) =

= PC((pQ_1 u,0) A PC(v,k +m) =

= PC(sw(y),0) A PC(Z(u,v,8+m),k+m) = (induction
hypothesis)

= PC(sw(idm),O) A PC(Z(u,v,2+m),k+m) =

= PC(sw(idm),O) A PC(Y" Z(u,v,%+m),k+m) = (Lemma 2.8)

= PC(sy” I{u,v,L+m),k) . (Lemma 2.6)

(v) t = Svw:

PC(u,0) A PC(t,k) =

= PC(u,0) A PC(v,0) A PC(w,k) =

= PC(Z(u,v,%),0) A PC(Z(u,w,L),k) = (induction hypothesis)

= PC((SZ (u,V,Q,) Z(ulwl Q) Ik) =

= PC(I(u,dévw,L),k) . 0

Corollary.

PC(u,0) A PC(t,0) = PC(Z(u,t,1),0)

The following theorem shows that the permutation condition is invari-

ant with respect to B-reduction.

Theorem 2.5.
Let Sult be a term and k be an element of M.

Tf (u,t,1) € dom(Z) then

PC{(SuXt,k) = PC(Z(u,t,1),k)

Proof. By induction on L(t).

From PC(Sul)t,k) it follows that

/0

a) PC(u,0) ;

b) PC(t,k+ 1)

(1)

(ii)

(iii)

(iv)

u ’ ifn=1

= &(n) : Z(u,t,1) =
E(n-1) , ifn>1

If n > 1 then PC(Z{(u,&(n),1),k) (trivial). If n = 1 then
Z(u,t,1) = u and LS(u) € rge(f). From Lemma 2.9 and PC(u,0) it

follows that PC(u,k).

t = w(P) : From PC(t,k+ 1) it follows that ¢y € Perm(k + 1) and
therefore 1 € rge(¥). If 1 ¢ rge(y) then Z(u,w(y),1) = Sulwly)
and therefore PC(Z(u,t,1),k).

t = Av: From the corollary to Lemma 2.7 and PC(u,0) it follows

that PC(cp1 u,3) . Furthermore
PC(Av,k+1) &
o PC(v,k+2) &

o PC(%lv,k+2) 4 (Lemma 2.8)

& PC(A 31 v,k+1) .

From PC((plu ,0) and PC(A% v,k+ 1) we have PC(§ ¢ u)\slv Jk+1).,
From the induction hypothe51s it follows that
PC(EI(cp1 u,%l‘f,l),k+ 1) and therefore PC(I(u,v,2),k+ 1) (Theorem

2.1). If PC S(u,v,2),k+1) then PC(EL(u,\v,1),k).

t =0(nm)v: If n=1 then Z(u,o0(n,m)v,1) sy” I({u,v,m+1),

where u = sw(yY) and W(u) = m. Furthermore

PC(ulo(l,m)v,k) &

& PC(u,0) A PC(v,k+m+1) &

© PC(u,0) A PC(%mv,k+m+ 1) & (Lemma 2.8)
@ PC(u,0) A PC((DmUIO) A PC(X %mv,k+m) « (cor. to Lemma
- i 2.7)

& PC(u,0) A PC(Sp uird v,k+m) =
m m

71

= PC(u,0) A PC(Z((PmUramV:].) k+m) = (induction

- hypothesis}
= PC(sw(yP),0) A PC(Z(u,v,m+1),k+m) = (Theorem 2.1)
= PC(sw(id),0) A PC(Y” L(u,v,m+ 1), k+m)= (Lemma 2.8)
= PC(sy” L(u,v,m+1),k) . (Lemma 2.6)

If n > 1 then Z(u,t,1) = o(n-1,m Z(u,v,m+1) =
= ag(n-1,m) Z(%nu,emv,l) and therefore PC(Z(u,t,1),k) &
¢’PC(Z(EEUIEEVJ),IH*' 1). PC(Z(EEH’EEV’l)ﬂn+1) is proved as

above for the case n = 1.
(v) t = Svw:

PC(Suxt,k) «

& PC(u,0) A PC(t,k+1) @

«@ PC(u,0) A PC(v,0) A PC(w,k+1) =

= PC(Suiw,k) A PC(Z(u,v,1),0) = (cox. to Theorem 2.4)
= PC(r{u,w,1),k) A PC(Z(u,v,1),0) = {(induction hypothesis)
= PC(SZ(u,v,1) Z(u,w,1),k) =

= PC(Z{u,8vw,1),k) . 0

Informally, the following lemma shows that with PC it is sometimes

possible to short-cut the evaluation of a substitution.

Lemma 2.10,

Let t and u be terms and k,% be elements of M. If & £ k, PC(u,) and

<k>
Vnevar(u) : k+1 ¢ D(n,u) , then ¢1k Z(t,u,k+1) =u
Proof. By induction on L(u). 0
Corollary.

PC(u,0) A Vnevar(u) : 1 ¢ D(n,u) = wlz(t,u,l) = q

72

~
.

THE CHURCH-ROSSER THEOREM FOR THE TYPE FREE Ac-CALCULUS

In this section we offer a proof of the Church-Rosser property for f-
reduction in type free Ao-calculus. The proof is basically along the
lines of the proof given in Barendregt [81], pp. 279 - 289, employing
so-called "finiteness of developments". The main theorem in this sec-
tion states that the strong normalization property holds for a special
kind of reduction (called B') in Ac. From this theorem together with
the weak Church-Rosser property for 8' (proved in Section 3.1) it

will be shown that the Church-Rosser property holds for B-reduction

in general.

Restricted reduction and the weak Church-Rosser property

In this section we introduce an extension of the set of Ag-terms by

marking certain redices.

Definition 3.1.1 (A").

Let A denote the set of Ao-terms. The set A' is the smallest set X

satisfying

(i) Ac X ;

(ii) t e X= At € X ;

(iii) t € X = o(p)t € X, for every p e N X M ;
(iv) u,v € X = Suv € X ;

(v) u,v € X = 8ul'v e X . 0

The elements of A' are called A'o-terms. The main difference between
the definitions of A and A' lies in clause (v) in which redices are
marked. This difference is essential, since only marked redices are
contracted in A' (cf. Definition 3.1.2 below). But apart from differ-
ences regarding contractions of redices it is easily seen that the
basic operations on Ao-terms introduced in Section 2 can be extended
to A'o-terms in an obvious way, and moreover that the results obtained
in Section 2 regarding these operations also hold for A'o-terms. In

particular:

(1) If u is a refmap then the application of § to a A'c-term t is de-

fined as in Definition 2.10 with the additional clause that EA't

73

<t>
is defined as A' y t. It is easily seen that Lemmas 2.3 and 2.4

also hold for A'o-terms.

(2) The weight W(t) of a A'o-term t is defined as in Definition 2.12
with the additional clause that W()A't) is defined as 1 +W(t). It

is easily seen that Lemma 2.5 also holds for)X'o-terms.

(3) Substitution of A'oc-terms is defined as in Definition 2.11, though
with two exceptions. The first exception is, of course, the addi-
tion of an extra clause telling us how to recursively shift the
substitution operator, denoted by §' in A', past an abstractor 1'.
This is done as follows, If u and w are \'o-terms and k is an ele-
ment of W then Z'(u,\'w,k) is simply defined as X' Z'(u,w,k+1).
The other exception is the adaption of clause (ii) in Definition
2.11 which tells how to evaluate a substitution at an end-point
w(yP) of a segment. We recall that IZ(u,w(y),k) was defined in A as
d@k_ltlk%k_lw(w), if k is an element of N such that k € rge(y).

In A' we have a different situation to take account of. In A, sub-

stitutions are the result of contracting some B-redex, whereas in

A' substitutions can only be the result of contracting some 8'-~

redex. It is for this reason that we define ZI(u,w(y),k) in A' as

ka_lxlk'ek_lw(W), where A' corresponds to the A' of the B'-

redex that gave rise to this substitution (see also the discussion

of clause (ii) offered in Section 2 pp. 53 -55). By checking the
proofs of Theorems 2.1, 2.2 and 2.3 it is again easily seen that

the results stated in these theorems also hold in A'.

Definition 3.1.2 (+B,).

The binary relation 8' on A' is defined as follows.

(1) If t,u € A' then

tR'ue® dv,w:t = 8vi'w Au=3"'"(v,w,1) A (v,w,1) € dom(Z")

If £tB'u then t is called a R'-redex.

(2) The notion of reduction - on A' is inductively defined by

Bl
(1) uB'v=u +8' v o
(ii) u »B' v = Au +B, AV
(iii) u +8, v = 2A"u +B' A'v o

74

(iv) u ~>,, v=0(n,m)u >,, 0(n,m)v ;

8! 8!
(v) u —>S, v = Suw +B' Svw ;
(vi) w g V = Swu +B' Swv . a

Theorem 3.1.1.

Let u,v € A' and ¢ be a refmap.

If u +8‘ v then yu +B' v,
Proof. By induction on the generation of +3' and Theorem 2.2. 0O
Important.

We note that in the following lemmas and theorems concerning substitu-
tion it is tacitly assumed that the substitutions involved are indeed
defined. We do this for the sole reason of economy of expression.
Furthermore these lemmas and theorems are only secondary, in the sense
that they are used as auxiliary results in proofs concerning contrac-
tions of redices, and since contractions of redices presuppose the
well-definedness of their corresponding substitutions there is one
reason less for fearing the omission of the explicit mentioning of
well-definedness of the substitutions involved (- but, none the less,
the following lemmas and theorems can only hold if the substitutions

are indeed defined).

Lemma 3.1.1.
Let w,s&w,u € A* andm € M and k € N.

If k+W(sw(id)) > m 2 W(sw(id)) then
m m

Z'(u,s &w,k) A& Z'(u,w,k+W(sw(idm)) ’

where L' (u,sw(id)) = 2a & w(id) .
m m

Proof. By induction on L(s) and the definition of substitution. 0

Lemma 3.1.2.
Let u,v € A' and m € M and k € N.

If ¢y € Perm(p) and p < m then

' (u,p" v,k +m) = ¢~ L' (u,v,k+m) .

75

Proof. From Theorem 2.1 and Lemma 2.4 it follows that

Z'(u,g‘v,k-+m) =

L0 1 B g 0V D)

Furtiiermore

(1)

Opymey = ¥ ° 0, (simple computation), and

<1>

(2) 5k+m—1o voo= 0 ° k+m-1

Result (2) is established by the following calculations. If n is an

element of IN then

Y (n)+1, if 1 <n <p

n+1 , if p<n<k+m-1
9 (b= (n)) =
ktm=1 1 , ifn=%k+m
n ’ if n > k+m
and
<1>
(™) (n+1), if 1 £n <k+m-1
.. <1> _ . <1> . _
(v (O ypoq (M) = ™) (1) ; if n=%k+m
<1>
(v7) (n) , if n > k+m

1+¢~(n), if 1 <n<p

1+n ’ if p<n=<k+m-1
1 , ifn=k+m
ln B ifn>k+m
By (1) and (2) we have
z' - =
Oy im-1 9 km-r oV V0 D)
v -~ -~ <1> _
=2 (Y~ e ¢k+m—1 u, (y7) ° %k+m—1 v,1) =
= - ' —
P ey WS D) {Theorem 2.2)
=y Z'(u,v,k+m) . (Theorem 2.1)

76

Theorem 3.1.2.

