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1d) Renewed application: Yes.

This is an improved version of the proposal that was submitted in the round
of January 15, 2008, file number 600.065.100.08N003. All the reviewers were
quite positive above the proposal and the only negative remarks in the final
evaluation were about the project planning and lack of more details in some
parts of the text. Therefore in the new version of the proposal we made some
substantial changes in the project planning and the description of the approach
and methodology.

2a) Summary: Model checking is one of the most successful formal tech-
niques for the verification of software and hardware systems. Developed in the
beginning of the eighties, nowadays it is used by major companies, like Microsoft
and Intel, to improve the quality of their products. Multi-core processors of af-
fordable prices that emerged on the market in 2005 promise to bring low-cost
parallel computers on our desktops which will denote a turning point in the area
of parallel computing and computer science and engineering in general.

The aim of this project is to develop new algorithms for model checking
(including probabilistic model checking) that can fully exploit the parallelism
of the multi-core machines. The emphasis will be put on efficient algorithms for
the so called liveness properties expressed in temporal logics.

One of the main application areas of model checking are concurrent systems.
Since parallel machines will trigger a growing need of software that exploits
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concurrency and parallelism, one can expect that the emergence of the multi-
core technology will significantly increase the importance of model checking in
industry. With the increasing complexity of the software the verification can
obviously benefit from an efficient fast mulit-core model checking.

We plan to develop prototype implementations of the new algorithms in
model checkers, like Spin and its extensions, as well as the probabilistic model
checker MRMC. The prototype implementations will be validated on case stud-
ies including models of biological systems.

2b) Abstract for laymen in Dutch: Correctheid en prestatie van software
en hardware zijn van wezenlijk belang. In het bijzonder geldt dit voor zo-
genaamde kritische systemen zoals medische aparatuur, vliegverkeerssystemen,
kerncentrales, telefoonnetwerken, etc.

Model checking is een van de meest prominente formele technieken voor de
verificatie van software- en hardware-systemen en wordt gebruikt door grote
bedrijven, zoals Microsoft en Intel, om de kwaliteit van hun produkten te ver-
beteren.

Commerciële multi-core processoren verschenen op de markt in 2005 en
tegenwoordig zijn de processoren van bijna alle nieuwe computers dual-core.
In feite betekent multi-core dat men meerdere processoren (cores) in één pro-
cessor heeft. Deze processoren kunnen parallel werken en hebben toegang tot
hetzelfde geheugen. In de toekomst zullen de verbeteringen in de prestaties
van de programma’s afhangen van een effectief gebruik van dit parallelisme.
Dit betekent een belangrijk keerpunt op het gebied van parallelle computing en
informatica in algemeen.

Het doel van dit project is parallelle algoritmen te ontwikkelen voor model
checking. Deze algoritmen moeten zoveel mogelijk het parallellisme van de
nieuwe multi-core processoren gebruiken ter verbetering van de efficiëntie van
model checking.

In het project ontwikkelde parallelle technieken voor model checking zullen in
software tools geimplementeerd worden. De implementaties zullen geevalueerd
worden in verschillende toepassingen, onder andere op biomedische systemen.

3) Classification:

• Discipline: Informatica (Computer Science)

• Computer Science (sub)disciplines: 1.1 Parallell systemen; 1.2 Gedis-
tribueerde systemen; 3.4 Testmethoden (formele verificatie); 6.5 Formele
methoden.

• Relevant themes from NOAG-i 2005-2010: De data-explosie; De genetwerkte
wereld; Methoden voor ontwerpen en bouwen.

4) Composition of the research team:
(EUT = Eindhoven University of Technology, TU = Twente University of
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Name Affiliation Expertise
Prof. Dr. M.G.J. van den Brand EUT CS, SE
Prof. Dr. P.A.J. Hilbers EUT CS, PA, BMBI
Prof. Dr. J.-P. Katoen TU and AU CS, VPS
Dr. D. Bošnački EUT CS, MC, BMBI
one Ph.D. student EUT, TU, AU CS
one postdoc EUT CS, MC

Technology, AU = RWTH Aachen University; CS = Computer Science, MC
= Model Checking, BMBI = Biomodeling and Bioinformatics, PA = Parallel
algorithms, SE = Software Engineering, VPS = Verification of Probabilistic
Systems;)

Prof. van den Brand and Prof. Katoen will be promotors (advisers) of the
Ph.D. student.

