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1. INTRODUCTION 

The 1-calculus is concerned with axiomatizing the mathematical concept 

of function and the rules governing the application of functions to 

values of their arguments. In the A-calculus a function is seen as a 

rule for calculating values; this is a view which differs from the one 

held in set theory, where a function is to be a set of ordered pairs 

and is identified with its graph. In axiomatizing the concepts of func- 

tion and application we define (i) a syntax, consisting of a set of 

grammar rules, and (ii) inference rules. The A-calculus to be described 

in this section, called Xu, is an extension of the ordinary type free 

A-calculus (cf. Barendregt [811) and was originally conceived by N.G. 

de Bruijn (cf. de ~ruijn[78b]). The main feature of Xu is the incor- 

poration of a new class of terms called segments. These segments were 

originally devised in order to provide for certain abbreviational fa- 

cilities in the mathematical language AUTOMATH. AUTOMATH is a typed 

A-calculus in which it is possible to code mathematical texts in such 

a way that the correctness of each proof written in AUTOMATH can be 

verified mechanically (i.e. by a computer). There is much to say about 

the AUTOMATH system, much more than the topic of this thesis aims to 

cover. We shall mainly treat AD as an interesting extension of the A- 

calculus in its own right and not pay very much attention to connections 

with AUTOMATH. This thesis will be a rather technical treatise of the 

syntax and axiomatics of Au-theory. For an introduction to the AUTOMATH 

project we refer to de Bruijn [80] and Jutting [81]; the latter paper 

offers an excellent introduction to a fundamental AUTOMATH-language 

called AUT-68. For a detailed treatise of the language theory of the 

AUTOMATH-languages we refer to van Daalen [80]. 

This introduction consists of three sub-sections. In Section 1.1 we 

shall give an informal description of the Xu-system and pinpoint major 

differences with ordinary type free 1-calculus (for a very complete 

and up-to-date description of type free 1-calculus we refer to Baren- 

dregt [81]). Section 1.2 contains an informal description of the A 5- 
T 

system (Xu extended with types). The types in 1 5 are an extension of 
T 

the types in Church's Theory of simple types (cf. Church [401), the 

extension being that simple types are constructed for segments and 

segment variables. Section 1.3, titled "Reduction and related proper- 



ties", differs from Sections 1.1 and 1.2 in that it is completely for- 

mal. We have included this formal section in our introduction because 

it provides an abstract framework in which reduction can be discussed 

for term-rewriting systems in general. 

1.1. An informal introduction to t h e  ~a-system 

In this section we shall give an informal description of a system called 

Xu. We shall offer some explanation for the motivation behind the system 

and show in which way ha is an actual extension of ordinary type free 

A-calculus. We start with a simple system called AV. 

1.1.1. The system AV 

The system AV is the well-known type free A-calculus as described in 

Barendregt [81], although there are some slight deviations in notation. 

Type free A-calculus has formulas like 

-he corresponding formulas in AV are written as 

~ Y X  

A byx 
X 

X A byx 
x Y 

6z A A byx 
x Y 

In AV functional abstraction is denoted by A (...) (i.e. the function 
X 

that assigns ( . . . ) to the variable x, where x may occur in ( . . .) ) , and 
mctional application is denoted by 6AB (i.e. the function B applied 

to its argument A, where A and B are AV-terms). Note that in AV argu- 

ments are written in front offunctions, this in contrast with ordinary 

iype free A-calculus where application of a function B to its argument 



A is usually written as B(A). The syntax of V is very simple and is 

given below. 

Definition 1.1.1. 

(1) AV-terms are words over the following alphabet 

vll~2,~31... variables 

A abstractor 

6 applicator 

(2) The set of AV-terms is the smallest set X satisfying 

(i) x E X , for every variable x 

(ii) A E X =$ AxA E X I  for every variable x 

(iii) A,B E X * 6AB E X 

As will be clear, AV-terms are written in prefix notation: each vari- 

able has arity 0 ,  each abstractor A has arity 1 and the applicator 6 
X 

has arity 2. Each term can be represented as a rooted tree. As an 

example we consider the term 

which we write in tree form as 

The correspondence between terms like (4') and trees like (4") is one- 

to-one. It certainly helps to think of AV-terms as such trees, and in 

particular to see operations on terms as operations on their corres- 

ponding trees; especially when long terms are involved it is often use- 

ful to consider tree representations of terms. 

In A-calculus we have the fundamental notion of application. The appli- 

cation of a function B to an argument A is written as 6AB. Apart from 

functional application we have the notion of functional abstraction. As 

said before, the intuitive meaning of A (...) is "the function that 
X 

assigns ( . . . )  to the variable xu. This is illustrated in the following 



example (not a XV-term by the way) 

i.e., we substitute the number 3 for the variable x in 2 x +  1. A for- 

mula of the form 6 A A  B is called a redex .  Substitution of A for the 
X 

free occurrences of x in B is denoted by C (A,B). The transition from 
X 

6 A A  B to C (A,B) is called f3-reduction. We now proceed by giving a 
X X 

more formal description of substitution. 

We recall that an occurrence of a variable x in a term A is called 

bound in A if this occurrence of x lies in the scope of some abstrac- 

tor A in A; otherwise this occurrence of x is called free in A. Note 
X 

that a variable can occur both free and bound in the same term; as an 

example consider the two occurrences of the variable x in the following 

term written in tree form 

Definition 1.1.2. 

If A is a term and x is a variable and y is a variable with y # x then 

we define C (A,B) inductively for terms B by 
X 

(2) C (All C) = X C 
X X X 

A C (Arc) , if x does not occur free in C, or: 

y does not occur free in A 

AZCx(A,C1) , otherwise - where Cf is obtained by 
(3) C (All C) = 

X Y renaming of all free occurrences of 

y in C by some variable z which does 

not occur free in A,C. 

Most of the four clauses in the definition given above are self-evident, 

with the possible exception of clause (3). Clause (3) is necessary in 

order to avoid that free occurrences of the variable y in A get bound 

by the h of A C after substitution, which would otherwise lead to 
Y Y 



inconsistencies. This renaming of bound variables is known as a-reduc- 

tion. In our case it is said that X C  a-reduces to X C ' .  Usually a- 
Y z 

reduction is considered unessential. If a-reduction transforms a term 

A into A' then A and A' are considered to be equivalent in an infor- 

mal way. This convention implies that the name of a bound variable is 

unessential; the "meaning" of a term is considered unaltered after per- 

forming an a-reduction on that term. Actually, in the definition of 

substitution givenabove, clause (3) does not introduce a proper term 

but rather an a-equivalence class of terms. 

1.1.3. Name-free n o t a t i o n  

Renaming of bound variables can sometimes be very cumbersome; proofs 

involving a-reduction are notoriously tedious. But apart from this we 

have our own intrinsic reasons to avoid a-reduction. Later on we shall 

introduce the full Xu-system, an extension of XV. The main feature of 

Xu is the incorporation of a new class of terms called segments. Seg- 

ments are discussed in Section 1.1.4. Substitution of segments for 

their corresponding variables can give rise to a large number of a- 

reductions, especially when the formulas are long. There is, however, 

a very simple way to avoid a-reduction. In de Bruijn [72 ] ,  N.G. de 

Bruijn introduced the concept of nameZess dummies; he invented a X- 

calculus notation that makes a-reduction superfluous. The idea is that 

we just write A instead of X 11 and every variable is replaced by 
x yr-" 

a term of the form 5 (n) , where n is some positive integer. Each c(n) is 
called a name-free variabZe and n is called a reference number. The 

reference number n of a name-free variable ((n) determines the X that 

binds a specific occurrence of c(n) in some term. The procedure is as 

follows. If the name-free variable <(n) occurs in some term t, we first 

form the tree representation of t. We then descend from <(n) towards 

the root of the tree and the n-th X encountered is the A that binds 

((n). As an example consider the following name-carrying term in tree 

representation 



The name-free equivalent of this term is 

Remark. If a reference number n is larger than the number of A's lying 

on the path from an occurrence of ((n) to the root of the tree in which 

it occurs then we can interpret that occurrence as being free. 

The use of name-free notation has certain consequences for substitution 

of At-terms (XV-terms written in name-free form), which we now shortly 

describe. Substitution in a AS-term t results in the replacement of 

free occurrences of a certain variable in t by some term u. We could 

also describe this situation in terms of trees by saying that certain 

end-points <(n) of the tree equivalent of t have been replaced by 

some tree d. Consider the following example of such a substitution in 

a A<-tree. 

Let t be the AS-term 

which has the following tree-representation 

This tree contains a redex, namely 

and we can therefore perform a 6-reduction on f .  By 6-reducing c ,  the end- 
point 5(3) is a candidate for substitution of the sub-tree 

Should we, however, simply replace <(3) by this sub-tree, as would have 



been the case if t had been written in name-carrying form, then this 
would result in the following tree t' 

It is immediately clear that the variables 5(l) and 5(2) in ;I refer 

to completely different A's than in t. This inconsistency is due to 
the fact that 

(i) 5 (1) and 5 (2) are external references in t (i.e., references to 

A's to the left of the subterm 6 5(2) c(l)); 

(ii) after replacement, the variables 5 (1) and 5 (2) in ;I have two 

extra X's on their left. 

There is, however, a simple way to resolve this inconsistency: by 

raising the reference numbers 1 and 2 in < ( I )  and t(2) by 2 in C ' ,  
these variables refer to the same X's that they originally referred 

to in E. This example demonstrates that certain measures have to be 
taken in order to ensure that external references remain intact when 

we substitute a At-term. In Section 2, where we give a formal defini- 

tion of substitution of name-free terms, we shall introduce so-called 

reference mappings, which see to it that reference numbers are suita- 

bly updated in order to avoid inconsistencies as described above. We 

refrain from further discussion of these reference mappings here; they 

shall be described extensively, both informally and formally, in Sec- 

tion 2. 

In the following sections of this chapter we shall first stick to 

name-carrying notation of formulas. The major reason for this is to 

point out that name-carrying notation can possibly be maintained in 

Ao-calculus (AV-calculus extended with segments and segment varia- 

bles), but we also wantto showhowawkward things can get in ha-calculus 

by employing name-carrying notation. In the case of AV-calculus the 

name-free notation might seem exaggerated in preciseness, and we can 

imagine reservations towards this notation as far as readability of 

formulas is concerned. In the case of Aa-calculus we shall try to show 

that the name-free notation has advantages over name-carrying notation, 

both in preciseness and readability. 



1.1.4. Segments and abb rev ia t i ons  

We may consider a variable as an abbreviation of a certain term if 

this variable can be replaced by that term by means of some suitable 

8-reduction. For example, consider the following term written in tree 

form 

By @-reducing (5) we obtain the term 

i.e. a term in which the variable z has been replaced by the term A x 
X 

and the redex has vanished. If we would have more occurrences of the 

variable z ,  each bound by the A of the redex, then each of these 
z 

occurrences serves as a kind of abbreviation of the term A x. 
X 

In Ao there are, however, still quite different things that we want to 

abbreviate. One such thing is a so-called 6-string like 

If it occurs more than once in a certain term, we may wish to abbre- 

viate it. Yet (6) is not a term, in the sense of a AV-term, but only 

part of a term; it becomes a AV-term if we place an arbitrary AV-term 

behind it. Such parts of AV-terms are called segments. Another example 

of a segment is a so-called A-string like 

In AUTOMATH we have many cases where we would like to abbreviate seg- 

ments. In this respect we mention an interesting AUTOMATH-language, 

namely Nederpelt's language A (cf. Nederpelt C731). The original idea 

of introducing such a language as A stems from N.G. de Bruijn who de- 

vised a language called AUT-SL (from AUTOMATH-Single Line) in which 

AUTOMATH texts can be represented as one single formula. The language 

A was devised as a fundamental and simple AUTOMATH-language which is 
very well suited for language-theoretical investigations. In typical 



codings of AUTOMATH t e x t s  i n  h we encounter very many copies  of c e r t a i n  

&-s t r ings  and A-strings, copies which we would l i k e  t o  abbrevia te .  As 

a consequence, segments l i k e  g-s t r ings  and X-strings w i l l  be t r e a t e d  a s  

separa te  independent e n t i t i e s  i n  Xa. In  Xa we s h a l l  even t ake  a broader 

approach and al low f o r  segments of a much more genera l  form than 6- 

s t r i n g s  o r  X-strings alone. In  the  following s e c t i o n  we s h a l l  give 

examples of such segments of a more genera l  form. 

1.1.5. Segment v a r i a b l e s  and s u b s t i t u t i o n  

Segments a r e t e r m s w i t h  a kind of open end on t h e  extreme r i g h t .  From 

now on we s h a l l  use the  symbol w t o  ind ica te  t h e  open end on the  r i g h t .  

So 

i s  a segment a s  wel l  a s  

A s  s a i d  before ,  segments a r e  not  XV-terms; a segment becomes a XV-term 

i f  we rep lace  the  w by an a r b i t r a r y  XV-term. According t o  t h i s  scheme 

t h e  following formulas can a l s o  be considered a s  segments: 

By replacing t h e  w i n  both of these  formulas by some XV-term we obta in  

a XV-term (provided, of course,  t h a t  A and B a r e  XV-terms) . In Xu we 

w i l l  go even one s t e p  f u r t h e r  by allowing recurs ive  n e s t i n g  of segments, 

and a s  a consequence a ' s  can occur i n  o the r  branches a s  we l l ,  l i k e  i n  



All these occurrences of w in the foregoing formulas act as a kind of 

"holes", which - once replaced by a AV-term - yield again a XV-term. 
All formulas having an w on the extreme right are called segments in 

Xu. Along with segments we also add to our system a new kind of vari- 

ables for which segments can be substituted. These variables are re- 

presented by unary prefix symbols and are denoted, in name-carrying 

form, by u,o',o", .... An example of a Xu-term containing a segment 
and a segment variable is 

This term is in redex form, where the segment variable u is bound by 

the A of the redex. Performing a 8-reduction on this redex results in u 

i.e., the prefix symbol a is replaced by the segment X x hy X~ (where 

the w has been dropped). In Xu, segment variables can serve as a means 

to abbreviate segments, just like variables in XV can serve as a means 

to abbreviate AV-terms. When using segment variables to abbreviate 

segments we must be careful, though. Consider for example the Xu-term 

(8). The variable x in that term refers to the abstractor X hidden 
X 

inside the segment variable or as seen in (8') where x gets bound by 

h after @-reduction of (8). This is an intended feature which we al- 
X 

ways have to take into account in Xu-calculus. If a segment variable 

u occurs in some Xu-term then after replacement of o by the segment s 

that u abbreviates in t, it can happen, as most often will be the case, 

that certain variables occurring in t get captured by abstractors lying 

on the main branch of the tree representation of s. This is to say that 

each occurrence of a segment variable a in a Xu-term t can contain ab- 

stractors - hidden inside a - which will capture certain variables in 
t after performing a B-reduction in t resulting in the replacement of 

a by the segment that u abbreviates in t. 



We now wish to discuss a situation in which there are more occurrences. 

of the same segment variable a in some Xa-term. Consider the following 

Xu-term in tree representation 

Performing a $-reduction on this term results in 

where both instances of a have been replaced by the segment A X . The 
x Y 

variables x and y in (9') are bound by the last two abstractors A and 
X 

X as indicated by the arrows in (9") shown below 
Y 

Suppose, however, that we would want x and y to be bound by other 

occurrences of the abstractors A and A as indicated in 
X Y 

In Xu we want to have the freedom to allow for such deviations in pri- 

ority of binding power of X's, which appear when we have more than one 

occurrence of some segment variable a in a Ao-term. One way of doing 

this is by renaming the abstractors in (9') in a suitable way; consider 

for example the following term 

It is clear that the variables x and y are bound by the first two ab- 

stractors A and X just as we intended them to be bound in ( 9 " ' ) .  
X Y' 

This renaming, however, is done after substitution has taken place; 

i.e. the renaming has taken place after $-reduction of (9) to (9'). 

What we would like is that it can be seen beforehand (i.e. before 6- 

reduction takes place) how the abstractors inside segments shall be 



renamed. We would like to have a means systematically indicating be- 

forehand how this renaming of bound variables shall take place, in- 

stead of more or less arbitrarily renaming bound variables in segments 

after 6-reduction. One way of doing this is by replacing the first, 

respectively the second, occurrence of o in (9) by o(x,y), respectively 

a(xltyl). These parameter lists (x,y) and (x ,y ) serve as instructions 
1 1  

indicating that the abstractors X and X are to be renamed by X ,X 
X Y x Y 

and XxllXyl in the first, respectively the second occurrence of a in 

(9) (actually only in the second occurrence of o real renaming takes 

place). In general if a segment has n (n > 0 )  X's lying on the main 

branch of its tree, say Xxl~...,Xxn, and a is a segment variable re- 

ferringtothat segment then by adding a parameter list (ylr...,yn) to 

a we have an instruction indicating that the n abstractors XX1,..., 
'xn 

are to be renamed by Xyl,...,Ayn and in that order. Also the occurrence 

of the variables xl,...,x in the segment which were bound by 
n 

'9 
,..., Xxn are to be renamed by y I - -  - tYn . We note that it is impor- 

tant that the parameter list added to a segment variable a has as its 

length: the number of A's lying on the main branch of the segment s 

that a refers to (this number is called the weight of s). 

BY adding parameter lists to segment variables we have a means to bind 

occurrences of variables referring to a X hidden inside a segment 

exactly as we desire. There is still one problem, though, that we have 

to resolve. When performing a 6-reduction inside a segment we are some- 

times dealing with redices which, in the substitutional process in- 

volved, have an effect on the w on the extreme right of that segment. 

Consider, for example, the following segment 

By @-reducing the redex 6 A X  X X w occurring in (10) we are faced 
Y Z W  

with evaluating C (A,X X w ) .  By the clauses given in Definition 1.1.1 
Y z w  

we know how to "shift" the C -operator past the two abstractors X 
Y Z 

and X but then we arrive at the w and have to decide how to evalu- 
w1 

ate C (A,w). We could simply define C (A,w) as w, but then certain 
Y Y 

vital information would get lost; a situation which we now explain. 

Suppose that (10) occurs as a segment in some term t and that (10) 



is referred to by some segment variable o(y ,y ,y ,y ) occurring in t. 1 2 3 4  
Suppose also that there is an occurrence of the variable y in t which 

2 
refers to the abstractor X hidden inside a(ylry2,y3,y4). By 6-reducing 

y2 
(10) and defining C (Arm) as wr this occurrence of y is no longer a 

Y 2 
candidate for substitution of the term A (which would have been the 

case prior to this @-reduction of (lo)), simply because the abstractor 

X (or better: A ) has vanished. In order to avoid inconsistencies and 
Y y2 
to keep this candidate-role of substitution for such occurrences of 

variables y intact, we shall define such substitutions of a term A 
2 

at an end-point w of a segment by 

In this way it remains possible to refer to the A of the original 
Y 

redex in (lo), and occurrences of variables which referred indirectly 

to that lambda by means of a reference to a lambda hidden inside some 

segment variable remain candidates for substitution of the term A. 

There is still a problem, though, because the order of the A's in the 

reduced segment is different from the order in which they appeared in 

the original segment. In our example, 8-reduction of (10) results in 

where z and w have possibly been replaced by new variables z' and w', 

this in case that free occurrences of z or w in A would otherwise have 

been captured. The abstractors in (10) appear in the order X x y z w  ,A ,A ,X 

and in (10') the order is Xx,AZl,hwl,Ay. This difference has conse- 

quences when these segments are substituted for some occurrence of a 

variable a(y1,y2,y3,y4). Consider, for example, the following two terms 

in which the segments (lo), respectively (lo'), occur 



and 

These terms 8-reduce to 

and 

where A' is obtained from A by renaming all free occurrences of x by 

yi. In (12) we see that A' can be substituted for y by performing one 
2 

more @-reduction; this is, however, not the case in (12'). So by 

changing the order of the A's in some segment s by performing a 8- 

reduction inside s we can get the situation that occurrences of va- 

riables that originally (i.e. prior to this 8-reduction of s) referred 

to a certain X hidden inside some parameter-listed segment variable, 

afterwards refer to a completely different A. There is a way, however, 

in which such inconsistencies can be resolved. By adding an extra pa- 

rameter, called a segment mapping (or segmap for short) to an w we can 

safely @-reduce a segment prior to substitution of that segment. A 

segmap is a permutation of some interval [l..n] of Il (nr O ) ,  and tells 

ushow torestore theoriginal orderofthe A's occurring in a segment; 

i-e. by adding a segmap to the w on the extreme right of a segment 

we can determine the order in which the abstractors occurred before 

6-reduction of the original segment. Instead of writing w we now write 

w(+), where $ is some segmap. In our example we replace the w on the 

extreme right of ( 11 ' ) by w ($1 , where I) is a permutation of [ 1. .41 

defined by 



Let us denote t h i s  modification of (1  1 ' ) by (11 " )  . I f  we rearrange t h e  

order  of the  parameter l i s t  (yl  ,y2,y3,y4) i n  accordance t o  I) ( i . e .  t h e  

f i r s t p a r a m e t e r  remains f i r s t  i n t h e  l i s t ,  the  secondbecomesthe t h i r d ,  t h e  

th i rdbecomesthe  four th  a n d - m o s t i m p o r t a n t l y - t h e  fourthparameterbecomes 

the  second i n t h e  l i s t )  thenweobtainanewparameterlist ( y  , y  ,y  , y  ) .  1 3 4 2  
BY replacingtheparameter  l i s t  (y I Y  I Y  , Y  ) i n  (11 ' )  by t h i s  newparameter 

1 2 3 4  
l i s t  (y1,y3,y41y2) we ob ta in  t h e  following modified vers ion of (11") 

which @-reduces t o  

and we see  t h a t  a l l  occurrences of va r i ab les  i n  (12) and (12") r e f e r  

t o  the  same X ' s ,  j u s t  a s  we wanted. 

By adding parameter lists and segmaps we can take  ca re  of problems con- 

cerning references  t o  X's hidden ins ide  segment v a r i a b l e s  i n  a s u i t a b l e  

way. We s h a l l  now at tempt  t o  g ive  a more formal desc r ip t ion  of subs t i -  

t u t i o n  of a segment f o r  a segment va r i ab le .  

We s h a l l  p resen t  t h i s  d e f i n i t i o n  i n  name-carrying form, t h i s  i n  order  

t o  show t h a t  name-carrying no ta t ion  can be maintained i n  p r i n c i p l e  but  

t h a t  employment of name-free no ta t ion  provides f o r  a more n a t u r a l  (and 

c e r t a i n l y  more concise) means f o r  deal ing with s u b s t i t u t i o n  of seg- 

ments f o r  segment va r i ab les .  

Def ini t ion 1.1.3. 

