Efficient Mode-Matching Based on Closed Form Integrals of Pridmore-Brown Modes

Martien Oppeneer, Sjoerd Rienstra and Pieter Sijtsma

\[(P_\mu, \Psi_\nu) \rightarrow \langle F_\mu, \Psi_\nu \rangle\]
APU: Auxiliary Power Unit
- produces power when main engines are switched off
- to start main engines, AC, ...
- major source of ramp noise

APU on an Airbus A380
Background / motivation

- APU: Auxiliary Power Unit
 - produces power when main engines are switched off
 - to start main engines, AC, ...
 - major source of ramp noise

⇒ Need for sound propagation modeling

APU on an Airbus A380
APU exhaust duct geometry

Study sound propagation / attenuation
Study sound propagation / attenuation
- straight and circular cylindrical duct
Study sound propagation / attenuation

- straight and circular cylindrical duct
- non-uniform parallel mean flow (axially varying)
Study sound propagation / attenuation

- straight and circular cylindrical duct
- non-uniform parallel mean flow (axially varying)
- strong temperature gradients (axially varying)
Study sound propagation / attenuation

- straight and circular cylindrical duct
- non-uniform parallel mean flow (axially varying)
- strong temperature gradients (axially varying)
- segments with different lining (BCs)
 ⇒ mode-matching
From ‘classical’ to a new mode-matching method

‘classical’ \[\rightarrow\] new mode-matching

\((P_\mu, \Psi_\nu)\) \[\rightarrow\] \(\langle F_\mu, \Psi_\nu \rangle\)
From ‘classical’ to a new mode-matching method

‘classical’ (CMM) → new (BLM) mode-matching

\[(P_\mu, \Psi_\nu) \rightarrow \langle F_\mu, \Psi_\nu \rangle\]

with \(\Psi_\nu = J_m(\alpha_\nu r)\)

with \(\Psi_\nu = F_\nu, \quad F = [P, U, V, W]\)
From ‘classical’ to a new mode-matching method

‘classical’ (CMM) → new (BLM) mode-matching

\((P_\mu, \Psi_\nu)\) → \(\langle F_\mu, \Psi_\nu \rangle\)

\[= \int_0^d P_\mu \Psi_\nu r \, dr \quad \rightarrow \quad = \int_0^d \left[w_1 P_\mu P_\nu + w_2 U_\mu P_\nu \\
+ w_3 (V_\mu V_\nu + W_\mu W_\nu) \right] r \, dr \]

with \(\Psi_\nu = J_m(\alpha_\nu r)\)
with \(\Psi_\nu = F_\nu\), \(F = [P, U, V, W]\)
From ‘classical’ to a new mode-matching method

\[
\text{‘classical’ (CMM)} \quad \rightarrow \quad \text{new (BLM) mode-matching}
\]

\[
(P_\mu, \Psi_\nu) \quad \rightarrow \quad \langle F_\mu, \Psi_\nu \rangle
\]

\[
= \int_0^d P_\mu \Psi_\nu r \, dr \quad \rightarrow \quad = \int_0^d \left[w_1 P_\mu P_\nu + w_2 U_\mu P_\nu + w_3 (V_\mu V_\nu + W_\mu W_\nu) \right] r \, dr
\]

quadrature \quad \rightarrow \quad = \frac{id}{k_\mu - k_\nu} \left[\frac{P_\nu V_\mu - V_\nu P_\mu}{\Omega_\nu} \right]_{r=d}

with \(\Psi_\nu = J_m(\alpha_\nu r) \) \quad with \(\Psi_\nu = F_\nu, \quad F = [P, U, V, W] \)
From ‘classical’ to a new mode-matching method

‘classical’ (CMM) → new (BLM) mode-matching

\[(P_\mu, \Psi_\nu) \rightarrow \langle F_\mu, \Psi_\nu \rangle\]

\[= \int_0^d P_\mu \Psi_\nu r \, dr \rightarrow = \int_0^d \left[w_1 P_\mu P_\nu + w_2 U_\mu P_\nu + w_3 (V_\mu V_\nu + W_\mu W_\nu) \right] r \, dr\]

quadrature \rightarrow \frac{id}{k_\mu - k_\nu} \left[\frac{P_\nu V_\mu - V_\nu P_\mu}{\Omega_\nu} \right]_{r=d} \rightarrow \text{cheap} \text{ accurate}
1 Problem formulation

2 ‘Classical’ mode-matching (CMM)

3 New ‘BLM’ mode-matching
 - Closed-form integrals of Helmholtz modes
 - Closed-form integrals of parallel flow modes
 - Closed-form integrals of radial Pridmore-Brown modes
 - Bilinear map based mode-matching

4 Numerical results

5 Conclusions
Outline

1. Problem formulation

2. ‘Classical’ mode-matching (CMM)

3. New ‘BLM’ mode-matching
 - Closed-form integrals of Helmholtz modes
 - Closed-form integrals of parallel flow modes
 - Closed-form integrals of radial Pridmore-Brown modes
 - Bilinear map based mode-matching

4. Numerical results

5. Conclusions
Inviscid, non-heat-conducting, ideal gas
⇒ Euler equations
⇒ gas laws: $p = \rho RT$, $c^2 = \gamma RT$
Modeling Assumptions

- Inviscid, non-heat-conducting, ideal gas
 \[\Rightarrow \text{Euler equations} \]
 \[\Rightarrow \text{gas laws: } p = \rho R T, \ c^2 = \gamma R T \]

- Acoustics: interested in small perturbations \(p_1, \rho_1, v_1 \)

\[
p(x, y, z, t) = p_0(x, y, z) + p_1(x, y, z, t)
\]

\[\Rightarrow \text{Linearized Euler equations} \]
Modeling Assumptions

- Inviscid, non-heat-conducting, ideal gas
 → Euler equations
 → gas laws: \(p = \rho RT, \quad c^2 = \gamma RT \)

- Acoustics: interested in small perturbations \(p_1, \rho_1, \nu_1 \)

 \[p(x, y, z, t) = p_0(x, y, z) + p_1(x, y, z, t) \]

 → Linearized Euler equations

- Time-harmonic modal perturbations

 \[p(x, y, z, t) = p_0(y, z) + \text{Re}\{P(y, z)e^{-i\omega t + ikx}\} \]

 of a parallel mean flow

 \(\vec{v}_0 = u_0(y, z)e_x, \quad \rho_0 = \rho_0(y, z), \quad T_0 = T_0(y, z), \quad c_0 = c_0(y, z) \)
For perturbations $p_1, \rho_1, \mathbf{v}_1$ of a parallel mean flow

$$\mathbf{v}_0 = u_0(y,z)e_x, \quad \rho_0 = \rho_0(y,z), \quad T_0 = T_0(y,z), \quad c_0 = c_0(y,z)$$
For perturbations p_1, ρ_1, v_1 of a parallel mean flow

$$v_0 = u_0(y, z)e_x, \quad \rho_0 = \rho_0(y, z), \quad T_0 = T_0(y, z), \quad c_0 = c_0(y, z)$$

the Linearized Euler equations can be reduced to:

\[
\nabla \cdot \left(\frac{c_0^2}{\Omega^2} \nabla P \right) + \left(1 - \frac{k^2 c_0^2}{\Omega^2} \right) P = 0 \quad \text{on } \mathcal{A}
\]

with \(\Omega = \omega - ku_0 \)
For perturbations p_1, ρ_1, v_1 of a parallel mean flow

$$v_0 = u_0(y, z) e_x, \quad \rho_0 = \rho_0(y, z), \quad T_0 = T_0(y, z), \quad c_0 = c_0(y, z)$$

the Linearized Euler equations can be reduced to:

‘Generalized Pridmore-Brown’ equation (arbitrary cross-section A)

For modes of the form $p_1(x, y, z, t) = P(y, z) e^{i k x - i \omega t}$:

$$\nabla \cdot \left(\frac{c_0^2}{\Omega^2} \nabla P \right) + \left(1 - \frac{k^2 c_0^2}{\Omega^2} \right) P = 0 \quad \text{on } A$$

Ingard-Myers boundary condition for slipping flow

$$-i \omega (v_1 \cdot n) = (-i \omega + v_0 \cdot \nabla) \frac{p_1}{Z} \quad \text{on } \partial A$$

Note: Z different for each segment

with $\Omega = \omega - ku_0$
Boundary value problem

Pridmore-Brown equation (circular cross-section)

\[P'' + \left(\frac{1}{r} + \frac{T'_0}{T_0} + 2 \frac{k u'_0}{\Omega} \right) P' + \left(\frac{\Omega^2}{c_0^2} - k^2 - \frac{m^2}{r^2} \right) P = 0 \]

Boundary conditions

\[i \omega Z P' + \rho_0 \Omega^2 P = 0 \text{ at } r = d \quad P \text{ is regular at } r = 0 \]

Boundary Value Problem (with free \(k\)) = Eigenvalue Problem

Multiple solutions: modes of the form \(P(r) e^{i k x - i \omega t + i m \theta} \)

- eigenfunction \(P_{m \mu}(r) \)
- ‘eigenvalue’ (axial wavenumber): \(k_{m \mu} \)
Boundary value problem

Pridmore-Brown equation (circular cross-section)

\[P'' + \left(\frac{1}{r} + \frac{T'_0}{T_0} + 2\frac{k u'_0}{\Omega} \right) P' + \left(\frac{\Omega^2}{c_0^2} - k^2 - \frac{m^2}{r^2} \right) P = 0 \]

Boundary conditions

\[i\omega Z P' + \rho_0 \Omega^2 P = 0 \text{ at } r = d \quad P \text{ is regular at } r = 0 \]

Boundary Value Problem (with free \(k \)) = Eigenvalue Problem

Multiple solutions: modes of the form \(P(r) e^{ikx-i\omega t+im\theta} \)

- eigenfunction \(P_{m\mu}(r) \)
- ‘eigenvalue’ (axial wavenumber): \(k_{m\mu} \)

Non-uniform parallel flow: modes are found numerically
Some examples of modes

Axial wavenumbers k (‘eig.vals’)

Right-running eig.funcs $P_\mu (r)$

Pressure field for mode $\mu = 1$
Outline

1. Problem formulation

2. ‘Classical’ mode-matching (CMM)

3. New ‘BLM’ mode-matching
 - Closed-form integrals of Helmholtz modes
 - Closed-form integrals of parallel flow modes
 - Closed-form integrals of radial Pridmore-Brown modes
 - Bilinear map based mode-matching

4. Numerical results

5. Conclusions
Total field in segment l: sum of left- and right-running waves

$$p_l(x, r) = \sum_{\mu=1}^{\infty} \left(a_{l,\mu}^+ P_{l,\mu}^+(r) e^{ik_{l,\mu}^+ (x-x_{l-1})} + a_{l,\mu}^- P_{l,\mu}^-(r) e^{ik_{l,\mu}^- (x-x_l)} \right)$$
‘Classical’ mode-matching

At the interface at \(x = x_l \):

\[p_l(r) = \sum_{\mu=1}^{\mu_{\text{max}}} \left(b_{l,\mu}^+ P_{l,\mu}^+(r) + a_{l,\mu}^- P_{l,\mu}^-(r) \right). \]
Continuity of pressure at $x = x_l$

$$p_l(x_l, r) = p_{l+1}(x_l, r)$$
‘Classical’ mode-matching

Continuity of pressure at $x = x_l$

$$
\sum_{\mu=1}^{\mu_{\text{max}}} \left(b_{l,\mu}^+ P_{l,\mu}^+ + a_{l,\mu}^- P_{l,\mu}^- \right) = \sum_{\mu=1}^{\mu_{\text{max}}} \left(a_{l+1,\mu}^+ P_{l+1,\mu}^+ + b_{l+1,\mu}^- P_{l+1,\mu}^- \right)
$$

$2\mu_{\text{max}}$ unknowns: outgoing amplitudes $a_{l,\mu}^-$, $a_{l+1,\mu}^+$
‘Classical’ mode-matching

Projection onto hard-wall eigenfunctions \(\Psi_\nu = J_m(\alpha_\nu r) \)

\[
\sum_{\mu=1}^{\mu_{\text{max}}} \left(b_{l,\mu}^+ (P_{l,\mu}^+, \Psi_\nu) + a_{l,\mu}^- (P_{l,\mu}^-, \Psi_\nu) \right) \\
= \sum_{\mu=1}^{\mu_{\text{max}}} \left(a_{l+1,\mu}^+ (P_{l+1,\mu}^+, \Psi_\nu) + b_{l+1,\mu}^- (P_{l+1,\mu}^-, \Psi_\nu) \right)
\]

\(\nu = 1, \ldots, \nu_{\text{max}} \)
‘Classical’ mode-matching

Similarly for continuity of axial velocity.
Similarly for continuity of axial velocity. Resulting system of $2\mu^\text{max}$ equations:

$$\begin{bmatrix} A^+ & A^- \\ C^+ & C^- \end{bmatrix} \begin{bmatrix} b^+_l \\ a^-_l \end{bmatrix} = \begin{bmatrix} B^+ & B^- \\ D^+ & D^- \end{bmatrix} \begin{bmatrix} a^+_l+1 \\ b^-_{l+1} \end{bmatrix}.$$
Similarly for continuity of axial velocity.