Let u,w,s&w € A' and k € M and k € N. If §y ¢ Perm(p) and

W(sw(y)) = m 2 p then
I'(u,sY " w,k) =A&Y" L' (u,w,k+m) ,

where I'(u,sw(y),k) = A & w(y) .
Proof.

2'(u,sg‘ w,k) =
= A & Z'(uIEAwIk+m) r
where Z‘(u,sw(idm),k) = A & w(idm) (cf. Lemma 3.1.1).

Ag E' (Y wk+m =

=A& I (4P w,(k+m-p) +p)

=A &y Z'(u,w,(k+m-p) +p) (Lemma 3.1.2)

=A &y L'(awk+m) .

Theorem 3.1.3.

Let u,v,w € A' and k,2 ¢ N. If k =2 £ then

*
-
]
' (u, L' (v,w,R),k) 8* (2 (u,v, k- 2+ 1), (u,w,k+1),2) .
-
Bl
1 and 52 denote I'(u,Z'(v,w,2),k)
and Z2'(Z'(u,v,k- &+ 1),Z'"(u,w,k+1),48), respectively. In this proof

Proof. By induction on L(w). Let S

>
* 1
we shall write ++B' for B* , i.e.
ge
* * *
:\ ++B. B & A +8' B AB +8' A,

for A'o-terms A and B.

(i) w = §(n) : S = ' (u,2' (v, (),) ,k)

= : = 3!
(1) n L S1 z (u,¢2_1V:k)

77

78

(3)

=" (u,v,k-2+1),2" (u,&(n) ,k+1),8) =

V(2 (u,v,k+2-1),E(n),L) = (k 2 2 and & = n,
therefore k+1 > n)

=g, Itk L -1 =
=, vk . (cor. to Th. 2.2)
Conclusion: 81 = 82.

n < £

S1 =

L' (u,g(n), k)

£(n) (n < 2 £ k)

=t (Z' (U,V,k-2+ 1)12' (ulg(n) Ik+ 1)12) =

1

'L’ (u,v,k~2+1),8(n),R) =

= £(n)

Conclusion: §, = S

L' (u,I' (v, E(n),) k) =

z' (urg(n_ 1)Ik)
(3.1) n> 2 and n-1 =%k : §, =
S2 =

=Z'" (" (u,v,k-2+1),2"(u,&(n) ,k+1),8) =

L'(Z' (u,v,k- 2+ 1),(pku,9.) =

u . (Theorem 2.3)

(3.2) n > 2 andn-1 <k : S, =£&(n-1)

V(2 (u,v,k-2+1),E(M),L) =

It

E(n-1) (n > &)

Conclusion: S1 = 82 .

(3.3) n > 2 and n-1>%k : S, = £(n-2)

]

L' (2 (u,v, k- 2+ 1),8(n-1),2)

£(n-2) (n-1 >k 2 2)

Conclusion: S1 = 52 .

w(yP) =

k+1 € rge(y) : If k+1 € rge(y) then Yy € Perm(p), for some

p 2 k+ 1; therefore & € rge(y).

L' (u, 2" (v,u(y),2),k) =

L' (w89, , VA8, w(l),k) =

§I'(uyp, | v,K) A I (w9, W) X +1)

L'(E' (u,v,k=-2+1),2"' (u,w(P) ,k+1),R) =

L'(Z'(u,v,k-2+1),98 (pku)\' Skw(lp),.?.) =

79

80

il

§I'(E'(u,v k=24 1),0 w0 X I (2 (0, v k- 1),

iw(w),2+1) =

= dcpk_lu)\’ Z'(Z'(u,v,k—2+1),%kw(w),2+1) =
—_— — (Theorem 2.3)

S ¢ ud'Z' (¢, ' {u,v,k-L+1),9, o8 w(y),l) =
k1 LS .S (Theorem 2.1)

]

6q>k_1u)\ z (_qil): (u

,@2_1 V,k),%l ° %km(lb) 1) =

(cor. to Theorem 2.2 and @2 = g)

1° %1

écpk_lu)\ z (31_2 (u,<p£_1v,k),w(%£° Skow),l)

Furthermore

1 € rge(egoekow) @ L+1 ¢ rge(%kow e L e rge(y) .
Hence

s, =

= 5cpk_1uk'6ﬁ1_2'(u,(p£_1v,k))\'w(%ﬂ’oek‘ﬂb) =

g z ((pk_lu,é (p12 (u'@g_lv’k) A w(%zo%kORP),l) =

- 1)])
= I ((pk_lu,c—p'l—z (u,upﬂ_lv,k),l) A' X (tpk_lu,
w(el°3k°w),2)
= 6&)‘2 (u,tpg_lv,k) AL (Qlowk_lu,iw(sloekOW),l)
(Theorems 2.1 and 2.3)
= § 2T (u,(pz_lv,k) ATz (ku,w(%1032°%k°¢),1)
Furthermoxre
9. 08 =97 n 9. 09 o8 =905 =3 o3
o = L] [=] = = o
1° Vg T Vpoqr PERCE V0¥ oY T Ve 1 %% T %k T Ve

(Lemma 2.2), and therefore

52'(u,02_1 v,k) At I (o u,w(d, 09y ° b oyP),1) =

= 62'(u,?}___£v,k)A'Z'(Eu,%ko%l_lw(w),l) =

= 62'(u,3&:lv,k)l' Z'(u,f&:£w(w),k-+l) . (Theorem 2.1)
Conclusion: S2 +B' Sl' (*)
And also

S, =

= 62'(u,f£:lv,k)X'Z'(u,iﬁllw(w),k-+1) =

rgr DR (W, vk IS, L wlb) k1), 1) =

= I' (9, 4 L' (u,v,k-2+1),2" ((pku,w(%k° 32_1 oP),1), 1) .

(Theorem 2.1 and cor. to Theorem 2.2)

Furthermore, if k 2 £ and p 2 k+ 1 then

(1) 92 1°% = 9 (computation) ;
(2) %] 9 = %<1> %] (tati
[° = -] (=] -
0-1 P o-1 P computation)
Therefore

1°w)11)11) =

' (g, I (Wv,k =2+ 1) 2 (g mw (9, 08,

' (

9y g T v k=241 B8,

<1>
10 (pku,SZ_lu)(ekC’lP),l)rl) =

L) T _ f _
z (cpl_lz (u,v,k L+, 42 ((p_ku,ilsw(w),”,l)

(Theorem 2.2}

Z'(Z'(u,V,k—2+1),Z'(u’w(‘P),k+1)12/) =
(Theorem 2.1 and cor. to Theorem 2.2)
= 82 .

Conclusion: 81 +B, 52. (**)

81

82

*
From (%) and (*x) it follows that S1 <~ 82 .
Sl

k+1 ¢ rge(y) and £ € rge(y) :

' (u, 2 (v,w (),) ,k) =

]

L' (u,§ ¢2—1 v %—1 w(P),k) =

§T'(u,gy VK AT IN(u,8, w(P) k+1)

Furthermore

k+1Erge(%_1°w)ﬁk+1€rge(d}) (k+1 >%kx =2 2) ,

L

= ' '
hence 81 § I (u,<p2_1 v,k) A w(9

TIPS

From rge (y) < Nk and £ < k it follows that rge(d oY) C

c]Nk, and therefore %ko %2_1 o - 1 = %2_1 o Y. Hi;}:e
S1 S (u'ipfz_‘_lv’k) Al w(%z_l oY)

s, =

=Z2'"(Z"(u,v,k-2+1),Z"(u,w(y) ,k+1),2) =

= I (E (v k- 2+ 1) 009 0 p-1),0) (k+1 ¢ rge(y))
Furthermore

Zerge(%kow—l)ﬁ2+1erge(%kow)ﬁlerge(lp) (2 £ k).
Hence

SZ=

= (S(pz_lZ’(u,v,k-!Z,+1) Al 32—1w(8k°u)_1) =

= 62‘(u,(p2_1v,k) At w9 ° (%)kow— 1)) . (Theorem 2.3)

2-1

From rge(y) <]\Ik it follows that Sk op-1 =19y, and there-

fore

(iii)

(iv)

52

) Z'(u,¢2_1 v,k) A'(n(eg_

(3) &

I

10w) =

S1 .

¢ rge() : If L € rge(P) then k,k+1 £ rge(y)

Z'(U,Z'(V/w(¢),2);k) =
Z'(u,w(91_1°¢-1),k) =
' (u,w (V) k) =

w(d, _e¥-1) =

k

(' (u,v,k=-2+1),2' (u,w(¥) k+1),2) =
AN (u,v,k-£+1),w(%koq)— 1),2) =
L' (u,v,k=-2+1),w(¥),2) =

w(e, jev-1) =

= w(y)
Conclusion: S1 = S2.
w = Awl or w = A'wl : This case follows simply from the induc-
tion hypothesis,
W = o(n,m)wl:
(1) n < £:
s, =

z'(ulz'(vlo(nlm)wllz)lk) =

83

c4

(2)

L (u,0(n,m) z (erllg""m) (k) =

*
o(n,m) £'(u,z' (v,wl,z +m),k +m) <>
BI

*
é—f o{(n,m) £'(Z'(u,v,k-2+1),L' (u,wl,k+m+1),2 +m) =

(induction hypothesis)

L'(Z'(u,v,k-2+1),0(n,m) Z'(u,wl,k +m+1),8) =

W

L' (Z' (U,V,k— L+ 1)IZ| (ulo(nlm)w lk+ 1) I'Ql) =

1
n=24%: If @2_1v = sw(yP) then S1 =L'(u,sy” Z'(v,w1,2-+m),k).
Since W(v) = w((pg_1 v) = W(sw(P)) = m and ¢ € Perm(p) for

some p £ m, it follows from Theorem 3.1.1 that

S1 = A & y“Z'(u,Z'(v,w1,£+m),k+m) ’

where L' (u,sw(¥P),k) = A & w(Yy) .

By the induction hypothesis we have

*
Z'(u,z’ (v,w1,£+m),k+m) 48—'* Z'(E'(u,v,k-2+1),

E'(u,wl,k+m+1),2.+m)

and from Theorem 3.1.1 it follows that

*
Yo I (u,r’ (V,w1,9,+m),k +m) E—'* P (2 (u,v,k-2+ 1),

! (u,wl,k+m+ 1),24+m)

and therefore

*
S1 E—l* A & IE“E'(Z'(u,v,k-9.+1),):'(u,wl,k+m+1),2 +m) .

Furthermore

= 2" (' (u,v,k-2+1),L" (u,c(n,m)wl,k+ 1),8) =

L'(Z' (u,v,k-2+1),0(n,m) 2’ (u,wl,k+m+ 1.2)

(n =2 <k+1).

(3)

Since

' - =
q)l—l L' (u,v,k-2+1)

=z (u"q)l—l v,k) = (cor.