Let  A w (I)) be a segment with weight n (n E IN U ( 0 ) )  , $ be a permutation of 

[ 1. .n l  and B be a term. Subs t i tu t ion  of A w (I)) f o r  o (y . . . , yn) i n  

o ( y l , .  . . , y  ) B  i s  defined by 
n 

(i) 

(ii) 



where i d  (n )  denotes t h e  i d e n t i t y  map on [ 1. . nl  , (y i , . . . , y ' ) i s  the  re-  
n 

s u l t  of rearranging ( y l , .  . . , yn) a s  indicated by JI and A '  i s  t h e  r e s u l t  

of s u i t a b l e  renaming of bound va r iab les  i n  A a s  indicated by 

This d e f i n i t i o n  i s  s t i l l  r a t h e r  vague s ince  we have not defined 

( A w ( + ) , B ) ,  and a l s o  because such desc r ip t ions  a s  "re-  
(yl 1 . .  . p ~ ~ )  

arrangement of a parameter l i s t  a s  indicated by a segmap" and " s u i t -  

ab le  renaming of bound va r iab les  i n  a term a s  indicated by a parameter 

l i s t "  can hardly be considered a s  desc r ip t ions  with formal s t a t u s .  The 

t r a n s i t i o n  from (ii) t o  (iii) i s  a l s o  a b i t  s t r ange ,  s ince  it i s  not 

c l e a r  from (ii) alone how the  segmap JI i n  (iii) suddenly t u r n s  up 

again.  Apparently, t h i s  i s  no t  a very good d e f i n i t i o n  s ince  it is  too 

vague; but ,  a s  mentioned before ,  t h i s  d e f i n i t i o n  was only intended a s  

an at tempt towards a formal d e f i n i t i o n .  A p rec i se  formal d e f i n i t i o n  

of s u b s t i t u t i o n  f o r  segment va r i ab les  can of course be given,  but  such 

a d e f i n i t i o n  would be r a t h e r  involved. There is a more e legan t  and 

s h o r t e r  way t o  def ine  s u b s t i t u t i o n  f o r  segment va r i ab les ,  namely by 

employing name-free no ta t ion  f o r  segments and segment va r i ab les .  This 

no ta t ion  i s  described i n  the  following sec t ion .  

1.1.6. Name-free notation fo r  segments and segment variables 

There i s  another way of deal ing with references  t o  X's hidden ins ide  

segment v a r i a b l e s  than a t t ach ing  parameter l i s t s  t o  segment v a r i a b l e s ,  

namely by employing name-free no ta t ion .  What we s h a l l  do i s  the  f o l -  

lowing. Segment va r i ab les  a r e  w r i t t e n  i n  name-free form a s  u(n ,m) ,  

where n denotes t h e  reference  number of a (which, l i k e  i n  < ( n ) ,  de- 

termines the  X t h a t  some s p e c i f i c  occurrence of u(n,m) r e f e r s  t o )  

and m ( m  2 0 )  denotes the  number of X's ly ing  on t h e  main branch of 

the  t r e e  representa t ion of the  segment t h a t  o(n,m) in tends  t o  abbre- 

v i a t e  ( t h e  number m i s  a l s o  c a l l e d  the  weight of o ( n , m ) ) .  The number 

m i n  u(n,m) i s  t o  p lay the  r o l e  of a parameter l i s t  i n  name-carrying 

nota t ion;  i . e .  m i n d i c a t e s  t h a t  the re  a r e  m X's hidden i n s i d e  o(n,m).  

A s  an example of a term i n  name-free nota t ion containing a segment 



and a segment variable consider the following term written in tree form 

In this term we see that ~ ( 1 ~ 3 )  abbreviates a segment with three A's 

lying on the main branch of its tree; so when determining the X that 

5 ( 5 )  refers to we descend from 5(5) towards the root of the tree, sub- 

tract 3 from 5, subsequently subtract 1 and see that 5(5) refers to 

the first X (from the left) of the tree. The variable 5(2) refers to 

the second h (from the right) hidden inside a(1,3) ; 5(2) is thus bound 

by the second A (from the right) of the segment 

By employing name-free notation we get a concise way of denoting seg- 

ment variables and can do without attaching (potentially long) para- 

meter lists to these variables. There is still one problem, though; a 

problem which we discussed earlier on in the name-carrying version of 

Ao-calculus, which dealt with the performance of certain 8-reductions 

inside segments prior to substitution of those segments for their re- 

spective segment variables. By performing a @-reduction inside a seg- 

ment, the order in which certain X's originally occurred in that seg- 

ment can be disturbed and, as we have seen earlier, this can lead to 

problems when we substitute the reduced segment for certain occurrences 

of segment variables in a term in which that segment occurs. We solved 

those problems by adding segmaps to the a's on the extreme right of 

the segments involved and we shall do so again in the name-free version 

of Xu. 

We now shortly describe substitution of segments for segment variables 

and we shall give this description in an informal manner in terms of 

trees. The tree representation of a segment has an a($) - where + is 
some segmap - on the extreme right of its main branch. When we sub- 
stitute a segment we remove the w(+) and put the remaining tree frag- 

ment in the place of some occurrence of a segment variable in a Xo- 

tree. Segment variables occur in Xo-trees as unary nodes and substi- 



tution of segments for segment variables thus gives rise to replace- 

ments at unary nodes inside a Aa-tree (which differs completely from 

A<-substitutions, where we could only perform replacements at end- 

nodesoftrees). When such a substitution is performed, we again - as 
in the case of At-substitutions - have to be careful and update exter- 
nal references in segments in order to ensure that these references 

remain intact after substitution. But not only do we have to update 

external references when we substitute a segment for a corresponding 

segment variable, we also have to take into account the effect of the 

segmap $ attached to the end-point w of the segment involved, since 

such a segmap reallocates references to X's lying on the main branch 

of the segment which we want to substitute. We now give an example 

to demonstrate both of these features. Consider the following example 

of a Ao-tree containing a segment and a segment variable 

where $ is the permutation of [1..2] defined by $(I) = 2 and $(2) = 1. 

This tree, which we shall refer to as t ,  contains a redex, namely 

and we can therefore perform a 6-reduction on t .  By 6-reducing t ,  the 
unary node a(3,2) is a candidate for substitution of the sub-tree 

Should we simply replace 5 (3,2) by the tree fragment 

then this would result in the following tree c' 



It is immediately clear that the variables 5f1) and E(3) refer to 

different A's than they originally referred to in E .  The variable 5(3) 
is an external reference in e and, as in the case of AS-substitutions, 
has to be suitably updated whenever the segment in which 5(3) occurs 

is substituted for some segment variable. The variable 5(1) in refers 

to one of the two A's hidden inside ~ ( 2 ~ 3 ) ;  it seems to refer to the 

first X (from the right) lying on the main branch of the segment in- 

volved, but the segmap $ reallocates this reference to the second A 

(from the right). This means that correct 8-reduction of < would re- 
sult in the following tree t" 

In Section 2 we shall give a formal definition of substitution of Xa- 

terms. Inthis definition we shall use so-called reference mappings 

which see to it that reference numbers are suitably updated, like in 

our example in the transition from to e n .  These reference mappings 
(or refmaps for short) and their interaction with ha-terms are de- 

scribed extensively in Section 2, and we refrain from further dis- 

cussion of refmaps here. 

The employment of name-free notation and segmaps makes it possible to 

give a formal definition of substitution of segments for segment va- 

riables in a very concise way, as we shall see in Section 2. In pre- 

vious examples describing how substitution of segments for segment 

variables can take place we have restricted ourselves to rather simple 

situations. Our formal treatment of such substitutions, however, will 

take much more involved situations into account. Our formal definition 

of substitution will take into consideration certain accumulative ef- 

fects which can occur when segments contain references to other seg- 

ments, or even A's which bind segment variables. 

1.2. An i n t r o d u c t i o n  t o  t h e  typed system lTg 

In this section we shall give a description of the Ao-system extended 

with types for terms. The types in A a are a generalization of the 
T 

types described in Church's Theory of simple types (cf. Church [401),  



the extension being that simple types are constructed for segments and 

that the description is given in name-free notation.   he basic ideas for 
our description are taken from de Bruijn [78bI. We shall start from a 

name-carrying calculus without segments - which, basically, is Church's 
system of simple types - called A V. We then gradually move on to a T 
system in which operations on types are made more explicit and in 

which the name-free notation is incorporated. Finally, we shall de- 

scribe the full ATa-system by offering, in name-free notation, a 

typing of segments. The definitions offered in this section will be 

followed by explanatory remarks. 

Definition 1.2.1 (A V) . 
T 

( 1 )  Type symbols (T) 

The set of type symbols T is the smallest set X such that 

(2) Primitive symbols 

The set of primitive symbols consists of 

(i) variables: xa,ya,za, ... a E T\{@) ; 

(ii) the symbols h (abstractor) 

and 6 (applicator) . 

( 3 )  Terms ()iTV) 

The set of terms A V is the smallest set X such that 
T 

(i) x E X , for every variable x ; 
a a 

(ii) t E X =$ Ax t E X , for every variable x ; 
a a 

(iii) u,v E X * 6uv E x . 

(4) Types of terms 

The function typ on X V is defined inductively for terms t by 
T 

(i) typ(xa) = a ; 

(ii) typ 

'iii) typ 

(aB) , if typ(u) = B # @ 

Ax U) = 
a 

@ , otherwise 

B , if typ(u) = a # @ and typ(v) = (aB) 
6uv) = {  

@ , otherwise 



(5) The s e t  of c o r r e c t  terms (AT V )  

A T V  = i t  € ATV 1 t y p ( t )  # 8 1  . 

Remarks. 

(1) e i s  some ground type,  63 is  t o  be i n t e r p r e t e d  a s  the  type of terms 

which a r e  " incor rec t ly"  typed. 

(2 )  ( a @ )  i s  t o  be i n t e r p r e t e d  a s  t h e  type of those  terms which map 

terms of type a t o  terms of type 6 .  

(3 )  I f  t y p ( t )  = a then a i s  genera l ly  of the  form 

( a l ( a 2 ( a 3  ... ... I ) ) ,  where a - - Ian+l a r e  types.  Speaking 

i n  terms of t r e e s ,  t h i s  means t h a t  t h e r e  a r e  n a b s t r a c t o r s  

Axa1 I . ..,Ax, ly ing  on t h e  main branch of t h e  t r e e  represen ta t ion  
n 

of t (and i n  t h a t  order)  t h a t  cannot be removed by some 6-re- 

duct ion i n  t; i . e .  f o r  each a b s t r a c t o r  Axa t h e r e  i s  no matching 
i 

6 ( o r  r a the r :  6 A . )  such t h a t  t h i s  61-pair can be removed by means 
1 

of a s u i t a b l e  sequence of @-reductions.  

Before g iving the  next d e f i n i t i o n  we in t roduce some no ta t ion  concerning 

sequences. For an e laborate  treatment of sequences we r e f e r  t o  Section 

2.1. A t  t h i s  s t age  it i s  only important t o  know t h a t  a sequence i s  seen 

a s  a funct ion with some i n t e r v a l  [ l . . n ]  of IN (n 2 0) a s  i t s  domain, 

where n w i l l  he the  length  of the  sequence i n  question.  

Notation. Let C be some non-empty s e t  ( c a l l e d  an alphabe t ) .  

* - C denotes the  s e t  of sequences over C ( including the  empty se-  

quence denoted by @ ( t h e  empty s e t )  ) . 
- i f  c  E C then <c> denotes the  sequence of length  1 cons i s t ing  of 

the "symbol" c. 
* - i f  FIG E C then F & G  denotes t h e  concatenation of t h e  sequences 

F and G I  i n  p a r t i c u l a r  i f  F is a sequence of  length  n (n 2 0) then 

F = < F ( 1 ) >  & < F ( 2 ) >  & ... & < F ( n ) > .  

- i f  F E C* then F denotes t h e  reversed sequence of F, i . e .  i f  



In  the  following d e f i n i t i o n  we o f f e r  an a l t e r n a t i v e  vers ion of h V i n  
T 

which opera t ions  on types a r e  made more e x p l i c i t .  

Def in i t ion  1 .2 .2  

(1) Wpes (Ty) 

The s e t  of types Ty i s  t h e  smal les t  s e t  X such t h a t  

(i) 8 E X ; 

(ii) F E (x\{B)) * * y (F) E x . 

(2) Pr imi t ive  symbols 

The s e t  of p r imi t ive  symbols c o n s i s t s  of 

(i) var iab les :  x ,y , z  ,... 
f f f  f E TY\{@) ; 

(ii) the  symbols A ( abs t rac to r )  

and 6 (app l i ca to r )  . 

( 3 )  Terms ( A  V )  -- TY 
The s e t  A V i s  the  smal les t  s e t  X such t h a t  

TY 

(i) x E X I  f o r  every va r i ab le  x - 
f f ' 

(ii) t E X * A X  t E X , f o r  every va r i ab le  x . 
f f '  

(iii) u,v E X * 6uv E X . 

( 4 )  Types of terms 

The funct iony- typ on A V i s  defined induct ively  f o r  terms t by 
T Y 

( 5 )  The s e t  of c o r r e c t  terms ( A  V )  
TY 

v = { t  E A V I y - t y p ( t )  # 8 )  . 
TY TY 

(i) y-typ(xf)  = f ; 

y ( < f >  & G) , i f  y-typ(u) = y(G) , 

@ 

(ii) y-typ ( X  xf u) = f o r  some G E ( ~ y \ { 8 } ) *  ; 

, otherwise 

(iii) y-typ(6uv) = 

y (GI  , i f  y-typ(u) = f and 

y-typ (v) = y ( < f >  & G )  , 
f o r  some f E TY\{@) and 

G E (TY\{@))* 

8 , otherwise 



Remarks. 

We note t h a t  t h e  symbol y is  of no p a r t i c u l a r  i n t e r e s t  i n  i t s e l f ,  

and the  reason f o r  introducing it i s  b a s i c a l l y  h i s t o r i c a l  i n  na- 

t u r e .  I n  de Bruijn C78,bl types of A -terms ( i . e .  nib-segments) 
TY 

were c a l l e d  "green" types,  whereas types of segments were c a l l e d  

"red" types.  The symbol y has been chosen f o r  t h e  const ruct ion of 

t h e  type of a A V-term purely f o r  mnemonic reasons.  I n  Defini- 
TY 

t i o n  1.1.5 ( A  o )  we s h a l l  const ruct  types of segments, and these  
T 

types w i l l  be of the  form p(F,G,H). Here t h e  symbol p i s  used i n  

the  const ruct ion of types of segments, again ,  pure ly  f o r  mnemonic 

reasons. 

y (@)  i s  the  analogue of the  ground type e i n  Def in i t ion  1.2.1. 

y ( < f >  & G )  i s  the  type of those terms which mapterms of type  f t o  

terms of type y(G) ( c f .  clause (4)  (ii) above).  

In  terms of t r e e s ,  i f  y-typ (t) = y ( < f l >  & . . . & < f n > )  , then t h i s  

means t h a t  the re  a r e  n a b s t r a c t o r s  Axf ,. . . ,Axfn l y i n g  on t h e  main 
1 

branch of t h e  t r e e  representa t ion of t t h a t  cannot be removed 

by means of a s u i t a b l e  sequence of @-reductions i n  t ( c f .  comment 

( 3 )  i n  the  remarks on Def ini t ion 1.2.1) . 

In the  following d e f i n i t i o n  we go one s t e p  f u r t h e r  and in t roduce a 

new type-constructor a which takes two arguments, both sequences of 

types.  We r e c a l l  t h a t  y(F)  denotes t h e  type of those  terms with n ab- 

s t r a c t o r s  ly ing  on t h e  main branch of t h e i r  corresponding t r e e s  (we 

assume t h a t  F i s  a sequence <f > & ... & <f  > of length  n) t h a t  can- 
1 n 

notberemoved by s u i t a b l e  @-reductions. In  t h e  case  of segments, how- 

ever ,  we can a l s o  have terms with appZicators ly ing  on t h e  main branch 

of t h e i r  t r e e  representa t ions  which cannot be removed by means of 

s u i t a b l e  6-reductions. When we wr i t e  a(F,G) ,  where F and G a r e  se- 

quences of types  <f  > & ... & <f > and <g > & ... & <g >, respec t ive ly ,  
1 n 1 m 

then F denotes t h e  sequence of n non-removable a b s t r a c t o r s  and G de- 

notes  the  sequence of m non-removable app l i ca to r s .  We a l s o  in t roduce 

a product opera t ion "*" between a-types and y-types wi th  which we can 

c a l c u l a t e  types of terms. We note t h a t  terms i n  the  system A V,  de- 
T ~ Y  

f ined  below, a r e  never typed a s  a-types; a-types i n  A V a r e  only 
T ~ Y  

used a s  in termedia te  cons t ruc t s  f o r  ca lcu la t ing  the  eventual  type  ( a  



y-type) of a term. When we c a l c u l a t e  the  type of a A -term t w e  f i r s t  
T v  

c a l c u l a t e  t h e  type of a beginning p a r t  of t h a t  term (such a beginning 

p a r t  is  a segment and w i l l  thus have a n-type a s  i ts  t y p e ) ,  say t h a t  

t h i s  r e s u l t s  i n  the  IT-type m(F,G). Then we c a l c u l a t e  t h e  type of the  

remaining p a r t  of t (which i s  not  a segment and thus  has a y-type a s  

i t s  r e s u l t  t y p e ) ,  say t h a t  t h i s  remaining p a r t  of t has type y(H) .  The 

product a(F,G) * y(H) w i l l  r e s u l t  i n  the  eventual  type  of t .  With the  

i n t e r p r e t a t i o n  of IT(F,G) a s  t h e  type of a beginning p a r t  of a term with 

F a s  t h e  sequence of non-removable X ' s  and G a s  t h e  sequence of non- 

removable 6 ' s ,  Def ini t ion 1.2.3 should not  be too hard t o  understand. 

After  t h i s  d e f i n i t i o n  we s h a l l  give an example of c a l c u l a t i n g  the  type 

of a A V-term. 
TITY 

Def in i t ion  1.2.3 (h V )  . 
Tay 

(1)  Quasi-types (T ) 
IT 

The s e t  of quasi-types T i s  defined a s  
Tr 

(2)  Products of quasi-types and types (*)  
* 

Let  F ,  G and H be elements of ( T ~ \ { @ ) )  . The product of a quasi- 

type and a type i s  defined a s  follows 

( 3 )  Terms ( A  V) 
TITY 

(4) Types of terms 

The funct ion i~y-typ on A V i s  defined induc t ive ly  f o r  t e r m s t b y  
T*Y 



(5)  The s e t  of c o r r e c t  terms (I\ V)  
TRY 

A simple example of c a l c u l a t i n g  t h e  ay-type of a ATvy-V term 

Consider the  following term t 

Xx 6 x  Xx 
f s syn 

and assume t h a t  h = y ( H )  , where H i s  some element of ( T ~ \ { @ ) ) * .  Accor- 

ding t o  the  r u l e s  given i n  Def in i t ion  1.2.3, t h e  type of t i s  calcu- 

l a t e d  a s  follows 

and t h i s  r e s u l t  i s  indeed a s  expected: a s  mentioned e a r l i e r  i n  comment 

( 3 )  by Def ini t ion 1.2.2, y ( < f >  & H )  i s  t o  be i n t e r p r e t e d  a s  t h e  type of 

those  terms which map terms of type f  t o  terms of type y (H) ,  and 

c l e a r l y  t i s a t e r m  of t h a t  type.  Also note t h a t  t 6-reduces t o  t h e  

term X x x which, a s  expected, a l s o  has type y ( < f > & H ) .  
f y (HI  

The systems A V ,  A V and A V a r e ,  though d i f f e r e n t  i n  t h e i r  re-  
T TY Try 

spect ive  desc r ip t ions ,  e s s e n t i a l l y  equivalent  i n  the  sense t h a t  t h e  

expressive power of each of these  systems i s  exac t ly  the  same. The 

reason f o r  dev ia t ing  from the  no ta t ions  and cons t ruc t s  employed i n  

the  o r i g i n a l  system A V i s  t h a t  we eventual ly  want t o  give a descr ip-  
T 

t i o n  of a typing mechanism f o r  A u r  a  simple-typed vers ion of the  
T 

name-free system Xu. In  X a we s h a l l  cons t ruc t  a completely new kind 
T 

of types ,  c a l l e d  p-types, f o r  segments. What w i l l  be shown i s  t h a t  



the  employment of a-types, y-types and t h e  *-operation provides f o r  not  

only an exact  bu t  a l s o  a concise desc r ip t ion  of a typing mechanism f o r  

segments and segment va r i ab les  w r i t t e n  i n  name-free no ta t ion .  

We now proceed by def in ing a typed version A 6 of the  name-free system 
T 

A[. Types i n  X ( a r e  elements of  Ty. In  order t o  c a l c u l a t e  a type of 
T 

a name-free term i n  A ( we introduce the  concept of a [-context, de- 
T 

noted by r ,  which i s  a sequence of elements of T ~ \ { @ ) .  

Def ini t ion 1.2.4 (1 [ )  
T 

(1) Terms ( A T < )  

The s e t  of terms A [ is  the  smal les t  s e t  X s a t i s f y i n g  
T 

(i) [ (n) E X , f o r  every n E N ; 

(ii) t E X X f  t E X I  f o r  every f E T ~ \ ( Q )  ; 

(iii) u,v  E X * 6uv E X  . 

( 2 )  (-Type contexts  ( r )  
* 

A [-context T i s  an element of ( ~ y \ { e ) )  . 
(Note t h a t  a type context  r i s  a function of t h e  form 

r : C l . . l e n g t h ( r ) l  + T\{@).)  

(3 )  The typing funct ion c-typ 

Let T be a <-type context .  The function 6-typ i s  def ined induc- 

t i v e l y  f o r  A [-terms t by 
T 

r ( n )  , i f  n E dom(r) 
(i) S-typ(S(n) , ' r )  = , 

@ , otherwise 

( 4 )  The s e t  of c o r r e c t  terms 

Let  r be a <-type context .  The s e t  of c o r r e c t  X [-terms with 
T 

r espec t  t o  r is 



Remarks. 

(1) In A 5 we just write A A ,Ah,... instead of Ax Ax ,Ax 
T f' g f' g h'"' 

(the names of variables are dropped). 

(2) The type of an occurrence of a variable c(n) in a A <-term t is 
T -  

found as follows. First we form the tree representation t of tr 

then we descend from that occurrence of c (n) in t towards the root 
of the tree and the n-th lambda, say A is the lambda that binds f' 
this occurrence of c(n) and the type f attached to this lambda is 

the type of #(n). (If the total number of A's encountered on the 

rootpathof this occurrence of <(n) is less than n (implying that 

this occurrence of #(n) is free) then the type context will see 

to it that this occurrence of #(n) is suitably typed.) 

(3) The correspondence between name-carrying terms in A V and name- 
='v 

free terms in A < is as follows. If t is a A V-term not con- 
T T V  

taining free occurrences of variables then we have the following 

correspondence 

- 
where t denotes the name-free equivalent of t. If t contains free 

occurrences of variables then we have the correspondence 

where the <-context T is such that it is of sufficient length and 
w 

sees to it that all free occurrences of variables in t are typed 

in the same way as they were typed in t. 

We now move on to the definition of the full A a-system by construct- 
T 

ing types for segments. In order to do so we introduce a new kind of 

types, called p-types, for segments. A p-type has three parameters 

and is written as p(F,G,H), where F, G and H are sequences of y- and, 

possibly, p-types. The extra parameter H has a purely administrative 

function; intuitively H is the sequence ofazztypes attached to the 

A's, including those hidden inside segment variables, lying on the 

main branch of the tree representation of the segment in question. 