Resulting system of $2\mu_{\text{max}}$ equations:

$$\begin{bmatrix} A^+ & A^- \\ C^+ & C^- \end{bmatrix} \begin{bmatrix} b_{l+1}^- \\ a_l^- \end{bmatrix} = \begin{bmatrix} B^+ & B^- \\ D^+ & D^- \end{bmatrix} \begin{bmatrix} a_{l+1}^+ \\ b_{l+1}^- \end{bmatrix}.$$

S-matrix formalism to compute amplitudes of all segments (numerically stable)
Matrix entries are inner products

\[A^{\pm}_{\nu \mu} = (P^{\pm}_{l, \mu}, \Psi_{\nu}) = \int_{0}^{d} P^{\pm}_{l, \mu}(r) \Psi_{\nu}(r) r \, dr \]
Computing inner products

Matrix entries are inner products

\[A_{\nu\mu}^{\pm} = (P_{l,\mu}^{\pm}, \Psi_{\nu}) = \int_{0}^{d} P_{l,\mu}^{\pm}(r)\Psi_{\nu}(r) r \, dr \]

Note that for non-uniform flow:

- \(P_{l,\mu}^{\pm} \) is determined numerically
- \(P_{l,\mu}^{\pm} \) and \(\Psi_{\nu} \) are oscillatory \(\sim \) Bessel functions
- All inner-products have to be determined at all interfaces by quadrature
Computing inner products

Matrix entries are inner products

\[A^\pm_{\nu\mu} = (P^\pm_{l,\mu}, \Psi_\nu) = \int_0^d P^\pm_{l,\mu}(r) \Psi_\nu(r) r \, dr \]

Note that for non-uniform flow:

- \(P^\pm_{l,\mu} \) is determined numerically
- \(P^\pm_{l,\mu} \) and \(\Psi_\nu \) are oscillatory \(\sim \) Bessel functions
- All inner-products have to be determined at all interfaces by quadrature

Problem

Computing inner products numerically is expensive / less accurate
Computing inner products

Matrix entries are inner products

\[A^\pm_{\nu\mu} = (P^\pm_{l,\mu}, \Psi_\nu) = \int_{0}^{d} P^\pm_{l,\mu}(r)\Psi_\nu(r) r \, dr \]

Note that for non-uniform flow:
- \(P^\pm_{l,\mu} \) is determined numerically
- \(P^\pm_{l,\mu} \) and \(\Psi_\nu \) are oscillatory \(\sim \) Bessel functions
- All inner-products have to be determined at all interfaces by quadrature

Problem
Computing inner products numerically is expensive / less accurate

Million euro question
Can we find closed-form expressions for the inner-products?
Outline

1. Problem formulation

2. ‘Classical’ mode-matching (CMM)

3. New ‘BLM’ mode-matching
 - Closed-form integrals of Helmholtz modes
 - Closed-form integrals of parallel flow modes
 - Closed-form integrals of radial Pridmore-Brown modes
 - Bilinear map based mode-matching

4. Numerical results

5. Conclusions
Outline

1. Problem formulation

2. ‘Classical’ mode-matching (CMM)

3. New ‘BLM’ mode-matching
 - Closed-form integrals of Helmholtz modes
 - Closed-form integrals of parallel flow modes
 - Closed-form integrals of radial Pridmore-Brown modes
 - Bilinear map based mode-matching

4. Numerical results

5. Conclusions
Prototype example of ‘Generalized Prid-Brown’ : Helmholtz eqn

$$\nabla^2 \psi + \beta^2 \psi = 0$$

on arbitrarily shaped cross-section \mathcal{A}
Prototype example of ‘Generalized Prid-Brown’ : Helmholtz eqn

\[\nabla^2 \psi + \beta^2 \psi = 0 \]
\[\nabla^2 \phi + \alpha^2 \phi = 0 \]

on arbitrarily shaped cross-section \(\mathcal{A} \)
Prototype example of ‘Generalized Prid-Brown’ : Helmholtz eqn

\[\phi \left(\nabla^2 \psi + \beta^2 \psi \right) = 0 \]

\[\psi \left(\nabla^2 \phi + \alpha^2 \phi \right) = 0 \]

on arbitrarily shaped cross-section \(A \)
Prototype example of ‘Generalized Prid-Brown’ : Helmholtz eqn

\[\phi \left(\nabla^2 \psi + \beta^2 \psi \right) = 0 \]
\[\psi \left(\nabla^2 \phi + \alpha^2 \phi \right) = 0 \]

on arbitrarily shaped cross-section \(\mathcal{A} \)

Subtract and integrate over \(\mathcal{A} \)

\[
(\alpha^2 - \beta^2) \iint_{\mathcal{A}} \phi \psi \, dS = \iint_{\mathcal{A}} \left(\phi \nabla^2 \psi - \psi \nabla^2 \phi \right) dS
\]
Prototype example of ‘Generalized Prid-Brown’ : Helmholtz eqn

\[\phi \left(\nabla^2 \psi + \beta^2 \psi \right) = 0 \]

\[\psi \left(\nabla^2 \phi + \alpha^2 \phi \right) = 0 \]

on arbitrarily shaped cross-section \(\mathcal{A} \)

Subtract and integrate over \(\mathcal{A} \)

\[(\alpha^2 - \beta^2) \int \int_{\mathcal{A}} \phi \psi \, dS = \int \int_{\mathcal{A}} \nabla \cdot (\phi \nabla \psi - \psi \nabla \phi) \, dS \]
Prototype example of ‘Generalized Prid-Brown’ : Helmholtz eqn

\[
\phi \left(\nabla^2 \psi + \beta^2 \psi \right) = 0 \\
\psi \left(\nabla^2 \phi + \alpha^2 \phi \right) = 0
\]

on arbitrarily shaped cross-section \(\mathcal{A} \)

Subtract and integrate over \(\mathcal{A} \)

\[
(\alpha^2 - \beta^2) \int \int_{\mathcal{A}} \phi \psi \, dS = \int_{\Gamma} (\phi \nabla \psi \cdot \mathbf{n} - \psi \nabla \phi \cdot \mathbf{n}) \, d\ell
\]
Closed form integrals of 2D eigenmodes

Prototype example of ‘Generalized Prid-Brown’ : Helmholtz eqn

\[\phi \left(\nabla^2 \psi + \beta^2 \psi \right) = 0 \]
\[\psi \left(\nabla^2 \phi + \alpha^2 \phi \right) = 0 \]

on arbitrarily shaped cross-section \(\mathcal{A} \)

Subtract and integrate over \(\mathcal{A} \)

\[(\alpha^2 - \beta^2) \iint_{\mathcal{A}} \phi \psi \, dS = \int_{\Gamma} (\phi \nabla \psi \cdot \mathbf{n} - \psi \nabla \phi \cdot \mathbf{n}) \, d\ell \]

2D inner-product for Helmholtz eigenfunctions

\[\langle \phi, \psi \rangle = \frac{1}{\alpha^2 - \beta^2} \int_{\Gamma} (\phi \nabla \psi \cdot \mathbf{n} - \psi \nabla \phi \cdot \mathbf{n}) \, d\ell \]

For arbitrary boundary conditions on \(\phi \) and \(\psi \)
Prototype example of ‘Generalized Prid-Brown’ : Helmholtz eqn

\[\phi \left(\nabla^2 \psi + \beta^2 \psi \right) = 0 \]
\[\psi \left(\nabla^2 \phi + \alpha^2 \phi \right) = 0 \]

on arbitrarily shaped cross-section \(\mathcal{A} \)

Subtract and integrate over \(\mathcal{A} \)

\[(\alpha^2 - \beta^2) \int\int_{\mathcal{A}} \phi \psi \, dS = \int_{\Gamma} (\phi \nabla \psi \cdot \mathbf{n} - \psi \nabla \phi \cdot \mathbf{n}) \, d\ell \]