L' (u,sw(y),k)

A& w(y)

to Theorem 2.2)

it follows that S, = A & ?‘Z'(Z'(u,v,k—2+1),

2
Z'(u,wl,k+m+1),2,+m).
*
Conclusion: S, <> S, .
1 gt 2
n > 2
51 =

L' (u,z’ (v,o(n.m)wl,l) (k) =

2'(u,o(n-1,m) &' (v,w1,2,+m) . k)

(3.1) n< k+1:

= ¢o(n-1,m) ' (u,Z' (v,wl,Z +m),k +m) <>

*

<B—'> o(n-1,m) Z'(Z'(u,v,k-2+1),Z'"(u,w, ,k+m+1),2 +m)

]

= 52 .
*
Conclusion: S, <> S, .
13' 2

(3.2) n =k+1:

*
Bl

1

(induction hypothesis)

' (%' (u,v,k-2+1),0(n,m) Z'(u,w, ,k+m+1),82)

1
(n > 2)

(' (u,v,k-2+1),%" (u,o(n,m)wl,k+ 1),2)

(n < k+1)

85

=s, ?‘ Z'(u,z’' (v,w1,£+m),k+m) ’

where 94U = slw(lb)

By the induction hypothesis and Theorem 3.1.1 we have

*
S, <> s Y L' (Z'(u,v,k-2+1),Z"(u,w

Jhk+m+ L2+
o L ¥ 1 K+m+1),2+m)

Furthermore

Z'(Z'(u,v,k-—2-+1),2'(u,c(n,m)wl,k-kl),l) =

=ZWZWuﬁuk—2+1L52§'F(mw,k+m+1h2),

1

where o u = Szw(W)

From Theorem 2.3 it follows that

Z'(Z'(u,v,k-—£-+1),mk11,2) = @k—l u, since k 2 £

From Theorem 3.1.2 and ¢, _, u = slw(W)' it follows

that
82 = s1 Q‘E'(Z'(u,v,k—2+1),Z'(u,w1,k+m+1),2+m) .

*

Conclusion: S, <= S_ .
1 g 2

(3.3) n > k+1:

! (U,E' (v,o(n,m)wlpl) rk) =

1

' (u,0(n- lﬂn)Z'(v,w1,2-+m),k) =

*
o(n-2,m) L' (u,2’ (v,w s % +m) k+m) >
B8

1

*
é*om—ZmnZWZWmvm—2+1L2Wumyk+m+1LZ+m)=
BI

(induction hypothesis)

E'(Z'(u,v,k-2+1),0(n-1,m) Z'(u,wl,k-+n1+ 1),8) =

Lz (ulvlk_ 2+1) IZ' (ulo(nlm)w1’k+ 1) L) =

=S

2
*
Conclusion: S, <> §_.
1 B 2
(v) w = <Sw1w2 : This case follows simply from the induction hypo-
thesis. a

Theorem 3.1.4.

Let u,v,w € A" and k € N.

If v +B' w then Z'(u,v,k) +B' ' (u,w,k) .

Proof. By induction on the generation of -

B'°
(1) v = 6PA'Q and w = L' (P,Q,1)} :
L' (u,v,k) =
= SI'(PK) NI (wQk+1) vy,
“*B, ' (2" (u,P,k),Z'(u,Q,k+1),1)
*
ET L' (u,2'(P,Q,1),k) = (Theorem 3.1.3)

Z'(u,w,k) .

Conclusion: X' {(u,v,k) + 2" {u,w,k) .

Bl

L. - , - . .
(ii) v le(l vl), v1 -> w, and w kwl(k wl).

g 1

Z' (u,v,k) =

A Z'(u,vl,k +1) +B'

AL ,
+8' (u,w1 k+1)

(induction hypothesis)

i

L' (u,w,k+1) .

i

(iii) v O(n,m)vl, v1 *8' w1 and w = U(n,m)wl:

(1) n < k:
L' (u,v,k) =

= Gn,m) Z'(u,vl,k'Fm) *8.

87

(iv)

v

[ag

]

[

+ g(n,m) L' {u,w,,k+m) =

1’

= L' (u,w,k)

n =Xk If ¢k_1u = sw(Y) then
Z'(u,v, k) =

= sy L (u,vl,k-+m) %B,

4';. S_‘E—Z'(ulwllk-*-m) =

= E'(u,o(n,m)wl,k) =

= L' (u,w,k)

n > k:

L' (u,v,k) =

o(n-1,m) Z (u,vl,k-+m) +B'

+B' g(n-1,m) Z'(u,wl,k-+m) =

Z‘(u,o(n,m)wl,k) =

I

L' (u,w,k)

Sv,v,., v, > w, and w = 8w _w

1727 71 g M1 172 ¢

‘(u,v,t) =

8 Z'(u,vl,k) E’(u,vz,k) &B'

8" § I (u,wl,k) I (u,vz,k) =

L' (u,w,k)

dvlvz, v, +B' W, and w = 6v1w2

Theorem 3.1.5.

Let u,v,w € A' and k € N.

If u -

88

BI

v then %' (u,w,k) ¥ L' (v,w,k) .

(induction hypothesis)

(induction hypothesis and

: as in (5).

Theorem 3.1.1)

(induction hypothesis)

Proof. By induction on L(w).

(1) w=¢§&(n):
(1) n <k : Z'(u,&(n),k) = £(n) = ' (v, &(n),k) .
(2) n=k:
Z'(u,&(n),k) =

{\Dk_l u +Bv

> = Theorem 3.1.1
B Px-1"V ()

= L' (v, &(n) k)
(3) n >k : Z'(u,&E(n),k) = &E(n-1) = Z'(v,&(n),k) .
(ii) w=w®) :
(1) k € rge(y) :
' (u,w () k) =

= (Stpk_lu)\ Sk_lw(w) +3'

+8' <S(pk_1v)\'%k_1w(1p) = (Theorem 3.1.1)

= L'(v,w(y).k)
(2) k ¢ xge(@) : Z'(u,w(y),k) = w(«‘}k_1 oy -1) = L' (v,w(¥), k) .

(iii) w =)\wl or w =)\'w1 : this case follows simply from the induc-

tion hypothesis.
(iv) w = O(n,m)w1 :
(1) n < k:

' (u,-o(n,m)wl,k)

= g {n,m) Z'(u,wl,k + m) +;,

+B' g(n,m) Z' (v,wl,k+m) = (induction hypothesis)

89

20

(2)

Z'(v,o(n,m)wlyk) =

= L' (v,w,k)

n = k : We shall prove the following statement by induction

on L(s).

Claim: Let X,Y,sw(y) € A'. If X +;, ¥ and
sw () ;B' s'w(g) then sy~ X +B' s Y.

(2.1) L(s) =0 : In this case s = s' = and ¥ = ¢
Furthermore, by Theorem 3.1.1 Q‘X %;, Q'Y .

— = ’ - [

(2.2) s Xsl, slw(w) +B' slw(¢) and s Asl.
From the induction hypothesis it follows
that sly“ X +_, sig' Y and therefore

- = 1 -
)\Slll) X#Bl)\slg Y.
= ' 5 1 [LIV

(2.3) s A Sl' slw(W) gt slw(m) and s A SI'
as in (2.2).

(2.4) s = o(p,q)sl, slm(w) +B' siw(w) and
s' = 0(p,q)si: From the induction hypo-
thesis it follows that slg‘ X +_, si " Y
and therefore o(p,q)slg‘ X ¢;, a(p,q)sig' Y.

(2.5) s = 6Zsl, Z :B' Z' and s' = Gz's1 : From
P X %g, P Y it follows that
sly” X +;, slg‘ Y and therefore

- =] -
6Zsly X +B' VA slg Y.

(2.6) s = 62s,, s L) 38, sjw(e) and s' = §2Zs; :
From the induction hypothesis it follows
that s, $" X +, 51" ¥, and therefore
82s, §” X v, 82s) @” Y.

(2.7) s = 82\'s,, sw(}) iB' siGZ*)\'w((p) -

It

= s'w(g) : If w(slm(W)) = r then Z* mrz
and ¢ = %r<>w. Furthermore let R denote

the common reduct of X and ¥, then we have

the following reduction diagram

§ZA's VX 5162 X g7y
= +=
4'Bl 8'
2X's Y R - (Theorem 3.1.1) - 82" ' g R
*=
BI

Z'(Z,s1 ¥~ R,1)
1]
si ot (Z,d_)" R,1+ 1)

s!Z'(9_2,9 oy~ R,1) (Theorem 2.1)
1 r r]
1
* *
siZ'(Z /97 R, 1) siZ'(Z 197 R,1)

AP
g s1 Y.

Therefore § 2 X'sl yox ¥

Now that we have established the correctness of the above
mentioned claim we proceed by completing the proof of case

(iv) (2):
Z2'{(u,w,k) =

= Z'(u,0(k,m) lerk) =

sy' Z'(u,w,,k+m) , where wk—l u = swy) .

1

Furthermore

L' (v,w, k)

Z'(v,o(k,m)wl,k) =

s'g Z'(v,wl,k-km) . where @k_lv = s'w(g) .

By respectively taking Z'(u,wl,ki-m), Z'(v,wl,k4-m) and

9y U for X, Y and sw(y) in the above mentioned claim, we

immediately see that L' (u,w,k) ¢

8" L' (v,w, k).

91

(3)y n > k:

Z'(u,o(n,m)wl,k) =

G(n-—l,m)Z'(u,wl,k-fm) ¥

+Z, on=1,m 5" (v,w k+m) = (induction hypothesis)

5! (v,o(n,m)wlrk) =
= L' (v,w,k)

(v) w = 6w1w2 : ' (u,w,k) = 62'(u,w1,k) Z'(u,wz,k) and from the in-
duction hypothesis it follows that Z'(u,wl,k) +=, Z'(v,wl,k) and
Z'(u,wz,k) ¥

g Z(v,wz,k). Therefore

sz (U,W Ik) X (ulw2lk) +8,

T '
1 § X (V,Wl,k) L (V,wzlk) 14

hence

L' (u,w,k) ¢;, L' (v,w,k) . O

Theorem 3.1.6.

WCR(>,) ,

Bl
i.e. if u,v,w ¢ A' and u ~ , v and u > , W then
. N B 8
dze ' v +B' Z AW +B' Z .

Proof. By induction on L(u).

(1) u = &(n) : trivial .
(ii) u = w(yP) : trivial
(iii) u = Aul, uy +B, vl, u1 +B, wl, v = Avl, w = Awl : this case

follows simply from the induction hypothesis.

+1l

(iv) u = A ul, u1 g Vl’ uy +B' wl, v = A Vl' W= A w, o as in case
(iidi).
- 5 > = =
(v) u O(n,m)ul, Uy gr Vit 4y g Wy Vv c(n,m)vl, w=o0(nmw

1
this case follows simply from the induction hypothesis.

(vi) u = 6u1u2:

92

3.2.

1

' = = ' : i
(1) u MUY Vi v Sv,u,, w leu2 : this case

178 V1 ™y 12
follows simply from the induction hypothesis.

Yl

> = = . i
(2) Uy g Vyr Uy gy VoV 6v1u2, w 6u1v2 : simple, take

<Sv1v2 for the common reduct.

u

2 jB- ér V.= 6u1v2, w = éulvé : this case

follows simply from the induction hypothesis.

(3) u, +B' Vo u v

(4) u v u, = A'p, v =98v.,u.,, w = Z'(ul,p,l) : consider

178 Vi Y2 12
the following reduction diagram

5u1 A'p
8' B'
(SVIA p z (ullprl)
L' (v,,p,1) ’

1

furthermore, by Theorem 3.1.5, Z’(ul,p,l) %B,

z (Vllprl) '

and therefore § vlk' p +=, Z'(ullppl)

The strong normalization property for g

In this section we shall offer a proof of the strong normalization

property for - (SN(+8')). As mentioned earlier this proof is basic-

Bl
ally along the lines of the proof given in Barendregt [81] (pp. 283 -
286) . SN(+B,) is an important result, since SN(+BI

the Church-Rosser property for B-reduction (this is proved in Section

) and WCR(+B,) imply

3.3).