The sequences F and G have the same meaning as before in the case of 

the quasi-type r(F,G), namely the sequence of non-removable A's and 



the sequence of non-removable 6's, respectively. We need such an extra 

parameter H in p(F,G,H) in order to determine the type of those vari- 

ables which refer to a X hidden in a segment variable, a situation 

which we now explain. Suppose that we have a X a-term t in which we 
T 

have a segment sw($) and an occurrence of a segment variable a(n,m) 

which abbreviates sw ($ )  in t. From u (n,m) we see that sw ( q )  has m 

(m > 0 )  X's lying on the main branch of its tree representation: these 

m X's are hidden inside o(n,m) and they can be referred to by vari- 

ables in t occurring to the right of a(n,m). In order to be able to 

type those variables which refer to one of the X's hidden inside 

a(n,m) we inspect the third parameter H of the type, say p(F,G,H), of 

sw($). Suppose that the m X's lying on the main branch of the tree 

representation of sw($) occur in the order Xh I...IXhm-lIX 
hm ' 

then 
1 

H shall be the sequence <h > a <h > & ... & <h >. If a variable in 
m m- 1 1 

t refers to the i-th ( 0  5 i < m) X (from the right) hidden inside 

a(n,m) then it will be typed by the i-th member h of H. Our defini- 
i 

tion of X a will also take into account the reallocational effects 
T 

that segmaps $ have on references to X's lying on the main branch of 

the segments in question. 

We now give our definition, which at first sight might be a bit hard 

to understand. We shall give an example of calculating the type of 

a X a-term which should help clarify the rules stated in Definition 
T 

1.2.5. We note that the construct n(F,G), given below, is the same 

construct n(F,G) as in Definition 1.2.3: it is an intermediate con- 

struct used for evaluating the product of a number of types in order 

to evaluate the eventual type of a term (including segments), which 

is eitheray-type or a p-type (but never a n-type). 

Definition 1.2.5 (1 a ) . 
T 

(1) Types (T) 

The set of types T is the smallest set X satisfying 

:!Tote that y(@) E X and p(@,@,@) E X.) 



(2)  Quasi-types (T ) 
7l 

The s e t  of quasi- types T i s  defined a s  
71 

( 3 )  Products of quasi- types and types ( * )  

Let F, G,  H ,  I and J be elements of (T\{@))*.  The product of a 

quasi-type and a type i s  defined a s  follows 

y ( F &  I )  , i f  H = G & I f o r  some I E (T\{@))* 
r(F,G) * y(H) = 

, otherwise 

( 4 )  Terms ( A T  a )  

The s e t  of A a-terms i s  the  smal les t  s e t  X s a t i s f y i n g  
T 

(i) c ( n )  E X ,  f o r  every n E N ; 

(ii) i f  $ i s  a segmap then w ( $ )  E X ; 

(iii) i f  u E X and f E T\{@) then A u E X ; 
f 

( i v )  i f  u E X then a(n ,m)u E X I  f o r  every n E N and 

m E N U  ( 0 )  ; 

(v )  i f  U , V  E X then 6uv E X . 

( 5 )  Type contexts  

A type context  i s  an element of (T\{@))* . 

(6)  The typing funct ion ( typ)  

Let  r be a type context .  The funct ion typ is  defined induct ively  

f o r  A a-terms t by 
T 

r ( n )  , i f  n E dom(r) and ~ ( n )  i s  a y-type 
(i) t y p ( S ( n ) , r )  = 

@ , otherwise 



n (F,G) * typ (u,H & T) , if n E dom(r) and T (n) is a p-type of 

the form p(F,G,H), where H is a sequence of length m ; 

I @ , otherwise 

(vi) The set of correct terms 

Let T be a type context. The set of correct A a-terms with T 
respect to T is 

We now give a further explanation of the rules stated in Definition 

1.2.5, and we shall do so by means of a non-trivial example in which 

all of the features for calculating y- and p-types are incorporated. 

In this example we shall employ the following notational conventions 

fl * . . . * f * f = (fl * (f2 * . .. * (fn-2 * (fn-l * fn)). . ' 1  n-1 n 

(association to the right) 

Consider the following term t written in tree form 

where f, g, h, i and j are certain elements of T\{@} and $ is a per- 

mutation of the interval [1..3] defined by $(I) = 2, $(2) = 3 and 

$(3) = 1. According to the rules given in Definition 1.2.5, the type 

of t with respect to the empty context @ is calculated, step by step, 

as follows 



where u i s  t h e  segment X 6 c ( 2 )  X A .  6 ( ( 1 )  w ( $ ) ,  o r  i n  t r e e  form 
9 h 1 

F i r s t  we c a l c u l a t e  typ  (u ,  <f >) : 

( i f  i i s  a y-type, otherwise the  product i s  equal  t o  o) 

(note t h a t  the  composition of t h e  sequence < i , h , g , f >  with the  seg- 

map $ y i e l d s  not  only a permuted bu t  a l s o  reduced sequence <h ,g , i z  

of < i , h , g , f > )  



(if f = h, otherwise the product is equal to B) 

and this is indeed as expected: the segment u has two non-removable 

abstractors (A and X . )  lying on the main branch of its tree; it has 
9 1 

one non-removable applicator with i as the type of its argument; it 

has a total number of three abstractors lying on the main branch of 

its tree, which, due to the reallocational effect of the segmap $, 

are referred to in the order X  X and X i  (from the right). 
h' g 

Now that we have evaluated typ(u,<f>) we can proceed with calculating 

typ(t,@) : 

(where j = p (F,G,<hl,h2,h3>) for some FIG E (T\{B))* and 

h , h , h E T\ {B) (cf . clause (6) (iv) ) , otherwise the product if 
1 2 3  

equal to B) 

(if hl is a y-type, otherwise the product is equal to B) 

(where h = ( G  & H for some H 6 (T\{@))* (cf. clause (3) (ii) ) , 
1 1 1 

otherwise the product is equal to B) 



(if j = p (F,G,<~ h ,h >) = p (<g,i>,<i>,<h,g,i>), i.e. if F = <g,i>, 
1' 2 3 

G = <i>, hl = h, h2 = g, h3 = i, otherwise the product is equal to 

@ 1 

(by definition of j) 

and this is indeed the expected result: t is a non-segment and there- 

fore its type is a y-type; if we assume that H = <i> & H = <i> & 
1 

& <h ..,h > for certain h 
1" n ll... n 

,h E T\(@), then the non-removable 

abstractors lying on the main branch of the tree representation of t 

occur in the order X X ,Xi,Ah ,...,Xhn since the non-removable ab- 
f' 9 1 

stractors hidden in ~ ( 1 ~ 3 )  are h and Air and the first type i in the 
9 

sequence <i,h lr...,h > is removed because the type of the argument 
n 

<(I) of the last applicator occurring in the segment 

is equal to i (remember that the last variable E(1) occurring in t has 

type y(<i,hl, ..., h >)  which means that the first non-removable ab- 
n 

stractor of the term that this occurrence of €,(I) intends to abbreviate 

would be A and that this Ai matches the 6 €,(I)-part in the segment if 
u) . 

Note also that t 8-reduces to the following term written in tree form 

where we have substituted the segment u for ~ ( 1 ~ 3 )  (the reference 

number 1 in the last variable C(l) in t has been changed to 2 because 

of the reallocational effect of the segmap $J). This new term can be 

8-reduced once more, resulting in 



wherewe have subs t i tu ted  an updated version of t h e  f i r s t  occurrence 

o f t h e  v a r i a b l e  5 ( 2 )  f o r  t h e  second occurrence of 5 ( 2 )  (which was 

bound by t h e  abs t rac to r  X of the  redex) .  The va r i ab le  c ( 1 )  i n  t h i s  h 
term has  type i , and the  va r i ab le  5(3) has type 

f = h = y ( < i , h  . . , h n > ) ;  the re fo re  the  type of the  whole term is 
1" 

equal t o  y ( < f , g , i >  & < h l ,  ..., h > I r  which i s  t h e  same type a s  we have n 
ca lcu la ted  f o r  t: an expected r e s u l t .  In  genera l ,  one would expect t h e  

type of a term and i t s  8-reduct t o  be t h e  same. This proper ty  of e- 

q u a l i t y  of types f o r  terms and t h e i r  f3-reducts with respec t  t o  a cer-  

t a i n  context  i s  c a l l e d  the cZosure property. A proof of t h e  c losure  

proper ty  f o r  X u i s  given i n  Chapter 4. We note t h a t  i n  Chapter 4 we 
T 

s h a l l  a l s o  def ine  t h e  product of two quasi-types and furthermore show 

t h a t  t h i s  extended version of the  *-operation i s  assoc ia t ive ,  i . e .  

( f  * g) * h = f * ( g *  h) f o r  a l l  quasi-types f , g  and quasi-types and 

types h. Products of quasi-types and t h e  a s s o c i a t i v i t y  of t h e  *-opera- 

t i o n  w i l l  prove t o  be use fu l  f o r  f a c i l i t a t i n g  the  ca lcu la t ions  of 

types of X a-terms. 
T 

1.3. Reduction and r e l a t e d  p r o p e r t i e s  

The language theory of A-calculus i s  concerned with t h e  s y n t a c t i c a l  

s t r u c t u r e  of terms and p roper t i e s  of reduction r e l a t i o n s .  The study 

of t h e  f3-reduction r u l e  is of p a r t i c u l a r  i n t e r e s t  i n  t h i s  respect .  

This r u l e  t e l l s  us how t o  compute t h e  value t h a t  a funct ion takes  

when appl ied  t o  a c e r t a i n  argument. In  t h i s  sec t ion  we s h a l l  def ine  

bas ic  r e l a t i o n s  on some a b s t r a c t  s e t  X by s t a r t i n g  from an a b s t r a c t  

reduct ion r e l a t i o n  on X denoted by -+ Such a s t r u c t u r e  < X I +  > pro- 
R' R 

vides  an  a b s t r a c t  framework i n  which reduction r e l a t i o n s  can be d i s -  

cussed f o r  term-rewriting systems i n  genera l .  

Not ions o f  reduc t i on  

The following d e f i n i t i o n s  a r e  taken from Barendregt [8l,pp. 50 - 581 - 



Definition 1.3.1. 

A not ion o f  reduction on a set X is a binary relation on X. 

Definition 1.3.2. 

Let -+R be a 

(i) 

(ii) 

notion of reduction on X and t,u,v E X. 

the transitive reflexive closure of -+ defined by 
R 

* 
the equivalence relation generated by -+ defined by 

R 

(iii) t +* u iff 3v: t : v u v . 
R R R 

(iv) The basic relations derived from -+ are pronounced as follows: 
R 

* 
t -+ u : t R-reduces t o  u or u i s  an R-reduct of  t ; 

R 

t -+ u : t R-reduces t o  u i n  one s t e p  ; 
R 

t = u : t i s  R-convertible t o  u ; 
R 

t +: u : t and u have a common R-reduct . 0 

* 
The relations -+ and = have been introduced inductively. Therefore 

R R 
properties about these relations can be proved inductively. Such in- 

ductive proofs are called proofs by induction on the generation of 

these relations. 

For the remainder of this section let X denote some set and let -+ 
R 

be a notion of reduction on X. We shall use the meta-symbols 

t,u,v,w,... to range over elements of X (called t e r m s ) .  

Definition 1.3 - 3 .  

(i) A term t is called an R-normal form (R-nf)  if 



(ii) A term u an R-nf of t (o r  t has t h e  R-nf u)  i f  u is  an R-nf 
* 

and t -tR u . 0 

Defini t ion 1.3.4. 

(i) Let  >- be a b inary  r e l a t i o n  on X. Then >- s a t i s f i e s  t h e  diamond 

property i f  

see  Figure 1.3.1. 

F I G .  1.3.1. 

(ii) A notion of reduction -t i s  s a i d  t o  be Church-Rosser (CR) i f  5 
R R 

s a t i s f i e s  the  diamond property.  0 

Theorem 1.3.1. 

If -+ is CR then a term t can have a t  most one R-nf. 
R 

Proof: Suppose t h a t  u l r ~ 2  a r e  both R-nf's of t. From -+ being CR it 
* R * 

follows t h a t  the re  e x i s t s  a term v such t h a t  u -tR v and u -tR V. But 
* 

s ince  -t i s  t h e  t r a n s i t i v e  re f l ex ive  c losure  of -t it holds f o r  a l l  
R * R 

R-nf's w t h a t  i f  w -+ w' then w = w ' ,  and the re fo re  u = v = u 
R 1 2 ' 0 

Theorem 1.3.2. 

I f  -tR i s  CR then 

Proof: By induct ion on the  generation of = 
R ' 



D e f i n i t i o n  1.3.5. 

An R-reduction p a t h  is  a f i n i t e  o r  i n f i n i t e  sequence t t t 0' 1 '  2 ' " '  
such t h a t  t t - t t  

0 +R 1 R 2 +R ... 17 

Conventions. 

(i) The meta-symbol V ranges  over  r educ t ion  pa ths .  

(ii) The r educ t ion  p a t h i n D e f i n i t i o n  1 .3 .5  s tar ts  wi th  t I f  t h e r e  i s  
0' 

a l a s t  term t i n  V ,  t hen  v ends wi th  t . I n  t h a t  ca se  we say  
n n 

t h a t  V i s  a r educ t ion  p a t h  from t t o  tn. 
0 

0 

D e f i n i t i o n  1.3.6. 

Let  t E X. 

(i) t R-normalizes ( R - N ( t ) )  i f  t has  an R-nf. 

(ii) t ~-.StPongZy nomaZizes  (R-SN(t)) i f  t h e r e  i s  no i n f i n i t e  R- 

r educ t ion  p a t h  s t a r t i n g  wi th  t. 

(iii) t i s   infinite (R-m ( t)  ) i f  n o t  R-SN(t) . 
( i v )  + is  normal iz ing  ( N )  i f  V t  E X : R - N ( t )  . 

R 

(v) + i s  s t r o n g l y  normaZizing (SN) i f  V t  E x : R - S N ( ~ )  . 
R 

D e f i n i t i o n  1.3.7. 

A not ion  of  r educ t ion  -t on X i s  s a i d  t o  be weakly Church-Rosser 
R 

(WCR) i f  

Theorem 1.3.3 (Newman C421) . 
For no t ions  of  r educ t ion  -t one has 

R 

SN A WCR * CR . 

Proof:  The fo l lowing e l e g a n t  proof i s  taken  from Barendregt  C811, p. 

58. 

By SN each term R-reduces t o  an R-nf. I t  s u f f i c e s  t o  show t h a t  t h i s  

R-nf i s  unique.  C a l l  a term t ambiguous i f  t R-reduces t o  two d i s t i n c t  

R-nf 's ,  s ay  t and t I f  t is  ambiguous then  t h e r e  e x i s t s  a term u 
1 2 ' 

such t h a t  t -t u and u ambiguous, which we now show. The foLlowing 
R 



two f i g u r e s  suggest  how t can reduce t o  t 1 and t2. 

FIG. 1.3.2. FIG. 1.3.3. 

In  the  case  of Figure 1.3.2 it is  immediately c l e a r  t h a t  t h e  ambiguous 

term u e x i s t s  by taking t' f o r  u. In  the  case  of Figure 1.3.3 it f o l -  

lows from WCR t h a t  t '  and t" have a common reduct  t"' and, by SN, t"' 

has  an R-nf t a s  ind ica ted  i n  t h e  f i g u r e  below. 
3 

FIG 1.3.4. 

From t # t2 it follows t h a t  e i t h e r  t 3 # tl o r  t 
1 # t2. I f  t3 # tl 

then we can take  t ' f o r  u ,  and i f  t3 # t2 then we can t ake  t "  f o r  u. 

Since a l l  ambiguous terms R-reduce i n  one s t e p  t o  another ambiguous 

term, we have obtained a contradic t ion with SN, hence ambiguous terms 

do not  e x i s t .  0 



Theorem 1.3.4. 

Let  -fR be a notion of reduction t h a t  i s  both CR and N and l e t  t , u  E X.  

Then 

t = u R-nf ( t)  = R-nf (u)  
R 

where R-nf (t) and R-nf (u) denote the  R-nf ' s of t and u. 

Proof: F i r s t  note t h a t  t and u have unique R-nf's by CR,  N and Theorem 

1.3.1. 

(i) *: i f  t = u then by Theorem 1.3 .2  t h e r e  e x i s t s  a term v such 
R * 

t h a t  t + v and u -tR v. This term v a l s o  has a unique R-nf, say 
R * * 

v and s ince  t -t 
0' 

vO and u -t 
R V~ 

it follows immediately t h a t  

R-nf (t) = v = R-nf (u)  . 
0 

(ii) *: t r i v i a l .  

Remark. A consequence of Theorem 1.3.4 i s  the  following d e c i d a b i l i t y  

r e s u l t :  i f  one has an e f f e c t i v e  procedure f o r  computing R-nfls  of 

terms then one a l s o  has an e f f e c t i v e  procedure f o r  determining whether 

t = u holds o r  no t ,  f o r  a l l  terms t , u .  
R 



2. BASIC NOTIONS AND RESULTS 

The usual set-theoretic notation will be used in the metalanguage, in- 

cluding the abbreviations V (for all) , 3 (there exists), * (if.. , then 
. . .)  , w (if and only if), A (and), V (or) and 1 (not). We shall adopt 

the following conventions concerning the natural numbers 

Nk = {n E N I n S k) , for every k E M . Hence, N = @ . 
0 

The set of mappings from the set A to the set B is denoted by [A -+ B]. 

Domain and range of a function f are denoted by dom(f) and rge(f), 

respectively. If f and g are functions then the composition f o g  of 

f and g is the function with domain {x E dom(g) 1 g(x) E dom(f) ) and, 

for every x E dom(f a g), f o  g(x) = f (g(x)). 

The set of permutations of IN is denoted by Perm(k) and id(k) denotes 
k 

the identity map on N The set U(perm(k) I k E M} is denoted by 
k' 

Perm. Furthermore, for every function f with rge (f) E N, we have the 

function f -  1 defined by 

dom(f- 1) = dom(f) 
and 

Vx€dom(f) : f - l(x) = f(x) - 1 . 

2.1. S e q u e n c e s  

Definition 2.1. 

An alphabet is a non-empty set C. 

+ 
C* is called the set of C-sequences and C is called the set of non- 

empty C-sequences. If f is a C-sequence and dom(f) = N then k is 
k 

called the Length of f and is denoted by L(f). Elements of C N  -t C] 1 
are called C-symbols. If f is a C-sequence of length k 2 1, then the 

first symboz of f, denoted by FS(f), is defined as f (1) and the Last 

symbol of f, denoted by LS (£1 , is defined as f (k) . 0 



Def in i t ion  2 . 2 .  

I f  f  i s  a C-sequence of length  k then f i s  t h e  C-sequence of l eng th  k 

defined by 

- 
V i e  N : f ( i )  = f ( k - i + 1 )  . 

k 

- 
f  i s  c a l l e d  t h e  reversed sequence of f .  

Def ini t ion 2 . 3 .  

I f  f  and g a r e  C-sequences and L ( f )  = k and L(g)  = m ,  then t h e  C- 

sequence f  & g of length  k + m  i s  defined by 

f  & g i s  c a l l e d  t h e  concatenation of the  C-sequences f  and g. 0 

Note t h a t  concatenation i s  an assoc ia t ive  opera t ion on C-sequences; 

i . e .  ( f  & g )  & h = f  & (gab), f o r  every f ,  g and h. We s h a l l  make 

f requent  use of t h i s  proper ty  of concatenation s ince  we can omit pa- 

rentheses  and wr i t e  f  & g & h without f ea r ing  ambiguit ies.  

Remark. Whenever it is  c l e a r  which C-sequences f  and g a r e  being con- 

ca tenated,  we s h a l l  wr i t e  f g  ins tead  of e x p l i c i t l y  w r i t i n g  f  & g. 

Furthermore, i f  it i s  c l e a r  which alphabet  C i s  being used t o  form 

C-sequences, we s h a l l  o f t e n  drop the  C and t a c i t l y  speak about se-  

quences ins tead  of C-sequences. 0 

2.2. Language definition of the formal system Xa 

Def in i t ion  2 . 4 .  

Let C be a countable s e t  and l e t  C1 denote t h e  s e t  of  C-symbols. We 

introduce a s e t  of  mappings which a r e  considered f ixed  from now on. 

(i) 5 i s  an i n j e c t i o n  from N i n t o  C1 ; 

(ii) w is an i n j e c t i o n  fromPerminto C - 
1 ' 

(iii) X i s  an element of C . 
1 ' 

( i v )  a i s  an i n j e c t i o n  from N x 34 i n t o  C - 
1 ' 



(v)  6 i s  an element of C - 1 ' 

( v i )  rge  (5 )  , rge  ( w )  , {A), rge  ( a )  and (6 )  a r e  mutually d i s j o i n t  sub- 

s e t s  of C. 0 

Def i.-.ition 2 .5 .  

A i s  the  smal les t  s e t  X s a t i s f y i n g  

(i) < ( n )  E X ,  f o r  every n E N ; 

(ii) w($) E X , f o r  every J,  E Perm ; 

(iii) i f  t E X then X & t E X ; 

( i v )  i f  t E X then a ( p )  & t E X ,  f o r  every p E N x M ; 

(v)  i f t , u € X t h e n 6 & t & u ~ X .  0 

Elements of A a r e  c a l l e d  Xu-terms (or  terms, f o r  s h o r t ) .  Elements of 

rge  ( L )  U rge  (a )  a r e  ca l l ed  v a r i a b t e s ;  elements of rge(E)  a r e  ca l l ed  

5-variables and elements of r g e ( u )  a r e  c a l l e d  a-var iables .  We s h a l l  

use  he meta-symbols q , ~ ' , q " , . . .  t o  range over va r i ab les .  For every 

<-var iable  q the re  i s  exac t ly  one n E N such t h a t  q = < ( n ) ,  and f o r  

every a - v a r i a b l e q t h e r e  is  exac t ly  one p a i r  (n,m) E N x M such t h a t  

Q = a (n,m) . In  both cases  the  number n i s  c a l l e d  t h e  reference number 

of Q. These reference  numbers determine the  A ,  i f  any, t h a t  binds an 

occurrence of a va r i ab le  i n  a term. Terms with l a s t  symbol w ( J I ) ,  f o r  

some J,  E Perm, a r e  c a l l e d  segments. Elements of Perm a r e  c a l l e d  segment 

mappings ( o r  segmaps, f o r  s h o r t ) .  Note t h a t  terms a r e  w r i t t e n  i n  pre- 

f ix-nota t ion:  each < (n)  and w($) has  a r i t y  0 ;  X and each a (p)  has 

a r i t y  1 ; 6 has a r i t y  2 .  

For an informal desc r ip t ion  of Aa-terms we r e f e r  t o  the  in t roduct ion.  

Furthermore, we note t h a t  frequent use w i l l  be made of t h e  1-1 corres-  

pondence between Xa-terms and t h e i r  t r e e  represen ta t ions .  The reason 

f o r  t h i s  i s  t h a t  t r e e  represen ta t ions  of Xu-terms, a s  described i n  

the  in t roduc t ion ,  f a c i l i t a t e  the  reading (pars ing)  of these  terms. We 

now proceed by introducing some important concepts concerning va r i -  

ables .  



Defini t ion 2.6.  

V a r ( t )  i s  defined induct ively  f o r  terms t by 

(i) v a r ( S ( n )  = {S(n)  ; 

(ii) Var(w ($1 ) = @ ; 

(iii) Var(Au) = Var(u) ; 

( i v )  Var (a  ( p ) u )  = { a ( p )  U Var(u) 

(v) Var (Guv) = Var (u)  U Var (v) 

V a r ( t )  i s  c a l l e d  the  s e t  of va r i ab  

t h a t  the  va r i ab le  n occurs i n  t. 

