Scattering from finite structures: An extended Fourier modal method

Maxim Pisarenco, Jos Maubach, Irwan Setija, Robert Mattheij

April 13, 2011
Outline

1. Motivation
2. Overview of PhD
3. Alternative discretization
4. Results
Outline

1. Motivation
2. Overview of PhD
3. Alternative discretization
4. Results
Profile reconstruction

Currently used models assume infinitely periodic gratings...
Profile reconstruction

... but in reality the gratings are finite.
... but in reality the gratings are finite.
⇒ scattering from structures with a finite number of periods.
Methods for solving Maxwell’s equations

- FMM = Fourier modal method (also known as RCWA)
Methods for solving Maxwell’s equations

- FMM = Fourier modal method (also known as RCWA)
- Only suited for infinitely periodic structures
Methods for solving Maxwell’s equations

- FMM = Fourier modal method (also known as RCWA)
- Only suited for infinitely periodic structures
- Goal: Extend FMM to non-periodic structures
Methods for solving Maxwell’s equations

- FMM = Fourier modal method (also known as RCWA)
- Only suited for infinitely periodic structures
- Goal: Extend FMM to non-periodic structures

Why FMM?
Motivation Overview of PhD Alternative discretization Results

Methods for solving Maxwell’s equations

- FMM = Fourier modal method (also known as RCWA)
- Only suited for infinitely periodic structures
- Goal: Extend FMM to non-periodic structures

Why FMM?
- No one has done it yet!
Methods for solving Maxwell’s equations

- FMM = Fourier modal method (also known as RCWA)
- Only suited for infinitely periodic structures
- Goal: Extend FMM to non-periodic structures

Why FMM?
- No one has done it yet!
- Faster than other methods for periodic structures
Motivation

Overview of PhD

Alternative discretization

Results

Methods for solving Maxwell’s equations

- FMM = Fourier modal method (also known as RCWA)
- Only suited for infinitely periodic structures
- Goal: Extend FMM to non-periodic structures

Why FMM?
- No one has done it yet!
- Faster than other methods for periodic structures
- Well-known and widely used inside ASML
Outline

1 Motivation
2 Overview of PhD
3 Alternative discretization
4 Results
Progress

Progress

 ![FMM to aFMM-CFF](image1)

 ![Generalization to arbitrary shapes](image2)
Progress

- Alternative discretization [J. Comp. Phys., in prep.] (Today)
Outline

1 Motivation

2 Overview of PhD

3 Alternative discretization

4 Results
Horizontal and vertical problems

Discretization:
- z direction - *spatial discretization* into layers
- x direction - *spectral discretization* with harmonics

\[
\mathcal{T} = \mathcal{O}(\bar{N}_x^3 \bar{N}_z) \quad \bar{\mathcal{T}} = \mathcal{O}(\bar{N}_x^3 \bar{N}_z)
\]

Use slicing in the longer direction and harmonics in the shorter dir.
Discretization:

z direction - *spatial discretization* into layers

x direction - *spectral discretization* with harmonics

$$\bar{T} = O(\bar{N}_x^3 \bar{N}_z) \quad \bar{T} = O(\bar{N}_x^3 \log_2 \bar{N}_z)$$

Use slicing in the longer direction and harmonics in the shorter dir.
1. Continuous Maxwell’s equations (for contrast field):

\[\nabla \times \mathbf{e}^c(x) = -k_0 \mathbf{h}^c(x), \]
\[\nabla \times \mathbf{h}^c(x) = -k_0 \epsilon(x, z)\mathbf{e}^c(x) - k_0 (\epsilon(x, z) - \epsilon^b(x, z))\mathbf{e}^b(x), \]
The aperiodic Fourier modal method

2. Add PML

\[\frac{\partial}{\partial x} \rightarrow \frac{1}{f'(x)} \frac{\partial}{\partial x}, \text{ with } f(x) = x + i\beta(x). \]
The aperiodic Fourier modal method