The idea of the proof offered in this section is to assign special
norms (positive integers) to A'c-terms. These norms satisfy the follow-
ing property: if u,v € A' and u +B' v then for each special norm for

u there is a strictly smaller one for v. These special norms are intro-
duced via an auxiliary system Aé defined below.

Definition 3.2.1 (Aé).

The set of nwnbered \'o-terms Aé is the smallest set X satisfying

93

(1) Em(n) € X, for every n,m € N ;
(i1) wm(¢) € X, for every segmap ¥ and m € N ;
(iii) uw € X = Au € X;

(iv) u€X=>0m(p)ueX, for every p e WX M and m € N ;

(v) u,v € X = duv € X;
(vi) u,veX:GuAéveXanddukiveX. 1
Remarks.

(1) Every numbered A'o-term (or nuwmbered term for short) uO can be
seen as a pair (u,I) where u is a A'o-term and I is a numbering
function which assigns a positive integer to all occurrences of

variables and w's in U -

(2) Application of a mapping i, where p is some refmap, to a numbered
term u, is defined in the obvious way (numbering of A’c-terms has

0
no effect on the application of u to uO).

Definition 3.2.2.

The function Aé - Xé is inductively defined for numbered terms

1,
t by

@ gt ="

(i) oy] ="

(iii) |>\u|1 = Alull;
(iv) Jom(n,r)ull = om(n,r) & lull;
1:‘

(vi) ldukiv) =6 lullxi [v]

(v) Iéuvll = 6|u|1]v|

1 (i=011)- D

Definition 3.2.3.

The substitution operator in Aé, denoted by Zé, is defined as follows.

If u € Aé and k € N then Zé(u,t,k) is inductively defined for num-

bered terms t by

94

9,9 o+ ifn =Yk and IS(u) = £P(3), for
o some j,p € N

(1) Iy, E () k) = Py semcn
£"n-1), ifn>k

(11) Zpluw () k) =4 - ;
w (ek_l oy -1) , 1f k £ rge(y)
(iii) Zc')(u,Av,k) =)\Z(')(u,v,k+1) ;
s?’ Zé(u,v,ki—r) , if n = k,
2
[q)k_lull = sw (y) , (for some £ € N) ,
(iv) Z(')(U,om(n,r)v,k) = { W) =1z, rge(y) & N_
o™ (n,r) Z4(u,v,k + 1) , if n <k
L cm(n— i,r) Z(')(u,v,k+r) , if n > k
(v) ZO(U’(SVW,k) =6 Eo(urvrk) Eo(ulwlk) i
(vi) Zo(u,dv)\iw,k) = GZO(u,v,k))\i Zo(u,w,k+ 1) (i =0,1). 0

§ ¢y U AC') wm(%k_

oY) , if k € rge(y)

1

The following definition offers a norm for numbered terms.

Definition 3.2.4.

vl

N is inductively defined for numbered terms

fuall ;

+ i (i =0,1).

The function | | A(') >

t by

(1) NE"m N =m;

(i1) M @) = m;

(iii) IAaall = lall ;

(iv) No"(a,r)ull =m +

(v) Feuvll = lull + vl ;
(vi) ||5L1)\iV” = |lull +

95

Definition 3.2.5 (=

R
BO

(1) The binary relation 86 on ké is defined as follows. If t,u € Aé

then

tB(')uﬁ Elv,we)\(')

t = dxzkiw Au = L' (v,w,1) A (v,w,1) € dom(Zb).

]
0
If tBé\A then t is called a Bé—redex.

(2) The notion of reduction - on Xé is inductively defined by

(1) 1186v = u +8' A

(ii) u > v = Au >, AV ;
%0 Bo

(iii) u >, v=>Alu-> Alv;
BO i BO i

(iv) u > v = om(n,r)u > Om(n,r)v;
Bo 8o

(v) u >, v=0d6uw >, Svw;
8O BO

(vi) u +B, v = Swu »B, Swv . a
0 0

The permutation condition (PC) is defined for numbered terms in the
obvious way (c¢f. Section 2.6, Definition 2.13). The numbered terms
that we take into consideration in this section all satisfy the per-

mutation condition.

Definition 3.2.6 (Aé).

Ay = {t e} | pc(t,0)} .]

Remark.
From Theorem 2.5 (invariance of the permutation condition with respect
to B-reduction) it follows immediately that the notion of reduction

+_, is a binary relation on A'; i.e. if u € Al and u +_,, v then v ¢ A'.
80 0 0 BO 0

In Section 2, Definition 2.7 concerned reference depth values of vari-
ables in Ao-terms. This definition is extended to Xé in the obvious
way (marking of A's and numbering of variables and w's in Ao-terms has

no effect on the definition of D{(n,t), where n is some numbered vari-

96

able and t is a numbered term). Analogous to A we shall often speak in
ké of "an occurrence of a (numbered) variable n with reference depth k
(k € Z) in a (numbered) term t", meaning that k € D(n,t) and - by
abuse of language - that n is a specific occurrence of the variable n
in t (cf. the remark made on page 44, concerning variables and vari-

able occurrences, and their corresponding reference depth values).

Definition 3.2.7.

Let uo= (u,1) € Aé, where I is a numbering function for u. The pro-

perty ¥(u,I) is defined inductively for terms u ¢ A' by

(i) +(E(n),I), if u £®(n), for some m ¢ N ;

0

0 wm(w) ’ for some m € N ;

(1ii) ¥(Av,I), if ¥(v,I) ;

(iv) +(o(n,r)v,I), if
(1) ¥(v,I)
and

(2.1) r = 0 and (o(n,xr)v,I) = om(n,r) & (v,I)

or .

(2.2) x > 0, (o(n,r)v,I) = om(n,r) & (v,I) and all occurrences
of variables n in v with reference depth value p in v
(1 £ p <r) satisfy linll > m;

(v) Y (8vw,I) , if w # A'w, (for any w

1 e A') and Y(v,I), ¥(w,I) ;

1
(vi) +(6v>\iw,I), if

(1) ¥(v,I) and ¥(w,I)
and
(2) all occurrences of variables n in w with reference depth
value 1 in w satisfy lInll > Hvlll, where v, = Ivl], . 0
If ¥(u,I) then we say that the numbering function I is decreasing in

u, or: (u,I) has a decreasing numbering.

Informally, ¥(u,I) implies that all occurrences of variables in (u,I)
which are candidates for substitution of some sub-term in (u,I) by

contracting a Bé—redex in (u,I) have a norm larger than the norm of

97

the terms by which they can be replaced.

Example.

Consider the following term written in tree form

£ (1)
/ 5
A= 8 - A - w(id(2))
/ 1
§ - Xé - 010(1,2) - A - 54(2)

This term has a decreasing numbering; this in contrast with the num-

bered term

£° (1)
/ 6
A -8 - X' - w (1d(2))
/ 1
4
sy -t - - gt

Lemma 3.2.1.

For every u ¢ A' there is a numbering function I such that ¢ (u,I).

Proof. Number the occurrences of variables or w's in u from the left
to the right, and assign to the n-th occurrence (n > 0) the (high)
index 2m+n_1, where m is equal to the number of marked A's to the
left of that occurrence.

Example: If u is the A'og-term
SAS8E(L) Aé(»(id(2)) Ai g(1,2) A£(2)

then the result is

1 4 1 2
S§AS8E (1) A(')w (id(2)) Xio 6(1,2) A£3 (2)
Since 20 > 2n-1 + ... + 2+1, {(u,I) has a decreasing numbering (where
I is the numbering function for u as defined above). d

Remark.
The specific numbering function I defined in Lemma 3.2.1 also satis-

fies:

98

on Bé—normal forms

*

We recall that a numbered term t has a Bé—normal form u if t +B' u
0

and 13v e Aé IR +B' v. In Aé we have terms that, strictly speaking,
0
do not have a normal form, but (in some sense) can be considered as

terms already in normal form. We shall give some examples to illustrate

this situation. First consider the term

/amm
2
5§ - Aé - w (id(1)) . (1)

This term Bé—reduces to itself and to no other term, hence it has no
Bb—normal form. However, Bé—reduction of (1) involves no actual sub-
stitution of the argument of the Bé—redex contracted. Another example
of a term in Aé that Bé—reduces to itself without involving actual sub-

stitutions of arguments of contracted redices is

/amm /£“<2>

. Y L. .
8§ - AO § AO w (id(2)) . (2)

By contracting the left-most Bé‘redex in (2) we obtain

/5”(1) /sm(z)

l__l_'Q' o i t
§ - AO) AO w (%1 id(2)) . (2")

By once more contracting the left-most redex in (2') we get

/t:“‘u) /5“(2>

L .
s - Xé -4 - lé - w (%10 9, 0 1d(2)) (2")

1

and since %10 31 is equal to the identity mapping on N we see that
(2") is the same term as (2), i.e. the term (2) Bé-reduces to itself
without having performed actual substitutions of the arguments of the
contracted redices. In ordinary type-free A-calculus we also have the
situation that certain terms B-reduce to themselves, e.g. Church's
well-known counter example - written in name-free notation - for nor-

malization of this calculus

99

1
/E()
- - 1 1
/ A -6 - &(1) /,€()
§ - A — § - £(1) . (3)

There is a large difference, though, between (2) and (3), namely that
(3) B~reduces to itself as the result of actual substitution of the
argument A 8 £(1) £(1) for each of the two right-most occurrences of
the variable £(1) in (3), whereas Bé-reduction of (2) involves no
substitutions at all, the redices just change places via (2') to (2").
So,in a sense, the term (3) is a much more serious counter example

for normalization in ordinary type-free A-calculus than the terms (1)
and (2) are in Aé, since Bé—reduction of (1) and (2) just involve a
shifting around of redices and no actual substitutions of arguments of
contracted redices takes place. In Aé we shall consider contractions
of 86—redices inside a segment which do not give rise to actual sub-
stitutions of their corresponding arguments in that segment as non-
essential, since these contractions have the sole effect (apart from
updating of reference numbers in variables) that the contracted re-
dices are just re-entered at the back of the segment in question with-
out any substitutions of their respective arguments having taken place.
As a consequence we shall consider terms that only give rise to non-

essential 86—reductions as already being in Bé—normal form.

We proceed by giving a formal definition of a class of terms in A'
(called A) which only give rise to non-essential 8'—reductlons as

defined above.

Definition 3.2.8 (66).

The sub-set 66 of x& is inductively defined as follows. The set 66 is

100

the smallest set X such that
(1) wm(w) € X, for every m € N and every segmap ¥ ;

(ii) if t € AL, u = swm(w) € X, W(u) +1 ¢ rge(y) and

Vnevar(u) : 1 ¢ D(n,u), then Gt)\c')u € X.
Remark.
In clause (ii) of Definition 3.2.8 we see that Bé—contraction of the
redex 6‘tk611 does not result in substitution of the argument t for
any variable in u, since there are no occurrences of variables in u
with reference depth 1 in u. Furthermore, from W(u) +1 € rge(y) it
follows that the redex-part with argument t reappears at the back of
the segment u after contraction of §tAlu.

0]

Definition 3.2.9 (Ab).

ay = lte s IKemM:pc(t)} . 0

Lemma 3.2.2.