5) Research school: Instituut voor Programmatuur en Algoritmiek/Institute
for Programming and Algorithmics (IPA)

6a) Description of the proposed research:
Introduction.
Model checking [24, 49, 21, 1] is a formal automated technique that is used

to verify the correctness of parallel and distributed algorithms for hardware and
software. The effectiveness of any verification method, including model check-
ing, is limited by the complexity of the system that it is verified. Thanks to
a continuous improvement of the algorithm designs, but also because of the
increasing powers of the CPUs, model checking tools have been able to success-
fully cope with complexity and tackle a wide range of problems. Unfortunately
it seems that we cannot rely anymore on the Moore’s law [44] that predicts dou-
bling of the efficiency of the hardware each 18 months. At the time of writing of
this proposal the fastest PCs run at 3.8 GHz, while Moore’s curve would have
predicted 6.6 GHz.

The answer of the manufacturers to the Moore’s law failure is focusing on
further development of multi-core CPU systems that essentially contain multiple
processors in one. Dual-core processors appeared on the market for the first
time in 2001 but were quite expensive. Only in 2005 the first affordable price
versions arrived [43]. Nowadays virtually all new PCs have dual-core processors
and quadricore are also widely available. Manufacturers predict that in five
years we can have processors with more than 80 cores. Machines with 256 cores
(128 dual-core processors) are already available on the market.

The potential parallelism of the multi-core processors offers a unique oppor-
tunity to improve the efficiency of the model checking tools. Ironically enough,
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model checking, that was mainly introduced for the verification of highly parallel
systems, in the past has mostly relied on sequential algorithms.

Parallel model checking algorithms have been designed before the arrival of
the multi-core systems (e.g., [51, 41, 4]). They were implemented on distributed
memory systems - clusters of CPUs. However this did not have any major
impact in practice - none of the widely used model checking tools has a cluster
version that preserves its full range of capabilities.

The aim of this project is to develop efficient parallel algorithms for multi-
core shared memory systems. We focus on explicit state model checking with
applications to the verification of software and model checking for probabilistic
systems. However, one could expect that the ideas behind the algorithms that
we intend to develop can be reused in the symbolic model checking that has
been employed successfully for hardware verification.

In the sequel we call the distributed (cluster-based) systems multi-CPU sys-
tems to distinguish them from multi-core systems.

Multi-core versus multi-CPU (clusters). Despite the many similari-
ties, there exists several important differences between multi-CPU and multi-
core systems. For instance, multi-core systems provide all CPUs with access
to fast shared memory, making inter-CPU data transfer much more efficient
compared to cluster computers. Distributed systems communicate via message
passing which can introduce significant delays which is one of the main sources
of inefficiency. On the other hand in the multi-core systems we can use queues
that reside in shared memory. Those incur much less overhead, but the draw-
back is that one has to take into account the coherency of the data. Sharing
the memory requires efficient mutually exclusive access to the data. This is not
such an important issue in multi-CPUs where each CPU has its own memory.
(For a comprehensive overview on these differences see [3].) Thus, multi-core
systems pose new research questions and require new approaches to the parallel
model checking algorithms.

Main research problems/questions and expected results.
Speed and scalability. With the modern 64-bit CPUs there is no practical

limit to the amount of shared memory that can be addressed. Thus, using
parallel systems, like clusters, to increase the memory of the system is not a
primary goal anymore. Instead, the objective shifts toward runtime reductions.
Multi-core model checking aims at exploiting the high-throughput of the multi-
core CPUs that increases with the number of cores. Therefore, two natural
principal common requirements for our algorithms will be speed and scalability,
expressed as follows:

• A successful multi-core algorithm must be faster than its sequential coun-
terparts and in most cases than its distributed analogues.

• The efficiency (both in memory and runtime) of the algorithm should
steadily improve as the number of cores is increased.

Compatibility. One of the major issues in model checking is the so called
state space explosion (e.g. [54]). There exist numerous state space reduction
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techniques to combat this problem, like partial order reduction (POR) [52, 53,
25, 48], reduction based on symmetry [32, 22], as well as approximative verifi-
cation techniques like bitstate hashing [26] and hash-compact [55]. Besides the
memory requirements these state space reduction strategies also reduce the run
time of the algorithms. Since they are crucial for successfully applying model
checking in practice we will strive toward making the multi-core model checking
algorithms compatible with them.

Unfortunately, reconciling efficient model checking algorithms with reduction
techniques is quite often far from trivial even in the sequential case (e.g., [12]).
The compatibility constraint will very likely dictate new types of algorithms
compared to the existing sequential versions. Considering the above mentioned
difficulties with the various reduction techniques, we will define as our research
goal only compatibility of the multi-core algorithms with partial order reduc-
tion. The compatibility with the other techniques remains as optional research
problem which will be tackled depending on the overall project progress.