0 

l e s  of t. I f  q E ~ a r ( t )  then we say 

Remark. I f  a va r i ab le  q occurs i n  a term t then it can occur i n  t a t  

d i f f e r e n t  p laces .  Sometimes we would l i k e  t o  speak only of some spe- 

c i f i c  occurrence of q i n  t; i . e .  we would l i k e  t o  speak of t h e  v a r i -  

a b l e  n occurring i n  t a t  a s p e c i f i c  p lace .  We s h a l l  r e se rve  t h e  in-  

formal term "an occurrence of n i n  t "  when we wish t o  r e f e r  t o  a va- 

r i a b l e  n occurring i n  t a t  a s p e c i f i c  p lace .  Following t h i s  terminolo- 

gy we can say t h a t  a va r i ab le  n can occur i n  a term t, b u t ,  a t  t h e  

same t ime, the re  may a l s o  be d i f f e r e n t  occurrences of n i n  t. 

Defini t ion 2 . 7 .  

Let  n be a va r i ab le .  

The s e t  D(q , t )  i s  defined induc t ive ly  f o r  terms t by 

Note t h a t  D (q ,  t )  5 Z . 
I£ k E D ( Q , ~ )  then we say t h a t  q occurs a t  reference depth k i n  t. I£ 

rl occurs a t  some reference  depth i n  t then it occurs i n  t i n  t h e  sense 

defined above. Formally: 
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This statement can e a s i l y  be proved by induction on L ( t ) .  

Def ini t ion 2.8.  

Let  t be a term and l e t  q be a va r i ab le .  We say t h a t  q has  an e x t e r n a l  

reference occurrence i n  t i f  t h e r e  e x i s t s  a k > 0 such t h a t  k E D ( q , t ) ,  

and we say t h a t  rl has an i n t e r n a l  reference occurrence i n  t i f  the re  

e x i s t s  a k 2 0 such t h a t  k E D(q , t )  . 0 

Example. Consider the  following term t 

The v a r i a b l e s  5 (6 )  , u ( 3 , l )  and 5 (2) occur a t  reference  depths  3 ,  0 and 

-2 r e spec t ive ly .  Furthermore, 5 ( 6 )  has  an ex te rna l  reference  ( i . e .  

5 ( 6 )  i s  bound by a A ou t s ide  of t) and the  va r i ab les  a ( 3 , l )  and 5 (2)  

have i n t e r n a l  references  i n  t ( i . e .  both va r i ab les  a r e  bound by a X 

i n s i d e  of t ) .  Note t h a t  i f  a va r i ab le  c ( n )  o r  a(n,m) occurs a t  re-  

ference  depth k i n  a term t, then the  reference  number n w i l l  usual ly  

not  be equal  t o  k. 

Remark. If a va r i ab le  q occurs a t  d i f f e r e n t  p laces  i n  some term t 

then it can well  be t h e  case  t h a t  q occurs a t  two d i f f e r e n t  reference  

depths k,  k '  i n  t. I t  can even be the  case t h a t  q has both an ex te rna l  

a s  well  a s  an i n t e r n a l  reference  i n  t. Each s p e c i f i c  occurrence of q 

i n  t ,  though, has exac t ly  one corresponding reference depth k i n  t. 

In informal d iscuss ions  we w i l l  o f t en  speak of "the reference depth 

k of an occurrence of q in t " ,  such t o  focus our a t t e n t i o n  on a spe- 

c i f i c  occurrence of q i n  t ins tead  of taking a l l  occurrences of q i n  

t i n t o  account. In  the  same way we s h a l l  speak of "an e x t e r n a l  ( in-  

t e r n a l )  re  ference occurrence of q i n  t "  . 

2 . 3 .  Refevence mappings 

Reference mappings were introduced by N.G. de Bruijn i n  h i s  paper de 

Bruijn [78,al  i n  order t o  descr ibe  the  poss ib le  e f f e c t s  t h a t  a 8- 



reduct ion of a name-free term t can have on the  v a r i a b l e s  occ r r r ing  

i n  t; more s p e c i f i c a l l y :  reference mappings see  t o  it t h a t  a s u i t a b l e  

updating of reference  numbers of va r i ab les  t akes  p lace  a f t e r  having 

performed some 6-reduction on t. Reference mappings ( o r  refmaps f o r  

s h o r t )  a r e  elements of [N + IN], and f o r  each refmap p we a l s o  have 

a mapping which works on terms. The e f f e c t  t h a t  a mapping p - has on 

a term t can be described a s  follows.  Let  q be a v a r i a b l e  occurring 

i n  t. I f  a s p e c i f i c  occurrence of q i n  t has  reference  depth k > 0 

i n  t then t h a t  occurrence of q w i l l  be replaced by a v a r i a b l e  q' which 

has  reference  depth p (k )  i n  p t .  - I n t e r n a l  reference  occur rencesofq  i n  

t a r e  not  e f fec ted  by p .  - 

For example, i f  we have the  t r e e  

and i f  p (1 )  = 2, p (2 )  = 1, p (3 )  = 3 and p(n)  = n,  f o r  n 2 3 ,  then 5 ( 2 )  

is  bound by t h e  second X (from the  l e f t ) ,  u ( 2 , l )  i s  bound by the  t h i r d  

X (from the  l e f t )  and 5 ( 4 )  i s  bound by the  f i r s t  X (from t h e  l e f t ) .  

This means t h a t  

i s  equal  t o  

We now int roduce four  important c l a s s e s  of refmaps (Def ini t ion 9 )  and 

give a formal d e f i n i t i o n  of applying a mapping p, f o r  each refmap p ,  

t o  a term t (Def in i t ion  10). An informal explanation of Def in i t ion  9 

and 10 i s  given i n  Section 2 .4 .  

Def ini t ion 2.9.  

Let  m be an element of M and n be an element of N. We def ine  the  

following mappings, a l l  elements of C N  -t N]. 



n + l ,  if n < m  

(ii) 8 (n) = 1 , if n = m + l  ; 
m 

n i f n  > m + l  

(iii) if + E Perm then 

(iv) if P E C N  + Bl1 then 

Lemma 2.1. 

Froof. A straightforward check of Definition 2.9. 

Definition 2.10. 

If u is a refmap then ~ ( t )  is defined inductively for terms t by 

Remark. p (t) is a Xo-term (easily proved by induction on L (t) ) . Fur- - -  
thermore, from now on we shall write gt instead of p(t) - in order to 

ecdnomize on the use of parentheses. 



2.4. Informal discussion of Definitions 2.9 and 2.10 

In this section we will give an informal description of the effect 
<m> 

that the mappings cpm, am, and - p have on an arbitrary term t. 
- - 

(i) pmt: Let be a variable occurring in t. The effect of cp on t 
- m 
will be that the reference number, say n, inside an external 

reference occurrence of q in t will be raised by m and thus 

change to n+m. 

(ii) 3,t: In order to understand the effect of 3 on a term t con- 
- m 
sider the following two specific examples ofterms written in 

tree fashion 

qm A /- /<(I) 
A - ... - X - 6 - X - Bm6 - c(m+1) . 
P - 

m A's 

What we shall try to show is that the terms (1) and (1') are, 

in a sense, equivalent. The claim is that all references to 

X's in (1) and (1') are the same; i.e. each specific occurrence 

of a variable in (1) will refer to exactly the same X after 

it has (possibly) been reallocated in (1'). The mapping cp 
m 

placed in front of A in (1 ' ) has the effect that all external 
reference occurrences in A skip the block of m preceding X's 

by raising their respective reference numbers by m and thus en- 

suring that they remain bound by their original X's (i.e. by 

the same X's as in (1)). Furthermore, the mapping 9 , placed 
m 

in front of 6 <(j) < ( m +  l), ensures that both ((j) and c(m+ 1) 

remain bound by their original A. By doing so we achieve that 

5 (m + 1) is bound by its original A (3 (m + 1) = 1) and by apply- 
m 

ing 3 to j we see that if c(j) was originally bound by a X 
m 

occurring in the preceding block of m A's in (11, then by rais- 

ing j by 1 (9,(j) = j +  1, if 1 I j I m) we achieve that c(j) 

remains bound by that same X in (1'). If j > m + l  then 3 has 
m 

no effect on (j), so also in this case we see that 6 (j)is 



bound by the same X in both (1) and (1'). The purpose of this 

example is to show that one can reallocate a GAX-part in a term 

t to some other place in t and, by introducing suitable refmaps 

' m and am, can still preserve references to original A's (i.e. 
raferences to X's prior to this reallocation). As pointed out 

earlier in the introduction (Section 1.1.5). such reallocations 

of GAX-partswilloccur often after performing certain 8-reduc- 

tions inside segments. By @-reducing certain redices inside a 

segment we sometimes get the situation that the "GAX-part" of 

the redex reappears and is placed directly in front of the end- 

point, say w ( + ) ,  of the segment. In order to ensure that all of 

the original references to X's (i.e. references to X's as they 

appeared in the segment before the 8-reduction was performed) 

remain intact we introduce suitable mappings q and am; the 
m 

mapping qrn is placed in front of the term A a= 3 iFplaced 
m 

in frontTf w (+)  , thus obtaining 6 p AX 3 w ($1 at the end of 
m m 

the reduced segment. This way varia=es which are bound by a X 

hidden inside a a-variable abbreviating the segment just dis- 

cussed, remain bound by the same X after performing a 8-reduc- 

tion inside that segment (see also clause (iii) below). A for- 

mal description of how mappings 3 are introduced in terms is 
m 

given in Definition 2.11 (substitution) . 
( 1 1.1) $- t : If + is a segmap (i. e. , an element of Perm) then J I -  extends 

the domain of $ to N by defining +-(n) as n for each 

n E N\dom(+). Since +- is an element of C N  + N] we have ex- 

tended the segmap + to a refmap +-. Such refmaps $- are called 

upon when segments are substituted for segment variables. As 

described earlier in the introduction, the segmaps + occurring 
at end-points of segments reallocate references to X's lying on 

the main branch of such segments. When we substitute a segment 

for some segment variable n we will introduce a refmap 9 -  which 

will have the intended reallocational effect on those variables 

which refer to a X hidden inside n .  As an 
following term 

/A /B 

/ 6 - X - 6 - X - ~ ( $ 1  /E(5) 

X - X - 6 - X - 0(1,2) 6 - E(1) 

example consider the 



where $ is the mapping with domain (1,2) and $ (1) = 2 and 

$ (2) = I .  In (2) we see that ~ ( 1 ~ 2 )  abbreviates the segment 

6 A A 6 B A w($) and that <(I) - apparently - is bound by the first 
X (from the right) hidden inside ~ ( 1 ~ 2 )  . Although the reference 
number 1 in <(I) apparently indicates that <(I) is bound by the 

first A hidden inside 0(1,2), the segmap $ reallocates this re- 

f erence to the second A hidden inside u ( 1,2) since $ ( 1 ) = 2. By 

performing a 6-reduction in (2) we get 

Substitution of the segment 6 A A 6 B X w ($) for u (1,2) has lead 

not only to the introduction of a mapping $-  - in (2'), but also 

to the replacement of the variable €, (5) by 5 (4) . The reason for 
replacing 5 (5) by 5 (4 )  is that by 6-reducing (2) the A of the 

redex that has been 6-reduced has disappeared, and since this 

X lies on theroot path of 5(5) in (2) we have lowered the re- 

ference number 5 with 1 in order to keep this variable bound by 

its original A (i.e., the same A it was bound by in (2)). The 

mapping 9- introduced in (2') has the intended effect on the 
variables 5 (4) and 5 (1) : $-  (4) = 4 and $- (1) = 2, so 5 (4) and 

<(I) refer to the same X's in (2') as 5(5) and <(I) refer to 

in (2). A formal description of how refmaps $-  are introduced 

is given in Definition 2.11 (substitution) . 
<m> 

(iv) t :  When we evaluate the effect that a refmap p has on a 

term t then we shift the mapping p through the tree represen- - 
tation of t, as seen from Definition 2.10, until we reach an 

end-point, where the (possibly altered) refmap p is either 

applied to a reference number occurring in a <-variable or is 

composed with a segmap $ occurring in some ~ ( $ 1 .  In this 

shifting process we may encounter a X and have to evaluate an 
< 1> 

expression like p Xu. We define phu as h p  u, for in this - - - 
way the specific reference depths of all variables occurring in 

<I> 
p Au and ALU are exactly the same. If an occurrence of a - 
variable q has reference depth 0 in hu then this occurrence 

also has reference depth 0 in pXu; i.e. the mapping has no - 
influence on this occurrence of q. This same occurrence of 



<I > 
has reference  depth 1 i n  u a s  it should a l s o  have i n  ~ u ,  

t h i s  i s  why pC1> ( I )  i s  defined a s  1. I f  an occurrence of a va- 

r i a b l e  n has reference  depth j > 0 i n  Xu then it has reference  

depth p ( j )  i n  Xu. This occurrence o f n h a s r e f e r e n c e d e p t h  j + 1 

i n  u, s o  i n  order  t o  ensure t h a t  t h i s  occurrence has  t h e  same 

reference  depth i n  both - y Au and X u we de f ine  pC1> ( j  + 1) 
< I >  

a s  ~ ( j )  + 1 o r ,  i n g e n e r a l ,  p (k)  i s d e f i n e d a s  p ( k - 1 )  + 1,  

f o r  a l l  k > 1 . When we proceed i n  evaluat ing z u  o t h e r  map- 
<m> 

pings (m > 1)  w i l l  o f t en  a r i s e .  Say t h a t  u i s  of  t h e  form 

XV then according t o  t h e  d e f i n i t i o n  of ~ X V  we g e t  
< I >  < I >  < 1 > < 1 >  <1+1> <2>. 

X ( p  ) v. L e m r n a 2 . 1 s a y s t h a t  (11 ) = p  = v  , 

i .e. Il(l'Xv = X - p<2' v. In genera l ,  i f  a mapping - p is  applied 

t o  a term t = X . . . Xv beginning with a block of m X's (m 2 0) 
<m> 

then t h i s  r e s u l t s  i n  p t  = h ... A k v .  This i s  a l s o  the  case  - 
when p is appl ied  t o  a term t of the  form a ( j , m ) v .  The va r i ab le  - 
o( j ,m)  i n  a ( j , m ) u  has reference depth j i n  t and the  number m 

i n  o( j ,m)  i n d i c a t e s  t h a t  the re  is  a block of m X ' s  hidden in- 

s i d e  a ( j , m ) .  Therefore,  p i s  appl ied  t o  the  reference  number j 
<m> - 

and once p a s t  o ( j , m ) ,  the  mapping is changed t o  - p , i . e .  
<m> 

t = a j m v .  

We s h a l l  now give an example of evaluat ing t h e  app l i ca t ion  of  a map- 

ning y t o  a term t. Let  p be the  refmap p which r a i s e s  t h e  re fe r -  - 6' 

ence numbers of 

term 

Now app l i ca t ion  

a l l  ex te rna l  references  i n  t by 6 ,  and l e t  t be the  

of p6 t o  t r e s u l t s  i n  



= XXo( 

= X Xcr( 

= A Xu( 

This is indeed 

ternal reference occurrences ~ ( 3 ~ 5 )  and 5(9) have both been raised by 

6 and the internal reference occurrence 5(4) remains unaltered. As 

mentioned earlier, refmaps p and mappings have been introduced in 

order to describe the effect that 8-reduction of a term can have on 

the variables occurring in t. In the next section we will give a for- 

mal definition of substitution and describe how 8-reduction of a term 

invokes the introduction of refmaps. 

2.5. Beta-reduction and substitution 

I£ a term is of the form GA XB then we call it a redex. We can read 

such a redex as "the function XB applied to the argument A". Should 

we evaluate the application of the "function part" XB to the "argu- 

ment part" A then we say that this redex is 8-reduced (or contracted), 

thus resulting in the substitution of A for all occurrences of vari- 

ables in B with reference depth 1 in B. This substitution is denoted 

by C(A,B,l). In general, the meta-symbol C (denoting substitution) 

takes three arguments and is of the form C (A, B, k) . The expressicn 
C(A,B,k) is to be read as the substitution of the term A for all 

occurrences of variables in B with reference depth k in B. In this 

section we will start by giving a formal definition of C(A,B,k). This 

definition is then followed by a discussion of each of the clauses 

involved. 

Definition 2.11 (substitution). 

Let u be a term and k be an element of N. C(u,v,k) is defined in- 

ductively for terms v by 



I pk-l u , i f  n  = k and LS (u)  E r g e ( 5 )  - 
(i) v = < ( n ) : C ( u 1 5 ( n ) , k ) =  S (n )  , i f n < k  

( n -  1  , i f  n  > k 

i 6 a)k-l u X 9k-1 w ($1 , if k 6 r g e  ($1 
(ii) v = w ($) : C ( U , W  ($) ,k )  = - - 

w (akql o $ - 1)  , i f  k  6 w e ( $ )  

We now proceed wi th  a  d i scuss ion  of  each o f  t h e  f i v e  c l a u s e s  given i n  

D e f i n i t i o n  2.11. 

(i) v = 5 (n)  : If n  = k then  w e  know t h a t  t h i s  occurrence o f  5  (k)  

has  r e fe rence  depth k  i n  v  and, t h u s ,  t h a t  u  can be s u b s t i t u t e d  

f o r  <(k) . We cannot ,  however, simply r ep lace  ( ( k )  by t h e  term 

u r  s i n c e  e x t e r n a l  r e f e rence  occurrences  i n  u  w i l l  t hen  poss ib ly  

g e t  bound by t h e  wrong X ' s .  This  s i t u a t i o n  i s  c l a r i f i e d  by t h e  

fo l lowing diagrams 

\ X ( t h e  X of  t h e  redex) 

'Pk-lu 

k - 1 X ' S  { :  
X 

*) W (u)  , t h e  weight o f  u ,  i s  formal ly  de f ined  i n  D e f i n i t i o n  2.12. 

52  



The va r iab le  < ( k )  i s  t o  be i n t e r p r e t e d  on an underlying "context" 

of  k X's, while the  term u is  t o  be i n t e r p r e t e d  on a context  of 

X ' s  j u s t  below the  context  of c ( k ) .  In  order  t o  ensure t h a t  t h e  

ex te rna l  reference occurrences i n  u remain bound by t h e i r  o r i -  

g i n a l  X's a f t e r  s u b s t i t u t i o n  of u f o r  c ( k ) ,  the  f i r s t  k -  1 X ' s  

have t o  be skipped when determining the  X ' s  t h a t  bind these  re-  

ference occurrences. The reason f o r  t h i s  i s  t h a t  the  end-stage 

of a s u b s t i t u t i o n ,  r e s u l t i n g  i n  an expression l i k e  C ( u , c ( k ) , k ) ,  

was the  r e s u l t  of a @-reduction of some redex. This redex w i l l  

be of the  form Gu X B ,  where ( ( k )  occurs somewhere i n  the  term 

B and c ( k )  i s  bound by the  X of t h a t  redex. In the  t r a n s i t i o n  

from 6 u X B t o  C(u ,B , l ) ,  t he  X of t h e  redex is  dropped and a l l  

o r i g i n a l  references  t o  t h a t  X - l i k e  < ( k )  - a r e  replaced by u.  

Af ter  replacing c ( k )  by u t h e  term u i s  i n t e r p r e t e d  on a con- 

t e x t  of k - 1  e x t r a  X ' s .  By s u b s t i t u t i n g  cp u - ins tead  of u - 
k- 1 - 

f o r  < ( k )  we ensure t h a t  t h e  k -  1 e x t r a  X's a r e  skipped, with 

the  e f f e c t  t h a t  ex te rna l  reference  occurrences i n  u remain bound 

by t h e i r  or ig inab X ' s .  I f  n > k then a f t e r  reduction of t h e  

redex which give r i s e  t o  C (u, 6 (n)  , k) we have t h e  s i t u a t i o n  t h a t  

the  X of t h a t  redex has disappeared and s ince  t h i s  X occurred 

on t h e r o o t  path  of 5 (n)  we lower the  reference  number n i n  5 (n )  

by 1 i n  order  t o  maintain t h a t  t h i s  v a r i a b l e  remains bound by 

i t s  o r i g i n a l  X .  If n < k then removal of t h i s  X has no e f f e c t  

on c (n)  and we can l e t  c (n)  remain unal tered.  Note t h a t  we have 

only allowed s u b s t i t u t i o n  of the  term u f o r  < ( k )  i f  the  l a s t  

symbol of u is  a c-variable.  This way we exclude s u b s t i t u t i o n  

of segments f o r  < (k) . 
(ii) v = w ( + )  : A s  indicated e a r l i e r  i n  the  in t roduct ion (Section 

1.1.5) we have t o  be c a r e f u l  when we evaluate  expressions l i k e  

C (u ,  w ($) ,k)  . The reason f o r  t h i s  i s  t h a t  C (u,w ($1 ,k)  may have 

been the  r e s u l t  of some i n t e r n a l  6-reduction of a segment end- 

ing i n  ~ ( $ 1 .  I n  t h a t  case  we have t o  ensure t h a t  poss ib le  re-  

ferences  t o  t h e  X of t h e  redex which has  been contracted remain 

i n t a c t .  Should we, f o r  example, simply def ine  C (u ,  w (+) ,k)  a s  

w ( + )  then references  t o  t h e  X of t h i s  redex a r e  no longer poss i -  

b l e ,  and t h i s  can lead t o  incons i s t enc ies .  I f ,  f o r  example, t h e  

segment i n  question is  s u b s t i t u t e d  f o r  some segment va r i ab le  



u ( j  , m )  and the re  is  a reference t o  t h e  A of  t h i s  redex (one of 

the  h ' s of the  block of m X ' s hidden ins ide  a ( j , m )  ) then a f t e r  

B-reduction t h i s  X w i l l  have disappeared. A s  a consequence the  

argument u of t h i s  redex can no longer be s u b s t i t u t e d  f o r  those 

v a r i a b l e s  which o r i g i n a l l y ,  i . e .  p r i o r  t o  8-reduction, r e fe r red  

t o  t h i s  now vanished X. A s  an example consider t h e  following 

term 

A s  we can s e e  the  va r i ab le  ~ ( 1 ~ 4 )  abbrevia tes  t h e  segment 

X 6 u X X X w ( i d  ) and 5 (3) r e f e r s  t o  the  t h i r d  X (from t h e  r i g h t )  
4 

ly ing  on t h e  main branch of t h i s  segment; i . e .  c ( 3 )  r e f e r s  t o  

the  X of t h e  redex Gu X A Xo( id  ) occurring i n  t h e  segment 
4 

X 6 u X A Aw(id4) .  Should we 8-reduce t h i s  redex and apply the  

r u l e  t h a t  C(u,w(id ) ,3)  r e s u l t s  i n  w(id4) , then t h e  segment 
4 

reduces t o  X X X w ( i d 4 )  ; i .e.  the term (3) 8-reduces t o  t h e  term 

In ( 3 ' )  two th ings  a r e  t o  be noticed:  f i r s t ,  t h e  v a r i a b l e  ~ ( 1 ~ 4 )  

now apparent ly  abbrevia tes  a segment with th ree  X ' s  l y ing  on the  

main branch of i ts  t r e e ,  while four  X's a r e  expected; second, 

t h e  v a r i a b l e  5 ( 3 )  now r e f e r s  t o  a X d i f f e r e n t  from the  A it 

o r i g i n a l l y  r e fe r red  t o  i n  ( 3 ) .  From t h i s  we can conclude t h a t  

not  only i s  ( 3 ' )  i l l -formed, it a l s o  conta ins  references  t o  A ' s  

d i f f e r e n t  from those i n  t h e  o r i g i n a l  term. In order  t o  remedy 

t h i s  s i t u a t i o n  we w i l l  have t o  come up with a d i f f e r e n t  d e f i n i -  

t i o n  of C(u ,w($) ,k ) .  In  t h e  case of our example we s h a l l  def ine  

C (u ,  w ( i d q )  , 3 )  a s  

Following t h i s  d e f i n i t i o n ,  (3) 8-reduces t o  



-.ie mapping 'P ensures that all external reference occurrences 
2 

in u remain bound by the same X's as in (3), and the mapping 8 2 
ensures that 5(3) remains bound by its original X as well 

[ C 3 L  (3) = I), with the effect that u (or rather: q u) can still 
2 

be substituted for 5(3) (as originally intended in (3) ) after 
performing suitable 6-reductions (see also clause (iv)). In ge- 

neral, if k E rge ($) then C (u, w ($) , k) is defined as 

with the effect that references to the X of the redex that has 

b ~ m  contracted inside some segment remain possible for all 

those variables indirectly bound by that X from the outside - 
variables originally bound by this X by means of an indirect 

reference to a corresponding X hidden inside some segment vari- 

able u(n,m) prior to reduction of the redex in question. If 

k ' rge($) then the reference number k is not a customer for 
reallocation of references to X's among the X's lying on the 

main branch of the segment involved and in that case we could 

alsodefine C(u,w($~),k) as 6cp U X ~ ~ - ~ W ( $ ) .  But if k t  rge(+) 
k- 1 - - 

then 1 & rge(8 o+). In other words 3 o $ will never re- 
k- 1 k- 1 

allocate a reference to the X in 6 cp u X w (8 0 $ )  . In that 
k-1 k- 1 - 

case we can just as well discard the whole 6 cp uX-part and 
k- 1 

simply write w (8 o $ - 1) (we have subtracted 1 because the X 
k- 1 

of the redex has disappeared). 