If u e Aé and u +86 v then v ¢ Aé.

Proof. By induction on the generation of +B" 0
0]

Lemma 3.2.2 motivates the following definition which induces an equi-
valence relation on Aé.

Definition 3.2.10 (~6).

We inductively define the following binary relation ~! on A6 as

0
follows
(1) u ~6 u;
(ii) 611A6v ~6 Zé(u,v,l);
(iii)u~(‘)v=>6w7\fu~(')6w>\fv;
(iv) u ~é v, Vv ~6 w=u ~6 w .]

Theorem 3.2.1.

~6 is an equivalence relation on Aé.

Proof. By induction on the generation of ~6 and the corollaries to

Theorem 2.3 and Lemma 2.10. a

101

The following definition extends ~6 to Aé.

Definition 3.2.11.

We extend the relation ~6 on Aé to Aé as follows. If t,u,v,w € Ao then
. ~ b
(1) t o

(ii) t,u € AO , t ~' u (in AO) =t NO u (in AO);

0
(1ii) £ ~' u = xt ~! Au Att ~' A'u and oz(p)t ~1 ol(p)u;
0 0 ! 0 0
: ~l ~t ~t
(iv) t 0 u, vy w = §tv o Suw . 0
Remark.

~6 is an equivalence relation on Aé. (This follows easily from the

fact that ~6 is an equivalence-relation on Aé.)

Definition 3.2.12.

Let t,u ¢ Ab.

t essentially Bé—reduces touet > uA’lt ~gr U 0

%0

Definition 3.2.13.

Let t ¢ Aé. We say that t is <n essential Bb—normal form if

- t~lu.
0
If t ¢ Ab is in essential Bé—normal form then this means that the only
Bb—reductions that we can perform in t are non-essential Bé—reductions.
We could also say that t is in essential Bé—normal form if there is no

term u such that t essentially Bé—reduces to u.

Definition 3.2.14.

Let t ¢ AO.

(1) t essentially Bé—normalizes (ess Bé-N(t)) if t has an essential

Bé—normal form ;

(ii) t essentially Bé—strongly normalizes (ess Bé—SN(t)) if there is
no Bé—reduction path starting with t and containing an infinite

number of essential Bé—reductions;

(iii) iy is essentially normalizing (ess N(+B,)) if
0 0

102

Vt e Aé : ess Bé—N(t);
is essentially strongly normalizing (ess SN(+S,)) if
0

VteA(') : ess Bé—SN(t) . B 0

(iv) =,
B0

We now proceed by stating some technical lemmas which lead up to the
most crucial result of this section, Lemma 3.2.11, which says that

norms of numbered terms decrease after essential Bé—reduction.

Lemma 3.2.3.
Let t be an element of Ab and p some refmap.

If 1 £ k € D(n,ut) then

In' evar(t) 3me N : p(m) =k Ame D(n',t) A linll = lin"lt.
Proof. By induction on L(t). 0

Lemma 3.2.4.
Let t be an element of Ab and ¥ be an element of perm(m), for some

me M. If k € D(n,t) and m < k then k ¢ D(n,y"t).

Proof. By induction on L(t). 0

Lemma 3.2.5.
Let t,u € Aé and k,2 € N, If k ¢ D(n,Zé(t,u,1-+2)) and 1 £ k £ £ then

n € var(u) and k € D(n,u).

Proof. By induction on L(u) and Lemmas 3.2.3 and 3.2.4. g

Lemma 3.2.6.
Let t,u € Xé and k € N and £ € M. If £ < k and PC(t,%) holds and all
occurrences of variables n in t with reference depth k in t satisfy

inll > lha I, where u, = |u|1, then

(1) ”Zé(u,t,k)ll < llell , if there is an occurrence of a variable n

in t with reference depth k in t ;

(2) ||26(u,t,k)|| = Jltll , if there are no occurrences of variables n

in t with reference depth k in t.

Proof. By induction on L(t). 0O

103

Remark.
The results (1) and (2) stated in Lemma 3.2.6 also hold for

= X! = ; 1.e. < S = ,
s lEO(u,t,k)|1 and t, lt[l i.e ”51” Htlﬂ or |l 1|| Htlﬂ
depending on whether or not there are occurrences of variables n in
t1 with reference depth k in tl'
Lemma 3.2.7.
Let t,u € Aé and kK ¢ N and £ € M. Furthermore assume that t and u
have decreasing numberings and ¢ < k. If PC(t,%) holds and all
occurrences of variables n in t with reference depth k in t satisfy

Inl > llulll , where u_ = |u]

1 , then Zé(u,t,k) has a decreasing num-

1
bering.

Proof. By induction on L(t).

(1) t = Em(n) : If n # k then %Zé(u,t,k) holds trivially. If n = k

then Zé(u,t,k) = wk—l u,
iff u has a decreasing numbering.

and @k_lll has a decreasing numbering

(ii) t=uw (¥) :

wm(%k_low—l) , if 2 < k
Zg (0, tk)

v I ; —
So,_ ulyw (8, oy), if 2=k

In both cases it is easily seen that Z'(u,t,k) has a decreasing

0
numbering.

(iii) t Atl : This case follows easily from the induction hypothesis.

(iv) t = Gm(n,p)tl :

(1) n > k : Then I)(u,tk) = " (n,p) L' (u,t, ,k+p) and it follows

0 1
easily from the induction hypothesis that Zé(u,tl,k-kp) has

a decreasing numbering. Suppose that p > 0 and n is an

occurrence of a variable in Zé(u,t ;k+p) with reference

1
,k+p). From Lemma 3.2.5 it

depth j (1 £ 3 £ p) in Z'(u,t

0
follows that n occurs in t

1

1 at reference depth j in t

From +0m(n,p)t1 it follows that {lnll > m, and hence

1

om(n,p)Zé(u,tl,k-Pp) has a decreasing numbering.

(2) n = k : Then Zé(u,t,k) =s & Y- Zé(u,t +k +p), where

1
Py u, = sw(P). In (1) we have already seen that

104

Zé(u,tl,k-+p) has a decreasing numbering.

There remain the following cases which we have to investi-

gate in order to establish +26(u,t,k).

(2.1) p > 0 and N ul is a term of the form

and furthermore there is an occurrence of a variable
'(u,t
o('1

- o q)
¥ Zo(u,tl,k-*P), where j W(szw (P)) :

In this case we have to show that linll > Nvlll, where

nin Y~ I y,k+p) with reference depth j+1 in

v, = |v\1. From Lemma 3.2.3 it follows that there is

an occurrence of a variable n' in Zé(u,t ,k+p) and

1
an r € N such that this occurrence of n' has refex-

ence depth r in Zé(u,tl,kﬁ—p) and y(r) = 1+ 3 and
Inlt = in'il. Since rge(y) < IEV 1 <r £ p and from
Lemma 3.2.5 it follows that n' ¢ Var(tl) and

r € D(n‘,tl). From +om(n,p)t1 it follows that this
occurrence of n' in t1 satisfies lIn'll > m. Further-
more, n = k and k ¢ D(om(k,p),om(k,p)tl), hence
o™tk o) I = m > Hu = lg, .

Conclusion: linll = lIIn'll > m > ”¢k—1 u1H > |]V1H.

(2.2) p > 0 and wk-l u1 is a term of the form

s. - oty - s. - o3 ,

1 2

and furthermore there is an occurrence of a variable

n in ¢~ Zé(u,t ,k +p) with reference depth j+a in

1

Q“Zb(u,tl,k-kp), where j = W(s2wq(w)) and 1 € a <€ r:

In this case we have to prove that |Inl)l > i. The proof

of this case is an exact analogue of the proof given

in case (2.1) above.

(v) t = tht2 and FS(t2) # Ai : This case is simply proven by apply-

ing the induction hypothesis.

(vi) t =6¢t, At Then Z'(u,t,k) = §Z'(u,t, ,ky A'Z'(u,t_,k+1),
1 1 0 i 0

2 0 1 2

105

and Zb(u,t,k) has a decreasing numbering iff

(1) +Zé(u,t1,k) and YI'(u,t.,k+1) ;

0 2
(2) If n is an occurrence of a variable in Zé(u,t2,k-+1) with

'(u,t ,k+1) then lInlt > llslll, where

reference depth 1 in ZO 5

= 1
s, |zo(u,t1,k)\1.
From vt it follows that +t1 and +t2. Furthermore, PC(t,2%) holds
iff PC(tl,O) and PC(tZ,Rﬁ‘l) hold. By applying the induction

hypothesis it is easily seen that ¢Zé(u,t ,k) and +Zé(u,t Jk+1)

1 2

hold.

If 1 € D(n,Zé(u,tz,k-Fl)) then by Lemma 3.2.5 n € Var(tz) and

1e D(n,tz). From ¥t it follows that such an occurrence of n in

*
t. satisfies lnll > Htlll, where t = |t1| Furthermore from

2 1 1°
Lemma 3.2.6 it follows that lltjll 2 HSl|l, hence lInll > HSllL O

Corollary.
(1) If Sur't € A' and ¥y8§uA' t then YI'(u,t,1) ;
i 0 i 0

(2) If u e Al and u »_,, v and Yu then +Yv.
0 B
0
Lemma 3.2.8.

Let k € N. If v =3¢ @k_lxlké %k-l t € 66 and PC(v,%) holds for scme

2 € W then HZé(u,t,k)H = llvl.
Proof. By induction on L(t).

(1) t = wm(w) : Since v ¢ 66 it follows that 1 € rge($ oY), hence

k-1
] —) m —
k € rge(y) and Zo(u,t,k) =8 wk—I‘JXO %k—l w (P) = v.

kaésme):

(ii) t

L' (u,t,k) =

0
t) 1] m
= GZO(u,w,k) kOZO(u,sw (), k+1) .

Furthermore v ¢ 66, hence
Vnevar(t) : k £ D(n,t)

Therefore there are no occurrences of variables in w with refer-

ence depth k in w, and from PC(v,%) it follows that PC(%k_lw,O).

1UG

From PC(%k 1 w,0) and Lemma 2.7 it follows that PC(w,0) and

therefore
||Z(')(u,w,k) I = liwlh , by Lemma 3.2.6 . (*)

) ' 1 m)
If <Sq>k_1u>\oek_1t € 60 then also chk)\o%k sw (YP) € 60. By the

induction hypothesis and (x) it follows that

1 1]) m =
II's Zo(u,w,k) AO Zo(u,sw W ,k+ 10l

) v 1 m =
= |l Zo(u,\ Syt o+ |l Zo(u,sw (W, k+ 1)

m
— 1) =
= llwll + IIGq;kuXO%k sw () |l

<i> m
wll+ e s =

= Hwk_lun + H%k 1t|[=

= |[vll il
Corollary.
(1) If v = Stlkot € AO then HZO(u,t,l)H = |Ivll ;
(2) if u,v € Aé and u ~6 v then llull = (vl .

Definition 3.2.15.

Let u ¢ Ab and let SUB(u) denote the set of sub-~terms of u. We define

the sub-set A oif Aé as follows

A={ueAO|VteSUB(u):t=5v>\ow=>teao}. O

Lemma 3.2.9.

If u = vaki z € A thenv =12'(w,z,1) € A (i =290,1) .

0

Proof. By induction on L(z).