2D inner-product for Helmholtz eigenfunctions

\[\langle \phi, \psi \rangle = \frac{1}{\alpha^2 - \beta^2} \int_{\Gamma} (\phi \nabla \psi \cdot \mathbf{n} - \psi \nabla \phi \cdot \mathbf{n}) \, d\ell \]

For arbitrary boundary conditions on \(\phi \) and \(\psi \)

What if \(\alpha = \beta \) and \(\phi = \psi \)?
Replace first equation with inhomogeneous version

\[\nabla^2 \chi + \alpha^2 \chi = f \]
Replace first equation with inhomogeneous version

\[\nabla^2 \chi + \alpha^2 \chi = f \]
\[\nabla^2 \phi + \alpha^2 \phi = 0 \]
Replace first equation with inhomogeneous version

\[
\phi \left(\nabla^2 \chi + \alpha^2 \chi \right) = f \phi \\
\chi \left(\nabla^2 \phi + \alpha^2 \phi \right) = 0
\]
Replace first equation with inhomogeneous version

\[\phi \left(\nabla^2 \chi + \alpha^2 \chi \right) = f \phi \]

\[\chi \left(\nabla^2 \phi + \alpha^2 \phi \right) = 0 \]

Subtract and integrate over \(\mathcal{A} \)

\[\int \int_{\mathcal{A}} f \phi \, dS = \int \int_{\mathcal{A}} \left(\phi \nabla^2 \chi - \chi \nabla^2 \phi \right) \, dS \]
Replace first equation with inhomogeneous version
\[
\phi \left(\nabla^2 \chi + \alpha^2 \chi \right) = f \phi \\
\chi \left(\nabla^2 \phi + \alpha^2 \phi \right) = 0
\]

Subtract and integrate over \(\mathcal{A} \)
\[
\iint_{\mathcal{A}} f \phi \, dS = \iint_{\mathcal{A}} \nabla \cdot (\phi \nabla \chi - \chi \nabla \phi) \, dS
\]
Replace first equation with inhomogeneous version

\[
\phi \left(\nabla^2 \chi + \alpha^2 \chi \right) = f \phi \\
\chi \left(\nabla^2 \phi + \alpha^2 \phi \right) = 0
\]

Subtract and integrate over \(A \)

\[
\iint_A f \phi \, dS = \int_\Gamma \left(\phi \nabla \chi \cdot \hat{n} - \chi \nabla \phi \cdot \hat{n} \right) \, d\ell
\]
Replace first equation with inhomogeneous version

\[\phi \left(\nabla^2 \chi + \alpha^2 \chi \right) = f \phi \]
\[\chi \left(\nabla^2 \phi + \alpha^2 \phi \right) = 0 \]

Subtract and integrate over \(A \)

\[\int \int_A f \phi dS = \int_\Gamma (\phi \nabla \chi \cdot n - \chi \nabla \phi \cdot n) \, dl \]

2D inner-product for Helmholtz eigenfunctions

\[\langle \phi, \phi \rangle = \int_\Gamma (\phi \nabla \chi \cdot n - \chi \nabla \phi \cdot n) \, dl. \]
Closed form integrals of 2D eigenmodes

Replace first equation with inhomogeneous version

\[
\phi \left(\nabla^2 \chi + \alpha^2 \chi \right) = f \phi \\
\chi \left(\nabla^2 \phi + \alpha^2 \phi \right) = 0
\]

Subtract and integrate over \(\mathcal{A} \)

\[
\iint_{\mathcal{A}} f \phi \, dS = \int_{\Gamma} \left(\phi \nabla \chi \cdot \mathbf{n} - \chi \nabla \phi \cdot \mathbf{n} \right) \, d\ell
\]

2D inner-product for Helmholtz eigenfunctions

\[
\langle \phi, \phi \rangle = \int_{\Gamma} \left(\phi \nabla \chi \cdot \mathbf{n} - \chi \nabla \phi \cdot \mathbf{n} \right) \, d\ell.
\]

For almost arbitrary boundary conditions on \(\phi \) and \(\chi \)
Outline

1. Problem formulation

2. ‘Classical’ mode-matching (CMM)

3. New ‘BLM’ mode-matching
 - Closed-form integrals of Helmholtz modes
 - Closed-form integrals of parallel flow modes
 - Closed-form integrals of radial Pridmore-Brown modes
 - Bilinear map based mode-matching

4. Numerical results

5. Conclusions
Define vector of shape functions $F = [P, U, V, W]$

P solution of Generalized PB equation, U, V, W follow from P
Closed form integrals for parallel flow modes

- Define vector of shape functions \(\mathbf{F} = [P, U, V, W] \)
- \(P \) solution of Generalized PB equation, \(U, V, W \) follow from \(P \)

Similarly to 2D Helmholtz ex., it can be found:

Closed form integral of parallel flow modes

\[
\langle \langle \mathbf{F}, \tilde{\mathbf{F}} \rangle \rangle = \int \int_A \tilde{\Omega} \left[\left(\frac{u_0}{\rho_0 c_0^2} + \frac{\tilde{k}}{\rho_0 \tilde{\Omega}} \right) \tilde{P}P + \frac{\omega}{\tilde{\Omega}} \tilde{P}U - \rho_0 u_0 (\tilde{V}V + \tilde{W}W) \right] dS
\]

\[
= \frac{i}{k - \tilde{k}} \int_{\Gamma} \frac{\tilde{P}(V n_y + W n_z) - (\tilde{V} n_y + \tilde{W} n_z)P}{\tilde{\Omega}} d\ell,
\]
Closed form integrals for parallel flow modes

- Define vector of shape functions $\mathbf{F} = [P, U, V, W]$
- P solution of Generalized PB equation, U, V, W follow from P

Similarly to 2D Helmholtz ex., it can be found:

Closed form integral of parallel flow modes

$$\langle \mathbf{F}, \mathbf{\bar{F}} \rangle =$$

$$\iint_{A} \frac{1}{\Omega} \left[\left(\frac{u_0}{\rho_0 c_0^2} + \frac{k}{\rho_0 \tilde{\Omega}} \right) \tilde{P}P + \frac{\omega}{\tilde{\Omega}} \tilde{P}U - \rho_0 u_0 (\tilde{V}V + \tilde{W}W) \right] dS$$

$$= \frac{i}{k - \tilde{k}} \int_{\Gamma} \frac{\tilde{P}(Vn_y + Wn_z) - (\tilde{V}n_y + \tilde{W}n_z)P}{\tilde{\Omega}} d\ell,$$

- Weighted products of parallel flow eigenfunctions
Closed form integrals for parallel flow modes

- Define vector of shape functions \(\mathbf{F} = [P, U, V, W] \)
- \(P \) solution of Generalized PB equation, \(U, V, W \) follow from \(P \)

Similarly to 2D Helmholtz ex., it can be found:

Closed form integral of parallel flow modes

\[
\left\langle \mathbf{F}, \mathbf{\tilde{F}} \right\rangle = \int_{\tilde{\Omega}} \int_{\mathcal{A}} \frac{1}{\tilde{k}} \left[\left(\frac{u_0}{\rho_0 c_0^2} + \frac{\tilde{k}}{\rho_0 \tilde{\Omega}} \right) \tilde{P} P + \frac{\omega}{\tilde{\Omega}} \tilde{P} U - \rho_0 u_0 (\tilde{V} V + \tilde{W} W) \right] dS
\]

\[
= \frac{i}{k - \tilde{k}} \int_{\Gamma} \frac{\tilde{P} (V n_y + W n_z) - (\tilde{V} n_y + \tilde{W} n_z) P}{\tilde{\Omega}} d\ell,
\]

