Energy constraint flow for wireless sensor networks

Hans L. Bodlaender Richard Tan Thomas van Dijk
Jan van Leeuwen
Overview

Problem statement

Easier cases

Approximations

Hardness

Conclusions
Wireless sensor networks

- Wireless sensor - "smart dust" - *motes*
- Microchip and miniature battery
- Batteries are typical limited and run out
- Limited range transmit/receive capacity
Ad hoc networks

- Motes have sizes 6 by 3 by 0.6 cm and smaller
- Motes form ad hoc networks
- Monitoring applications, e.g.:
 - monitoring bridges (embed motes in concrete)
 - monitoring condition of machines
 - monitoring water meters
 - monitoring pollution and water level in nature
 - military applications
A mote
Data gathering problem

- A base station
- Some sensors have information that must be sent to base station
- Sensors can transmit messages
- Energy of sensors is limited and not replenishable
- Receiving and transmitting costs energy
- Processing energy can be neglected
- Energy of sending a message depends on distance of target

- Network $G = (V, A)$
- Sink node t
- Set of source nodes S
- Each node has a battery capacity (energy) E_i
- For each arc ij, node i must spend e_{ij} energy to transmit a packet to j
- What is the maximum number of packets that can be sent to t?

Energy constraint version of flow
(I)LP formulation

Maximize $F = \sum_{j \in V} f_{jt}$ (t sink node), subject to:

- $f_{ij} \geq 0$ for all $ij \in A$
- $\sum_{j \in V} f_{ij} = \sum_{j \in V} f_{ji}$ for all $i \in V - S - \{t\}$
- $\sum_{j \in V} f_{ij} \cdot e_{ij} \leq E_i$ for all $i \in V$

Two variants: allowing fractional solutions, or demanding integer solutions:

- $f_{ij} \in \mathbb{N}$ for all $ij \in A$
Easier cases I: Equal costs

- If all e_{ij} are equal, then problem is polynomial time solvable
- Maximum flow with node capacities
- Works for integral and for fractional case
Easier cases II: Fractional case

- The fractional case is – of course – solvable in polynomial time
- LP
- Interesting open problem: *Is there a combinatorial polynomial time algorithm (i.e., not depending on ellipsoid method)?*
- Recent research: comparing heuristics with LP solution
- We now look to integral case
Approximation algorithm 1

- Polynomial time approximation is possible with a multiplicative factor

\[\rho = \max_{i \in V} \frac{\max_{j,i,j \in A} e_{ij}}{\min_{j,i,j \in A} e_{ij}} \]

- Set all costs \(e_{ij} \) to \(\max_{j,i,j \in A} e_{ij} \).
- Gives a polynomial solvable instance with quality \(\rho \)
Approximation algorithm II

- First solve the fractional LP-formulation, and obtain flow f^*
- Round down to integral flow f as follows
- Start with $f = 0$ everywhere
- While there is a path p from a source s to the sink t with for all arcs ij on p $f^*_{ij} - f^*_{ji} \geq 1$, do
 - Let $f_p = \min_{ij \in P} [f^*_{ij} - f_{ij}]$
 - For all $ij \in P$, increase f^*_{ij} by f_p
Analysis of approximation algorithm II

- Note: $f^* \leq f$; f^* is integral solution
- Each round, we gain at least one arc with $f^*_{ij} - f^*_{ji} < 1$
- $O(|A|)$ rounds, so $O(|A|^2)$ time
- Let Q be all vertices, reachable from a source with a path with all arcs $f^*_{ij} - f^*_{ji} \geq 1$
- The capacity of the cut $(Q, V - Q)$ is less than $|A|$

Theorem

Approximation algorithm II finds in $O(|A|^2)$ time an integral flow whose value is at least the value of the maximum fractional flow minus $|A|$
The Maximum Flow in Wireless Sensor Networks with Energy Constraints problem is NP-hard, even when one of the following holds:

- There is only one source
- Energies are given in unary (strongly NP-hard)
- Nodes are points in the 2d-planes, and for all i, j, e_{ij} is the square of the distance from i to j
 - Also: points on a line
 - And: all nodes have the same energy
- The network has treewidth three

Some non-approximability results also follow
Starting problem for proofs

- Transform from 3-PARTITION: given positive integers a_1, \ldots, a_{3m}, B, with $B_4 < a_i < B_2$ for all i, can we make m disjoint groups of three a_i’s, each group of sum B?
- This problem is strongly NP-complete
From 3-partition to Max Flow WSNEC

- m sources with B energy
- $3m$ forwarders, that can send exactly one message to the sink ($E_{f_i} = e_{f_i}t = 1$)
- sending from source to forwarder i costs a_i energy
Only one source

- Standard flow techniques give e.g., equivalence for the case there is only one source
Points in the plane

- The proof can be modified such that nodes are points in \mathbb{R}^2.
- For each pair of nodes, the energy to send from i to j is the square of the distance from i to j.
Hardness proof for points in the plane

1. Place m source nodes on the same position here, with B energy.
2. The distance from a source node to a node f_i is $\sqrt{a_i}$.
3. Each f_i has precisely the energy to send one message to g_i.
4. Only g_i's can reach t.
2D: Proof details

- If we can send $3m$ messages to t, then each g_i sends one message to t, so each f_i sends one message to g_i, so each f_i receives one message from a source. Hence: a solution to 3-partition problem.

- However: not a correct transformation as we use coordinate values like $\sqrt{a_i}$.

- What works: round all values down to multiple of ϵ, for $\epsilon = 1/\Theta(m^2B^2)$.

- Or, equivalently, take coordinate-values $\lfloor mB\sqrt{a_i} \rfloor$ and adjust energies accordingly.

- Note: in these instances, each node has same energy.
1D

- Still NP-complete if all nodes on a line
- Put t right of all g_i's and give each g_i just enough energy to send one message to t
1D with the same energy

- By repeating pattern, we can give all nodes the same energy.
- Induction shows that in ith copy, i nodes can forward only one message.
Nonapproximability

- Strong NP-hardness implies that there is no FPTAS, unless $P=NP$
- A stronger result can be obtained
- Two power settings: for each node i, there are only two possible values for energies e_{ij} (if $ij \in A$)

Theorem

*Even if for each node there are two power settings, there is no PTAS for the Integer Max Flow WSNEC problem, unless $P = NP$.***
On the no-PTAS-proof

2-size 3-capacity generalized assignment problem (2GAP-3)

Instance: A set B of m bins and a set S of n items. Each bin j has capacity $c(j) = 3$ and for each item $i \in S$ and bin $j \in B$, we are given a size $s(i, j) = 1$ or $s(i, j) = 1 + \epsilon$ (for some $\epsilon > 0$) and a profit $p(i, j) = 1$.

Objective: Find a subset $U \subseteq S$ of maximum profit such that U has a feasible packing in B.

Theorem (Chekuri and Khanna, 2005)

2GAP-3 is APX-hard and hence has no PTAS, unless $P = NP$.

- Construct similar as before
Treewidth

- Problem is solvable on trees
- Problem is solvable on graphs of treewidth two, if there is one source, and treewidth remains two if we add an edge from source to sink
- Problem is pseudopolynomial time solvable if treewidth bounded by constant
- Problem is weak NP-hard for treewidth three
Conclusions

- Wireless sensor networks: data gathering and not computing
- Problem is “Beyond Turing”, but algorithmic analysis uses classic “Turing-type” techniques