(1) n =1 : Then v

w, and since w € SUB(u) and u € A it follows

that v € A

(2) n» 1 : Thenv ==E"(n-1) € A.

107

(iii)

(iv)

(vi)

108

szk'wm(¢), if 1 € rge(y)

w(P) + 1f 1 £ rge(y)

and in both cases v € A,

z = Azl : This case follows simply from the induction hypothesis

and Theorem 2.1.

m
z =0 (n,r)z

1:
(1) n =1 : Then v = sy~ Z (w, zl,1+r)—sw Z(') EW,%rzlll)r
where [wl1 = sw (). If t € SUB(v) and t = § ¢t XO 5t for
some tl’t2 € XO' then t € SUB(w) or t ¢ SUB(ZO(wx_w,Sr Zl'l))'

If t € SUB(w) then t € SUB(u) and since u € A we have
t € 66. By applying the induction hypothesis to 8§ ¢ wai!

r
(¢ A, for 1 = 0,1) we see that if t ¢ SUB(Zé(w 5221 1))

then t € 66. Hence, v € A.

(2) n>1: Then v = o (n-1,r) Iile_w,8 2z ,1) and the result

follows immediately from the induction hypothesis.

— . = ' '
z = 62122 : Then v 620(w,zl,1) Zo(w,zz,l) and the result

follows immediately from the induction hypothesis.

= ' . = ' T '
z §z AO 5 Then v 8 Zo(w,zl,l) XO ZO(?i_w,fl_zz,l). By
applylng the induction hypothesis we see that Eé(w,zl,l),
Zé(wlw,%l 22,1) € A. Furthermore from u ¢ A it follows that
TR S 1 ']
z € 60 and, hence, z, € 60. 1if z, € 6 then %122 € 60 and also
, v s s . . :
ZO(@lw,fl_zz,l) 3 60 (it is easily proved that p € 50 implies
Zé(q,p,l) € 66, for all g ¢ Xé). In order to prove that v € A
) 3] 1 3
we have to show that v ¢ 60, and since EO((p1 w,9 22,1) € 60 it

suffices to show that

(1) there are no occurrences of variables in Zé(wl w,%l z,.,1)

2

with reference depth 1 in Zé(wlw,ai 22,1);

(2) if LS(Z! (@1 w, % z 1) = wg(w) then

1+ W(Z (¢ 1w %122 1)) € rge(y)

From Lemma 3.2.5 it follows that 1 ¢ D(H,Zb(w,z ;2)) implies
1 ¢ D(n,z), hence yielding a contradlctlon with z 566. Further-

more from z € 66 it follows that LS(zz) = w (w) and

1+r € rge(p), where w(z2) = r, for some segmap ¢. If

= + ' =
2+ r € rge(g) then Y %r+1° ¢ and 1 W(Zo(flw,ilzz,l))
= 2+r € rge(Y). If 2+r ¢ rge(yp) then Y = ¢ and
1 + w(Eé(wl w,%l 22,1)) = 1+1r ¢ rge(y). Hence, v € A.
i 1 = ' . = v t v
(vii) z =& zlxl>22 : Then v 8 Zo(w,zl,l) AIZO(?E_W'?E_ZZ'I)' By
applying the induction hypothesis we see that Zé(w,zl,l),
Zé(glw,ilzz,l) € A. Hence, v € A. (]
Theorem 3.2.2.
If u € A and u +B' v then v ¢ A.
0
Proof. By induction on the generation of - and Lemma 3.2.9. (]

fo

Corollary.

If u ¢ Aé and all marked A's in u are indexed with the number 1 then

*
v € A for all terms v such that u > V.

8O
Lemma 3.2.10.
v = 6u>\0t € AN AO = |lvll = IIZO(u,t,l) Il
Proof. The result follows from Lemma 3.2.8. 0

Lemma 3.2.11.
Let v = § wk_lllk' %k—l t ¢ A. If PC(t,k) and +v then

”V” > ”Z(')(urtlk) ”.
Proof. By induction on L(t).

() t =¢& (n):

I

(1) n < k : Then HZé(u,t,k)H ™y = el = ”%k—l th < livll;

It

(2) n =k : Then leé(u,t,k)ll Ho, _jull < llvl;

(3) n > k : Then IZ)(u,t,k) I He"m-1)1 = el =

ho, £l < vl

(ii) t = w (P) : From PC(t,k) it follows that HZé(u,t,k)H =

' m
I8 o _qurid, ;o Wl < livi.

(iii) t = Az : This case follows simply from the induction hypothesis.

109

(iv) t = o (n,0)z:

1) n € X : Then Zé(u,t,k) = om(n,r)Zé(u,z,k-+r) and the result

follows by applying the induction hypothesis.
(2) n = k : Then Zé(u,t,k) = sy Zé(u,z,k-+r), where
2
sw (P) = |@k—1ull'

HZé(u,t,k)ll =

"

hsu®) I+ HE e,z ke I

<m + Hzé(u,z,k+r) it < (¥v)

1 = . . .
<m + ||6wk+r—ltlxlek+r—1 z || (induction hypothesis)
=m ”®k+r—111” + H$k+r_1zll + 1=

=m+ flull + izl + 1 =

(R4l

(3) n > k : Then I)(u,t,k) = 6 (n-1,r) £y(u,;z,k+xr) and the

result follows by applying the induction hypothesis.

(v) t = 8z,2, : Then Zé(u,t,k) = § Zé(u,z

1
122 . K) Zo(u,zz,k). Furthermore

1

”6 Zo(urzllk) Zo(ulzzlk) ” =

1]

“Zé(UIlek) i+ ”ZCI)(U’ZZI}()” <

<]

< ”%k~121” + NZO(u,ZZ,k)H < (PC(%k_lzl,O) and Lemma
—_— 3.2.6)

< ||%k~1 lel + ||(pk_l ufl + llek_1 z2|| + 1 = (induction '
— —_— _— hypothesis)

= vl

(vi) t =8z A'z. : See case (v).]

1 12

Corollary.
(1) If 6u>\it € AN A(') and Mu)\it then llduxitil > “Z(')(u,t,l)";

(2) If u,v € A N Aé, +u and u essentially Bé—reduces to v then

Talt > vl .

110

3.3.

Theorem 3.2.3.

+B' is essentially strongly normalizing on {t € A N Aé | vt} .
0
Proof. The result follows from the corollaries to Lemmas 3.2.7, 3.2.8,

3.2.11 and Lemma 3.2.10. 0

The Church-Rosser property for -

8

In this section we offer a proof of the Church-Rosser property for +8
on {t ¢ A| PC(t,0)} by using the results given in Sections 3.1 and
3.2. This is done as follows. By dropping the numberings from the
definitions of 66, Aé, ~6 and Aé we obtain the definitions of §', A',
~' and A!, where A! = {t ¢ A" | PC(t,0)}. Furthermore, the notion of

essential B'-reduction on A; is defined as follows.

Definition 3.3.1.

Let t,u € A .
t essentially B'-reduces to u & t Tgr WA Tt~) . 0
From Definition 3.3.1 we get the obvious definition of +8, being

essentially strongly normalizing (ess SN(»_,)). Since adequate num-

BI

bering of terms is always possible the following result follows

immediately from Theorem 3.2.3.

Theorem 3.3.1.

- is essentially strongly normalizing on A;. 0

8!

Since the permutation condition is invariant with respect to B'-
reduction (cf. Theorem 2.5) the following result follows immediately

from Theorem 3.1.6.

Theorem 3.3.2.

> is weakly Church-Rosser on A;. A

Bl

Theorem 3.3.3.

For every t ¢ A; there exists an u € A; such that

(1) u is an essential R'-normal form of t ;

(2) if v is an essential B8'-normal form of t, then u ~' v.

Proof. The following proof is along the lines of the proof given for
Theorem 1.1.3. By Theorem 3.3.1 each term t € A; has an essential B'-
normal form u. Furthermore, call a term t € A; ambiguous if t B'-

reduces to two essential B'-normal forms ul, u2 such that ‘l(u1 ~1 u2).

*
If t is ambiguous then there exists a term u such that t +B, u and u is
ambiguous and 1(t ~' u), which we now show. The following two figures

suggest how t can reduce to u, and u,-

o+

t
*
*
J B'J
g! .
.V 7/
l S';/ BI
B'Y e e
VI
. * * ,
* By B
' - W
B’ // N]
v' / f
8' : . w'
AN //
//* \ /* .
gr ' g’ . B
- 4, N <
b 2 K %
FIG. 3.3.1. FIG. 3.3.2.

where v +8' v' and w >_, w' denote the first essential B’'-reductions

Bl

occurring on the reduction paths starting from t and ending in u, ,u,.

1772
In the case of Figure 3.3.1 it is immediately clear that v' is ambi-

guous. In the case of Figure 3.3.2 it follows from WCR(i that t'

g

and t" have a common B'-reduct t"™ and, by ess SN(>_ ,), t"™ has an

B 1
essential B'-normal form u, as indicated in the figure below.

112

Bl
//.‘
Bl/ Bl
tIA nt"
S .
5.‘/ * ¥ "«.Bw FIG. 3.3.3.
8'/ / 0B
Vl" I, ;.wl
Bl .V Bl .
N tlll
* * *

Since v +8' v' was the first essential B'-reduction on the reduction
path from t to u,, it follows that t' ~' v and, by symmetry of ~',

* * *
v ~' t'. Hence, v »> t'. From v +B, t' and t' t, it follows that

g gr 3
* * .
v +B' t3. Analogously, w +8' u,- Furthermore, from “i(u1 ~! u2) it
follows that either _l(u3 ~! ul) oxr '1(u3 ~! u2). 1if T(u3 ~! ul) then

we can take v' for the ambiguous term u, and if 1(u3 ~ u2) then we

can take w' for u.

Now that we have established that all ambiguous terms essentially R'-
reduce to another ambiguous term we have obtained a contradiction with

ess SN(=+,,), hence ambiguous terms do not exist and the result

B8
follows. 0

Definition 3.3.2.

Let t,u € A;. The relation >' on A; is defined as follows

t »' u iff u is an essential B'-normal form of t and

if v is an essential B'-normal form of t then v ~' u . 0

Definition 3.3.3.

The function | | : A" > A is inductively defined for marked terms t

as follows

(1) Jem| = &) ;

(i1) Jo@)| = w@) ;

(iii) |Aaul = r|ul;

(iv) |o(n,m)ul = O(n,m)|u];
(v) |suv] = &lu|lv] ;

(vi) JSuxr'v| =GNIKW[

Definition 3.3.4.

=
It

{t e Al PC(t,0))}

Definition 3.3.5.

Let t,u ¢ A*. The relation > on A* is defined as follows.

t >ue® 3Jt'e A; bt = ‘t'] At > ut Au = lu'|

Definition 3.3.6 (+B).

(1) The binary relation 8 on A is defined as follows.

If t,u ¢ A then

tBu@®@ Iv,wel : £t =8viw A u=2I(v,w,1) A (v,w,1) € dom(I) .

If tBu then t is called a B-redex.

(2) The notion of reduction »_, on A is inductively defined by

B
(i) ufBv =u +8 v
(ii) u +B v = Au +8 AV ;
(iii) u +S v = 0(n,mju +B o{n,m)v ;
(iv) u +B v = Suw +B 6vw;
(v) u +B v = Swu +B Swu .

Theorem 3.3.4.

* *
-+ _ 1is the transitive and reflexive closure > of > on A*.