Load balancing and safety properties. In general, a parallel program
can be performed most efficiently if its subtasks can be distributed as evenly as
possible between the computing nodes. In parallel model checking algorithms
such a workload balance is achieved with state space partitioning functions that
map states to processing entities (CPUs or cores). Versions of these functions
used in multi-CPU model checking algorithms do not perform that good in
a multi-core setting, causing unnecessary communication overhead [3, 27, 28].
In [29, 27, 28] an algorithm for safety properties (roughly: properties that can
be disproved with a finite counterexample) was reported that showed quite
nice scalability. However, this algorithm is by no means optimal and it is an
interesting research question how to further improve the partitioning function.

Liveness properties. Probably the most important problem at the mo-
ment in multi-core model checking is to design an efficient - linear in the size of
the state space - algorithm for liveness properties (properties that can be dis-
proved with infinite counterexamples). In this project we aim at developing an
efficient algorithm for model checking with Linear Temporal Logic (LTL) [21].
Main sequential liveness algorithms are based on depth-first search (DFS) which
unfortunately is inherently sequential [50]. Recently published algorithms that
are adaptations of their multi-CPU counterparts are in the worst case cubic in
the size of the state space (number of states) [3, 4, 5, 15, 17]. Besides that, it is
not clear how those algorithms will scale with the number of cores.

Probabilistic model checking. An interesting branch of model checking
is the model checking of probabilistic systems(cf. [1, 2, 38]). Unlike in classical
model checking in probabilistic model checking the properties are not required
to hold for all cases, but instead with certain probability. Probabilistic model
checking is even more vulnerable than its classical counterpart to the state space
explosion [2, 38, 36]. Thus it can benefit even more from a prospective speed
up by the multi-core algorithms.

There are several publications on probabilistic systems in distributed envi-
ronment [45, 19, 7]. They are mostly limited to analysis of Markov chains which
form the basis for probabilistic model checking. To the best of our knowledge
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there are no multi-core versions of model checking algorithms for timed and
probabilistic models, thus, it would be interesting to explore the possibilities in
that direction.
To summarize, we will focus on the following research topics:

• efficient load-balancing and state space partitioning functions;

• efficient multi-core algorithms for the verification of safety and liveness
properties;

• multi-core algorithms for probabilistic/stochastic systems;

• speed, scalability and compatibility with state space reduction techniques
of the multi-core algorithms.

Prototype implementations of the algorithms will be developed and tested on
realistic case studies. The results of the project will be published in highly
recognized conferences and journals.

Research approach and methodology.
Load balancing and safety properties. For the verification of safety

properties we will use as a starting point the algorithm reported in [27, 28, 29].
Unlike the vast majority of parallel algorithms that use hash functions in order
to achieve an even load balance, this multi-core algorithm uses a sliced-stack
method to partition the state space. In this method the cores communicate
via bounded queues. The search is essentially depth-first, only each search is
limited by a maximal depth L. When a core c1 generates a state s beyond the
depth limit it hands s off to another core c2, by putting it into the queue of c2.
(Each core has its own queue that it can exclusively read.) Core c2 fetches s
from its queue and starts a new DFS using s as a root. Again, if a state which
is in a distance from s that it is greater than the depth limit L is generated, it
is handed off to another core, and so on. To avoid deadlocks, if no free core is
available the hand-off does not happen and the DFS continues as usual.

In principle this algorithm scales well for N cores which has been confirmed
also by the experiments reported in [27]. It would be interesting however to
investigate how those two approaches (hash-function and sliced stack) compare
exactly to one another and to get further insights into their strengths and weak-
nesses. It is worthwhile to check if this could be used further to improve the
safety algorithms.

Liveness properties and compatibility. In the most efficient sequential
algorithms for LTL model checking, like Nested Depth-First Search [23] and the
Strongly Connected Component based ones(e.g. [54]), DFS plays an essential
role. Since DFS is inherently sequential [50] a simple adaptation for parallel
systems of these algorithms seems impossible. Thus, a parallel algorithm for
LTL that has a linear complexity in the number of states is still an open problem.

Also, because of compatibility with reduction techniques algorithms quite
different from the sequential ones will be needed. An indicative example is
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partial order reduction. The problem is that the most efficient algorithms for
POR are based on DFS [52, 25, 48]. Some important features, like the so-called
cycle proviso [52] are tailored with this assumption in mind.

One possibility could be to design algorithms which would use alternative
search orders. Obviously, a new search order would require new versions of
the cycle proviso and the other DFS dependent components of the algorithm.
In that direction we intend to build up on [10, 11, 9], where cycle provisos
for breadth-first search and general exploration algorithms, respectively, were
presented.

