Two-phase flow in porous media: dynamic capillarity and hysteresis

Xiulei Cao
Supervisor: I.S. Pop.
Centre for Analysis, Scientific computing and Applications (CASA)

April 8, 2015
Outline

Motivation

Mathematical model

Results in homogeneous media
 Dynamic effects and constant total flow
 Dynamic effects and degenerate case
 Dynamic effects and hysteresis

Heterogeneous media

Future work
Outline

Motivation

Mathematical model

Results in homogeneous media
 Dynamic effects and constant total flow
 Dynamic effects and degenerate case
 Dynamic effects and hysteresis

Heterogeneous media

Future work
Figure 1: The setup (a) and saturation overshoot (c).

Fingering and Overshoot

Figure 2: The setup (a) flow path (b) and saturation overshoot (c).

*F. Rezanezhad, H.-J. Vogel and K. Roth, Experimental study of fingered flow through initially dry sand.

Non-equilibrium $p - s$ curve

Figure 3: The water saturation (left) and phase pressure difference (right).

Standard:
\[p = p_c(s) \text{ (monotonic).} \]

Non-standard:
\[p = p_c(s, \partial_t s, ...) \]

S. Bottero, Advances in the Theory of Capillarity in Porous Media.
Motivation

Mathematical model

Results in homogeneous media
 Dynamic effects and constant total flow
 Dynamic effects and degenerate case
 Dynamic effects and hysteresis

Heterogeneous media

Future work
Mathematical model (two phases, water/oil)

Darcy

\[\mathbf{v}_\alpha = -\frac{k}{\mu_\alpha} k_{r\alpha} (\nabla p_\alpha + \mathbf{g}), \quad \alpha = w, \ n. \]

Mass balance

\[\frac{\partial}{\partial t} (\phi s_\alpha) + \nabla \cdot \mathbf{v}_\alpha = 0, \quad \alpha = w, \ n. \]

Gives

\[\frac{\partial}{\partial t} (\phi s_\alpha) - \nabla \cdot \left(\frac{k}{\mu_\alpha} k_{r\alpha} (\nabla p_\alpha + \mathbf{g}) \right) = 0, \quad \alpha = w, \ n. \]

Note:

\[s_w + s_n = 1. \]
Non-equilibrium effects

Standard model:

\[p_n - p_w = p_c(s_w). \]

Non-equilibrium model:

\[p_n - p_w = p_c(s_w) - \tau \frac{\partial s_w}{\partial t} - \gamma \text{sign}\left(\frac{\partial s_w}{\partial t}\right), \quad \tau > 0, \gamma \geq 0. \]

Dimensionless model

Reference values: L, Q, T, P, K with $Q = \frac{L\phi}{T}$, dimensionless quantities $x := \frac{x}{L}, t := \frac{t}{T}$

\[
\begin{align*}
\partial_t s - \nabla \cdot \left(k_w(s)(\nabla p_w + g) \right) &= 0, \\
-\partial_t s - \nabla \cdot \left(k_n(s)(\nabla p_n + g) \right) &= 0, \\
p_n - p_w &= p_c(s) - \tau \partial_t s - \gamma \text{sign}(\partial_t s),
\end{align*}
\]

with

\[s := s_w, \quad k_\alpha = \frac{k_{r\alpha}}{\mu_\alpha}, \quad \alpha = w, n.\]

Note:

\[
\nabla \cdot \vec{q} = 0,
\]

with $\vec{q} = k_w(s)(\nabla p_w + g) + k_n(s)(\nabla p_n + g)$.

\[\]
Motivation

Mathematical model

Results in homogeneous media
 Dynamic effects and constant total flow
 Dynamic effects and degenerate case
 Dynamic effects and hysteresis

Heterogeneous media

Future work
Simplified model: $\gamma = 0$ and total flow constant

$$
\partial_t s + \nabla \cdot F(s) + \nabla \cdot \left(H(s) \nabla \left(p_c(s) - \tau \partial_t s \right) \right) = 0, \text{ in } (0, T] \times \Omega,
$$
e.g.: two-phase flow model, constant total flow \vec{q}

$$
F(s) = \vec{q} \frac{k_w}{k}(s), \quad H(s) = \frac{k_w k_n}{k}(s), \quad \text{and} \quad k = k_w + k_n.
$$

Theorem 1

*With sufficient regular boundary and initial conditions, the non-degenerate model $(0 < m \leq H \leq M < \infty)$ has at most one weak solution $s \in W^{1,2}(0, T; W^{1,2}(\Omega))$.