3. Discretize in \(z \) (slicing)

\[\epsilon_l(x) = \epsilon(x, z_l), \quad \epsilon_l^b(x) = \epsilon^b(x, z_l), \quad \text{with} \quad z_l = [h_{l-1}, h_l]. \]
The aperiodic Fourier modal method

4. Discretize in x, y (Fourier harmonics, $\phi_n(x, y) = e^{-i(k_n x + k_y y)}$)

$$e_{c/b,N}^{\alpha,l}(x, y, z) = \sum_{n=-N}^{N} s_{\alpha,l,n}(z) \phi_n(x, y)$$

$$h_{c/b,N}^{\alpha,l}(x, y, z) = \sum_{n=-N}^{N} u_{\alpha,l,n}(z) \phi_n(x, y)$$
Transmission problem

System of ODEs in z

$$\frac{d^2}{dz^2} v^c_l(z) = A_l v^c_l(z) + A^b_l v^b_l(z)$$

General solution (homogeneous + particular)

$$v^c_l = W^l (e^{-k_0 Q_l (z-h_l)} c^+_l + e^{k_0 Q_l (z-h_{l+1})} c^-_l) + p_l v^b_l(z)$$

Interface conditions yield recursive linear systems

$$\begin{bmatrix} W_l X_l & W_l \\ V_l X_l & -V_l \end{bmatrix} \begin{bmatrix} c^+_l \\ c^-_l \end{bmatrix} = \begin{bmatrix} W_{l+1} & W_{l+1} X_{l+1} \\ V_{l+1} & -V_{l+1} X_{l+1} \end{bmatrix} \begin{bmatrix} c^+_{l+1} \\ c^-_{l+1} \end{bmatrix} + g_{l+1}, \ l = 1, ..., M - 1$$

with $c^+_1 = c^-_M = 0$
Interface matrix

T-matrix

\[
\begin{bmatrix}
 c_2^+ \\
 c_2^-
\end{bmatrix} = \begin{bmatrix}
 T_{1,2}^{11} & T_{1,2}^{12} \\
 T_{1,2}^{21} & T_{1,2}^{22}
\end{bmatrix} \begin{bmatrix}
 c_1^+ \\
 c_1^-
\end{bmatrix} + \begin{bmatrix}
 g_{1,2}^1 \\
 g_{1,2}^2
\end{bmatrix}
\]

\[
(T_{1,2}, g_{1,2})
\]

S-matrix

\[
\begin{bmatrix}
 c_2^+ \\
 c_2^-
\end{bmatrix} = \begin{bmatrix}
 S_{1,2}^{11} & S_{1,2}^{12} \\
 S_{1,2}^{21} & S_{1,2}^{22}
\end{bmatrix} \begin{bmatrix}
 c_1^+ \\
 c_1^-
\end{bmatrix} + \begin{bmatrix}
 f_{1,2}^1 \\
 f_{1,2}^2
\end{bmatrix}
\]

\[
(S_{1,2}, f_{1,2})
\]

UNSTABLE

STABLE
Stability: an example

Cylinder illuminated by a TE-polarized plane wave at an angle $\theta = 0^\circ$.

Geometry

Exact solution

Numerical solution

Convergence
Merging interfaces: Redheffer product

\[\begin{bmatrix} c_3^+ \\ c_1^- \end{bmatrix} = S_{1,3} \begin{bmatrix} c_1^+ \\ c_3^- \end{bmatrix} + f_{1,3} \]