B
Proof. From Theorem 2.5 it follows that the permutation condition is
invariant with respect to B8-reduction; hence, if u ¢ A* and u +B v

then v ¢ A*. Furthermore, from

*
- > C >

B B

114

it follows that

*
>

8

In
vk

in
4%

Vo

hence +B = .]

Theorem 3.3.5.

> satisfies the diamond property.

Proof. assume that t > u and t > v. From the definition of > it follows
that there exist terms t',u',v' ¢ A; such that t = lt'], u = lu'l,

v = |v'| and

(1) u', v' are essential B'-normal forms of t';

From (1) and (2) it follows that u' >' v' and v' > v'. Therefore u > v

and v > v, and the result follows.]

Theorem 3.3.6.

- _is Church-Rosser on A*.

8
Proof. The result follows from Theorems 3.3.4 and 3.3.5. [

THE CLOSURE PROPERTY FOR THE TYPED SYSTEM Apd

In Section 1.2 we introduced the typed system ATG. The definition of
ATO in Section 1.2 was completely formal and therefore when we speak
of ATO we refer to the system XTG as defined in Section 1.2, Defini-
tion 1.2.5. We recall that we have the following relevant sets re-

garding types.

(1) The set of types T : we have y-types, p-types and the incorrect
type @ ;

(2) The set of quasi-types TTT : elements of T1T are not types of terms
in ATO, but serve as intermediate constructs for evaluating the
product (%) of a number of types in order to calculate the even-
tual type of a ATo—term, which is either the incorrect type 9,

a y-type or a p-type (but never a m-type).

The objective of this section is to show that the type of a correct
ATo—term t, with respect to a certain type context 1, and the type of
its B-reduct (with respect to the same context) are the same, provided
that t satisfies the permutation condition (the closure property for
ATO).

We note that basic operations on terms introduced in Section 2 for the
type~free system A are extended to ATO in the obvious way; in parti-
cular ut, W(t) and PC(t,k) are defined for typed terms t as in Section
2 (a typed lambda is treated in the same manner as a non-typed lambda).
Furthermore, a substitution operator in XTO is denoted by Zf, for some
type £ ¢ T\{®}. The type f attached to a substitution operator Zf is
the same type as attached to the lambda of the redex, say thkfv,
that - after contraction of Gtxkfv - gave rise to the invokement of
the substitution Zf(u,v,l). We proceed by defining substitution in

ATO.

Definition 4.1 (substitution).

Let £ ¢ T\{®}. If u ¢ ATO and k € N then I_(u,t,k) is inductively

£
defined for typed terms t by

u o, if n k and LS(u) € rge(§)

Px-1
(1) L. (u,&(n),k) = £(n) , if n < k ;

En-1), ifn>k

(ii)

(iii) Zf(u,kgv,k) = Ang(u,v,k-Fl);

(iv)

(v)

L _(u,w(¥), k)

L. (u,0(n,m)v,k) = 4

f

w(%k_1°1P'1)

G(pk_lukfu)(%k_ioim ’

if k € rge(y)

, if k ¢ rge(Y)

o{n-1,m) Zf(u,v,k +m) , if n > k

Zf(u,va,k) =4 Zf(u,v,k) Zf(u,w,k).

s@‘ Zf(u,v,k-+m) , if n =%k,
@k—lu = sw(P) , W(u) = m and rge(y) < m%
0 (n,m) Zf(u,v,k+m) ; ifn <k

We note that the results concerning applications of refmaps to terms

and the results concerning substitution in Section 2 hold equally in

the typed system ATO, since the typing of terms in ATU is completely

irrelevant as far as establishing these results is concerned. The
same holds for the results concerning the permutation condition in

Section 2,3. We shall therefore make frequent use of these results

simply by referring to the corresponding type-free results in Section

2.

Definition 4.2

(+,).

8

(1) The binary relation B on XTO is defined as follows.

If t,u € ATO then

tBue Jv,we ATO

t

6V'Afw Au =L _(v,w,1) A (v,w,1) € dom(Zf)

£

If tB8u then t is called a B-redex.

The notion of reduction -

ufv

u

>
B
-
B
-5
B
-5
B

=

B

u >, v;

=

B8
Xfu +B Afv

on ATO is inductively defined by

!

= 0(plu "*B oip)v ,

=

=

Suw +B Svw ;

Swu +B Swv .

for every £ e T\{®} ;

for every p € N x MM ;

117

’

In order to facilitate the evaluation of the product of quasi-types
and types in ATO we give the following definition of the product of
two quasi-types ensuring that this extended version of the x-operation
is associative; i.e. £ » (gxh) = (£*g) » h, for all quasi-types f,g

and types h.

Definition 4.3.

*
Let F, G, H, I and J be elements of (T\{®}) . The product of two

quasi-types is defined as follows

((w(P&Jg,I), ifH=G&J

T(F,G) % m(H,I) =4 w(F,J&I), ifG=J&H
® , otherwise g
Lemma 4.1.
The *-operation is associative; i.e. £ % (gxh) = (f£xg) * h, for all

quasi-types f£,g and types h.

Proof. The result follows from Definitions 1.2.5 and 4.3 by simple

computation. 0

Definition 4.4.

We define the following sub-sets of T\{®}

—
Il

{f ¢ T\{®} | FS(£) = v} ;

{f e T\{®} | FS(f) = p} . 0

lav}
il

Lemma 4.2.

Let t « ATO and T be a type context. If typ(t,1) # ® then

(1) typ(t, 1) € T @ LS(t) € rge(§)
(2) typ(t,T) € P & LS(t) ¢ rge(w) .

Proof. By induction on L(t). O

Lemma 4. 3.
Let C be a non-empty set and let py be a refmap.
<m>
If f,g € C" and L(f) = m then (fag) oy " = £ & (gouy).

Proof. Simple computation. 0

118

Lemma 4.4.

Let t € ATG, T be a type context and p be a refmap.
*

If tou € (T\{®}) then typ(Mt,T) = typ(t,Ton).

Proof. By induction on L(t) and Lemma 4.3. 0

Lemma 4.5.
Let t = sw(P) and s & u be elements of XTO and let T be a type con-
text. If typ(t,T) # ® and W(t) = m then

*
HFl,F JFye€ (T\{®})

2

L(F3) =m A typ(s&u,T) = Tr(Fl,FZ) * typ(u,F3 & T)

Proof. By induction on L(t). 0

Lemma 4.6.

Let t = sw(yP) € ATG and T be a type context. If typ(t,T) # ®,

W(t) = m and PC(t,0) then typ(t,T) = p(Gl'G2’G3) and L(G3) =m, for
*
. ®)
certain G,,G,,G, € (T\{®})
Proof. From Lemma 4.5 it follows that typ(t,1) = n(Fl,Fz) *

* typ(w(w),F3 & T), for certain Fl,E‘z,F3

Furthermore, by Lemma 2.6 PC(w(y),m) and, hence, ¢ ¢ perm(m). If

e (T\{®})" and L(F,) = m.

Y € perm{(m) and L(F3) = m then typ(w(w),F3 &T) = p(¢,¢,F3 oY) and

£
1 for Gl' F2 or 62 and F3° Y for G3 we see

,G3) and L(G3) = m. a

L(F3<>¢) = m. By taking F
that typ(t,T) = p(Gl,G2
Theorem 4.1.

Let Gt,kfu € ATO, k € IN and T be a type context. If

tYp(Gt:Afu,r) # ®, PC(t,0) and PC(u,k) then (t,u,l) € dom(Zf) and

tYP(n‘St)\fu,T) = typ(Z_(t,u,1),1).

£

Proof. To begin with we have the following data

ta. PC(t,0) ;

1b. PC(u,k) ;

2a. typ(t,T1) = £;

2b. typ(étkfu,'c) = typ(u,<f>& 1) # ®.

The proof is given by induction on L(u).

119

(i) u =
(1)
(2)
(ii) u =
1 ¢
then
(iii) u =

n =1 : From 2b and Lemma 4.2 it follows that £ ¢ T, hence,

by 2a, LS(t) € rge(§). Therefore Zf(t,u,l) = t and

tYP(Zf(tlull)lT) =
= typ(trT) =
= f = (2a)

= typlu,<f>&T1) =

= typ(8 tA u,T) . (2b)

n > 1 : Then Zf(t,u,l) = f(n—-1). From 2b and Lemma 4.2 it
follows that 1(n-1) € T. Therefore

typ(Zf(t,u,l),T)

1
1

typ(€(n-1),1)

l

T(n~1) =

I

typ{u,<f> & T} =

I

typ(8 tA _u,T) . (2b)

w(P) + If 1 ¢ rge(y) then Z_(t,u,1) = Sti_.u, and if

f £
rge (¥) then ¥ = @ and Zf(t,u,l) = w(®). If Ef(t,u,l) = wi(P)
typ(zf(t,\lrl),'f) =
= D(¢'¢l¢) =

if

typ(u,<f>& 1) =

typ(GtAfu,T) . (2b)

Agv : Then Zf(t,u,l) =)\ng(t,v,2) =)\gEf((plt,Slv,l), if

(q)1 t,%l v,1) € dom(Zf) . We now apply the induction h?i)othesis

tS_elT From la and the corollary to Lemma 2.7 it follows

tha—{—PC((p1 t,0). From 1b it follows that PC(v,k+ 1) and by

Lemma 2.8 we have PC(%l v,k +1) (51 =y~, for a ¥ € perm(2)).

Furthermore

120

typ((p1 t,<g>&T) =

(iv)

1

typ(t, (<g>&T) ° (Pl) = (Lemma 4.4)

il

typ(t,T) =
= f (2a)
and

typ(%1 v,<f>8&<g>&T) =

typ (v, (<£> & <g> & T) 031) = (Lemma 4.4)

typ(v,<g> & <£> & T) #
#£® . (2b)

Therefore typ($ ¢, t)\f %1 V,<g> & T) = typ(%lv,<f> &<g> & T) # ®.

By the inductioﬁypot—ﬁgsis (o, £,9 V,1)—e-dom(2f) and, hence,

1 1

Zf(t,u,l) = Xng((il—t,el v,1). Furthermore

typ(Zf(t,u,l),T) =

= "T(<g>,¢) * tYP(Z

f(wlt,ilv,l),<g>&r) =

= T(<g>,B) * typ(S (plt)\f%)l V,<g> & T) = (induction
— — hypothesis)

= ﬂ(<g>,¢) * typ(v,<g> & <f> &T) =
= typ(u,<f>&71) =

= typ(§tA w,1) . (2b)

u=o0(n,mv : From 2b it follows that £ € P and therefore
*
= , , i F ®}) .
£ p(F1 FZ,F3) for certain Fl'FZ' 5 € (T\{®}) Furthermore
from 2a, la and Lemmas 4.2 and 4.6 it follows that LS(t) = w(y),

for some segmap ¥, and Yy € perm(m) and L(F3) = m, where m = W(t).