Note:

$$
s|_{\partial \Omega} = s_D \in C^{1,\alpha}(\bar{\Omega}), \quad s(0, \cdot) = s_0 \in C^{0,\alpha}(\bar{\Omega}).
$$

A. Mikelić: A global existence result for the equations describing unsaturated flow in porous media with dynamic capillary pressure, J. Differ. Equ. 248, 1561-1577(2010)
Degenerate case ($\gamma = 0, \tau = \tau(s)$):

\[k_w(s) \sim s^\alpha, \quad k_n(s) \sim (1 - s)^\beta, \quad -p'_c \sim s^{-\lambda}, \quad \tau(s) \sim (1 - s)^{-\omega}. \]

"Old" form uses

\[p_g = p_n - \int_{C_D}^s f_w(z)p'_c(z)dz, \quad \theta(s) = -\int_{C_D}^s \frac{k_wk_n}{k}(z)p'_c(z)dz, \]

to transform the model into

\[\partial_t s + \nabla \cdot \left(k_n(s)\nabla p_g \right) - \Delta \theta(s) = 0, \]

\[\nabla \cdot \left(k(s)\nabla p_g \right) + \nabla \cdot \left(k_w(s)\nabla \left(\tau(s)\partial_t s \right) \right) = 0. \]
Existence of weak solutions

Theorem 2

With proper assumptions for the coefficients, \(s|_{\partial \Omega} = C_D \in (0, 1) \) and \(s(0, \cdot) = s_0 \in (0, 1) \), there exists a weak solution pair \((s, p_g)\) for the model which satisfies:

\[
\begin{align*}
 s &\in L^2(0, T; W^{1,2}_{C_D}(\Omega)), \quad \partial_t s \in L^2(\Omega \times (0, T)), \\
p_g &\in L^2(0, T; W^{1,r^*}_0(\Omega)) \text{ (for some } r^* \in (1, 2)).
\end{align*}
\]

Note: given \(p_g \), one has

\[
p_n = p_g + \int_{C_D}^s f_w(z)p'_c(z)dz, \quad p_w = p_n - p_c(s) + \tau \frac{\partial s}{\partial t}.
\]
\(\gamma := \gamma(x) \geq 0, \tau > 0 \)

\[
\begin{align*}
\partial_t s - \nabla \cdot \left(k_w(s)(\nabla p_w + g) \right) &= 0, \\
-\partial_t s - \nabla \cdot \left(k_n(s)(\nabla p_n + g) \right) &= 0, \\
p_n - p_w &= p_c(s) - \tau \partial_t s - \gamma(x) \text{sign}(\partial_t s).
\end{align*}
\]

Theorem 3

With sufficient regular boundary and initial conditions, under non-degenerate case there exists at most one weak solution \((s, p_w, p_n)\) for the model.

Outline

Motivation

Mathematical model

Results in homogeneous media
 Dynamic effects and constant total flow
 Dynamic effects and degenerate case
 Dynamic effects and hysteresis

Heterogeneous media

Future work
Heterogeneous media

2 rocks - heterogeneous media:

Figure 4: Heterogeneous media

- **Problem:** Discontinuous coefficients appear under 2nd order derivatives.
- **Approach:** Models/sub-domains.
- **Q:** How should the models be coupled at interface?

* C.J. van Duijn, Molenaar and M.J. de Neef, The effect of capillary forces on immiscible two-phase flow in heterogeneous media.

1-D heterogeneous model $\gamma = 0, \tau > 0$:

\[
\begin{aligned}
\phi \frac{\partial s}{\partial t} + \frac{\partial F}{\partial x} &= 0, \\
F &= qf_w(s) + \bar{k}(x)\bar{\lambda}(s) \frac{\partial}{\partial x} \left(\frac{J(s)}{h(x)} - \tau \frac{\partial s}{\partial t} \right),
\end{aligned}
\]

with $h(x) = \sqrt{\frac{\bar{k}(x)}{\phi}}$.
Assumptions

\(J, h \)

Figure 5: The functions: \(J \) (a) and \(h \) (b).

\textbf{Id:} approximate the interface \((x = 0)\) by a thin layer.
Deriving the coupling conditions

- Regularization (blow up the interface $x = 0 \rightarrow (-\epsilon, \epsilon)$):

 \[h_\epsilon(x) = \hat{h}(\frac{x}{\epsilon}) \quad \text{for} \quad -\epsilon < x < \epsilon. \]

 Here h_ϵ is like

![Diagram showing the behavior of h_ϵ](image)

Figure 6: h_ϵ function

Find limit $\epsilon \downarrow 0$.
Coupling conditions:

- **A1:** Flux continuity.
- **A2:** Pressure condition (entry pressure):
 - pressure continuity, or no oil flowing into the fine medium.

\[\tau = 0 : \]

\[(p^- - p^+) (1 - s^+) = 0. \]

However, oil may still flow even if \(s > s^* \) (less oil trapped).

Figure 7: Capillary pressure with entry pressure (Standard model: \(p_n - p_w = p_c(s) \)).
Numerical results

$t = 0.7$:

![Graph showing oil saturation over time](a)

![Graph showing oil flow over time](b)

Figure 8: Oil trapped for $\tau = 0$ (a) and oil flowing for $\tau = 1$ (b).
$t = 400:$

Figure 9: Oil saturation: $\tau = 0$ (a), $\tau = 10$ (b) and $\tau = 30$ (c).
Outline

Motivation

Mathematical model

Results in homogeneous media
 Dynamic effects and constant total flow
 Dynamic effects and degenerate case
 Dynamic effects and hysteresis

Heterogeneous media

Future work
Future work

- Finite volume analysis?
- Finite element analysis?
- Writing thesis!

Acknowledgements: China Scholarship Council, NUPUS
Thank you for your attention!