Define an extended Redheffer product

\[(S_{1,2}, f_{1,2}) \ast (S_{2,3}, f_{2,3}) = (S_{1,3}, f_{1,3}) \quad \text{(not commutative, associative)}\]

\[
S_{1,3} = \begin{bmatrix} S_{2,3}^{11} (I - S_{1,2}^{12} S_{2,3}^{21})^{-1} S_{1,2}^{11} \\ S_{1,2}^{21} + S_{1,2}^{22} S_{2,3}^{21} (I - S_{1,2}^{12} S_{2,3}^{21})^{-1} S_{1,2}^{11} \end{bmatrix} \quad \begin{bmatrix} S_{2,3}^{12} + S_{2,3}^{11} S_{1,2}^{12} (I - S_{2,3}^{21} S_{1,2}^{12})^{-1} S_{2,3}^{22} \\ S_{1,2}^{22} (I - S_{2,3}^{21} S_{1,2}^{12})^{-1} S_{2,3}^{22} \end{bmatrix}
\]

\[
f_{1,3} = \begin{bmatrix} S_{2,3}^{11} (I - S_{1,2}^{12} S_{2,3}^{21})^{-1} (S_{1,2}^{12} f_{2,3}^2 + f_{1,2}^1) + f_{2,3}^1 \\ S_{1,2}^{22} S_{2,3}^{21} (I - S_{1,2}^{12} S_{2,3}^{21})^{-1} (S_{1,2}^{12} f_{2,3}^2 + f_{1,2}^1) + S_{1,2}^{22} f_{2,3}^2 + f_{1,2}^2 \end{bmatrix} \]
Fast recursion

Standard recursion, update relation:

\[(S_{1,l+1}, f_{1,l+1}) = (S_{1,l}, f_{1,l}) \ast (S_{l,l+1}, f_{l,l+1})\]
Fast recursion

Standard recursion, all interfaces:

\[(S_{1,M}, f_{1,M}) = [\ldots[((S_{1,2}, f_{1,2}) \ast (S_{2,3}, f_{2,3})) \ast (S_{3,4}, f_{3,4})) \ast \ldots \ast (S_{M-1,M}, f_{M-1,M})] \]
Fast recursion, exploit periodicity:

\[(S_{3,5}, f_{3,5}) = (S_{1,3}, cf_{1,3})\]
Fast recursion, exploit associativity:
\[(S_{1,5}, f_{1,5}) = (S_{1,3}, f_{1,3}) \ast (S_{3,5}, f_{3,5}) = (S_{1,3}, f_{1,3}) \ast (S_{1,3}, c f_{1,3})\]
Outline

1. Motivation
2. Overview of PhD
3. Alternative discretization
4. Results
Horizontal and vertical problems
Near-field comparison

Resist grating with 8 rectangular lines illuminated by TE-polarized light ($\lambda = 628.3$ nm) at an angle $\theta = 30^\circ$.

![Slicing along the grating](image1)

![Slicing perpendicular to the grating](image2)
Convergence and computational cost

Resist grating with 32 rectangular lines illuminated by TE-polarized light ($\lambda = 628.3$ nm) at an angle $\theta = 30^\circ$.
Speed-up and memory saving (1)

Speed-up
\[\eta_T = \frac{\bar{T}}{\bar{T}} \]

Memory saving
\[\eta_M = \frac{\bar{M}}{\bar{M}} \]

Graphs showing speed-up factor, \(\eta_T \), and memory use factor, \(\eta_M \), for different line counts: 16 lines, 32 lines, and 64 lines. The graphs plot error against speed-up and memory use factor on a log scale.
Speed-up and memory saving (2)

Speed-up

\[\eta_T = \frac{T}{\bar{T}} \]

Memory saving

\[\eta_M = \frac{M}{\bar{M}} \]
Large structure

Resist grating with 1024 (!) lines

This example requires only 5 times more work and memory than a grating with 32 lines
Conclusions

- The FMM has been extended to finite structures (aFMM-CFF).
- A stable recursive algorithm has been developed for aFMM-CFF.
- Swapping the discretization directions yields significant speed-ups (up to 35) and considerable memory savings (up to 100).
- The speed-up and memory saving are higher for larger structures and materials with low refraction index.
- Very large structures with repeating patterns can now be considered.
Thank You! Questions?