Trying to reconcile the new algorithms with symmetry reduction and the
approximative techniques (bit-state and hash-compact) also will pose non-trivial
questions. For instance, such kind of obstacles are not easy to resolve also in
the sequential case [8]. Regarding the symmetry reduction issues in the parallel
context we intend to expand on the results in [8]. We emphasize again that
primarily we will be trying to solve only the problem with compatibility with
POR, while the other reduction techniques remain optional.

Probabilistic model checking. Standard and probabilistic multi-core
model checking can share several common aspects. For instance schemes to
parallelize algorithms for binary decision diagrams (BDDs) can be applied in
both cases. Thus, we will focus on parallelizing BDD schemes.

Another direction will be to develop parallel versions of numerical algorithms
for solving systems linear equations. Many of the probabilistic algorithms are
based on matrix/vector multiplications, which are inherently parallelizable.

Experimental evaluation. It is of utmost importance to evaluate model
checking algorithms on various case studies. Therefore most of the new al-
gorithms will be implemented. The implementations will be compared with
analogous sequential and multi-CPU algorithms. To this end we will use imple-
mentations of these algorithms for computer clusters (e.g. [3]) and the BEEM
bench-mark set [47].

Besides that, since this project is focused on software model checking most
of our cases will be on verification of parallel software. We intend to analyze
realistic multi-threaded systems. (The experimental results from [27] seem to
suggest that multi-core model checking shows its advantages on such examples
with huge state spaces.) This will be done preferably in collaboration with
industry.

Considering the expertise and background of the project team, we will also
deal with case studies inspired by biological systems. In the last years several
successful applications of model checking in biology were reported(e.g. [20, 42,
13]). Since biological systems tend to be even more complex than their hardware
and software counterparts, they will certainly benefit from the enhancements by
the multi-core approach. In particular, our experience [14] shows that proba-
bilistic model checking can be indispensable for analyzing biological processes.

The results of all case studies will be compared with the analysis of those
systems with analogous sequential algorithms and algorithms on clusters.

The results on standard model checking will be implemented mostly on top
of the model checker Spin [26]. Spin is one of the most widely used model
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checkers. The principal investigator has significant experience with the tool and
has been contributing various extensions and improvements of it, some of which
are included in the official distribution.

For implementations of the probabilistic model checking algorithms we will
use the probabilistic model checker MRMC [35]. The latter has been developed
in the group of J.-P. Katoen and it is one of the best tools in its branch [34].

Scientific interest and urgency.
A vast majority of the 500 most powerful supercomputers are characterized

as clusters (www.top500.org) [43]. Unfortunately this fact has not had much
impact on the popularity of parallel computing. For decades parallel computers
have been used almost exclusively in scientific areas. With the emergence of the
multi-core technology they are ready to move to everyday life. Low cost parallel
computers will soon entail simple to use parallel programming environments [43,
46]. The programs on which we base our businesses and research will possibly
have to be adjusted rewritten from scratch, often significantly.

It is important that computer science and model-checking in particular will
be ready for that. If we want to stay relevant with industry, we have to keep
the pace with the new technologies.

Relation of the proposed research with similar research that is
done elsewhere.

There exists extensive literature that deals with parallel algorithms for model
checking, but it is almost exclusively based on the distributed memory cluster
based model (e.g.[3, 4, 5, 6, 15, 16, 17, 18, 33, 37, 40, 41, 51]).

To the best of our knowledge, the papers [27, 28] co-authored by the principal
investigator of this project ware the first publications that dealt with multi-core
algorithms and model checking. There the safety algorithm with sliced-stack
partition was presented. Also an algorithm for LTL properties for dual-core
processors was given. Although in many cases it showed a significant runtime
improvements compared to the sequential implementation, the main drawback
of this algorithm is that it is difficult to see how it can be scaled for more than
two cores.

Probably the first results on shared memory model checking were presented
in [31, 30]. The paper [30] deals with CTL∗ model checking and it is based on
hesitant alternating automata. Because of that it is quite difficult to make a
meaningful comparison to the cycle detection algorithms used for LTL. Besides
that, the verification runs that are giving stop at the generation of the first
counter-example.

A recent paper [3] presented an LTL model checking algorithm. However
this algorithm is in the worst case cubic in the number of states and because of
that its practical application could be quite limited.

Fitting of the research in the groups of the investigators.
Most of the work within the project will be done in the groups of Mark van

den Brand in Eindhoven and Joost-Pieter Katoen in Twente and Aachen.
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Joost-Pieter Katoen and his group of Software Modeling and Verification
have internationally recognized competence in the field of formal specification
and verification of probabilistic systems.