(iii) C(u,Xw,k) : If an occurrence of a variable q has reference depth 

k in Aw then has reference depth k + l  in w; therefore 

C(u,Xw,k) = XC(u,w,k+ 1). 

(iv) C (u, a (n,m) w,k) : If n = k then a (n,m) has reference depth k in 

the term a(n,m)w and u can be subsituted for u(n,m). Certain 

conditions have to be met, though, if this substitution is to 

make sense. First of all, u has to be a segment; i.e. u is a 



term ending i n  w ( $ ) ,  f o r  some $ €Perm.Terms ending i n  a c-vari- 

a b l e  cannot be s u b s t i t u t e d  f o r  a-variables;  t h i s  would make no 

sense a t  a l l .  Second, the  weight of t h e  term u (= the  number of 

A ' s  l y ing  on the  main branch of u) has t o  be equal t o  t h e  number 

m i n  o (n,m) (= the  number of "hidden" X ' s  i n  o (n,m) ) . When these  

two condi t ions  have been f u l f i l l e d  we can s u b s t i t u t e  u f o r  

o(n ,m) .  Again, i n  order t o  maintain t h a t  ex te rna l  reference  

o c c u r r e n c e s i n u  remain bound by t h e i r  o r i g i n a l  A ' s ,  we apply 

t h e  mapping cp t o  u and replace  o(n,m) by ( p k - l ~ ;  O r  more pre- 
k- 1 - - 

c i s e l y :  a(n,m)w i s r e p l a c e d b y s  $^  - C(u,w,k+m),  where cp u = sw($) .  
k- 1 - 

I f  an occurrence of a va r i ab le  q i n  w has reference  depth k i n  

o(n,m)w then it has reference  depth k + m  i n  w; t h i s  expla ins  

t h e  p a r t  C(u,w,k+m) i n  s $ -  - C(u,w,k+m).  The mapping i s  

placed i n  f r o n t  of C(u,w,k+m) i n  order  t o  ensure t h a t  the  re-  

ferences  of va r i ab les  i n  C(u,w,k+m) t o  a ?, occurring i n  s g e t  

r ea l loca ted  t o  t h e i r  proper X ' s  a s  indicated by t h e  segmap $. 

I f  n # k then we have a s i t u a t i o n  analogous t o  the  case  n # k 

i n  c lause  (i) . The va r iab le  o (n,m) e i t h e r  remains o (n,m) o r  i s  

changed t o  o ( n -  l ,m),  depending on whether n < k o r  n > k.  

(v)  C(uI6wlw2,k) : I f  an occurrence of a va r i ab le  q has reference 

depth k i n  6w w then it e i t h e r  has reference depth k i n  w or  1 2  1 
i n  w 2 ,  depending on whether occurs i n  w o r  w2. This obviously 

1 
leads  t o  t h e  d e f i n i t i o n  C ( u ,  Gw w ,k)  = G C  (u,wl ,k)  C (u,w2,k) . 1 2  

We now proceed by s t a t i n g  some techn ica l  lemmas and theorems concern- 

ing refmaps and r e l a t i o n s  between refmaps and s u b s t i t u t i o n .  

Lemma 2.2. 

Ifk,R,m E N and l~ i s  a refmap then 

<k> , i f k S R  
(iii) cp <k-R> , 

m 
' P R O  'Pm , i f k > R  



i f  m 2 R then 9 = a<1>. 3 . 
m o a t - 1  R-I m 

Proof. Simple computation. 

Lemma 2.3. 

For a l l  refmaps and terms u ,  L(pu) = L(u)  . 
Proof. By induction on the  length  of u  and Lemma 2.1. 

Lemma 2.4. 

For a l l  refmaps p, cp and term u, ( - 1~  = g ( p )  . 
Proof. By induction on the  length  of  u  and Lemma 2.1. 

Def ini t ion 2.12. 

W(u) i s  defined induct ively  f o r  terms t by 

W ( t )  i s  c a l l e d  the  weigh t  of t h e  term t. Informally,  W ( t )  r epresents  

t h e  numberof a l l  X ' s  ( a l s o  those  X ' s  hidden i n s i d e  segment va r i ab les )  

ly ing  on the  m a i ~  branch of the  t r e e  representa t ion of t. For example, 

i f  t i s  the  term IS A A 6 < ( I )  A Aw(id4) XAu(2,4) A < ( 3 )  t h e n t h e t r e e e q u i -  

v a l e n t  of t i s  
/ 5(1)  

and i t s  weight i s  1 +  1 +  4  + 1 = 7 .  

Lemma 2.5. 

I f  SW($) i s  a  segment and W ( s w ( $ J ) )  = m,  then f o r  a l l  terms t and r e f -  

maps P 
<m> g ( s & t )  = s '  & L t  , 

where p ~ ( $ 1  = s ' w ( l / l t )  . - 



r100f. By induction on L(s) and Lemma 2.1. 

Corollary. 

I£ L3 (u) = w (JI) , W (u) = m and rge (I$) 5 N then LS ( ~ u )  = w ($1 . 
m 

Informally, the following theorem shows how to interpret substitutions 

for variables occurring at reference depth k (k > 1) as substitutions 

for variables occurring at reference depth 1. 

Theorem 2.1. 

Let u and v be terms and let k be an element of IN. If (u,v,k) E 

Proof. By induction on L (v) : 

Conclusion: A = B. 

u 1 w (3 0 $1 , if k E rge (JI) 
A = C (u,w ($1 ,k) = 

k- 1 
, 

, if k $ rge(JI) 



Since  1 is  as, element of  t h e  range of  9  o $ i f  and on ly  i f  k 
k- 1  

i s  an element of  t h e  range of  $ we can conclude t h a t  A = B . 

(iii) v = Aw : 

A = C(u,Aw,k) = hC(u,w,k+ 1)  and from t h e  induc t ion  hypothes is  

it fo l lows t h a t  A = XC(cpkur9 w , l )  . 
k - - 

From t h e  induc t ion  hypothes is  and Lemmas 2.1 and 2 . 4  we conclude 

and t h u s  A = b . 
( i v )  v = u(n,m)w : Y e t  A = C(utu(n tm)w,k)  and B = 

= C ( ' P ~ - ~  u , 9  u (n,m)w, 1)  . By t h e  induc t ion  hypo thes i s  one of  
k- 1  -- 

t h e  fo l lowing t h r e e  cases  holds  f o r  A o r  B 

n  > k and A =  u ( n -  1,m) C(u,w,k+m) = 



<m> 
(1) n = k and B = s 2- C ( ( P ~ - ~  ~ ~ 8 ~ - ~  w,m+ 1) = - -  

<m> 
= s $- C ((P, 0 'Pk-l u , $ ~  9k-1 wtl) = (Lemma 2.4) 

- 
- $- (qm+k- 1 U' 1 wll) (Lemma 2.1) -- 

<m> 
(.:) n < k and B = C (cp u,o (n + 1 ,m) 9k-l w, 1) = k- 1 - - 

Conclusion: A = B. 

(v) v = 6w w . 
1 2 '  

A = C (u16w w ,k) = 6C (ulwl ,k) C (u,w2,k) and from the induction 
1 2  

hypothesis it follows that 

Furthermore, B = C ( ( P ~ - ~  ~ ~ a ~ - ~  6w1w2,1) = - -  



and again we see that A = B, which completes the proof. 0 

Informally, the following theorem shows how refmaps interact with 

substitutions for variables occurring at reference depth 1 (Theorem 

2.1 sees to it that all substitutions can be brought back to substi- 

tutions for variables occurring at this reference depth). 

Theorem 2.2. 

Letuand v be terms and p be a refmap. 
<I> 

If (u,v, 1) E dom(C) or ( p u , ~ v ,  1) E dom(C) , then 

proof. By induction on L (v) : 

(i) v = 5 (n) : 

(1) n = 1 :  - yC(u.v.1) = put and furthermore ;'>(I) = I from 
< I >  

which it follows that C ( p u , ~ v ,  1) = pu . 
(2) n > 1 : pC(u,v,l) = ]1 5(n- 1) = E(p(n- I ) ) ,  and furthermore 

<I> 
p<" (n) = 1 + p (n - 1) > 1; hence C ( ~ u , ~ v ,  1) = 

= Z(pu,5(1 + p(n- l)),l) = <(p(n- 1)) . 

(ii) v = w($) : 

(2) 1 # rge($) : - p C (u,v, 1) = w ($ - 1) = w(p o ($ - 1)) and fur- 

<I> < I >  
thermore 1 f rge (p o $) ; hence C ( l . ~ u , ~ v ,  - 1) = 

< 1 > 
= C(pu,w(u 0$),1) = C(p,w(l + P O  ( $ -  1))rl) = 

= w((300 (1 + )lo ($-I)) -1) = w((1 + po ($-I)) -1) = 



< I >  < 1 >  
= C ( ( ( P ~ U  ) (a1w),1) = (induction hypo- 

- - thesis) 

< 1 > 
= A E (p o p l  u,pC2' 0 3 W, 1) = 

1 
(Lemmas 2.1 and 2.4) 

(Lemma 2.2) 

(Lemma 2.4) 

(iv) v = a (n,m)w : 

(1) n = 1 : 

pC(u,a(l,m)w,l) = i~s$^Z(u,w,rn+l), where u = sw(JI), - - - 
W(u) = m and rge($) E hT,. 
Furthermore 

<m> 
= s '  p ($-  C(u,w,m + 1)) = - -  (Lemma 2.5) 

<m> 
= S' 11 o JI- Z(u,w,m+ 1) = (Lemma 2.4) 



<m> 
= s ' $ -  (k C (u,w,m+ 1 )  = (Lemma 2.4) 

<m> w ) ,  1 )  = 
= s '  $- C (L ((Pm ~1 r1- I  ('rn 

( i n d u c t i o n  hypo- 
- - t h e s i s )  

(Lemmas 2.2 and 
2 .4 )  

(Theorem 2 .1)  

< 1> 
If  n  > 1 t h e n  1-1 ( n )  = 1  + p (n  - 1 )  from which it f o l l o w s  

t h a t  



Corollary.  

I f  m < R then cp C(u,v,R - m )  = C(ar'pmvlR) . 
m - - 

Proof. 

cp C(u,v,R- m)  = 
m - 

- - u19 VI1) = 'm ' ( 'R-m- 1 R-m- 1 
(Theorem 2 . 1  ) 

- - -  

Informally,  the  following theorem shows t h a t  i n  some cases  it i s  

poss ib le  t o  shor t -cut  t h e  evaluation of a s u b s t i t u t i o n .  

Theorem 2.3 .  

Let k be an element of N and m an element of M. I f  k + m Z R > m 
<m> <m> 

and (u,qk v,R) E dom(C) then C (u , v k  V ,  R )  = <m> v . 
- - 'Pk- 1 

Proof. By  induction on L (v) : 



<m> 
If k + m  2 R > m then cpk (n) # R. 

if J) (n) > m 

<m> 
If k + m  2 R > m then R f! rge(cpk o $1 .  

<m> <m> 
Conclusion: C(urcpk W ($1 I k) = cpk-l W ($1 - - 

(iii) v = A W  : 

(induction hypothesis) 

<m> 
As seen earlier in i) R f! rge(cpk therefore S = 



( induct ion hypo- 
thesis) 

<m+p> 
= u (n + k - 1 ,PI cpk-l w = (induction hypo- 

thesis) 

(induction hypothesis) 

Corollary. 

C (ulTJ1 vt 1) = v . 

2 .6 .  - T h e  p e r m u t a t i o n  c o n d i t i o n  ( P C )  

With the definition of Xu-terms as it stands it is possible to con- 

struct terms that have undesirable properties. Consider as an example 

the following term represented in tree form by 

where $ is a segrnap containing a number larger than 3 in its range. 

Such a segmap $ also reallocates references to X's that do not lie 

on the main branch of its segment. Should we substitute the segment 



f o r  a (1,3) then t h i s  r e s u l t s  i n  

and wesee t h a t  va r iab les  i n  B which a r e  bound by a A i n  f r o n t  of the  

segment a r e  now influenced by +. This i s  not  t h e  i n t e n t i o n ,  though. 

such ex te rna l  reference occurrences i n  B should not  be influenced by 

$; t h e  s o l e  r o l e  of a segmap is  the  rea l loca t ion  of references  t o  X ' s  

which occur i n s i d e  i t s  corresponding segment (va r iab les  i n  B which 

a r e  bound by A ' s  i n  f r o n t  of the  segment can r e f e r  d i r e c t l y  t o  these  

X ' s  anyway, ins tead  of i n d i r e c t l y  by means of a segmap $1. We there- 

f o r e  requ i re  t h a t  a segment t with LS (t) = w ($) s a t i s f i e s  t h e  condi- 

t i o n  E Perm(m) , where m = W (t) . That way t h e  segmap $ w i l l  only in-  

f luence references  t o  X's occurring i n  t h e  segment t. This condit ion 

is  taken ca re  of by t h e  so-called permutation condition (PC) described 

below. 

Def ini t ion 2.13 (PC) . 
Let k be an element of M. 

PC(t ,k)  i s  defined induct ively  f o r  terms t by 

Informally, t h e  number k ind ica tes  the  number of A ' s  encountered i n  

t h e  process of "recurs ively  s h i f t i n g "  PC through t h e  t r e e  of t. Given 

a t e r m t w e  w i l l  r equ i re  P C ( t , O ) ,  and i f  P C ( t , O )  holds we say t h a t  t 

s a t i s f i e s  t h e  permutation condit ion.  

We now give  an example of a term which s a t i s f i e s  t h e  permutation con- 

d i t i o n .  Consider t h e  following term t 



where $ E Perm(3) and q E Perm(7) . The tree representation of (4) is 

From (4') we see that PC(t,O) holds if PC(E(2) , I ) ,  PC(U($) , 3 )  and 

PC(w(q),7) hold. The first condition is trivial, and since 

$ E Perm(3) and q E Perm(7) we also have Pc(~($) ,3) and P~(o(v) , 7 ) .  

We now proceed by stating some properties concerning the permutation 

condition which will be used later on. 

The following four lemmas are easily proved by induction on L(t). 

Lemma 2.6. 

Let m be an element of IM. 

~f t = so(id ) and u are terms and W ( t )  = m then 
m 

Lemma 2.7. 

L& t be a term and k,R be elements of IM. 

~f R 2 k then, for all refmaps p 

Corollary. 

PC(t,O) ~C(l.lt,O) . - 

Lemma 2.8. 

Let t be a term and k be an element of M. 

If $ E Perm(m) and m 5 k then 

Lemma 2.9. 

Let t be a term and k,m be elements of M. 



Theorem 2.4. 

Let  t and u be terms and k,R be elements of  M. 

I f  PC ( t , k )  , FC (u,O) , R > k and (u ,  t ,  R )  E dom(C) then PC ( C  ( u , t ,  R )  ,k )  . 

proof. By induct ion  on L (t) : 

I f  n # R then,  by Lemma 2.9, it follows t h a t  PC(C(u,<(n)  , R )  , k ) .  

I£ n = R then C (u ,S (n )  , I )  = qR-l u and LS(u) E r g e ( 5 ) .  F r o m t h e  
- 

c o r o l l a r y  t o  Lemma 2.7 and PC (u,O) it follows t h a t  PC (pLVl u ,  0 )  . 
.. - - 

Furthermore, i f  LS (u)  E rge  ( c )  then LS ((p u) E rge  ( c )  . From 
2-1 - 

Lemma2.9andPC(p u,O) it follows t h a t P C ( q  u , k ) .  
R- 1  - R- 1  - 

t = ~ ( $ 1  : From PC(w($) ,k)  it follows t h a t  $ r Perm(k),  and 

t h e r e f o r e  t h a t  R f! rge  ($) . I f  R f! rge  ($1 then C (u,w ($) R )  = 

- - ~ ( 3 ~ - ~ 0  $ -  1 ) .  Furthermore, i f  R > kt 3R-1 o $ - 1  = $. There- 

t = Xv: I f  PC(t ,k)  then PC(v,k+ 1 ) .  The induct ion  hypothes is  

g ives  PC(C(u,v,R+ l ) , k +  1) and the re fo re  we have 

PC ( C  (u ,  Xv, R )  ,k )  . 

pR-l u = sw ($) and W(u) = m 
C ( u , ~ ( n , m ) v , R )  = - 

a(n,m) C (u,v,R +m) i f  n < R 

a )  n # R :  From PC(a(n,m)v,k) it follows t h a t  PC(v ,k+m) .  From 

t h e  induct ion  hypothesis  i t  follows t h a t  PC (C (u ,v ,  R + m) ,k + m )  

and t h e r e f o r e  both PC(a(n,m) C(u,v ,R+m),k)  and 

PC (a  (n  - 1 , m )  C (u,v,R + m) , k )  . 



b) n = R : From PC(u,O) and the corollary to Lemma 2.7 it 

follows that PC((P~-~ u,O) . From the corollary to Lemma 2.5 
- 

we see that if cp u = sw (I)) then LS (u) = w ($1 . Furthermore 
R- 1 - 

PC(u,O) A PC(oiR,m)v,k) * 

sw($),O) A PC(C(u,v,R+m),k+m) * (induction 
hypothesis) 

sw(id ),O) A PC($~^C(u,v,R+m),k+m) - * (Lemma 2.8) 
m 

(Lemma 2.6) 

Corollary. 

PC(u,O) A PC(t,O) * PC(C(u,t,l) ,O) . 

The following theorem shows that the permutation condition is invari- 

ant with respect to 8-reduction. 

Theorem 2.5. 

Let 6 u A t  be a term and k be an element of M. 

Tf (u,t,l) E dom(C) then 

Proof. By induction on L (t) . 
From ~C(6uXt,k) it follows that 



I f  n  > 1 then PC ( C  (u,  (n)  , l )  ,k) ( t r i v i a l )  . I f  n  = 1 then 

C ( u , t , l )  = u and LS(u) E r g e ( S ) .  From Lemma 2.9 and PC(u,O) it 

fol lows t h a t  PC(u,k) .  

(ii) t = w ( $ )  : From P C ( t , k + l )  it follows t h a t  $ c P e r m ( k + l )  and 

t h e r e f o r e  1  E r g e ( $ ) .  I f  1  E r g e ( $ )  then  C (u,w($) , l )  = 6 u  X w($) 

and t h e r e f o r e  P C ( C ( u , t , l )  , k ) .  

(iii) t = Xv: From t h e  c o r o l l a r y  t o  Lemma 2.7 and PC(u,O) it follows 

t h a t  PC(cpl u lO) .  Furthermore 
- 

PC(Xv,k + 1 )  e+ 

(Lemma 2.8) 

From PC(q u,O) and PC(X3 v , k + l )  we have PC(6rp u A 3  v , k + l ) .  
1  1  1  1 - - 

From t h e T n d u c t i o n  hypo thGis  it fol lows t h a t  

PC ( C  ( c p l  ~ ' 3 ~  1)  ,k + 1) and t h e r e f o r e  P C ( C  (u ,v ,2)  ,k + 1 )   heor or em 
- - 

2 .1 ) .  I£ ~ C : Z ( u , v , 2 )  , k +  1 )  then  PC(C(u,Xv,l) , k ) .  

( i v )  t = o ( n , m ) v -  I f  n  = 1 then C(u ,o (n ,m)v , l )  = s $ ' C ( u , v , m + l ) ,  - 
where u  = s w  ($1 and W (u)  = m. Furthermore 

w PC(u,O) A ~ C ( 3 ~ v , k  +m+ 1)  e, (Lemma 2.8) - 



(induction 
hypothesis) 

+ PC(S~($J) ,O) A PC(C(u,v,m+ 1) ,k +m) * (Theorem 2.1 ) 

If n > 1 then C(u,t,l) = u(n- 1,m) C(u,v,m+ 1) = 

= u(n- 1,m) C(cpmu,4mv,1) and therefore ~~(C(u,t,l),k) @ 

- - 
@ ~c(C(cp u,8 v,1) ,m+ 1). ~~(C(cp~u,9~v,l) ,m+ 1) is proved as 

m m - - - 
above for the case n = 1. 

+ PC(C(u,w,l),k) A PC(C(U,V,~),O) * (induction hypothesis) 

Informally, the following lemma shows that with PC it is sometimes 

possible to short-cut the evaluation of a substitution. 

Lemma 2.10. 

Let t and u be terms and k,R be elements of 1M. If R I k t  PC(u,R) and 

Proof. By induction on L (u) . 



3. THE CHURCH-ROSSER THEOREM FOR THE TYPE FREE ha-CALCULUS 

In this section we offer a proof of the Church-Rosser property for 6- 

reduction in type free Xa-calculus. The proof is basically along the 

lines of the proof given in Barendregt C811, pp. 279 - 289, employing 

so-called "finiteness of developments". The main theorem in this sec- 

tion states that the strong normalization property holds for a special 

kind of reduction (called 8') in Xa. From this theorem together with 

the weak Church-Rosser property for 8' (proved in Section 3.1) it 

will be shown that the Church-Rosser property holds for 6-reduction 

in general. 

2.1. Restricted reduction and the weak Church-Rosser property 

In this section we introduce an extension of the set of Xu-terms by 

marking certain redices. 

Definition 3.1.1 (A'). 

Let A denote the set of Xu-terms. The set A' is the smallest set X 

satisfying 

(i) A C X ; 

(ii) t E X * Xt E X ; 

(iii) t E X - a(p)t E X , for every p E N x M ; 

(iv) u,v E X * 6uv E X ; 

(v) U,V E X * Guh'v 6 X . 

The elements of A' are called X'a-temZs. The main difference between 

the definitions of A and A' lies in clause (v) in which redices are 

marked. This difference is essential, since only marked redices are 

contracted in A' (cf. Definition 3.1.2 below). But apart from differ- 

ences regarding contractions of redices it is easily seen that the 

basic operations on Xu-terms introduced in Section 2 can be extended 

to X'a-terms in an obvious way, and moreover that the results obtained 

in Section 2 regarding these operations also hold for X'a-terms. In 

particular: 

(1) If p is a refmap then the application of to a h'a-term t is de- 

fined as in Definition 2.10 with the additional clause that pX't - 



< I >  
i s  def ined a s  X '  ~ t .  It i s  e a s i l y  seen t h a t  Lemmas 2.3 and 2.4 

a l s o  hold f o r  X'o-terms. 