- Weighted products of parallel flow eigenfunctions
- \(\left\langle \mathbf{F}, \mathbf{F} \right\rangle \): soln of inhomogeneous ‘generalized PB’ eqn required
Closed form integrals for parallel flow modes

- Define vector of shape functions $F = [P, U, V, W]$
- P solution of Generalized PB equation, U, V, W follow from P

Similarly to 2D Helmholtz ex., it can be found:

Closed form integral of parallel flow modes

$$
\langle\langle F, \tilde{F} \rangle\rangle =
\int \int_A \frac{1}{\tilde{\Omega}} \left[\left(\frac{u_0}{\rho_0 c_0^2} + \frac{\tilde{k}}{\rho_0 \tilde{\Omega}} \right) \tilde{P} P + \frac{\omega}{\tilde{\Omega}} \tilde{P} U - \rho_0 u_0 (\tilde{V} V + \tilde{W} W) \right] dS
$$

$$
= \frac{i}{k - \tilde{k}} \int_{\Gamma} \frac{\tilde{P} (V n_y + W n_z) - (\tilde{V} n_y + \tilde{W} n_z) P}{\tilde{\Omega}} d\ell,
$$

- Weighted products of parallel flow eigenfunctions
- $\langle\langle F, F \rangle\rangle$: soln of inhomogeneous ‘generalized PB’ eqn required
- $\langle\langle F, F \rangle\rangle$ not positive definite
 \Rightarrow “bilinear form” (not inner-product)
1 Problem formulation

2 ‘Classical’ mode-matching (CMM)

3 New ‘BLM’ mode-matching
 - Closed-form integrals of Helmholtz modes
 - Closed-form integrals of parallel flow modes
 - Closed-form integrals of radial Pridmore-Brown modes
 - Bilinear map based mode-matching

4 Numerical results

5 Conclusions
Circularly symmetric: modes of the form $F(r) e^{im\theta}$
Circularly symmetric: modes of the form $F(r)e^{im\theta}$

$F(r) = [P(r), U(r), V(r), W(r)]$ where

- P solution of the radial Pridmore-Brown equation
- U, V, W follow from P
Circularly symmetric: modes of the form $F(r) e^{im\theta}$

$F(r) = [P(r), U(r), V(r), W(r)]$ where

- P solution of the radial Pridmore-Brown equation
- U, V, W follow from P

Exact integrals of radial Pridmore-Brown modes

$$\langle F, \tilde{F} \rangle =$$

$$\int_0^d \frac{1}{\tilde{\Omega}} \left[\left(\frac{u_0}{\rho_0 c_0^2} + \frac{\tilde{k}}{\rho_0 \tilde{\Omega}} \right) P\tilde{P} + \frac{\omega}{\tilde{\Omega}} U\tilde{P} - \rho_0 u_0 (V\tilde{V} + W\tilde{W}) \right] r \, dr$$

$$= \frac{id}{k - \tilde{k}} \left[\frac{\tilde{P}V - \tilde{V}P}{\tilde{\Omega}} \right]_{r=d}$$
Closed form integrals for radial Pridmore-Brown modes

Circularly symmetric: modes of the form $\mathbf{F}(r) e^{im\theta}$

$\mathbf{F}(r) = [P(r), U(r), V(r), W(r)]$ where

- P solution of the radial Pridmore-Brown equation
- U, V, W follow from P

Exact integrals of radial Pridmore-Brown modes

$$\langle \mathbf{F}, \tilde{\mathbf{F}} \rangle = \int_0^d \frac{1}{\tilde{\Omega}} \left[\left(\frac{u_0}{\rho_0 c_0^2} + \frac{\tilde{k}}{\rho_0 \tilde{\Omega}} \right) P\tilde{P} + \frac{\omega}{\tilde{\Omega}} U\tilde{P} - \rho_0 u_0 (V\tilde{V} + W\tilde{W}) \right] r \, dr$$

$$= \frac{id}{k - \tilde{k}} \left[\frac{\tilde{P} V - \tilde{V} P}{\tilde{\Omega}} \right]_{r=d}$$

Weighted products of Pridmore-Brown eigenfunctions
For $k = \tilde{k}$ and $P = \tilde{P}$: soln to inhomogeneous PB eqn required

\[
\frac{\Omega^2}{rc_0^2} \left(\frac{rc_0^2}{\Omega^2} \tilde{P}' \right)' + \left(\frac{\Omega^2}{c_0^2} - k^2 - \frac{m^2}{r^2} \right) \tilde{P} = 2 \frac{\omega u_0'}{\Omega^2} P' - 2 \left(\frac{u_0 \Omega}{c_0^2} + k \right) P
\]
For $k = \tilde{k}$ and $P = \tilde{P}$: soln to inhomogeneous PB eqn required

$$\frac{\Omega^2}{rc_0^2} \left(\frac{r c_0^2}{\Omega^2} \hat{P}' \right)' + \left(\frac{\Omega^2}{c_0^2} - k^2 - \frac{m^2}{r^2} \right) \hat{P} = 2 \frac{\omega u_0'}{\Omega^2} P' - 2 \left(\frac{u_0 \Omega}{c_0^2} + k \right) P$$

No free parameters \Rightarrow numerically cheaper than eigenvalue probl.
Closed form integrals for radial Pridmore-Brown modes

For \(k = \tilde{k} \) and \(P = \tilde{P} \): soln to inhomogeneous PB eqn required

\[
\frac{\Omega^2}{r c_0^2} \left(\frac{r c_0^2}{\Omega^2} \hat{P}' \right)' + \left(\frac{\Omega^2}{c_0^2} - k^2 - \frac{m^2}{r^2} \right) \hat{P} = 2 \frac{\omega u_0'}{\Omega^2} P' - 2 \left(\frac{u_0 \Omega}{c_0^2} + k \right) P
\]

No free parameters ⇒ numerically cheaper than eigenvalue probl.