The Software Engineering and Technology group of Mark van den Brand is
focused on maintaining the consistency between models and code. The expe-
rience in software development of the group will provide the knowledge that is
needed for the implementations of the multi-core algorithms and extraction of
models from the source code of realistic case studies.

Peter Hilbers is an expert in parallel algorithms and has an outstanding
record in applications of parallel computing. The Biomodeling and bioinformat-
ics group that he leads at the Biomedical Engineering Department in Eindhoven
can provide expertise and interesting case studies of biological systems.

Dragan Bošnački among others has coauthored pioneering papers on multi-
core model checking. Besides the theoretical work he has a broad experience in
tool implementations and applications of model checking. He also has expertise
in modeling of biological systems.

We envisage close collaboration with the groups of Jos Baeten and Jan Friso
Groote in Eindhoven, which have experts in model checking, and the group of
Jaco van de Pol at Twente which has built up significant experience in dis-
tributed algorithms for model checking.

On international plan we expect collaboration with the groups of Gerard
Holzmann at NASA JPL, Marta Kwiatkowska at Oxford, and Luboš Brim in
Brno.

6b) Application perspective: Computer industry has been using software
with parallel features on sequential machines for decades. Operating systems like
Windows and Unix/Linux are multi-threaded and languages like Java support
multi-threaded programming. With the new low-cost parallel machines and
the parallel programming models like OpenMP [46], parallel technology can
finally fulfill its promises by offering full exploitation of the gains by multi-core
throughput.

Therefore, it is a plausible assumption that the importance of parallel sys-
tems will significantly increase. Parallel programs are notoriously more difficult
to reason about than the sequential ones. As a result, one can expect that
the need for verification of commercial programs will increase in the coming
years. Together with program analysis, model checking is the most applied
formal verification technique in industry. As model checking mostly targets
parallel systems, industry and model checking can have mutual benefit from
these trends. Since the model checker Spin is one of the most popular model
checkers one can expect that the project results will also have an impact on the
verification of realistic systems.

7) Project Planning:
In general, we expect that both the postdoc and the Ph.D. student will work

on the theoretical parts as well as on the implementations and experimental
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evaluations. Table 1 contains a tentative schedule of their tasks. The roles of
the senior members of the research team will be distributed according to their
expertises as described above.

During the project the Ph.D. student will follow the regular courses that are
organized by the IPA research school. Both the Ph.D. student and the postdoc
researcher will attend the events that are organized by IPA (e.g. IPA fall and
spring days) and will attend at least one summer school.

The Ph.D. student will be hosted half of the time in the group of J.-P. Katoen
regarding the needed expertise in probabilistic model checking. Also the Ph.D.
student will stay for 3 months research visit in one of the leading groups in
parallel and/or probabilistic model checking (e.g. the groups of Luboš Brim in
Brno or Marta Kwiatkowska at Oxford). The postdoc will be working in the
group of M. van den Brand.

The fact that we have done already some substantial work on multi-core
model checking with encouraging results which are published in journals and
conferences and were well received by the community, gives us confidence that
the project has high chance of success. Probably the greatest challenge will be
finding an efficient livenenss algorithm. Therefore we intend to tackle this topic
immediately from the beginning of the project. In case some additional time
for this task is needed it should be possible to allocate it without jeopardizing
the other work packages. We estimate that the rest of the project subjects are
relatively low-risk which should guarantee a successful project and deliverables
(e.g., a good quality Ph.D. thesis by the Ph.D. student).

8) Expected use of instrumentation:

• desktop computers with multi-core processors (purchased specially for the
project);

• computer clusters (already available in Eindhoven).
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10) Requested budget:

(1) PhD student (1 fte for 4 years)
a) appointment = 177,495
b) personal benchfee = 5,000
c) additional traveling budget = 3,000
d) Project related apparatus/software = 5,000
Subtotal PhD student = 190,495

(2) postdoc (1 fte for 3 years)
a) appointment = 174,911
b) personal benchfee = 5,000
c) additional traveling budget =
d) Project related apparatus/software = 5,000
Subtotal postdoc = 184,911

The additional traveling budget for the PhD student is motivated by her or
his stay abroad in an internationally leading group in the areas that are relevant
for the project (see Section 7, Project Planning).
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The project related apparatus/software item is motivated by a purchase of
new multi-core computer(s) (see Section 8, Expected use of instrumentation).
For illustration: the current price of an 8-core machine – dual quad-core with
32 GB of memory – is about 10, 000 euros. Although this budget item is di-
vided over the Ph.D. student and the postdoc, most likely one machine will be
purchased that will be shared between them.
Total requested budget: 375,406 euro
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