(2) The weight W ( t )  of a  X'a-term t is  defined a s  i n  Def ini t ion 2.12 

with the  add i t iona l  c lause  t h a t  W ( X ' t )  is defined a s  1 + W ( t )  . I t  

i s  e a s i l y  seen t h a t  Lemma 2.5 a l s o  holds f o r  X'a-terms. 

(3 )  Subs t i tu t ion  of X'a-terms is  defined a s  i n  Def ini t ion 2.11, though 

with two exceptions.  The f i r s t  exception i s ,  of course,  the  addi- 

t i o n  of an e x t r a  c lause  t e l l i n g  us how t o  recurs ive ly  s h i f t  t h e  

s u b s t i t u t i o n  opera tor ,  denoted by C '  i n  A ' ,  p a s t  an a b s t r a c t o r  1' .  

This i s  done a s  follows. I f  u and w a r e  X'a-terms and k i s  an e le -  

ment of 7N then C'(u,h'w,k) i s  simply defined a s  X '  C ' ( u , w , k + l ) .  

The o the r  exception i s  the  adaption of c lause  (ii) i n  Def in i t ion  

2.11 which t e l l s  how t o  evaluate  a s u b s t i t u t i o n  a t  an end-point 

w ($ )  of a segment. We r e c a l l  t h a t  C (u ,  w (I)) , k )  was defined i n  A a s  

6 qk-l u A 3k-1 w (I)) , i f  k i s  an element of N such t h a t  k E rge (I)) . 
- - 

In  A '  we have a d i f f e r e n t  s i t u a t i o n  t o  take  account o f .  In  A ,  sub- 

s t i t u t i o n s  a r e  the  r e s u l t  of contract ing some B-redex, whereas i n  

A '  s u b s t i t u t i o n s  can only be t h e  r e s u l t  of con t rac t ing  some 6'- 

redex. I t  i s  f o r  t h i s  reason t h a t  we def ine  C (u,w(I)) ,k)  i n  A '  as 

u A '  3 w ( $ ) ,  where 1' corresponds t o  t h e  A '  of t h e  8 ' -  
k- 1 - 

redex t h a t  gave r i s e  t o  t h i s  s u b s t i t u t i o n  ( see  a l s o  the  d iscuss ion 

of c lause  (ii) of fe red  i n  Section 2 pp. 53 - 5 5 ) .  By checking t h e  

proofs  of Theorems 2.1, 2.2 and 2.3 it i s  again e a s i l y  seen t h a t  

the  r e s u l t s  s t a t e d  i n  these  theorems a l s o  hold i n  A ' .  

Def in i t ion  3.1.2 (-+ , ) .  
B 

The binary  r e l a t i o n  6 '  on A '  i s  defined a s  follows.  

(1) I f  t , u  E A '  then 

I£ t B '  u  then t i s  c a l l e d  a B'-redex. 

(2)  The notion of reduction -+ on A '  i s  induct ively  defined by 
B '  

(i) u B '  v =+ u -tgl v ; 

(ii) u + v * X U  -+ Xv ; 
B '  B '  



(iv) u -t8, v * o(n,m)u + o(n,m)v ; 8 '  

(v) u v * 6uw + 6vw ; 
B' 

(vi) u -tgI v *  6wu + 6wv . 
B' 

Theorem 3.1.1. 

Let u,v E A '  and )J be a refmap. 

I£ u -t v then pu +Bl E V .  
8' 

Proof. By induction on the generation of + and Theorem 2.2. B' 

Important. 

We note that in the following lemmas and theorems concerning substitu- 

tion it is tacitly assumed that the substitutions involved are indeed 

defined. We do this for the sole reason of economy of expression. 

Furthermore these lemmas and theorems are only secondary, in the sense 

that they are used as auxiliary results in proofs concerning contrac- 

tions of redices, and since contractions of redices presuppose the 

well-definedness of their corresponding substitutions there is one 

reason less for fearing the omission of the explicit mentioning of 

well-definedness of the substitutions involved (- but, none the less, 

the following lemmas and theorems can only hold if the substitutions 

are indeed defined). 

Lemma 3.1.1. 

Let w,s &w,u E A' and m E M and k E N. 

If k+W(sw(id ) )  >m2W(sw(idm)) then 
m 

where C' (u, sw (id ) ) = A & w (idm) . 
m 

Proof. By induction on L(s) and the definition of substitution. - 0 

Lemma 3.1.2. 

Let u,v E A '  and m E N and k E IN. 

If I) E Perm(p) and p I m then 



Proof. From Theorem 2.1 and Lemma 2.4 it follows that 

- 
'k+rn-1 - +- O 'k+m- 1 

(simple computation), and 

( 2 )  9k+m-~ 
0 jJ- = (#' 0 4 

k+m-1 . 
Result (2) is established by the following calculations. If n is an 

element of N then 

and 

(I)-)<" (n+ 1) , if 1 5 n 5 k + m -  1 

(1) , if n = k + m - - 

(n) , if n > k + m  

BY (1) and (2) we have 

(Theorem 2.2) 

(Theorem 2.1 ) 0 



Theorem 3.1.2. 

Let u,w,s&w E A '  and k E M and k E Z?. If $ E Perm(p) and 

w (sw ($) ) = m 1 p then 

where C' (u,sw($) ,k) = A & w($) . 
Proof. 

C' (U,S $- - wlk) = 

where C'(u,sw(id ),k) = A & w(id ) (cf. Lemma 3.1.1). 
m m 

= A & $-C1(uIwI(k+m-p) +p) = (Lemma 3.1.2) 

Theorem 3.1.3. 

Let u,v,w E A' and k,R E N. If k 2 R then 

proof. By induction on L (w) . Let S and S denote C ' (u, C ' (v, w, R) ,k) 
1 2 

and C'(C'(u,v,k- R+l),C'(u,w,k+l),R), respectively. In this proof 
* 
-f * 8 '  

we shall write -++ for * , i .e. 
8 '  

for X'a-terms A and B. 

(i) w = S(n) : Sl = C' (u,C0 (v,S(n) ,k) ,k) 



= C '  ( C ' ( u , v , k +  R -  1 )  , < ( n )  , R )  = (k 2 R a n d  R = n ,  
t h e r e f o r e  k  + 1 > n)  

(COT. t o  Th. 2 .2)  

Conclusion:  S1 = S 2 .  

= C '  ( C '  ( u , v , k -  R+ 1 ) , C V  (u ,C(n )  , k +  1 )  , R )  = 

= C '  ( C '  ( u , v , k -  R+ l ) , < ( n )  , R )  = 

Conclusion:  S1 = S 2 .  

(3 .1 )  n  > R and n - 1  = k  : - s1 - 'Pk-l - 
- 

S2 - 

= C '  ( C '  ( u , v , k -  R+ 1 )  , C '  ( u15 (n )  , k +  1 )  , R )  = 



(Theorem 2.3) 

Conclusion: S1 = S2 . 

(3.2) n > R and n -  1 < k : S1 = ((n- 1) 

- Conclusion: S1 - S2 . 

= 5 (n - 2) (n- 1 > k 2 R) . 

Conclusion: S1 = S2 . 

(1) k + 1 E rge ($) : If k + 1 E rge(+) then $ E ~erm(p), for some 

p 2 k + 1 ; therefore R E rge ($) . 

= C' (C' (u,v,k- R +  1) ,C' (u,w($) ,k+ 1) ,R) = 



= 6 C '  ( C '  ( u , v , k  - R + 1 )  , c p k  u,R) X '  C '  ( C '  ( u , v , k -  R+ 1 )  - 

- - 
qk-1 

u A '  C 1 ( C '  ( u 1 v l k -  R +  1 ) 1 3 k ~ ( $ ) r R  + 1 )  = - (Theorem 2 .3)  

(COT. t o  Theorem 2.2 and c p k  = cpl  o c p R b l )  

Fur thermore  

Hence 

(Theorems 2 .1  and 2.3) 

Fur thermore  

(Lemma 2 .2 )  , and t h e r e f o r e  



= 6 1' (U,(P~-~ vrk) A' 1' (u,4 ~ ( $ 1  ,k + 1) . (Theorem 2.1 ) - R- 1 - 

Conclusion: S -t 
2 8 '  '1' (*I 

And also 

(Theorem 2.1 and cor. to Theorem 2.2) 

Furthermore, if k 2 R and p 2 k + l  then 

- (1) o qk - pk (computation) ; 

Theref ore 

(Theorem 2.2) 

= C' (C' (u,v,k- R+ 1) ,C' (u,w($) ,k+ 1) ,R) = 

(Theorem 2.1 and cor. to Theorem 2.2) 

= S2 . 
Conclusion: S -+ 

1 8' S 2 .  



* 
From (*) and (**) it follows that S 1 TS2- 

(2) k + 1 (t rge ($) and R E rge (9) : 

Furthermore 

hence S = 6 C ' (uI(P~-~ v,k) A' 9 O $ -  1) 
1 - R- 1 

From rge($) Nk and R I k it follows that rge(9 9 )  5 R- 1 
E mk, and therefore 9 k O 'R-1 O $  - 1 = 9 o$. Hence 

R-1 

= C' (C' (u,v,k- R+ 1) ,C' (u,w($) ,k+ 1) ,R) = 

Furthermore 

R E rge(9 o$-1) w R + 1  E rge(Bko$) o R  E rge($) (R I k ) .  
k 

Hence 

= 6 2' ( u ~ P ~ - ~  v,k) X' w (951-1 0 (ak o $ - 1) ) (Theorem 2.3 ) 
- 

From rge($) 5 Nk it follows that 9 0 $ - 1 = $, and there- k 
fore 



6 C' ( u , ( P ~ - ~  v,k) X' w(8 0 $1 = R- 1 - 
= S1 . 

(3) R $ rge($) : If R E rge($) then k,k + 1 f rge($) 

Conclusion: S1 = S 2 .  

(iii) w = Awl or w = X 1 w  : This case follows simply from the induc- 
1 

tion hypothesis. 

(iv) w = a(n,m)w - 
1 '  

(1) n < R : 

- 
S1 - 

= C1 (u,C1 (v,u(n,m)wl,R) ,k) = 



* 
ft u(n,m) C '  (1' ( u , v , k -  R+ 1 )  , C '  ( u I w l r k + m + l ) , R + m )  = 
B 

( induc t ion  hypo thes i s )  

= C '  ( C '  ( u I v l k -  R + 1)  ,o(n,m) C '  (u,w ,k +m+ 1 )  , R )  = 1 

= C '  ( C '  ( u r v l k -  R+ 1 )  , C '  ( u ro (n tm)w , k +  1 )  , R )  = 1 

(2)  n = 1 : I f  q ~ ~ - ~  v = S W ( $ )  then  S = C '  ( u , s $ -  C '  ( v , w l r & + m )  ,k)  . 
1 - - 

s i n c e  W(v) = W(cp  v )  = w ( s w  ($) ) = m and $ E ~ e r m ( p )  f o r  
R- 1  - 

some p 5 m,  it fo l lows from Theorem 3.1.1 t h a t  

where C ' ( u , s w ( $ ) , k )  = A w($) . 
By t h e  induct ion  hypothes is  we have 

and from Theorem 3.1.1 it fo l lows t h a t  

C '  ( U , W  , k + m +  1)  ,R+m) 
1 

and t h e r e f o r e  

Furthermore 

= C '  ( C '  ( u ,v ,k -  R +  1 )  , C '  (u,o(n,m)w , k +  1 )  , R )  = 1 

= C '  ( C '  ( u I v l k -  R +  1 )  ,o(n,m) C' (u ,wl ,k+m+ 1)  , R )  



Since 

(tor. to Theorem 2.2) 

it follows that S2 = A & $- - C' (C' (u,v,k - R + I), 

Conclusion: S1 +% S B' 2 ' 

(induction hypothesis) 

Conclusion: S1 ; S2 . 



where cp u = s  ~ ( $ 1  . 
k- 1 - 1 

By the induction hypothesis and Theorem 3.1.1 we have 

Furthermore 

where cp u = s o($) . 
k - 2 

From Theorem 2.3 it follows that 

C ' ( C r ( u , v , k - R + l ) , c p k u , R )  = v k - l ~ r  since k 2  11. 
- - 

From Theorem 3.1.2 and cp u = s a($) it follows 
k- 1 1 - 

that 

* 
Conclusion: S ++ S 

B' 2' 

(induction hypothesis) 

= C' (C' (u,v,k- R+ 1) ,C1 (u,a(n,m)w ,k+ 1) ,R) = 
1 



Conclusion: S1 - S 
8' 2 '  

(v) w = 6w w : This case follows simply from the induction hypo- 
1 2  

thesis. 0 

Theorem 3.1.4. 

Let u,v,w E A '  and k E N. - - 
If v -+ w then C' (u,v,k) J. C'(u,w,k) . B '  8' 

Proof. By induction on the generation of -+ 

6 '  ' 

(i) v = 6Ph'Q and w = C'(P,Q,l) : 

(Theorem 3.1.3) 

- - 
Conclusion: C' (u,v,k) J. C' (u,w,k) . 

B' 

w and w = hw (h'w ) : (ii) v = hv (h'v , vl +81 
1 1 1 1  

- - 
J.B 

h C ' (U,W I k + 1) = (induction hypothesis) 
1 

(iii) v = a(n,m)v w andw = o(n,m)w - 
1' v1 +B' 1 1' 

(1) n < k : 



- - 
$ a(n,m) C' (urwl 'k + m) = (induction hypothesis) 

B '  

(2) n = k : If ( P ~ - ~  u = sw ($) then 
- 

C' (ulvrk) = 

- - 
.C B' st- C' (U'W 1 'k +m) = (induction hypothesis and 

Theorem 3.1.1) 

(iv) v = 6v v w and w = Sw w - 1 2' V1 73' 1 1 2 '  

C' (u'v'~) = 

- 
= 6 C' (u,vl,k) I.' (u1v2rk) 

d - 

' 6 '  
6 C' (u1wl .k) i t  (urvZ .k) = (induction hypothesis) 

(v) v = 6v v w and w = 6v w : as in (5). 1 2' "2 %' 2 1 2  

Theorem 3.1.5. 

Let u,v,w E A '  and k E N. - - 
If u -+ v then C' (u,w,k) t C' (v,w,k) . 

B '  8' 



Proof. By induction on L(w) . 
(i) w = E(n) : 

-+ (Theorem 3.1 .1) 

(ii) w = w ($1 : 

-+BI ' qk-i v h' 4k-1 w ($1 = (Theorem 3.1.1) 
- - 

(iii) w = Aw or w = A'w : this case follows simply from the induc- 
1 1 

tion hypothesis. 

(iv) w = o(n,m)w . 
1' 

- - 
J. o(n,m)C'(v,w ,k+m) = 
8' 1 

(induction hypothesis) 



(2) n = k : We shall prove 

on L(s) . 
the following statement by induction 

Claim: Let X,Y,sw($) E A'. I f X G  Yand B' = 

(2.1) L(s) = 0 : In this case s = s' = @ and $ = q .  - - 
Furthermore, by Theorem 3.1.1 $-X $ $-Y . - 6' 

- - 
(2.2) s = Aslr slu($) -+61 ~'~(cp) 1 and s' = As' 1' - 

From the induction hypothesis it follows 
- - 

that sl $ -  X $ s '  q^ Y and therefore - - B' 1 - 
h s1 9- X 4- A s; 9- Y . 

B' 
- - 

(2.3) s = A'sl, s1w(@) 9 sVu(cp) and s' = A's; : 
8' 1 

as in (2.2). 

s ' = u (p, q) s i : From the induction hypo- - 
thesis it follows that s $ -  X G- s' cp- Y 

1- = B' 1 -  
and therefore o(p,q)sl $^  X i6, U(p,q)s; y- Y . 

- 
(2.5) s = 6Zs Z Z' and s' = 6Z's - From - 1' 6' 1 - 

$ -  X i- $ -  Y it follows that 
- 6'=- 
sl 2- X iBl s $ -  Y and therefore 1 - 

- - 
(2.6) s = 6Zslf slw($) +61 s;w(q) and s' = 6Zsi : 

From the induction hypothesis it follows 

- - 
(2.7) s =  6Zh's sw($) +B, s'6~*h'u(cp) = 1' 1 * 

= stu(q) : If W(S u($)) = r then Z - Z 
1 - 'r 

and q = 3 0 $. Furthermore let R denote 
r 

the common reduct of X and Y, then we have 



the following reduction diagram 

6 z  XI s1 JI-R - (Theorem 3.1.1) - s' 6 Z* h' 9 - R  
1 

* 
Therefore 6 Z X's $-X f= s '  6 2  A' cp- Y. 1 - 8' 1 - 

Now that we have established the correctness of the above 

mentioned claim we proceed by completing the proof of case 

(iv) (2) : 

= sJI-C'(uIwlrk+m) , where cp u = sw(+) . k- 1 - 
Furthermore 

= S' cp-  - C' (vIwllk+m) , where cp v = s'w(cp) . 
k- 1 - 

BY respectively taking C' (u,wl ,k + m) , 1' (v,w ,k + m) and 
1 

'Pk- 1 
u for X, Y and sw($) in the above mentioned claim, we 

- 
immediately see that C'(u,w,k) t- C'(v,w,k). 

6' 



(3) n > k : 

C' (uru(nrm)wl~k) = 

= ~ ( n -  1,m) C' (U,W 'k+rn) += 
1 B' 

- - 

+ B '  
u(n- 1,m) C' (V,W 'k+m) = (induction hypothesis) 

1 

w = 6w w - C'(u,w,k) = 6C'(urwllk) C ' ( U ~ W ~ ~ ~ )  and from the in- 
1 2 -  - 

duction hypothesis it follows that C' (urwl,k) +;, 1' (vrwlrk) and 
- 

S ' (u. w2 k) +g C (v. w2. k) . Therefore 

Theorem 3.1.6. 

- - - 
i.e. if u,v,w E A' and u + v and u 5 w then 

* 8' 8' 
32 E A '  6' 

z .  

Proof. By induction on L (u) . 
(i) u = (n) : trivial . 

(ii) u = a($) : trivial . 
- - - - 

(iii) u = Xu ul -tB, v1 u1 +81 1 ' wl, v = Av w = Xw : this case 
1 ' 1 

follows simply from the induction hypothesis. 
- - - - 

(iv) u = X'u u1 vlr u1 +Bl wl. v = X'V w = X'W : as in case 1 ' 1 
(iii) . 

- - - - 
w v = u(n,m)v w = u(nrm)wl : (v) u = u(n,m)ul ul v1 u1 +61 1' 

this case follows simply from the induction hypothesis. 

(vi) u = Su u - 1 2 '  



- - - - 
(1) U1 +Bl V1r U1 +Bl v;. v = 6v u w = 6v'u : this case 

1 2' 1 2  
follows simply from the induction hypothesis. 

- - - - 
(2) u1 +Bl vl. u2 +Bl v2. v = 6vlu2. w = 6u v : simple, take 

1 2  
6v v for the common reduct. 
1 2  
- - - - 

(3) u2 +Bl v2. u2 v;. v = 6u v w = 6u v' : this case 1 2' 1 2  
follows simply from the induction hypothesis. 

- - 
(4)  U1 9Bl V1r U 2 = A'pr v = 6vlu2, w = C' (ul ,p,l) : consider 

the following reduction diagram 

- 
furthermore. by Theorem 3.1.5. E' (ul.prl) x' ( V ~ I P I ~ )  
and therefore 6 v  h'p I= ~ t ( ~ l l ~ r l )  - 1 B' 

3.2. The s t rong no rma l i za t i on  p rope r t y  f o r  +B, 

In this section we shall offer a proof of the strong normalization 

property for + (SN(+ ) ) .  As mentioned earlier this proof is basic- 
8 '  8 '  

ally along the lines of the proof given in Barendregt [81] (pp. 283- 

286). SN(+ , )  is an important result, since SN(+ ) and WCR(+ ) imply 
B B' 8' 

the Church-Rosser property for 6-reduction (this is proved in Section 

3 . 3 ) .  

The idea of the proof offered in this section is to assign special 

norms (positive integers) to 1'0-terms. These norms satisfy the follow- 

ing property: if u,v E A '  and u -+ v then for each special norm for 
B' 

u there is a strictly smaller one for v. These special norms are intro- 

duced via an auxiliary system A' defined below. 
0 

Definition 3.2.1 (1'). 
0 

The set of numbered h'o-terms 1' is the smallest set X satisfying 
0 



(i) cm(n) E X I  for every nrm E N ;  

(ii) wm($) E X I  for every segmap JI and m E hT; 

(iii) u E X * XU E X ; 

(iv) u E X*om(p)u E X I  for every p E N x M and m E N ;  

(v) U , V E X * ~ U V E ~ ;  

(vi) u,v E X * 6uA'v E X and 6uA'v E X. 0 1 

Remarks. 

(1) Every numbered A' o-term (or numbered term for short) u can be 0 
seen as a pair (u,I) where u is a A'o-term and I is a numbering 

function which assigns a positive integer to all occurrences of 

variables and w's in u 0- 

(2) Application of a mapping p, where is some refmap, to a numbered 

term u is defined in the obvious way (numbering of X'u-terms has 
0 

no effect on the application of to u ) .  0 

Definition 3 . 2 . 2 .  

The function 1 I : A;) + A;) is inductively defined for numbered terms 
1 

t by 

(iii) Aull = Alull; 

m m 
(iv) lo (n.r)uIl = u (nIr) & lull ; 

Definition 3 . 2 . 3 .  

The substitution operator in A' denoted by C' is defined as follows. or or 
~f u E A; and k E N then C' (urt,k) is inductively defined for num- 

0 
bered terms t by 



P i f  n  = k  and LS(u) = 5 (j) f o r  

some j , p  E N 
m 

(i) C;(u,S (n )  , k )  = 
cm(n)  , i f n < k  

c m ( n - 1 )  , i f  n  > k  

(iii) C '  (u,Xv,k) = X C '  ( u ,v ,k  + 1)  ; 
0 0 

R I ~ J ~ - ~ u I ~  = sw ($1 ( f o r  some 9. E IN) , 
- 

( v i )  C '  (u ,6  v  A! w,k) = 6 C '  ( u l v l k )  X! C '  ( u l w l k +  1) 
0 

(i = 0 , l )  . 
0 1 1 0  

0 

The fo l lowing d e f i n i t i o n  o f f e r s  a  norm f o r  numbered terms.  

D e f i n i t i o n  3.2.4. 

The func t ion  11 11 : A;) -t IN i s  induc t ive ly  de f ined  f o r  numbered terms 

t by 

m 
(ii) I1 w ($1 I 1  = m ; 

(iii) I1 Xu I1 = I 1  u  I1 ; 

m 
( i v )  Ilu (n , r )u l l  = m + llull ; 

(v)  11 6uv ll  = l l  u  l l  + llvll ; 

( v i )  11 6  u  X !  v  l l  =- l l  u  l l  + l l  v  l l  + i (i = 0 , l )  . 
1 



Definition 3.2.5 (+ . 
% 

(1) The binary relation 8' on A' is defined as follows. If t,u E X' 0 0 0 
then 

t 8 '  u @ 3v,w E A' - 
0 0 - 

15 tB'u then t is called a 8'-redex. 
0 0 

(2) The notion of reduction + on X' is inductively defined by 0 

The permutation condition (PC) is defined for numbered terms in the 

obvious way (cf. Section 2.6, Definition 2.13). The numbered terms 

that we take into consideration in this section all satisfy the per- 

mutation condition. 