Exact integrals of radial Pridmore-Brown modes (\(k = \tilde{k} \))

\[
\langle F, F \rangle = \int_0^d r \frac{1}{\tilde{\Omega}} \left[\left(\frac{u_0}{\rho_0 c_0^2} + \frac{k}{\rho_0 \Omega} \right) P^2 + \frac{\omega}{\Omega} U P - \rho_0 u_0 (V^2 + W^2) \right] \, dr
\]

\[= i d \left[\hat{P} V - \hat{V} P \frac{\Omega}{\hat{\Omega}} \right]_{r=d} \]
Some special cases

With Ingard-Myers condition (slipping flow)

\[\langle \mathbf{F}, \tilde{\mathbf{F}} \rangle = \left[\frac{\text{id}\tilde{P}\tilde{P}}{(k - \tilde{k})\tilde{\Omega}\omega} \left(\frac{\Omega}{Z} - \frac{\tilde{\Omega}}{\tilde{Z}} \right) \right]_{r=d} \]
Some special cases

With Ingard-Myers condition (slipping flow)

\[\langle F, \tilde{F} \rangle = \left\langle \frac{\text{id} \tilde{PP}}{(k - \tilde{k})\tilde{\Omega}} \left(\frac{\Omega}{Z} - \frac{\tilde{\Omega}}{\tilde{Z}} \right) \right\rangle_{r=d} \]

For hard walls:

"orthogonal":

\[
\begin{cases}
\langle F, \tilde{F} \rangle = 0 \\
\langle F, F \rangle \neq 0
\end{cases}
\]
Some special cases

With Ingard-Myers condition (slipping flow)

\[
\langle \mathbf{F}, \mathbf{\tilde{F}} \rangle = \left[\frac{i d \mathbf{\tilde{P}P}}{(k - \bar{k})\bar{\Omega} \omega} \left(\frac{\Omega}{Z} - \frac{\bar{\Omega}}{\bar{Z}} \right) \right]_{r=d}
\]

For hard walls:

“orthogonal”:

\[
\begin{align*}
\langle \mathbf{F}, \mathbf{\tilde{F}} \rangle &= 0 \\
\langle \mathbf{F}, \mathbf{F} \rangle &\neq 0
\end{align*}
\]

In case of no-slip flow:

\[
\langle \mathbf{F}, \mathbf{\tilde{F}} \rangle = \left[\frac{i d \mathbf{\tilde{P}P}}{(k - \bar{k})\omega} \left(\frac{1}{Z} - \frac{1}{\bar{Z}} \right) \right]_{r=d}
\]
Some special cases

With Ingard-Myers condition (slipping flow)

\[
\langle F, \tilde{F} \rangle = \left[\frac{\text{id}\tilde{P}P}{(k - \tilde{k})\tilde{\Omega}\omega} \left(\frac{\Omega}{Z} - \frac{\tilde{\Omega}}{\tilde{Z}} \right) \right]_{r=d}
\]

For hard walls:

“orthogonal”:

\[
\begin{cases}
\langle F, \tilde{F} \rangle = 0 \\
\langle F, F \rangle \neq 0
\end{cases}
\]

In case of no-slip flow:

\[
\langle F, \tilde{F} \rangle = \left[\frac{\text{id}\tilde{P}P}{(k - \tilde{k})\omega} \left(\frac{1}{Z} - \frac{1}{\tilde{Z}} \right) \right]_{r=d}
\]

For different modes \((k \neq \tilde{k})\) with same impedance \(Z = \tilde{Z}\):

“orthogonal”:

\[
\begin{cases}
\langle F, \tilde{F} \rangle = 0 \\
\langle F, F \rangle \neq 0
\end{cases}
\]
1. Problem formulation

2. ‘Classical’ mode-matching (CMM)

3. New ‘BLM’ mode-matching
 - Closed-form integrals of Helmholtz modes
 - Closed-form integrals of parallel flow modes
 - Closed-form integrals of radial Pridmore-Brown modes
 - Bilinear map based mode-matching

4. Numerical results

5. Conclusions
Bilinear map-based mode-matching

Classic mode-matching (CMM)

\[
\sum_{\mu=1}^{\mu_l} b_{l,\mu}^+ (P_{l,\mu}^+, \Psi_\nu) + a_{l,\mu}^- (P_{l,\mu}^-, \Psi_\nu)
\]

\[
= \sum_{\mu=1}^{\mu_{l+1}} a_{l+1,\mu}^+ (P_{l+1,\mu}^+, \Psi_\nu) + b_{l+1,\mu}^- (P_{l+1,\mu}^-, \Psi_\nu)
\]

With test functions (for example)

\[
\Psi_\nu = J_m(\alpha_\nu r)
\]
Bilinear map-based mode-matching

Classic mode-matching (CMM)

$$\sum_{\mu=1}^{\mu_l} b_{l,\mu}^+ (P_{l,\mu}^+, \Psi_\nu) + a_{l,\mu}^- (P_{l,\mu}^-, \Psi_\nu)$$

$$= \sum_{\mu=1}^{\mu_{l+1}} a_{l+1,\mu}^+ (P_{l+1,\mu}^+, \Psi_\nu) + b_{l+1,\mu}^- (P_{l+1,\mu}^-, \Psi_\nu)$$

With test functions (for example)

$$\Psi_\nu = J_m(\alpha_\nu r)$$

Quadrature required for $$(P_\mu, \Psi_\nu)$$ terms (non-uniform flow)
Bilinear map-based (BLM) mode-matching

\[\sum_{\mu=1}^{\mu_l} b_{l,\mu}^+ \langle F_{l,\mu}^+, \Psi_\nu \rangle + a_{l,\mu}^- \langle F_{l,\mu}^-, \Psi_\nu \rangle \]

\[= \sum_{\mu=1}^{\mu_{l+1}} a_{l+1,\mu}^+ \langle F_{l+1,\mu}^+, \Psi_\nu \rangle + b_{l+1,\mu}^- \langle F_{l+1,\mu}^-, \Psi_\nu \rangle \]

With test functions (for example)

\[\Psi_\nu = F_{l,\nu} \]
Bilinear map-based (BLM) mode-matching

\[
\sum_{\mu=1}^{\mu_l} b_{l,\mu}^+ \langle F_{l,\mu}^+, \Psi_\nu \rangle + a_{l,\mu}^- \langle F_{l,\mu}^-, \Psi_\nu \rangle
\]

\[
= \sum_{\mu=1}^{\mu_{l+1}} a_{l+1,\mu}^+ \langle F_{l+1,\mu}^+, \Psi_\nu \rangle + b_{l+1,\mu}^- \langle F_{l+1,\mu}^-, \Psi_\nu \rangle
\]

With test functions (for example)

\[\Psi_\nu = F_{l,\nu}\]

Closed form expressions for \(\langle F_{\mu}, \Psi_\nu \rangle\) terms
Bilinear map-based (BLM) mode-matching

\[
\begin{bmatrix}
A^+ & A^- \\
C^+ & C^-
\end{bmatrix}
\begin{bmatrix}
b_{l+1}^+ \\
a_{l}^-
\end{bmatrix} = \begin{bmatrix}
B^+ & B^- \\
D^+ & D^-
\end{bmatrix}
\begin{bmatrix}
a_{l+1}^+ \\
b_{l+1}^-
\end{bmatrix}.
\]
Bilinear map-based (BLM) mode-matching

\[
\begin{bmatrix}
A^+ & A^- \\
C^+ & C^- \\
\end{bmatrix}
\begin{bmatrix}
b^+_l \\
a^-_l \\
\end{bmatrix}
=
\begin{bmatrix}
B^+ & B^- \\
D^+ & D^- \\
\end{bmatrix}
\begin{bmatrix}
a^+_{l+1} \\
b^-_{l+1} \\
\end{bmatrix}.
\]

Non-slipping flow or hard wall, and \(\Psi_{\nu} = F_{l,\nu} \):

\[
\begin{bmatrix}
A^+ & A^- \\
C^+ & C^- \\
\end{bmatrix}
\text{is diagonal}
\]
Outline