(1) n =1 : Let t = sw(y) then Zf(t,u,l) = sg‘ Zf(t,v,1+m) =
= sy Zf(cp_mt,?ln_v,l), if (_(ilgt,fﬂv,l) € dom(Zf). We now
apply the induction hypothesis to %mv. From la and the
corollary to Lemma 2.7 it follows that PC(q)mt,O) . From 1b
it follows that PC(v,k +m) and by Lemma 2.8 we have

PC (%m v,k +m). Furthermore

121

t,F_&T) =
typ(fvm 1Fay)

typ(t,(F3&T) ° (pm) = (Lemma 4.4)

typ(t,1) =

and

9 ,<E>&F_&T) =
typ(aV £ 3)

typ(v, (<f>&F_&T) ° %m) = (Lemma 4.4)

3

= typ(v,l:‘3 & <f>&T) #

£ ®

8 t ,F = ,<£>&F ® .
Therefore typ(e Afsmv 3&1’) typ(%mv & 3&1) #

By the induction——hypotme—sis ((pmt,%mv,l)——e dom():f) and,
hence, Zf(t,u,l) =*s? Zf(_(pﬂt,i}lr_lv,l). Furthermore let
G :1G,y,Gy € (T\{®})" besuch that L(G3) = m and typ(s&w,T) =

= n(Gl,G2) * typ(w,G3&T), for arbitrary w ¢)\To such that

S &W € >\TO (cf. Lemma 4.5). By taking w = w(y) we see that

]
]

typ(t,T)

= n(Gl,Gz) * typ(w(w),G3&T) =

1

n(Gl,Gz)

*

p(B,9, (G3 &T) oY) =

i

TT<G11G2) * O(¢I¢IG3°¢)) =

i

Q(G G, G

17CprCG30W) =

p(F, ,F

17Fp7F3)

Hence G1 = F G, =F_, and G, oy = F_. Furthermore

172 2 3 3

typ(Z _(t,u,l),1) =

£

122

= typ(sVy Zf((pmt,{imvrl),'f) =

= 7(G,,G,) * typ(¥ Zf(iﬂit'?ﬁv'l)'%&ﬂ =
= ’ ’) & oY~ = L
m(F Fy) typ(Z (o €9 v,1),(Gy&T) o y7) (Lemma
o n 4.4)
= ’ 1), =
n(Fl,Fz) * typ(foﬁﬂt iEV') F3&'U
= n(Fl,F2) * typ (8 (pmt)\f %mv,FB&T) = (induction .
-_— — hypothesis)
= w(Fl,F2) * typ(imv,<f> &F3&T) =
= ﬂ(E‘l,Fz) * typ(v,F3&<f>&T) =
= typ(o(l,m)v,<£>& 1) =
= typ(étkfu,r)
(2) n > 1 : Then Zf(t,u,l) = og(n=-1,m) Zf(t,v,m+1) =
= 0(n-1,m) Zf((p—mt,:‘)ﬂv,l), if (&Rt,?ﬂv,l) € dom(Zf). From
2b it follows that n-1 € dom(t) and T(n-1) = D(Fl'FZ'F3)'

Analogous to case (iv) (1) we have PC((pmt,O), PC(%mv,k+m)

and typ($ (pmt)\ %mv,F &T) # ® . By the induction—hypothesis

bl 3

(o t,9 v,1) € dBFn_(Z) and, hence, I_(t,u,l) =
m m £

£
=o(n-1,m) Z (p t,9 v,1). Furthermore
£ m ' m

tYP(Zf(t,ull),T) =
= TT(Flle) * typ(zf(ilgt'%_mv’l)’F3&T) =
= W(Fl'Fz) * typ (8 ‘Pmt)\f QmV:F?’&T) = (induction .
- _ hypothesis)
= ﬂ(Fl,F2) * typ(%_mv,<f>&F3&1-) =
= N(Flle) * typ(v,F3&<f>&r) =
= typ(o(n,m)v,<£>&T) =
= typ(&t}\fu,r) . (2b)
u = §vw : Then Ef(t,u,l) = d):f(t,v,l) Zf(t,w,l). From 1b and 2b

it follows that PC(v,0) and typ(v,<f>&T) # ®. By the induction

123

hypothesis (t,v,1) € dom(Zf) and typ(dt)\fv,T)

= typ(X_(t,v,1),T) = typ(v,<f> & 1). Furthermore, from lb and 2b

£
it follows that PC(w,k) and typ(w,<f>& 1) # @ . By the induction
hypothesis (t,w,1) € dom()jf) and typ (6 t)\fw,T)

= typ(Zf(t,w,l),T) = typ(w,<f> & 1). Therefore

typ(Zf(t,u,l),T) =

= typ(<5 Zf(tlvll) L _(t,w,1),1) =

£

= (P, <typ(Z _(t,v,1),1)>) = typ(Zf(t,w,l),T) =

£
= m{@,<typ (b tkfv,'r)>) * typ(dtxfw,T) = (induction
hypothesis)
= (@, <typ(v,<f>&T)>) * typ(w,<f>&T) =
= typ(Svw,<f> & 1) =
= typ(dtxfu,r) . (2b) 0

Corollary (Closure).

(1) If PC(Gtkfu,Q) (2 2 0) and typ(ét)\fu,r) # ® then
(t,u,1) € dom(Zf) and typ(Zf(t,u,l),T) = typ(dt)\fu,r) ;

(2) Let t,u €)\TO and t —>B u. If PC(t,0) and typ(t,T) # ® then

typ(t,T) = typl(u,T1).

124

REFERENCES

Barendregt [81]: Barendregt, H.P. The Lambda calculus: Its Syntax
and Semantics. North Holland, 1981.

de Bruijn [72]: de Bruijn, N.G. Lambda calculus notation with name-
less dummies, a tool for automatic formula notation, with
application to the Church-Rosser theorem. Indag. Math. 34,
1972, pp. 381-392.

de Bruijn [78al: de Bruijn, N.G. Lambda calculus with namefree for-
mulas involving symbols that represent reference trans-
forming mappings. Indag. Math. 40, 1978, pp. 348-356.

de Bruijn [78b]: de Bruijn, N.G. A Namefree Lambda Calculus with
Facilities for Internal Definition of Expressions and
Segments. Dept. of Math. and Comp. Sci., Eindhoven Uni-
versity of Technology, 1978, TH-Report 78-WSK-03.

de Bruijn [80]1: de Bruijn, N.G. A survey of the project AUTOMATH.
Seldin & Hindley [801, pp. 579-607.

Church [40]: Church, A. A formulation of the simple theory of types.
J. Symbolic Logic 5, 1940, pp. 56-68.

van Daalen [80]: van Daalen, D.T. The language theory of AUTOMATH.
Dissertation. Eindhoven University of Technology, 1980.

van Dalen [78]: van Dalen, D., Doets, H.C., de Swart, H. Sets: Naive,
Axiomatic and Applied. Pergamon Press, 1978.

Jutting [81]: van Benthem Jutting, L.S. Description of AUT 68. Memo-
randum 86-01. Dept. of Math. and Comp. Sci., Eindhoven Uni-
versity of Technology, 1986.

Nederpelt [73]: Nederpelt, R.P. Strong normalization for a typed
lambda calculus with lambda structured types. Dissertation.
Eindhoven University of Technology, 1973.

Newman [42]: Newman, M.H.A. On theories with a combinatorial defini-
tion of "equivalence". Ann. of Math. (2) 43, 1942, pp.
223-243.

Seldin & Hindley [80]: Seldin, J.P. and Hindley, J.R. To H.B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism,
edited by J.P. Seldin and J.R. Hindley. Academic Press,
1980.

Shoenfield [67]: Shoenfield, J.R. Mathematical logic. Addison Wesley,
Reading (Mass.), 1967.

125

INDEX OF DEFINITIONS

calculus first symbol, 40
AV- —, 3
ATV— —, 20 last symbol, 40
Ao- —, 42 length (of a sequence), 40
XTO- —, 28
A= —, 42 norm (of a numbered term), 95
A= —, 73 numbered term, 94
A,-—, 114 numbering function, 94
Aé— -—, 96
Ay-—, 111 occurrence
§'- —, 111 -of a variable, 43, 44
56‘ —, 100 internal reference-, 44
Al- —, 111 external reference-, 44
Aé— —, 101
Church-Rosser, 36 permutation condition, 67
closure, 124 product, 29, 118
common reduct, 35
concatenation, 41 reduction
correct term, 30 o- —, 5

g- — (on M), 114
decreasing numbering, 97 8~ — {(on ATo), 117
diamond property, 36 g'- —, 74

86— —, 96
essential notion of -, 35
-8'-ncrmal form, 111 one step -, 35
—Bé—normal form, 102 -path, 37
essentially reference
-B'-normalizes, 111 -depth, 43, 44
—Bé—normalizes, 102 -mapping (refmap), 45
~B'-reduces, 111 -number, 42
—Bé—reduces, 102 R
-B'-strongly normalizes, 111 -convertible, 35
—Bé—strongly normalizes, 102 -infinite, 37
normalizing, 102, 111 -normal form, 35
strongly nermalizing, 103, 111 -normalizes, 35

126

-reduct, 35 quasi- —, 29

-strongly normalizes, 37 Y- —, 28
- —, 29
segment, 42 p- —, 28
segment mapping (segmap), 42 ~context, 29
sequence, 40 typing function, 29
substitution
L- —, 51 variable
L'~ —, 74 E-—, 42
o- —, 42
type
the incorrect-~, 21, 28 weakly Church-Rosser, 37

127

SAMENVATTING

Het onderzoek waarvan in dit proefschrift verslag wordt gedaan heeft
betrekking op een gegeneraliseerd systeem van A-calculus, geheten Ao.
Het systeem wijkt af van bestaande A-calculi doordat een geheel nieuwe
klasse van termen is opgenomen, geheten segmenten. Segmenten waren
oorspronkelijk ontworpen door N.G. de Bruijn om te zorgen voor be-
paalde afkortingsfaciliteiten in de wiskundige taal AUTOMATH. Het on-
derwerp van dit proefschrift is een taaltheoretische studie van de

Ao-calculus.

In Hoofdstuk 1 wordt een uitgebreide informele beschrijving gegeven
van het Ao-systeem en worden de voornaamste verschillen aangegeven
t.o.v. klassieke ongetypeerde A-calculus. Tevens wordt er in Sectie
1.2 van dit hoofdstuk een beschrijving gegeven van een getypeerde
versie van Ao, geheten ATG. De types in ATU zijn een extensie van
zogenaamde "simple types” in de klassieke getypeerde A-calculus,
waarbij de uitbreiding hieruit bestaat dat er tevens types worden ge-

construeerd voor segmenten en segmentvariabelen.

In Hoofdstuk 2 worden de belangrijkste definities en basisresultaten

gegeven.

In Hoofdstuk 3 wordt een bewijs gegeven van de Church-Rosser eigen-
schap voor Ao volgens de methode van de eindige ontwikkelingen en in
Hoofdstuk 4 wordt een bewijs gegeven van de geslotenheidseigenschap

voor A _O.
T

128

CURRICULUM VITAE

De schrijver van dit proefschrift werd op 2 februari 1952 geboren te
Groningen. In 1971 behaalde hij aan de Rijks H.B.S. te Groningen het
diploma H.B.S.-B. Na de vervulling van zijn diensttijd is hij Wis- en
Natuurkunde gaan studeren aan de Rijks Universiteit Groningen. In
maart 1982 slaagde hij voor het doctoraalexamen Wiskunde met als hoofd-
vak mathematische logica. Sinds april 1982 is hij werkzaam bij de
Technische Hogeschool Eindhoven, meer in het bijzonder in de Onderaf-

deling der Wiskunde en Informatica bij Prof.dr. N.G. de Bruijn.

129