Definition 3.2.6 (A;) . 

Remark. 

From Theorem 2.5 (invariance of the permutation condition with respect 

to @-reduction) it follows immediately that the notion of reduction 

+ is a binary relation on A' i.e. if u E A; and u + v then v E A' 
'% 0; 86 0' 

In Section 2, Definition 2.7 concerned reference depth values of vari- 

ables in Xa-terms. This definition is extended to X' in the obvious 0 
way (marking of X's and numbering of variables and w's in XU-terms has 

no effect on the definition of D(q,t), where 11 is some numbered vari- 





the terms by which they can be replaced. 

Example. 

Consider the following term written in tree form 

/ 10 4 
6 - A', - o (1.2) - X - 5 (2) . 

7 

This term has a decreasing numbering; this in contrast with the num- 

bered term 

Lemma 3.2.1. 

For every u E A' there is a numbering function I such that I(u.1). 

Proof. Number the occurrences of variables or w's in u from the left 

to the right, and assign to the n-th occurrence (n > 0) the (high) 
m+n- 1 

index 2 . where m is equal to the number of marked A's to the 
left of that occurrence. 

Example: If u is the 1'0-term 

then the result is 

n n-1 
Since 2 > 2 + ... + 2 + l r  (u,I) has a decreasing numbering (where 
I is the numbering function for u as defined above). 0 

Remark. 

The specific numbering function I defined in Lemma 3.2.1 also satis- 

f ies : 



We recall that a numbered term t has a 66-normal form u if t -t u 
@6 

and 1 3 v ~ A 6  : u -t V. In A' we have terms that, strictly speaking, 
6 0 

do not have a normal form, but (in some sense) can be considered as 

terms already in normal form. We shall give some examples to illustrate 

this situation. First consider the term 

This term $'-reduces to itself and to no other term, hence it has no 
0 

@;-normal form. However, 6'-reduction of (1) involves no actual sub- 
0 

stitution of the argument of the 6'-redex contracted. Another example 0 
of a term in A' that @;)-reduces to itself without involving actual sub- 

0 
stitutions of arguments of contracted redices is 

BY contracting the left-most 6'-redex in (2) we obtain 
0 

By once more contracting the left-most redex in (2') we get 

R 
6 - A' - 6 - A;) - w (310910 id(2)) 

0 

and since 3 0 is equal to the identity mapping on N we see that 

(2") is the same term as (2) , i.e. the term (2) @;)-reduces to itself 
without having performed actual substitutions of the arguments of the 

contracted redices. In ordinary type-free A-calculus we also have the 

situation that certain terms 6-reduce to themselves, e.g. Church's 

well-known counter example - written in name-free notation - for nor- 

malization of this calculus 



There is a large difference, though, between (2) and ( 3 ) ,  namely that 

(3) 6-reduces to itself as the result of actual substitution of the 

argument A 6 <(I) <(I) for each of the two right-most occurrences of 

the variable < (1) in (3) , whereas 8'-reduction of (2) involves no 
0 

substitutions at all, the redices just change places via (2') to (2"). 

So,in a sense, the term (3) is a much more serious counter example 

for normalization in ordinary type-free A-calculus than the terms (1) 

and (2) are in A' since @'-reduction of (1) and (2) just involve a 
0' 0 

shifting around of redices and no actual substitutions of arguments of 

contracted redices takes place. In A; we shall consider contractions 

of 8;-redices inside a segment which do not give rise to actual sub- 

stitutions of their corresponding arguments in that segment as non- 

essential, since these contractions have the sole effect (apart from 

updating of reference numbers in variables) that the contracted re- 

dices are just re-entered at the back of the segment in question with- 

out any substitutions of their respective arguments having taken place. 

As a consequence we shall consider terms that only give rise to non- 

essential 6'-reductions as already being in $;-normal form. 
0 

We proceed by giving a formal definition of a class of terms in A '  
I 0 

(called A ) which only give rise to non-essential 6'-reductions as 
0 0 

defined above. 

Definition 3.2.8 (6 ' ) . 
0 

The sub-set 6' of 16 is inductively defined as follows. The set 6' is 
0 0 



t h e  smal les t  s e t  X such t h a t  

(i) um(J,) E X I  f o r  every m E N and every segmap J, ; 

m 
(ii) i f  t E A '  u = s w  ( J , )  E X W ( U )  + 1 E rge  ($J) and o r  

V q ~ V a r ( u )  : 1 # ~ ( q , u ) , t h e n  6 t A b u  E X .  

Remark. 

I n  c lause  (ii) of Def in i t ion  3.2.8 we see  t h a t  6;-contraction of t h e  

redex 6 t X '  u does no t  r e s u l t  i n  s u b s t i t u t i o n  of  the  argument t f o r  
0 

any v a r i a b l e  i n  u r  s ince  t h e r e  a r e  no occurrences of va r i ab les  i n  u 

with reference  depth 1 i n  u. Furthermore, from W(u) + 1 E r g e ( + )  it 

follows t h a t  the  redex-part with argument t reappears a t  the  back of 

t h e  segment u a f t e r  contract ion of 6 t A '  0 U '  

Def in i t ion  3.2.9 ( A ' ) .  
0 

Lemma 3.2.2. 

1 f u ~ A 6 a n d u - t  v t h e n v ~ A '  
8; 0' 

Proof. By induction on t h e  generation of + . 0 *;, 
Lemma 3.2.2 motivates t h e  following d e f i n i t i o n  which induces an equi- 

valence r e l a t i o n  on A '  
0 '  

Def in i t ion  3.2.10 ( - I ) .  
0 

We induct ively  de f ine  the  following binary  r e l a t i o n  - '  on A '  a s  
0 0 

follows 

(i) u -6 u ; 

(ii) 6 u A '  v -' C' ( u r v r  1) ; 
0 0 0  

(iii) u -' v *  6 w X  u N '  6 w A f v ;  
0 f 0 

( i v )  u -6 v v -' w =$ u -' w . 
0 0 

Theorem 3.2.1. 

-' i s  an equivalence r e l a t i o n  on A '  
0 0 '  

Proof. By induction on t h e  genera t ion of -' and t h e  c o r o l l a r i e s  t o  0 
Theorem 2.3 and Lemma 2.10. 0 



The following definition extends -' to A;). 0 

Definition 3.2.11. 

We extend the relation -' on A' to A' as follows. If t,u,v,w E A then 0 0 0 0 

(i) t t ; 
0 

R R 
(iii) t -' u * At -;) Xu , A't -' X'u and a (p) t -6 a (p)u ; 

0 0 

(iv) t -6 u ,  v - '  w a 6tv -' 6uw. 
0 0 

Remark. 

- '  is an equivalence relation on A' (This follows easily from the 
0 0' 
fact that -6 is an equivalence-relation on A '  ) 0' 

Definition 3.2.12. 

Let t,u E A' 
0' 

t essentially 8'-reduces to u w t + u A lt - U. o % @6 

Definition 3.2.13. 

Let t E A;. We say that t is in essentiaz 8'-normal form if 0 

If t E A; is in essential 8'-normal form then this means that the only 
0 

@;-reductions that we can perform in t are non-essential @'-reductions. 0 
We could also say that t is in essential @'-normal form if there is no 0 
term u such that t essentially 8'-reduces to u. 

0 

Definition 3.2.14. 

Let t E A;). 

(i) t essentiaZZy 6;-normazizes (ess @'-N(t) ) if t has an essential 
0 

' -normal form ; @o 
(ii) t essentiaZZy @;-strongly normaZizes (ess B'-SN(t) ) if there is 0 

no @;-reduction path starting with t and containing an infinite 

number of essential @'-reductions ; 
0 

(iii) -t is essentialzy normaZizing (ess N (+ ) ) if 
@t, B;) 



V t  E A;) : e s s  8;-N(t) ; 

V t  E A;) : e s s  B;-SN(t) . 0 

We now proceed by s t a t i n g  some techn ica l  lemmas which l ead  up t o  the  

most c r u c i a l  r e s u l t  of  t h i s  sec t ion ,  Lemma 3.2.11, which says  t h a t  - 
norms of numbered terms decrease a f t e r  e s s e n t i a l  @'- reduct ion.  0 

Lemma 3.2.3. 

Let  t be an element of  X '  and p some refmap. 
0 

If 1 5 k E D(0,pt )  then - 

Proof. By induct ion on L (t) . 0 

Lemma 3.2.4. 

Let  t be an element of X '  and $ be an element of perm(m), f o r  some 
0 

m E N. I f  k E D(q , t )  and m < k then k E D ( Q , $ - t ) .  - 

Proof. By induct ion on L (t) . 0 

Lemma 3 . 2 . 5 .  

Let t , u  E X '  and k,R E IN. I f  k E D ( n , C ' ( t , u , l + R ) )  and 1 5 k 5 R then 
0 0 

E Var(u) and k E D(n,u) .  

Proof. By induct ion on L(u)  and Lemmas 3.2.3 and 3.2.4. 13 

Lemma 3.2.6. 

Let  t , u  E A '  and k E 3n\l and R E M. I f  R < k and PC(t,R) holds and a l l  
0 

occurrences of va r i ab les  n i n  t with reference  depth k i n  t s a t i s f y  

Ilqll > I I u ~ I I ~  where u = IuI1, then 
1 

(1)  11 16 (u ,  t ,k) 11 < 11 t 11 , i f  the re  is  an occurrence of  a va r i ab le  n 
i n  t with reference  depth k i n  t ;  

(2)  1 1  C; ( u , t , k )  11 = 11 t 11 , i f  the re  a r e  no occurrences of va r i ab les  0 

i n  t with reference  depth k i n  t. 

Proof. By induct ion on L ( t) . 0 



Remark. 

The results (1) and (2) stated in Lemma 3.2.6 also hold for 

s1 = ~ ~ ~ ( u . t l k ) l  and t 1 = t ;  i.. I I s ~ I I  < !It 1 11 or 11s 1 11 = Iltlll, 

depending on whether or not there are occurrences of variables n in 
t with reference depth k in t 
1 1' 

Lemma 3.2.7. 

Let t,u E A' and k E N and R E 24. Furthermore assume that t and u 
0 

have decreasing numberings and k I k. If PC(t,R) holds and all 

occurrences of variables n in t with reference depth k in t satisfy 

I nil  > ll ul I I  , where u = lu 1 , then C' (u, t.k) has a decreasing num- 1 0 
bering. 

proof. By induction on L (t) . 
m 

(i) t = 6 (n) : If n f k then tC' (u, t,k) holds trivially. If n = k 
0 

then C'(u,t,k) = 9 
k-1 Ur 

and cp u has a decreasing numbering 
0 k- 1 - 

iff u has a decreasing numbering. 

m 
(ii) t = w ($)  : 

In both cases it is easily seen that C'(u,t,k) has a decreasing 
0 

numbering. 

(iii) t = At : This case follows easily from the induction hypothesis. 
1 

m 
(iv) t = a (n,p) tl : 

m 
(1) n k : Then C'(u,t,k) = o (n,p) C;)(u,tl,k+p) and it follows 

0 
easily from the induction hypothesis that C' (u,t ,k +p) has 

0 1 
a decreasing numbering. Suppose that p > 0 and is an 

occurrence of a variable in C'(u.tlrk+p) with reference 
0 

depth j (1 5 j 5 p) in C'(u,tl,k+p). From Lemma 3.2.5 it 
0 

follows that n occurs in t at reference depth j in t 
m 

1 1' 
From +a (n,p) t it follows that 11 n 1 1  > m, and hence 
m 

1 
a (n,p) C;)(u,t ,k+p) has a decreasing numbering. 1 

(2) 11 = k : Then C;)(u,t,k) = s & $-C'(u,t ,k+p), where - 0  1 

-U1 
= SO($). In (1) we have already seen that 



C 1 ( u , t  , k + p )  has  a decreasing numbering. 
0 1 

There remain the  following cases  which we have t o  i n v e s t i -  

ga te  i n  order  t o  e s t a b l i s h  S C ' ( u , t , k ) .  0 

(2.1) p > 0 and q k - l ~ l  i s  a term of the  form - 

and furthermore t h e r e  i s  an occurrence of a v a r i a b l e  

q i n  $ - C ; ) ( u , t l , k + p )  - with reference  depth j + 1 i n  

q $- C;(u l t l lk  + p )  where j = W ( s 2  w ( $ ) )  : 

I n  t h i s  case  we have t o  show t h a t  l lq 11 > llvl ll , where 

v = I vl l .  From Lemma 3.2.3 it follows t h a t  t h e r e  i s  
1 

an occurrence of a v a r i a b l e  n' i n  C ; ) ( u , t l , k + p )  and 

an r E N such t h a t  t h i s  occurrence of q '  has r e f e r -  

ence depth r i n  C ' (u ,  t l  , k + p)  and Jl (r)  = 1 + j and 
0 

I lq l l  = I l q ' l l .  Since r g e ( $ )  g N , 1 5  r 5 p and from 
P 

Lemma 3.2.5 it follows t h a t  q '  E V a r ( t  ) and 
m 

1 
r E D ( q 1 , t l ) .  From $0 ( n , p ) t l  it follows t h a t  t h i s  

occurrence of q ' i n  t, s a t i s f i e s  11 q ' 11 > m. Further-  
I m m 

more, n = k and k E D ( u  ( k r p )  , U  ( k r p ) t l )  , hence 
m Il u (k ,p )  ll = m > ll u ll = II qkdl u1 11 . 

1 - 
Conclusion: 11 q 11 = Il rl ' ll > m > II qk-l u1 11 > II v1 11 . 

(2.2) p > 0 and qk-l u1 i s  a term of the  form 
- 

and furthermore the re  i s  an occurrence of  a v a r i a b l e  

i n  J I - C ; ) ( u , t l l k + p )  with reference  depth j + a  i n  

( u t l k + p )  where j = W(s u q ( $ ) )  and 1 I a I r: 
2 

In  t h i s  case we have t o  prove t h a t  11 q 11 > i. The proof 

of t h i s  case  i s  an exact  analogue of the  proof given 

i n  case  (2.1 ) above. 

(v )  t = 6 t  t and FS (t ) # h '  : This case i s  simply proven by apply- 
1 2  2 i 

ing t'le induction hypothesis .  

( v i )  t = 6 t h '  t - Then C '  ( u , t , k )  = 6 C '  ( u . t l r k )  A :  C '  ( u , t  ,k + l ) ,  
1 i 2 '  0 0 1 0  2 



and C '  ( u , t , k )  has  a dec reas ing  numbering i f f  
0 

( 1 )  SC;) (u , t l ,k )  and SC' ( u r t 2 , k  + 1 )  ; 
0 

( 2 )  I f  n i s  an occurrence  of  a v a r i a b l e  i n  C 1 ( u , t  , k +  1)  w i th  0 2 
r e f e r e n c e  depth  1 i n  C '  0 ( u , t  2 , k +  1)  t hen  l ln l l  > llSl 1 1  where 

Sl = ~ C ~ ( u r t l l k )  1 1 '  

From S t  it fo l lows  t h a t  S t  and S t  Furthermore, PC( t ,R)  ho lds  
1 2' 

i f f  PC( t l ,O)  and PC( t2 ,R+  1)  hold .  By apply ing  t h e  i nduc t ion  

hypo thes i s  it i s  e a s i l y  seen  t h a t  SC' ( u , t  , k )  and SC;) ( u r t 2 , k  + 1)  
0 1 

ho ld .  

I£ 1 E D ( q , C ; ) ( u , t 2 , k + l ) )  t hen  by Lemma 3.2.5 n E v a r ( t 2 )  and 

1 ~ D ( n , t , ) .  From S t  it fo l lows  t h a t  such an occurrence  of rl i n  
L 

t2 s a t i s f i e s  11 q  11 > 11 t; 11 , where t *  = 1 tl 1 l .  Furthermore from 
1 

Lemma 3.2.6 it fo l lows  t h a t  11 t* 11 1 11 Sl 11 , hence 11 n 1 1  > 11 S 1 1 .  0 
1 1 

Coro l l a ry .  

( 1 )  I f  6 u A; t E A '  and + 6 u  A! t then  SC' ( u , t , l )  ; 
0 1 0 

I£ u E A '  and u + v and Su then  Sv . 
0 ;) 

Lemma 3.2.8. 

~ e t  k E N. 1 f  v = 6 k-1UA;)4*_1 cp t E 6 '  and PC(v,R) ho lds  f o r  some 
0 

R E DJ t hen  I I C '  ( u r t r k )  11 = Ilvll. 
0 

Proof.  By induc t ion  on L (t) . 

(i) t = urn($) : Since v E 6' it fo l lows  t h a t  1 E r g e ( 8  0 J I )  hence 
0 k- 1 m 

k E r ge  ($)  and C; ) (u , t ,k )  = 6 cp u A;) 8k-l w ($)  = v . k-1 - - 
m 

(ii) t = 6 w A '  s w ($) : 
0 

Furthermore v E 6 '  hence o r  

Therefore  t h e r e  a r e  no occurrences  of  v a r i a b l e s  i n  w w i th  r e f e r -  

ence depth  k i n  w ,  and from PC(v,R) it fo l lows  t h a t  PC(8k-lw,0) .  - 



From PC (8 w, 0 )  and Lemma 2 .7  it fo l lows  t h a t  PC(w,O) and 
k- 1  - 

t h e r e f o r e  

~f G q k - 1 ~ A b 3 k - l t  E 6 '  t hen  a l s o  6 q  A ' $  sum($)  E 6 '  By t h e  - - 0 k O k  0  - 
i n d u c t i o n  hypo thes i s  and (*) it folio= t h a t  

Coro l l a ry .  

( 1 )  I£ v = G u X ' t  E A '  then  I I C ' ( u , t , l )  l l  = llvll ; 
0 0  0 

( 2 )  i f  u ,v  E A '  and u  - '  v then  llull = llvll . 
0 0  

D e f i n i t i o n  3.2.15. 

L e t  u  E A '  and I . e t  SUB(u) denote t h e  s e t  o f  sub-terms o f  u.  We d e f i n e  
0  

t h e  sub-se t  A 02 X '  a s  fo l lows  
0  

Lemma 3.2.9. 

~f u  = 6wX: z E A t h e n  v  = C ' ( w , z , l )  E A (i = 0 , l )  . 
1 0 

Proof.  By induc t ion  on L ( z )  . 
m 

(i) z = 5  ( n ) :  

(1 )  n  = 1 : Then v  = w,  and s i n c e  w E S U B ( u )  and u  E A it fo l lows  

t h a t  v  E A ; 



m 
(ii) z = w ($) : Then 

and in both cases v E A. 

(iii) z = 12 : This case follows simply from the induction hypothesis 
1 

and Theorem 2.1. 

m 
(iv) z = a (n,r)z . 

1 '  

(1) n = 1 : Then v = s$- C' (w,zlrl + r) =s$- C' (cp w,3 zl,l), 
R 0 O r  r - - 

where Iwl = sw ( $ ) .  If t E SUB(v) and t = 6t11;)t2, for 
1 

some t t E 16' then t E SUB(w) or t E SUB(Ct(cp w,3 z ,111. 
1' 2 0 2  L l  

If t E SUB(w) then t E SUB(u) and since u E A we have 

t E 6;). By applying the induction hypothesis to 6 cp w A: 3 z r 1 r  - - 
( E  A, for i = 0'1) we see that if t E SUB(C1((p w r T z  /I)) O r  r 1  
then t E 6;). Hence, v E A. 

m 
(2) n > 1 : Then v = a (n- 1,r) C' (cp w13 z ,I) and the result 

0 2  '1 
follows immediately from the induction hypothesis. 

(v) z = 6z z : T h e n v =  6C'(wrzlll)C;)(wrz2,l) and theresult 
1 2  0 

follows immediately from the induction hypothesis. 

(vi) z = 6 z A' z : Then v = 6 C;)(w,z ,I) A' C'(cp w1B1 ~ ~ ' 1 ) .  By 
1 0 2  1 0 0  1 

applying the induction hypothesis we see thyt ~ > ~ z ~ ~ l )  

C1(cp w,al z2,1) c A. Furthermore from u E A it follows that 
0 1  - 

0 2 
E 6;) and also z E 6' and, hence, z2 E 6;). If z E 6;) then 3 z 

Cb(cpl w.3 z 1) c 6;) (it is easily proved t h z  p E 6' implies 
1 2' - - 0 

C;)(q,p,l) E 6;)' for all q E A'). In order to prove that v E A 
0 

we have to show that v E 6' and since C'(y w,8 z 1) c 6;) it 
0' 0 1 1 2 ,  - - 

suffices to show that 

( 1 ) there are no occurrences of variables in 1 0 ' (cp 1 wr3 1 2 '  z 1) 
- - 

with reference depth 1 in C'(cp wr9 z 1) ; 
0 1 1 2 '  - - 

R 
(2) if LS (C;) (cpl wral z2' 1) = w ($)  then 

- - 
1 + W(C;)(cp1~131 ~ ~ ' 1 ) )  E rge($) . - - 

From Lemma 3.2.5 it follows that 1 E D ( n ,  C ' (w,z2, 2) ) implies 
0 

1 E D ( r ) ,  z2) hence yielding a contradiction with z E 6 ' Further- 
R 

0 ' 
more from z E 6' it follows that LS(z ) = w (cp) and 

0 2 



1 + r E rge(cp) , where W(z ) = r ,  f o r  some segmap r p .  I f  
2  

2 + r  E rge(rp) then J, = 0 rp and 1  + W ( C '  ( c p  w , $ ~  z 2 , 1 ) )  = 0 1  - - 
= 2 + r  E r g e ( J , ) .  I f  2 + r  gi rge(rp) then J, = cp and 

1  + W ( C '  ( c p  wrS1 z 2 , 1 ) )  = 1 + r  E r g e ( J , ) .  Hence, v  6 A. 
0 1  - - 

( v i i )  z  = 6 z  X '  z  . Then v = 6 C '  ( w , z l , l )  X '  C '  ( r p  w,8 z  1 ) .  By 
1 1  2 '  0 1 0  1  1 2 '  

applying t h e  induct ion hypothesis  we see  t h a t  C'(w,z I ) ,  0 1 '  

Theorem 3.2.2. 

I f  u  E A and u  -+ v then v E A .  

Proof. By induction on the  generation of -+ and Lemma 3.2.9. 0 
% 

Corollary.  

I f  u  E X A  and a l l  marked A ' s  i n  u  a r e  indexed with t h e  number 1  then 
* 

v E A f o r  a l l  terms v such t h a t  u -+ 

Lemma 3.2.10. 

Proof. The r e s u l t  fol lows from Lemma 3.2.8. 

Lemma 3.2.11. 

L e t v =  6cp u h ' 8  t~ A. I f  PC( t ,k )  and t v t h e n  
k-1 1 k - l  - 

llvll ? IIC;)(u,t,k) l l .  

Proof. By induction on L (t) . 
m 

(i) t = 5 (n)  : 

(2 )  n  = k : Then I I C '  ( u t t I k )  11 = I I c p k - l ~ I I  < llvll ; 
0 - 

m (3)  n  > k : Then I IC ' (u , t ,k) l l  = 115 ( n - l ) l l  = lltll = 
0 

m 
(ii) t = w ($1 : From PC(t ,k)  it follows t h a t  I l C ~ ( u , t , k )  11 = 

(iii) t = Xz : This case  follows simply from the  induction hypothesis .  



m 
(iv) t = a (n,r)z: 

m 
(1) n < k : Then C '  (u,t,k) = a (n,r) C' (u,z,k +r) and the result 

0 0 
follows by applying the induction hypothesis. 