1. Problem formulation

2. ‘Classical’ mode-matching (CMM)

3. New ‘BLM’ mode-matching
 - Closed-form integrals of Helmholtz modes
 - Closed-form integrals of parallel flow modes
 - Closed-form integrals of radial Pridmore-Brown modes
 - Bilinear map based mode-matching

4. Numerical results

5. Conclusions
Numerical results — test configurations

![Diagram showing test configurations](image)

<table>
<thead>
<tr>
<th>Configuration</th>
<th>I</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helmholtz & azi.</td>
<td>$\omega = 13.86, m = 5$</td>
<td>$\omega = 15, m = 5$</td>
</tr>
<tr>
<td>Temperature</td>
<td>$T = 1$</td>
<td>$T = 2 \log(2) \left(1 - \frac{r^2}{2}\right)$</td>
</tr>
<tr>
<td>Mean flow</td>
<td>$M = 0.5(1 - r^2)$</td>
<td>$M = 0.3 \cdot \tanh(10(1 - r))$</td>
</tr>
<tr>
<td>Soft-wall impedance</td>
<td>$Z = 1 - 1i$</td>
<td>$Z = 1 - 1i$</td>
</tr>
<tr>
<td>Incident rad. mode nr.</td>
<td>$\mu = 1$</td>
<td>$\mu = 2$</td>
</tr>
</tbody>
</table>
Numerical results — Conf I: no-slip flow, uniform temp

Real part of pressure

(a) Classical mode-matching.

(b) Bilinear map-based mode-matching.

Perfect match between BLM and CMM results
Numerical results — Conf I: no-slip flow, uniform temp

Pressure at radial locations: \(r = \{0.035, 0.075, 0.15\} \) m.

Perfect match between BLM and CMM results
Axial velocity at radial locations: \(r = \{0.035, 0.075, 0.15\} \) m.

Perfect match between BLM and CMM results.
Radial velocity at radial locations: \(r = \{0.035, 0.075, 0.15\} \) m.

Perfect match between BLM and CMM results.
Pressure at radial locations: \(r = \{0.035, 0.075, 0.15\} \) m.

Perfect match between BLM and CMM results
Axial velocity at radial locations: $r = \{0.035, 0.075, 0.15\}$ m.

Perfect match between BLM and CMM results.
Radial velocity at radial locations: \(r = \{0.035, 0.075, 0.15\} \) m.

Perfect match between BLM and CMM results
Energy balance (Myers’ Energy Corollary) vs μ^{max} for conf. 1

Energy balance better for higher μ^{max}
BLM performs better than CMM
Energy balance (Myers’ Energy Corollary) vs μ^{max} for conf. 1

Energy balance better for higher μ^{max}
Energy balance (Myers’ Energy Corollary) vs μ^{max} for conf. 1

Energy balance better for higher μ^{max}

BLM performs better than CMM
Assume that for modal amplitudes holds:

\[A_n = O(n^p) \quad \text{for } n \to \infty \]

so \(\log |A_n| = p \log n + O(1) \).
Assume that for modal amplitudes holds:

\[A_n = O(n^p) \quad \text{for } n \to \infty \]

so \(\log |A_n| = p \log n + O(1) \). Then for \(p_n \) defined as

\[p_n = \frac{\log |A_n|}{\log n} \]

it holds: \(p_n - p = O(1/ \log(n)) \)
Assume that for modal amplitudes holds:

$$A_n = O(n^p) \quad \text{for } n \to \infty$$

so $$\log |A_n| = p \log n + O(1)$$. Then for $$p_n$$ defined as

$$p_n = \frac{\log |A_n|}{\log n}$$

it holds: $$p_n - p = O(1/\log(n))$$

Near the interface, at the wall ('edge'): boundary cond. undefined

⇒ Energy must be finite (edge condition)
Numerical results — Convergence of modal amplitudes

Assume that for modal amplitudes holds:

\[A_n = O(n^p) \quad \text{for} \quad n \to \infty \]

so \(\log |A_n| = p \log n + O(1) \). Then for \(p_n \) defined as

\[p_n = \frac{\log |A_n|}{\log n} \]

it holds: \(p_n - p = O(1/\log(n)) \)

Near the interface, at the wall (‘edge’): boundary cond. undefined
⇒ Energy must be finite (edge condition)

It can be shown that:

\[p < -1 \Rightarrow \text{uniform convergence of Fourier series} \]
⇒ edge condition satisfied
Numerical results — Convergence of modal amplitudes

Do we have $p < -1$ for numerical solutions?
Do we have $p < -1$ for numerical solutions?

Convergence of amplitudes (BLM and CMM), for conf. I and III

$p_n \approx -2 \Rightarrow$ edge condition satisfied

BLM amplitudes smoother than CMM as $n \to \infty$: no quadrature inaccuracies for BLM
Numerical results — Convergence of modal amplitudes

Do we have $p < -1$ for numerical solutions?

Convergence of amplitudes (BLM and CMM), for conf. I and III

$p \approx -2 \Rightarrow$ edge condition satisfied
Do we have \(p < -1 \) for numerical solutions?

Convergence of amplitudes (BLM and CMM), for conf. I and III

\[
\begin{align*}
p_n &\approx -2 \Rightarrow \text{edge condition satisfied} \\
\text{BLM amplitudes smoother than CMM as } n &\to \infty: \text{no quadrature inaccuracies for BLM}
\end{align*}
\]
1. Problem formulation

2. ‘Classical’ mode-matching (CMM)

3. New ‘BLM’ mode-matching
 - Closed-form integrals of Helmholtz modes
 - Closed-form integrals of parallel flow modes
 - Closed-form integrals of radial Pridmore-Brown modes
 - Bilinear map based mode-matching

4. Numerical results

5. Conclusions
Conclusions

Classic mode-matching (CMM):

- Uniform flow & temp: Mode shapes are Bessel functions. Inner products are available in closed form.
- Parallel (non-uniform) flow & temp: Mode shapes are Pridmore-Brown solutions (determined numerically). Inner products require numerical quadrature → expensive & less accurate.

Bilinear map-based mode-matching (BLM):

- Parallel (non-uniform) flow & temp: Mode shapes are Pridmore-Brown solutions (determined numerically). Closed form expressions for 'inner-products' → cheaper & more accurate. Solutions in very good agreement with CMM.
Conclusions

Classic mode-matching (CMM):

- Uniform flow & temp:
 - Mode shapes are Bessel functions
 - Inner products are available in closed form

Parallel (non-uniform) flow & temp:

- Mode shapes are Pridmore-Brown solutions (determined numerically)
- Inner products require numerical quadrature → expensive & less accurate

Bilinear map-based mode-matching (BLM):

- Parallel (non-uniform) flow & temp:
 - Mode shapes are Pridmore-Brown solutions (determined numerically)
 - Closed form expressions for 'inner-products' → cheaper & more accurate
 - Solutions in very good agreement with CMM
Classic mode-matching (CMM):

- Uniform flow & temp:
 - Mode shapes are Bessel functions
 - Inner products are available in closed form
- Parallel (non-uniform) flow & temp:
 - Mode shapes are Pridmore-Brown solutions (determined numerically)
 - Inner products require numerical quadrature → expensive & less accurate
 - Bilinear map-based mode-matching (BLM):
 - Parallel (non-uniform) flow & temp:
 - Closed form expressions for 'inner-products' → cheaper & more accurate
 - Solutions in very good agreement with CMM
Conclusions

Classic mode-matching (CMM):
- **Uniform flow & temp:**
 - Mode shapes are Bessel functions
 - Inner products are available in closed form
- **Parallel (non-uniform) flow & temp:**
 - Mode shapes are Pridmore-Brown solutions (determined numerically)
 - Inner products require numerical quadrature
 - → expensive & less accurate
Conclusions

Classic mode-matching (CMM):
- **Uniform flow & temp:**
 - Mode shapes are Bessel functions
 - Inner products are available in closed form
- **Parallel (non-uniform) flow & temp:**
 - Mode shapes are Pridmore-Brown solutions (determined numerically)
 - Inner products require numerical quadrature
 → expensive & less accurate

Bilinear map-based mode-matching (BLM):
Conclusions

Classic mode-matching (CMM):
- Uniform flow & temp:
 - Mode shapes are Bessel functions
 - Inner products are available in closed form
- Parallel (non-uniform) flow & temp:
 - Mode shapes are Pridmore-Brown solutions (determined numerically)
 - Inner products require numerical quadrature
 → expensive & less accurate

Bilinear map-based mode-matching (BLM):
- Parallel (non-uniform) flow & temp:
 - Mode shapes are Pridmore-Brown solutions (determined numerically)
 - Closed form expressions for ‘inner-products’
 → cheaper & more accurate
 - Solutions in very good agreement with CMM
A computational mode-matching approach for propagation in three-dimensional ducts with flow.

G. Bader and U. Ascher.
A new basis implementation for a mixed order boundary value ODE solver.

B. Davies.
Locating the zeros of an analytic function.
L.M. Delves and J.N. Lyness.
A numerical method for locating the zeros of an analytic function.

N.I. Ioakimidis and E.G. Anastasselou.
A modification of the delves-lyness method for locating the zeros of analytic functions.

Lifeng Li.
Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings.
Mike K. Myers.
On the acoustic boundary condition in the presence of flow.

Mike K. Myers.
Transport of energy by disturbances in arbitrary steady flows.

Modelling of non-locally reacting acoustic treatments for aircraft ramp noise reduction.
M. Oppeneer, Werner M.J. Lazeroms, Sjoerd W. Rienstra, P. Sijtsma, and Robert M.M. Mattheij.
Acoustic modes in a duct with slowly varying impedance and non-uniform mean flow and temperature.
In *17th AIAA/CEAS Aeroacoustics Conference, Portland(OR), USA*, number AIAA 2011-2871, June 5-8 2011.

M. Oppeneer, Sjoerd W. Rienstra, and P. Sijtsma.
Efficient mode-matching based on closed form integrals of pridmore-brown modes.

D.C. Pridmore-Brown.
Sound propagation in a fluid flowing through an attenuating duct.
Sjoerd W. Rienstra.
A classification of duct modes based on surface waves.

P. Sijtsma and H. van der Wal.
Modelling a spiralling type of non-locally reacting liner.
Backup slide from here...
S-matrix formalism

Take into account propagation (decaying exponentials)
consider outgoing waves unknown

⇒ Segment scattering matrix:

\[
\begin{bmatrix}
 a^+_l \\
 a^-_l
\end{bmatrix}
= \begin{bmatrix}
 S^1_{11} & S^1_{12} \\
 S^2_{21} & S^2_{22}
\end{bmatrix}
\begin{bmatrix}
 a^+_l \\
 a^-_l
\end{bmatrix}
\]

Segment S-matrices can be combined to compute all amplitudes
S-matrix formalism

![Diagram showing the propagation of waves through segments](image)

- Take into account propagation (decaying exponentials)
- Consider outgoing waves unknown

⇒ Segment scattering matrix:

\[
\begin{bmatrix}
 a_{l+1}^+ \\
 a_l^-
\end{bmatrix}
= \begin{bmatrix}
 S_{11}^l & S_{12}^l \\
 S_{21}^l & S_{22}^l
\end{bmatrix}
\begin{bmatrix}
 a_l^+ \\
 a_{l+1}^-
\end{bmatrix}
\]

Segment S-matrices can be combined to compute all amplitudes

S-matrix formalism: numerically stable due to decaying exponentials
Solution of
\[Lx = f \quad \text{with} \quad L = A - \lambda I \]
exists if \(\lambda \) satisfies
\[\det(L) = \det(A - \lambda I) \neq 0 \]
Solution of

\[Lx = f \quad \text{with} \quad L = A - \lambda I \]

exists if \(\lambda \) satisfies

\[\det(L) = \det(A - \lambda I) \neq 0 \]

Similarly: solution of

\[\nabla^2 \chi + \alpha^2 \chi = \phi, \quad a\chi = b\nabla \chi \cdot n \text{ on } \Gamma \]

exists if \(\alpha \) is not an eigenvalue of homogeneous problem
Arbitrary boundary conditions?

Solution of

\[Lx = f \quad \text{with} \quad L = A - \lambda I \]

exists if \(\lambda \) satisfies

\[\det(L) = \det(A - \lambda I) \neq 0 \]

Similarly: solution of

\[\nabla^2 \chi + \alpha^2 \chi = \phi, \quad a\chi = b\nabla \chi \cdot n \quad \text{on} \quad \Gamma \]

exists if \(\alpha \) is not an eigenvalue of homogeneous problem

\[\Rightarrow \quad \text{Boundary conditions on} \ \chi \ \text{and} \ \phi \ \text{must be different} \]
Myers’ Energy Corollary (exact for non-uniform flow & temp):

\[\frac{\partial E}{\partial t} + \nabla \cdot I = -D \]

with

\[E = \frac{p_1^2}{2\rho_0 c_0^2} + \frac{1}{2} \rho_0 |\mathbf{v}_1|^2 + \rho_1 \mathbf{v}_0 \cdot \mathbf{v}_1 + \frac{\rho_0 T_0 s_1^2}{2C_p}, \]

\[I = (\rho_0 \mathbf{v}_1 + \rho_1 \mathbf{v}_0) \left(\frac{p_1}{\rho_0} + \mathbf{v}_0 \cdot \mathbf{v}_1 \right) + \rho_0 \mathbf{v}_0 T_1 s_1, \]

\[D = -\rho_0 \mathbf{v}_0 \cdot (\mathbf{\omega}_1 \times \mathbf{v}_1) - \rho_1 \mathbf{v}_1 \cdot (\mathbf{\omega}_0 \times \mathbf{v}_0) \]
\[+ s_1 (\rho_0 \mathbf{v}_1 + \rho_1 \mathbf{v}_0) \cdot \nabla T_0 - s_1 \rho_0 \mathbf{v}_0 \cdot \nabla T_1 \]

Flux through walls equals source/sink contributions

\[\int_{\partial V} \mathbf{I} \cdot \mathbf{n} \, dA + \int_V \mathbf{D} \, dV = 0 \]