( 2 )  n = k : Then C;)(u,t,k) = s $-  C '  (u,z,k + r), where 
R - 0 

so ( $ 1  = I'pk-l u J  - 

< 
+ I] 6 'Pk+r- 1 u A; 8k+r- 1 211 = (induction hypothesis) 

= llvll . 

m 
(3) n > k : Then C'(u,t,k) = a (n- 1,r) C;l(u,z,k+r) and the 

0 
result follows by applying the induction hypothesis. 

(v) t = 62 z : Then C' (u,t,k) = 6 C' (u,z ,k) C;)(u,z2,k). Furthermore 
1 2  0 0 1 

1 113k-1 Z1ll + IIC' 0 (u1z2,k) 11 < (PC(9k-l Z1,O) and Lemma - - 3.2.6) 

(vi) t = 6 z X' z - See case (v) . 
l i 2 '  

Corollary. 

(1) I£ 6uX; t 6 A r l  A' and +6u A' t then 116 uX' tll > llZ'(u,t,l) II ; 
0 1 1 0 

(2) I£ urv E A fl A;, SU and u essentially B'-reduces to v then 
0 

Il u It > llvll . 



Theorem 3.2.3. 

+ is essentially strongly normalizing on {t E A Il A' I +t] . 
B6 0 
Proof. The result follows from the corollaries to Lemmas 3.2.7, 3.2.8, 

3.2.11 and Lemma 3.2.10. 0 

3.3. The Church-Rosser property for -tB 

In this section we offer a proof of the Church-Rosser property for -+ 
B 

on {t E A I PC(t,O) 1 by using the results given in Sections 3.1 and 
3.2. This is done as follows. By dropping the numberings from the 

A;, - I  and A; we obtain the definitions of 6 ' ,  A', definitions of 6' 
0 

-' and A:, where A: = {t E A' ( PC (t,O) ) . Furthermore, the notion of 
essential f3'-reduction on A: is defined as follows. 

Definition 3.3.1. 

Let t,u E A:. 

t essentially 8'-reduces to u - t -+ u A 1 (t -' u) . 
B' 

From Definition 3.3.1 we get the obvious definition of + being 
B' 

essentially strongly normalizing (ess SN(+ ) ) .  Since adequate num- 
B' 

bering of terms is always possible the following result follows 

immediately from Theorem 3.2.3. 

Theorem 3.3.1. 

-+ is essentially strongly normalizing on A'. 
6' * 

Since the permutation condition is invariant with respect to B'- 

reduction (cf. Theorem 2.5) the following result follows immediately 

from Theorem 3.1.6. 

Theorem 3.3.2. 

-+ is weakly Church-Rosser on A:. 
B '  

Theorem 3.3.3. 

For every t E A: there exists an u E A: such that 

(1) u is an essential fit-normal form of t ; 

(2) if v is an essential B'-normal form of t, then u - '  v .  



Proof. The following proof is along the lines of the proof given for 

Theorem 1.1.3. By Theorem 3.3.1 each term t E has an essential 8'- 

normal form u. Furthermore, call a term t E A: ambiguous if t 8'- 

reduces to two essential 8'-normal forms u u such that 1(u1 - '  u2). 
1' 2 * 

If t is ambiguous then there exists a term u such that t -+ u and u is B '  
ambiguous and l(t - '  u), which we now show. The following two figures 

suggest how t can reduce to u and u 
1 2' 

u u u 
1 2 1 U 2 

FIG. 3.3.1. FIG. 3.3.2. 

where v -+ v' and w + w' denote the first essentiaZ @'-reductions 
8' 8' 

occurring on the reduction paths starting from t and ending in u 1"-=2. 
In the case of Figure 3.3.1 it is immediately clear that v' is ambi- 

- 
guous. In the case of Figure 3.3.2 it follows from W C R ( ~  ) that t' 

6 '  
and t" have a common 6'-reduct t"' and, by ess SN(+ ) ,  t"' has an 

8' 
essential 8'-normal form u as indicated in the figure below. 

3 



FIG. 3.3.3. 

Since v + v' was the first essential 6'-reduction on the reduction 
B '  

path from t to u it follows that t' -' v and, by symmetry of - ' ,  
If* * 

v -' t'. Hence, v + t'. From v + t' and t' t it follows that 
8' B' 6' 3 

v -+ *81 t3. Analogously, w ? u Furthermore, from l(u - '  u ) it 
8' 3- 1 2 

follows that either 1 (u -' u ) or 1 (u - '  u2) . If 1 (u -' u ) then 
3 1 3 3 1 

we can take v' for the ambiguous term u, and if l(u -' u ) then we 3 2 
can take w' for u. 

NOW that we have established that all ambiguous terms essentially B t -  
reduce to another ambiguous term we have obtained a contradiction with 

ess SN(-+Bt)r hence ambiguous terms do not exist and the result 

follows. n 

Definition 3.3.2. 

Let tru E A:. The relation > '  on A: is defined as follows 

t > '  u iff u is an essential 8'-normal form of t and 

if v is an essential 8'-normal form of t then v - '  u . 0 

Definition 3.3.3. 
"- 

The function I I : A' -+ A is inductively defined for marked terms t 

as follows 



Definition 3.3.4. 

Definition 3.3.5. 

Let t,u E A*. The relation > on A* is defined as follows. 

Definition 3.3.6 ( . 
3 )  

(1) The binary relation 6 on A is defined as follows. 

If t,u E A then 

I£ t B u  then t is called a B-redex. 

( 2 )  The notion of reduction -+ on A is inductively defined by B 
(i) u B v * u - +  v ;  B 

(iv) u -+@ v * 6uw -t 6 w  ; B 
(v) u -+ v * 6wu -t 6wu . B B 

Theorem 3.3.4. 
* : is the transitive and reflexive closure > of > on A*. 

B 

Proof. From Theorem 2.5 it follows that the permutation condition is 

invariant with respect to B-reduction; hence, if u E A* and u -t v B 
then v E A*. Furthermore, from 



it follows t h a t  

* * 
hence -+ = > . 

B 

Theorem 3.3.5. 

> s a t i s f i e s  the  diamond property.  

proof.  Assume t h a t  t > u and t > v. From the  d e f i n i t i o n  of > it follows 

t h a t  the re  e x i s t  terms t '  , u '  , v '  E A: such t h a t  t = I t '  1 , u = 1 u '  1 , 
v = I v '  1 and 

( 1 )  u ' ,  v '  a r e  e s s e n t i a l  B'-normal forms of t '  ; 

( 2 )  u '  - v '  . 

From (1) and ( 2 )  it follows t h a t  u' > '  v '  and v '  > v ' .  Therefore u > v 

and v > v, and the  r e s u l t  fol lows.  0 

Theorem 3.3.6. 
- - 
-+ i s  Church-Rosser on A * .  

B 

Proof. The r e s u l t  follows from Theorems 3.3.4 and 3.3.5. 



4. THE CLOSURE PROPERTY FOR THE TYPED SYSTEM XTo - 

In  Section 1.2 we introduced t h e  typed system X u.  The d e f i n i t i o n  of 
T 

A o i n  Section 1.2 was completely formal and the re fo re  when we speak 
T 

of XTo we r e f e r  t o  the  system X o a s  defined i n  Section 1 .2 ,  Defini- 
T 

t i o n  1.2.5. We r e c a l l  t h a t  we have the  following r e l e v a n t  s e t s  re-  

garding types.  

(1 )  The s e t  of types T : we have y-types, p-types and t h e  i n c o r r e c t  

type @ ; 

( 2 )  The s e t  of quasi-types T : elements of T a r e  no t  types  of terms 
TI TT 

i n  A a ,  but  serve a s  intermediate const ructs  f o r  evaluat ing the  
T 

product ( * )  of a number of types i n  order  t o  c a l c u l a t e  t h e  even- 

t u a l  type of a X a-term, which i s  e i t h e r  the  i n c o r r e c t  type @ ,  
T 

a y-type o r  a p-type (bu t  never a TI-type). 

The ob jec t ive  of t h i s  sec t ion  is  t o  show t h a t  the  type of a c o r r e c t  

X o-term t ,  with respec t  t o  a c e r t a i n  type context  T, and t h e  type of 
T 

i t s  B-reduct (with respec t  t o  the  same context)  a r e  t h e  same, provided 

t h a t  t s a t i s f i e s  the  permutation condit ion ( t h e  C Z O S U P ~  proper t y  f o r  

XTO) . 
We note t h a t  bas ic  opera t ionsonterms introduced i n  Section 2 f o r  the  

type-free system A a r e  extended t o  A u i n  t h e  obvious way; i n  p a r t i -  
T 

c u l a r  p t ,  W ( t )  and PC(t ,k)  a r e  defined f o r  typed terms t a s  i n  Section - 
2 ( a  typed lambda i s  t r e a t e d  i n  t h e  same manner a s  a non-typed lambda). 

Furthermore, a s u b s t i t u t i o n  operator i n  X a i s  denoted by C f o r  some 
T f' 

type  f E T\{@). The type f a t tached t o  a s u b s t i t u t i o n  opera to r  C i s  
f 

the  same type a s  a t tached t o  the  lambda of the  redex, say 6 u X  v ,  
f 

t h a t  - a f t e r  contract ion of 6uX v - gave r i s e  t o  the  invokement of 
f 

the  s u b s t i t u t i o n  C ( u , v , l ) .  We proceed by def in ing s u b s t i t u t i o n  i n  
f 

X 0. 
T 

Def ini t ion 4.1 ( s u b s t i t u t i o n ) .  

Let  f E T\{@). I f  u E A a and k E IN then C ( u , t , k )  i s  induc t ive ly  
T f 

defined f o r  typed terms t by 

'Pk-l U i f  n = k and LS(u) E r g e ( c )  I- 



(iii) C (u.1 v,k) = X C (u,v,k+ 1) ; 
f g g f 

u = sw($) , W(u) = m and rge($) 5 IN 
(iv) Cf(uIo (n,m)v,k) = 

We note that the results concerning applications of refmaps to terms 

and the results concerning substitution in Section 2 hold equally in 

the typed system ATol since the typing of terms in A a is completely T 
irrelevant as far as establishing these results is concerned. The 

same holds for the results concerning the permutation condition in 

Section 2.3. We shall therefore make frequent use of these results 

simply by referring to the corresponding type-free results in Section 

2. 

Definition 4.2 (+ ) . 
B 

(1) The binary relation B on XTa is defined as follows. 
If t,u E A a then 

T 

If tf3u then t is called a 6-redex. 

(2) The notion of reduction + on h a is inductively defined by 
B T 

(i) u B v *  u -tg v ;  

(ii) u +  v * A  u +  X v B f B f  
. for every f E T\{B); 

(iii) u +  v*o(p)u-tB o(p)v , for every p E I N x  x; B 



In order to facilitate the evaluation of the product of quasi-types 

and types in A o we give the following definition of the product of T 
two quasi-types ensuring that this extended version of the *-operation 

is associative; i.e. f * (gkh) = (f*g) * hr for all quasi-types f,g 
and types h. 

Definition 4.3. 

Let F, GI HI I and J be elements of (T\{@))*. The product of two 

quasi-types is defined as follows 

.rr(F&J,I), i f H = G & J  
- 

( F , )  ( 1  = if G = J & H  . 
otherwise 

Lemma 4.1. 

The *-operation is associative; i.e. f * (g*h) = (f*g) * h, for all 
quasi-types f,g and types h. 

Proof. The result follows from Definitions 1.2.5 and 4.3 by simple 

computation. 0 

Definition 4.4. 

We define the following sub-sets of T\{@) 

Lemma 4.2. 

Let t E A a and T be a type context. If typ(t,~) # B then 
T 

Proof. By induction on L (t) . 

Lemma 4.3. 

Proof. Simple computation. 



Lemma 4.4. 

Let  t E A a ,  T be a type context  and p be a refmap. 
T 

I f  t 0 P E (T\{@)) * then t y p ( l ~ t , T )  - = typ  (t,  T 0 1~.) . 
proof. By induction on L (t) and Lemma 4.3. 0 

Lemma 4 .5 .  

Let  t = s w ( J , )  and s & u be elements of h a and l e t  T be a type  con- 
T 

t e x t .  I f  t y p ( t , r )  # @ and W ( t )  = m then 

Proof. By induction on L (t) . 

Lemma 4.6. 

Let  t = s o ( $ )  6 A a and T be a type context .  I f  t y p ( t , ~ )  # @, 
T 

W ( t )  = m and PC(t,O) then t y p ( t , ~ )  = p ( G  G , G  ) and L(G ) = m ,  f o r  
1' 2 3 3 

c e r t a i n  G G ,G E (T\{@)) *. 
1' 2 3 

Proof. From Lemma 4.5  it follows t h a t  t y p ( t , ~ )  = T ( F  ,F ) * 
1 2  

* typ  (w ()) ,F3 & T )  , f o r  c e r t a i n  F F F 6 (T\{@I) * and L (F ) = m. 1' 2' 3 3 
Furthermore, by Lemma 2.6 PC (w ($1 , m )  and, hence, J, E perm(m) . I f  

) E perm(m) and L(F ) = m then typ(w(J,) ,F & T )  = p ( @ , @ , F  0 ) )  and 
3 3 3 

L ( F 3  $1 = m. By taking F1 f o r  G I ,  F2 f o r  G and F 0 J, f o r  G we see  
2 3 3 

t h a t  t y p ( t , T )  = p ( G  G G ) and L(G ) = m. 
1'  2 '  3 3 0 

Theorem 4.1 .  

Let  6 t h u E X a ,  k E IN and T be a type context .  I f  
f T 

t y p ( 6  t X f u , ~ )  # @, PC(t,O) and PC(u,k) then ( t , u , l )  E dom(Cf) and 

t y p ( 6  t hf u1T) = t y p ( C f ( t , u ,  1)  , T )  . 
Proof. To begin with we have t h e  following d a t a  

l a .  P C ( t , O )  ; 

lb .  PC(u,k) ; 

The proof i s  given by induction on L ( u ) .  



(1) n = 1 : From 2b and Lemma 4.2 it follows that f E r ,  hence, 
by 2a, LS(t) E rge(5). Therefore C (t,u,l) = t and f 

(2) n > 1 : Then C (t,u,l) = <(n- 1). From 2b and Lemma 4.2 it 
f 

follows that T (n - 1) E T. Therefore 

(ii) u = 0 ( $ )  : If 1 E rge($) then Cf(t,u,l) = 6 t A u, and if f 
1 6 rge($) then + = @ and Cf(t,u,l) = w ( @ ) .  If Cf(t,u,l) = w ( @ )  

then 

(iii) u = A v : Then Cf(t,uIl) = X C (t,v,2) = A C (cp t,$ v,l), if 
g g f g f -  1 1  

(cp tlal V, 1) E dom(Ef) . We now apply the induction hypothesis 
1 - - 

to 9,v. From la and the corollary to Lemma 2.7 it follows 
I 

thaypc (pl t.0) . From lb it follows that PC (v.k + 1) and by 

Lemma 2.8we have PC($ vIk + 1) (a1 = 1-. for a ) E perm(2)). 
1 - 

Furthermore 



(Lemma 4.4) 

(2a) 

and 

Therefore typ(6 cp, t ad Vl<g> T) = typ(B1 ~ , < f >  &<9> & # @ .  
I L I  I 

By the induction~hypot~sis (cp t, 3 v, 1) Tdom(L' ) and, hence, 
1 1  f 

= n(<g>,@) * typ(6 cp th 3 v,<g> &T) = 
1 £ 1  

(induction 
- - hypothesis) 

= n (<g> ,@) * typ(v,<g> & <f> & T) = 

(iv) u = u(n,m)v : From 2b it follows that f E P and therefore 

f = p (F1 ,F2 ,F3) , for certain F F .F E (T\{@)) *. Furthermore 
1, 2 3 

from 2a, la and Lemmas 4.2 and 4.6 it follows that LS(t) = w ( $ ) ,  

for some segmap $, and I) c.perm(m) and L(F = m, where m = ~(t). 
3 

(1) n = 1 : Let t = SU($) then Cf(t,u,l) = s I)- c (t,v,l +m) = - f 
= s 2- Cf(cpmt18,vll) , if (cpmt,3mv,l) E dom(C ) .  We now 

- - - - f 
apply the induction hypothesis to 9 v. From la and the 

m --- 

corollary to Lemma 2.7 it follows that PC(q t,O). From lb 
m 

it follows that PC (v,k + m) and by Lemma 2.8we have 
PC (3 v, k + m) . Furthermore 

m - 



= t y p ( t ,  (F3 & ' I )  O 9,) = (Lemma 4.4) 

and 

t y p ( v ,  (<f> & F 3  & T I  O am) = (Lemma 4 . 4 )  

Therefore typ(6  cp t X  9  V,F & T )  = t y p ( 9  v , < f >  & F  & T )  # @ .  m £ 2  3  m 3  
By t h e  induction-hypothesis ( c p  m t r 9  m v ,  1); dom(Cf) and, 

hence , E f  ( t , u .  1)  = s  $-  - T (q t78 v71) . Furthermore l e t  
£ 2  2 

G1,G2,G3 E (T \{B))*  besuch t h a t  L ( G 3 )  = m and t y p ( s  & w , r )  = 

= ri ( G I ,  G2)  * typ  ( w  , G3 & T )  f o r  a r b i t r a r y  w i X T 0 such t h a t  

s  & w E A o (cf  . Lemma 4.5) . By taking w = w ($) we see  t h a t  
T 

= t y p ( t , . r )  = 

= I T ( G ~ , G ~ )  * typ(w($) t G 3  & T )  = 

= T ( G ~ , G ~ )  * p ( @ r @ r  (G3 & $1 = 

= n(GlrG2) * $ )  = 

- - p ( G I  1 G2 r G 3  $1 = 

- - P (F1tF2rF3) - 

Hence G1 = F1, G~ = F  a n d G  o $ = F  
2 3 3 

Furthermore 



(induction 
hypothesis) 

(2) n > 1 : Then Cf(t,u, 1) = a (n - 1,m) C (t,v,m + 1) = f 
=a(n-1,m)C (cp t,3 v,l), if (cp t,9 v,l) ~ d o m ( C  ).From f m  m - m - m f 
2b it follows that n - 1 E dom(r) and r (n - 1) = p (F1,F2,F3). 

Analogous to case (iv) (1) we have PC(cpmt,O) , PC(BmvIk+m) 
and typ(6 cp tX 8 v,F &T) # 8. By t G  induction~ypothesis 

m £2 3 
( c p  t,9 v x  E dom(Cf) and, hence, Cf(t,u,l) = 
m m 

=T(nrl ,m) C (cp t ,am v, 1) . Furthermore f m  

(induction 
hypothesis) 

(v) U =  6vw : Then Cf(t,u,l) = 6C (t,v,l)Cf(t,w,l). From lband 2b 
f 

it follows that PC(v,O) and typ(v,<f> & T) # 8 .  By the induction 



hypothesis (t,v, 1) E dom(C ) and typ(6 t Af v, T) = 
f 

= typ(Cf(t,v,l) ,T) = typ(v,<f> & T). Furthermore, from lb and 2b 

it follows that PC(w,k) and typ(w,<f> & T) # % . By the induction 
hypothesis (t,w,l) E dom(Cf) and typ(6 t Af WIT) = 

= typ(Cf(t,w,l) ,T) = typ(w,<f> &r). Therefore 

= a(Gl,<typ(6 t Af v,r)>) * typ(6 t A f w,~) = (induction 
hypothesis) 

= n(@,<typ(v,<f> &I)>) * typ(w,<f> & T) = 

= typ ( 6  t Af U, T) . 

Corollary (Closure) . 

(1) If p C ( 6  t Af u,R) (R 2 0) and typ(6 tAfu,r) # B then 

(t,u,l) E dom(Cf) and typ(Cf(t,u,l) ,TI = typ(6 t Xfu,.r) ; 

(2) Let t,u E A o and t + u. If PC(t,O) and typ(t,~) f B then 
T B 

typ(t,~) = typ(u,T). 
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calculus 

XV- -, 3 

first symbol, 40 

Ah- - , 101 
Church-Rosser, 36 

closure, 124 

common reduct, 35 

concatenation, 41 

correct term, 30 

decreasing numbering, 97 

diamond property, 36 

essential 

-8'-normal form, 111 

-8'-normal form, 102 
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essentially 

-B'-normalizes, 111 

-8;-normalizes, 102 

-B'-reduces, 111 
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0 

-6'-strongly normalizes, 111 
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0 

normalizing, 102, 111 

strongly normalizing, 103, 111 

last symbol, 40 

length (of a sequence), 40 

norm (of a numbered term), 95 

numbered term, 94 

numbering function, 94 

occurrence 

-of a variable, 43, 44 

internal reference-, 44 

external reference-, 44 

permutation condition, 67 

product, 29, 118 

reduct ion 

a- -, 5 

6- - (on h)  , 114 

8- - (on XTo) , 117 
6 ' -  - 

1 74 

8'- -, 96 0 
notion of -, 35 
one step -, 35 
-path, 37 

reference 

-depth, 43, 44 

-mapping (refmap), 45 

-number, 42 

R 

-convertible, 35 

-infinite, 37 

-normal form, 35 

-normalizes, 35 



-reduct ,  35 

-strongly normalizes,  37 

segment, 42 

segment mapping (segmap) , 42 

sequence, 40 

s u b s t i t u t i o n  

C - ,  51 

X I -  - , 74 

type 

the  incorrect - ,  21, 28 

quasi- -, 29 

y- -, 28 

a- -, 29 

P -  - I 28 

-context, 29 

typing funct ion,  29 

va r i ab le  

5 - ,  42 

0- -, 42 

weakly Church-Rosser, 37 



SAMENVATTING 

Het onderzoek waarvan in dit proefschrift verslag wordt gedaan heeft 

betrekking op een gegeneraliseerd systeem van A-calculus, geheten Xu. 

Het systeem wijkt af van bestaande X-calculi doordat een geheel nieuwe 

klasse van termen is opgenomen, geheten segmenten. Segmenten waren 

oorspronkelijk ontworpen door N.G. de Bruijn om te zorgen voor be- 

paalde afkortingsfaciliteiten in de wiskundige taal AUTOMATH. Het on- 

derwerp van dit proefschrift is een taaltheoretische studie van de 

Au-calculus. 

In Hoofdstuk 1 wordt een uitgebreide informele beschrijving gegeven 

van het Xu-systeem en worden de voornaamste verschillen aangegeven 

t.0.v. klassieke ongetypeerde X-calculus. Tevens wordt er in Sectie 

1.2 van dit hoofdstuk een beschrijving gegeven van een getypeerde 

versie van Au, geheten X a. De types in h u zijn een extensie van 
T T 

zogenaamde "simple types" in de klassieke getypeerde 1-calculus, 

waarbij de uitbreiding hieruit bestaat dat er tevens types worden ge- 

construeerd voor segmenten en segmentvariabelen. 

In Hoofdstuk 2 worden de belangrijkste definities en basisresultaten 

gegeven. 

In Hoofdstuk 3 wordt een bewijs gegeven van de Church-Rosser eigen- 

schap voor Xu volgens de methode van de eindige ontwikkelingen en in 

Hoofdstuk 4 wordt een bewijs gegeven van de geslotenheidseigenschap 

voor X a. T 
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